

Second Edition

Alfred V. Aho
Columbia University

Monica S. Lam
Stanford University

Ravi Sethi
Ava ya

Jeffrey D. Ullman
Stanford University

Boston San Francisco NewYork
London Toronto Sydney Tokyo Singapore Madrid

Mexico City Munich Paris Cape Town Hong Kong Montreal

Publisher
Executive Editor
Acquisitions Editor
Project Editor
Associate Managing Editor
Cover Designer
Digital Assets Manager
Media Producer
Senior Marketing Manager
Marketing Assistant
Senior Author Support1

Technology Specialist
Senior Manufacturing Buyer

Cover Image

Greg Tobin
Michael Hirsch
Matt Goldstein
Katherine Harutunian
Jeffrey Holcomb
Joyce Cosentino Wells
Marianne Groth
Bethany Tidd
Michelle Brown
Sarah Milmore

Joe Vetere
Carol Melville

Scott Ullman of Strange Tonic Productions
(www. strangetonic.com)

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and Addison-Wesley was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

This interior of this book was composed in L*T~X.

Library of Congress Cataloging-in-Publication Data

Compilers : principles, techniques, and tools 1 Alfred V. Aho ... [et al.]. -- 2nd ed.
p. cm.

Rev. ed. of: Compilers, principles, techniques, and tools / Alfred V. Aho, Ravi
Sethi, Jeffrey D. Ullman. 1986.
ISBN 0-32 1-4868 1 - 1 (alk. paper)
1. Compilers (Computer programs) I. Aho, Alfied V. 11. Aho, Alfred V.

Compilers, principles, techniques, and tools.
QA76.76.C65A37 2007
005.4'53--dc22

2006024333

Copyright O 2007 Pearson Education, Inc. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the
United States of America. For information on obtaining permission for use of
material in this work, please submit a written request to Pearson Education,
Inc., Rights and Contracts Department, 75 Arlington Street, Suite 300, Boston,
MA 021 16, fax your request to 61 7-848-7047, or e-mail at
http://www .pearsoned.com/legal/permissions.htm.

Preface

In the time since the 1986 edition of this book, the world of compiler design
has changed significantly. Programming languages have evolved to present new
compilation problems. Computer architectures offer a variety of resources of
which the compiler designer must take advantage. Perhaps most interestingly,
the venerable technology of code optimization has found use outside compilers.
It is now used in tools that find bugs in software, and most importantly, find
security holes in existing code. And much of the "front-end" technology -
grammars, regular expressions, parsers, and syntax-directed translators - are
still in wide use.

Thus, our philosophy from previous versions of the book has not changed.
We recognize that few readers will build, or even maintain, a compiler for a
major programming language. Yet the models, theory, and algorithms associ-
ated with a compiler can be applied to a wide range of problems in software
design and software development. We therefore emphasize problems that are
most commonly encountered in designing a language processor, regardless of
the source language or target machine.

Use of the Book

It takes at least two quarters or even two semesters to cover all or most of the
material in this book. It is common to cover the first half in an undergraduate
course and the second half of the book - stressing code optimization - in
a second course at the graduate or mezzanine level. Here is an outline of the
chapters:

Chapter 1 contains motivational material and also presents some background
issues in computer architecture and programming-language principles.

Chapter 2 develops a miniature compiler and introduces many of the impor-
tant concepts, which are then developed in later chapters. The compiler itself
appears in the appendix.

Chapter 3 covers lexical analysis, regular expressions, finite-state machines, and
scanner-generator tools. This material is fundamental to text-processing of all
sorts.

PREFACE

Chapter 4 covers the major parsing methods, top-down (recursive-descent, LL)
and bottom-up (LR and its variants).

Chapter 5 introduces the principal ideas in syntax-directed definitions and
syntax-directed translations.

Chapter 6 takes the theory of Chapter 5 and shows how to use it to generate
intermediate code for a typical programming language.

Chapter 7 covers run-time environments, especially management of the run-time
stack and garbage collection.

Chapter 8 is on object-code generation. It covers construction of basic blocks,
generation of code from expressions and basic blocks, and register-allocation
techniques.

Chapter 9 introduces the technology of code optimization, including flow graphs,
dat a-flow frameworks, and iterative algorithms for solving these frameworks.

Chapter 10 covers instruction-level optimization. The emphasis is on the ex-
traction of parallelism from small sequences of instructions and scheduling them
on single processors that can do more than one thing at once.

Chapter 11 talks about larger-scale parallelism detection and exploit ation. Here,
the emphasis is on numeric codes that have many tight loops that range over
multidimensional arrays.

Chapter 12 is on interprocedural analysis. It covers pointer analysis, aliasing,
and data-flow analysis that takes into account the sequence of procedure calls
that reach a given point in the code.

Courses from material in this book have been taught at Columbia, Harvard,
and Stanford. At Columbia, a seniorlfirst-year graduate course on program-
ming languages and translators has been regularly offered using material from
the first eight chapters. A highlight of this course is a semester-long project
in which students work in small teams to create and implement a little lan-
guage of their own design. The student-created languages have covered diverse
application domains including quantum computation, music synthesis, com-
puter graphics, gaming, matrix operations and many other areas. Students use
compiler-component generators such as ANTLR, Lex, and Yacc and the syntax-
directed translation techniques discussed in chapters two and five to build their
compilers. A follow-on graduate course has focused on material in Chapters 9
through 12, emphasizing code generation and optimization for contemporary
machines including network processors and multiprocessor architectures.

At Stanford, a one-quarter introductory course covers roughly the mate-
rial in Chapters 1 through 8, although there is an introduction to global code
optimization from Chapter 9. The second compiler course covers Chapters 9
through 12, plus the more advanced material on garbage collection from Chap-
ter 7. Students use a locally developed, Java-based system called Joeq for
implementing dat a-flow analysis algorithms .

PREFACE vii

Prerequisites

The reader should possess some "computer-science sophistication," including
a t least a second course on programming, and courses in data structures and
discrete mathematics. Knowledge of several different programming languages
is useful.

Exercises

The book contains extensive exercises, with some for almost every section. We
indicate harder exercises or parts of exercises with an exclamation point. The
hardest exercises have a double exclamation point.

Gradiance On-Line Homeworks

A feature of the new edition is that there is an accompanying set of on-line
homeworks using a technology developed by Gradiance Corp. Instructors may
assign these homeworks to their class, or students not enrolled in a class may
enroll in an "omnibus class" that allows them to do the homeworks as a tutorial
(without an instructor-created class). Gradiance questions look like ordinary
questions, but your solutions are sampled. If you make an incorrect choice you
are given specific advice or feedback to help you correct your solution. If your
instructor permits, you are allowed to try again, until you get a perfect score.

A subscription to the Gradiance service is offered with all new copies of this
text sold in North America. For more information, visit the Addison-Wesley
web site www . aw . com/gradiance or send email to comput ing@aw . corn.

Support on the World Wide Web

The book's home page is

Here, you will find errata as we learn of them, and backup materials. We hope
to make available the notes for each offering of compiler-related courses as we
teach them, including homeworks, solutions, and exams. We also plan to post
descriptions of important compilers written by their implementers.

Acknowledgements

Cover art is by S. D. Ullman of Strange Tonic Productions.
Jon Bentley gave us extensive comments on a number of chapters of an

earlier draft of this book. Helpful comments and errata were received from:

viii PREFACE

Domenico Bianculli, Peter Bosch, Marcio Buss, Marc Eaddy, Stephen Edwards,
Vibhav Garg, Kim Hazelwood, Gaurav Kc, Wei Li, Mike Smith, Art Stamness,
Krysta Svore, Olivier Tardieu, and Jia Zeng. The help of all these people is
gratefully acknowledged. Remaining errors are ours, of course.

In addition, Monica would like to thank her colleagues on the SUIF com-
piler team for an 18-year lesson on compiling: Gerald Aigner, Dzintars Avots,
Saman Amarasinghe, Jennifer Anderson, Michael Carbin, Gerald Cheong, Amer
Diwan, Robert French, Anwar Ghuloum, Mary Hall, John Hennessy, David
Heine, Shih- Wei Liao, Amy Lim, Benjamin Livshits, Michael Martin, Dror
Maydan, Todd Mowry, Brian Murphy, Jeffrey Oplinger, Karen Pieper, Mar-
tin Rinard, Olatunji Ruwase, Constantine Sapuntzakis, Patrick Sathyanathan,
Michael Smith, Steven Tjiang, Chau- Wen Tseng, Christopher Unkel, John
Whaley, Robert Wilson, Christopher Wilson, and Michael Wolf.

A. V. A., Chatham NJ
M. S. L., Menlo Park CA
R. S., Far Hills NJ
J . D. U., Stanford CA
June, 2006

Table of Contents

1 Introduction 1
. 1.1 Language Processors 1

1.1.1 Exercises for Section 1.1 3
1.2 The Structure of a Compiler . 4

1.2.1 Lexical Analysis . 5
1.2.2 Syntax Analysis . 8
1.2.3 Semantic Analysis . 8

. 1.2.4 Intermediate Code Generation 9
. 1.2.5 Code Optimization 10

. 1.2.6 Code Generation 10
. 1.2.7 Symbol-Table Management 11

. 1.2.8 The Grouping of Phases into Passes 11
. 1.2.9 Compiler-Construction Tools 12

. 1.3 The Evolution of Programming Languages 12
1.3.1 The Move to Higher-level Languages 13
1.3.2 Impacts on Compilers . 14
1.3.3 Exercises for Section 1.3 14

1.4 The Science of Building a Compiler 15
1.4.1 Modeling in Compiler Design and Implementation 15
1.4.2 The Science of Code Optimization 15

1.5 Applications of Compiler Technology 17
1.5.1 Implement at ion of High-Level Programming Languages . 17
1.5.2 Optimizations for Computer Architectures 19
1.5.3 Design of New Computer Architectures 21
1.5.4 Program Translations . 22
1.5.5 Software Productivity Tools 23

1.6 Programming Language Basics 25
1.6.1 The Static/Dynamic Distinction 25
1.6.2 Environments and States 26
1.6.3 Static Scope and Block Structure 28
1.6.4 Explicit Access Control 31
1.6.5 Dynamic Scope . 31
1.6.6 Parameter Passing Mechanisms 33

TABLE OF CONTENTS

1.6.7 Aliasing . 35
1.6.8 Exercises for Section 1.6 35

1.7 Summary of Chapter 1 . 36
. 1.8 References for Chapter 1 38

2 A Simple Synt ax-Direct ed Translator 39
. 2.1 Introduction 40

. 2.2 Syntax Definition 42
. 2.2.1 Definition of Grammars 42

. 2.2.2 Derivations 44
2.2.3 Parse Trees . 45

. 2.2.4 Ambiguity 47
2.2.5 Associativity of Operators 48
2.2.6 Precedence of Operators 48

. 2.2.7 Exercises for Section 2.2 51
. 2.3 Syntax-Directed Translation 52

. 2.3.1 Postfix Notation 53
. 2.3.2 Synthesized Attributes 54

. 2.3.3 Simple Syntax-Directed Definitions 56
. 2.3.4 Tree Traversals 56

. 2.3.5 Translation Schemes 57
. 2.3.6 Exercises for Section 2.3 60

. 2.4 Parsing 60
. 2.4.1 Top-Down Parsing 61
. 2.4.2 Predictive Parsing 64

. 2.4.3 When to Use 6-Productions 65
. 2.4.4 Designing a Predictive Parser 66

. 2.4.5 Left Recursion 67
. 2.4.6 Exercises for Section 2.4 68

. 2.5 A Translator for Simple Expressions 68
. 2.5.1 Abstract and Concrete Syntax 69

. 2.5.2 Adapting the Translation Scheme 70

. 2.5.3 Procedures for the Nonterminals 72
. 2.5.4 Simplifying the Translator 73

. 2.5.5 The Complete Program 74
. 2.6 Lexical Analysis 76

. 2.6.1 Removal of White Space and Comments 77
. 2.6.2 Reading Ahead 78

. 2.6.3 Constants 78
. 2.6.4 Recognizing Keywords and Identifiers 79

. 2.6.5 A Lexical Analyzer 81
. 2.6.6 Exercises for Section 2.6 84

. 2.7 Symbol Tables 85
. 2.7.1 Symbol Table Per Scope 86

. 2.7.2 The Use of Symbol Tables 89

TABLE OF CONTENTS xi

. 2.8 Intermediate Code Generation 91
. 2.8.1 Two Kinds of Intermediate Representations 91

. 2.8.2 Construction of Syntax Trees 92
. 2.8.3 Static Checking 97

. 2.8.4 Three-Address Code 99
. 2.8.5 Exercises for Section 2.8 105

. 2.9 Summary of Chapter 2 105

3 Lexical Analysis 109
. 3.1 The Role of the Lexical Analyzer 109

. 3.1.1 Lexical Analysis Versus Parsing 110

. 3.1.2 Tokens, Patterns, and Lexemes 111
. 3.1.3 Attributes for Tokens 112

. 3.1.4 Lexical Errors 113
. 3.1.5 Exercises for Section 3.1 114

. 3.2 Input Buffering 115
. 3.2.1 Buffer Pairs 115

. 3.2.2 Sentinels 116
. 3.3 Specification of Tokens 116

. 3.3.1 Strings and Languages 117
. 3.3.2 Operations on Languages 119

. 3.3.3 Regular Expressions 120
. 3.3.4 Regular Definitions 123

3.3.5 Extensions of Regular Expressions 124
. 3.3.6 Exercises for Section 3.3 125

3.4 Recognition of Tokens . 128
3.4.1 Transition Diagrams . 130
3.4.2 Recognition of Reserved Words and Identifiers 132
3.4.3 Completion of the Running Example 133
3.4.4 Architecture of a Transition-Diagram-Based Lexical An-

alyzer . 134
3.4.5 Exercises for Section 3.4 136

3.5 The Lexical-Analyzer Generator Lex 140
3.5.1 Use of Lex . 140
3.5.2 Structure of Lex Programs 141
3.5.3 Conflict Resolution in Lex 144
3.5.4 The Lookahead Operator 144
3.5.5 Exercises for Section 3.5 146

3.6 Finite Automata . 147
3.6.1 Nondeterministic Finite Automata 147
3.6.2 Transition Tables . 148
3.6.3 Acceptance of Input Strings by Automata 149
3.6.4 Deterministic Finite Automata 149
3.6.5 Exercises for Section 3.6 151

3.7 From Regular Expressions to Automata 152

TABLE OF CONTENTS

3.7.1 Conversion of an NFA to a DFA 152
3.7.2 Simulation of an NFA . 156
3.7.3 Efficiency of NFA Simulation 157
3.7.4 Construction of an NFA from a Regular Expression . . . 159
3.7.5 Efficiency of String-Processing Algorithms 163
3.7.6 Exercises for Section 3.7 166

3.8 Design of a Lexical-Analyzer Generator 166
3.8.1 The Structure of the Generated Analyzer 167
3.8.2 Pattern Matching Based on NFA's 168
3.8.3 DFA's for Lexical Analyzers 170
3.8.4 Implementing the Lookahead Operator 171
3.8.5 Exercises for Section 3.8 172

3.9 Optimization of DFA-Based Pattern Matchers 173
3.9.1 Important States of an NFA 173
3.9.2 Functions Computed From the Syntax Tree 175
3.9.3 Computing nullable, firstpos, and lastpos 176

. 3.9.4 Computing followpos 177
. . . 3.9.5 Converting a Regular Expression Directly to a DFA 179

3.9.6 Minimizing the Number of States of a DFA 180
. 3.9.7 State Minimization in Lexical Analyzers 184

. 3.9.8 Trading Time for Space in DFA Simulation 185
. 3.9.9 Exercises for Section 3.9 186

. 3.10 Summary of Chapter 3 187
. 3.11 References for Chapter 3 189

4 Syntax Analysis 191
. 4.1 Introduction 192

. 4.1.1 The Role of the Parser 192
. 4.1.2 Representative Grammars 193

. 4.1.3 Syntax Error Handling 194
. 4.1.4 Error-Recovery Strategies 195

. 4.2 Context-Free Grammars 197
4.2.1 The Formal Definition of a Context-Free Grammar 197

. 4.2.2 Notational Conventions 198
. 4.2.3 Derivations 199

. 4.2.4 Parse Trees and Derivations 201
. 4.2.5 Ambiguity 203

. . . . 4.2.6 Verifying the Language Generated by a Grammar 204
. . . 4.2.7 Context-Free Grammars Versus Regular Expressions 205

. 4.2.8 Exercises for Section 4.2 206
. 4.3 Writing a Grammar 209

. 4.3.1 Lexical Versus Syntactic Analysis 209
. 4.3.2 Eliminating Ambiguity 210

. 4.3.3 Elimination of Left Recursion 212
. 4.3.4 Left Factoring 214

...
TABLE OF CONTENTS xlll

4.3.5 Non-Context-Free Language Constructs 215
. 4.3.6 Exercises for Section 4.3 216

. 4.4 Top-Down Parsing 217
. 4.4.1 Recursive-Descent Parsing 219

. 4.4.2 FIRST and FOLLOW 220
. 4.4.3 LL(1) Grammars 222

. 4.4.4 Nonrecursive Predictive Parsing 226
. 4.4.5 Error Recovery in Predictive Parsing 228

. 4.4.6 Exercises for Section 4.4 231
. 4.5 Bottom-Up Parsing 233
. 4.5.1 Reductions 234

. 4.5.2 Handle Pruning 235
. 4.5.3 Shift-Reduce Parsing 236

. 4.5.4 Conflicts During Shift-Reduce Parsing 238
. 4.5.5 Exercises for Section 4.5 240

. 4.6 Introduction to LR Parsing: Simple LR 241
. 4.6.1 Why LR Parsers? 241

. 4.6.2 Items and the LR(0) Automaton 242
. 4.6.3 The LR-Parsing Algorithm 248

. 4.6.4 Constructing SLR-Parsing Tables 252
4.6.5 Viable Prefixes . 256
4.6.6 Exercisesfor Section 4.6 257

4.7 More Powerful LR Parsers . 259
4.7.1 Canonical LR(1) Items . 260
4.7.2 Constructing LR(1) Sets of Items 261
4.7.3 Canonical LR(1) Parsing Tables 265
4.7.4 Constructing LALR Parsing Tables 266
4.7.5 Efficient Construction of LALR Parsing Tables 270
4.7.6 Compaction of LR Parsing Tables 275
4.7.7 Exercises for Section 4.7 277

4.8 Using Ambiguous Grammars . 278
4.8.1 Precedence and Associativity to Resolve Conflicts 279
4.8.2 The "Dangling-Else" Ambiguity 281
4.8.3 Error Recovery in LR Parsing 283
4.8.4 Exercises for Section 4.8 285

4.9 Parser Generators . 287
4.9.1 The Parser Generator Yacc 287
4.9.2 Using Yacc with Ambiguous Grammars 291
4.9.3 Creating Yacc Lexical Analyzers with Lex 294
4.9.4 Error Recovery in Yacc 295
4.9.5 Exercises for Section 4.9 297

4.10 Summary of Chapter 4 . 297
4.11 References for Chapter 4 . 300

xiv TABLE OF CONTENTS

5 Syntax-Directed Translation 303
5.1 Syntax-Directed Definitions . 304

5.1.1 Inherited and Synthesized Attributes 304
5.1.2 Evaluating an SDD at the Nodes of a Parse Tree 306
5.1.3 Exercises for Section 5.1 309

5.2 Evaluation Orders for SDD's . 310
5.2.1 Dependency Graphs . 310
5.2.2 Ordering the Evaluation of Attributes 312
5.2.3 S-Attributed Definitions 312
5.2.4 L-Attributed Definitions 313
5.2.5 Semantic Rules with Controlled Side Effects 314
5.2.6 Exercises for Section 5.2 317

5.3 Applications of Synt ax-Directed Translation 318
5.3.1 Construction of Syntax Trees 318

. 5.3.2 The Structure of a Type 321

. 5.3.3 Exercises for Section 5.3 323
. 5.4 Syntax-Directed Translation Schemes 324

. 5.4.1 Postfix Translation Schemes 324
. 5.4.2 Parser-Stack Implementation of Postfix SDT's 325

. 5.4.3 SDT's With Actions Inside Productions 327

. 5.4.4 Eliminating Left Recursion From SDT's 328
. 5.4.5 SDT's for L-Attributed Definitions 331

. 5.4.6 Exercises for Section 5.4 336
. 5.5 Implementing L- Attributed SDD's 337

. 5.5.1 Translation During Recursive-Descent Parsing 338
. 5.5.2 On-The-Fly Code Generation 340

. 5.5.3 L-Attributed SDD's and LL Parsing 343
. 5.5.4 Bottom-Up Parsing of L-Attributed SDD's 348

. 5.5.5 Exercises for Section 5.5 352
. 5.6 Summary of Chapter 5 353

. 5.7 References for Chapter 5 354

6 Intermediate-Code Generation 357
. 6.1 Variants of Syntax Trees 358

. 6.1.1 Directed Acyclic Graphs for Expressions 359
6.1.2 The Value-Number Method for Constructing DAG's . . . 360

. 6.1.3 Exercises for Section 6.1 362
. 6.2 Three-Address Code 363

. 6.2.1 Addresses and Instructions 364
. 6.2.2 Quadruples 366

. 6.2.3 Triples 367
. 6.2.4 Static Single- Assignment Form 369

. 6.2.5 Exercises for Section 6.2 370
. 6.3 Types and Declarations 370
. 6.3.1 Type Expressions 371

TABLE OF CONTENTS xv

. 6.3.2 Type Equivalence 372
. 6.3.3 Declarations 373

. 6.3.4 Storage Layout for Local Names 373
. 6.3.5 Sequences of Declarations 376

. 6.3.6 Fields in Records and Classes 376
. 6.3.7 Exercises for Section 6.3 378

. 6.4 Translation of Expressions 378
. 6.4.1 Operations Within Expressions 378

. 6.4.2 Incremental Translation 380
. 6.4.3 Addressing Array Elements 381

. 6.4.4 Translation of Array References 383
. 6.4.5 Exercises for Section 6.4 384

. 6.5 Type Checking 386
. 6.5.1 Rules for Type Checking 387

. 6.5.2 Type Conversions 388
. 6.5.3 Overloading of Functions and Operators 390

. 6.5.4 Type Inference and Polymorphic Functions 391
. 6.5.5 An Algorithm for Unification 395

. 6.5.6 Exercises for Section 6.5 398
. 6.6 Control Flow 399

. 6.6.1 Boolean Expressions 399
. 6.6.2 Short-circuit Code 400

. 6.6.3 Flow-of- Control Statements 401
6.6.4 Control-Flow Translation of Boolean Expressions 403
6.6.5 Avoiding Redundant Gotos 405
6.6.6 Boolean Values and Jumping Code 408
6.6.7 Exercises for Section 6.6 408

6.7 Backpatching . 410
6.7.1 One-Pass Code Generation Using Backpatching 410
6.7.2 Backpatching for Boolean Expressions 411
6.7.3 Flow-of-Control Statements 413
6.7.4 Break-, Continue-, and Goto-Statements 416
6.7.5 Exercises for Section 6.7 417

. 6.8 Switch-Statements 418
6.8.1 Translationof Switch-Statements 419
6.8.2 Syntax-Directed Translation of Switch-Statements 420
6.8.3 Exercises for Section 6.8 421

6.9 Intermediate Code for Procedures 422
6.10 Summary of Chapter 6 . 424
6.11 References for Chapter 6 . 425

xvi TABLE OF CONTENTS

7 Run-Time Environments 427
. 7.1 Storage Organization 427

7.1.1 Static Versus Dynamic Storage Allocation 429
. 7.2 Stack Allocation of Space 430

7.2.1 Activation Trees . 430
7.2.2 Activation Records . 433
7.2.3 Calling Sequences . 436
7.2.4 Variable-Length Data on the Stack 438
7.2.5 Exercises for Section 7.2 440

. 7.3 Access to Nonlocal Data on the Stack 441
. 7.3.1 Data Access Without Nested Procedures 442

. 7.3.2 Issues With Nested Procedures 442
7.3.3 A Language With Nested Procedure Declarations 443

. 7.3.4 Nesting Depth 443
. 7.3.5 Access Links 445

. 7.3.6 Manipulating Access Links 447
7.3.7 Access Links for Procedure Parameters 448

. 7.3.8 Displays 449
. 7.3.9 Exercises for Section 7.3 451

. 7.4 Heap Management 452
. 7.4.1 The Memory Manager 453

. 7.4.2 The Memory Hierarchy of a Computer 454
. 7.4.3 Locality in Programs 455

. 7.4.4 Reducing Fragmentation 457
. 7.4.5 Manual Deallocation Requests 460

. 7.4.6 Exercises for Section 7.4 463
. 7.5 Introduction to Garbage Collection 463

. 7.5.1 Design Goals for Garbage Collectors 464
. 7.5.2 Reachability 466

. 7.5.3 Reference Counting Garbage Collectors 468
. 7.5.4 Exercises for Section 7.5 470

. 7.6 Introduction to Trace-Based Collection 470
. 7.6.1 A Basic Mark-and-Sweep Collector 471

. 7.6.2 Basic Abstraction 473
. 7.6.3 Optimizing Mark-and-Sweep 475

. 7.6.4 Mark-and-Compact Garbage Collectors 476
. 7.6.5 Copying collectors 478

. 7.6.6 Comparing Costs 482
. 7.6.7 Exercises for Section 7.6 482
. 7.7 Short-Pause Garbage Collection 483

. 7.7.1 Incremental Garbage Collection 483
. 7.7.2 Incremental Reachability Analysis 485

. 7.7.3 Partial-Collection Basics 487
. 7.7.4 Generational Garbage Collection 488

. 7.7.5 The Train Algorithm 490

TABLE OF CONTENTS xvii

. 7.7.6 Exercises for Section 7.7 493
. 7.8 Advanced Topics in Garbage Collection 494

. 7.8.1 Parallel and Concurrent Garbage Collection 495
. 7.8.2 Partial Object Relocation 497

. 7.8.3 Conservative Collection for Unsafe Languages 498
. 7.8.4 Weak References 498

. 7.8.5 Exercises for Section 7.8 499
. 7.9 Summary of Chapter 7 500

. 7.10 References for Chapter 7 502

8 Code Generation 505
. 8.1 Issues in the Design of a Code Generator 506

. 8.1.1 Input to the Code Generator 507
. 8.1.2 The Target Program 507
. 8.1.3 Instruction Selection 508

. 8.1.4 Register Allocation 510
. 8.1.5 Evaluation Order 511

. 8.2 The Target Language 512
. 8.2.1 A Simple Target Machine Model 512

. 8.2.2 Program and Instruction Costs 515
. 8.2.3 Exercises for Section 8.2 516

. 8.3 Addresses in the Target Code 518
8.3.1 Static Allocation . 518
8.3.2 Stack Allocation . 520
8.3.3 Run-Time Addresses for Names 522
8.3.4 Exercises for Section 8.3 524

8.4 Basic Blocks and Flow Graphs 525
8.4.1 Basic Blocks . 526
8.4.2 Next-Use Information . 528
8.4.3 Flow Graphs . 529
8.4.4 Representation of Flow Graphs 530
8.4.5 Loops . 531
8.4.6 Exercises for Section 8.4 531

8.5 Optimization of Basic Blocks . 533
8.5.1 The DAG Representation of Basic Blocks 533
8.5.2 Finding Local Common Subexpressions 534
8.5.3 Dead Code Elimination 535
8.5.4 The Use of Algebraic Identities 536
8.5.5 Representation of Array References 537
8.5.6 Pointer Assignments and Procedure Calls 539
8.5.7 Reassembling Basic Blocks From DAG's 539
8.5.8 Exercises for Section 8.5 541

8.6 A Simple Code Generator . 542
8.6.1 Register and Address Descriptors 543
8.6.2 The Code-Generation Algorithm 544

xviii TABLE OF CONTENTS

8.6.3 Design of the Function getReg 547
8.6.4 Exercises for Section 8.6 548

. 8.7 Peephole Optimization 549
8.7.1 Eliminating Redundant Loads and Stores 550
8.7.2 Eliminating Unreachable Code 550

. 8.7.3 Flow-of-Control Optimizations 551
8.7.4 Algebraic Simplification and Reduction in Strength 552

. 8.7.5 Use of Machine Idioms 552
8.7.6 Exercises for Section 8.7 553

. 8.8 Register Allocation and Assignment 553
. 8.8.1 Global Register Allocation 553

. 8.8.2 Usage Counts 554
. 8.8.3 Register Assignment for Outer Loops 556
. 8.8.4 Register Allocation by Graph Coloring 556

. 8.8.5 Exercises for Section 8.8 557
. 8.9 Instruction Selection by Tree Rewriting 558

. 8.9.1 Tree-Translation Schemes 558
. 8.9.2 Code Generation by Tiling an Input Tree 560

. 8.9.3 Pattern Matching by Parsing 563
. 8.9.4 Routines for Semantic Checking 565

. 8.9.5 General Tree Matching 565
. 8.9.6 Exercises for Section 8.9 567

. 8.10 Optimal Code Generation for Expressions 567
. 8.10.1 Ershov Numbers 567

. 8.10.2 Generating Code From Labeled Expression Trees 568
8.10.3 Evaluating Expressions with an Insufficient Supply of Reg-

. isters 570
. 8.10.4 Exercises for Section 8.10 572

. 8.11 Dynamic Programming Code-Generation 573
. 8.11.1 Contiguous Evaluation 574

. 8.11.2 The Dynamic Programming Algorithm 575
. 8.1 1.3 Exercises for Section 8.11 577

. 8.12 Summary of Chapter 8 578
. 8.13 References for Chapter 8 579

9 Machine-Independent Optimizations 583
. 9.1 The Principal Sources of Optimization 584

. 9.1.1 Causes of Redundancy 584
. 9.1.2 A Running Example: Quicksort 585

. 9.1.3 Semantics-Preserving Transformations 586
. 9.1.4 Global Common Subexpressions 588

. 9.1.5 Copy Propagation 590
. 9.1.6 Dead-Code Elimination 591

. 9.1.7 Code Motion 592
. 9.1.8 Induction Variables and Reduction in Strength 592

TABLE OF CONTENTS xix

. 9.1.9 Exercises for Section 9.1 596
. 9.2 Introduction to Data-Flow Analysis 597

9.2.1 The Data-Flow Abstraction 597
9.2.2 The Data-Flow Analysis Schema 599

. 9.2.3 Data-Flow Schemas on Basic Blocks 600
. 9.2.4 Reaching Definitions 601

. 9.2.5 Live-Variable Arlalysis 608

. 9.2.6 Available Expressions 610
. 9.2.7 Summary 614

. 9.2.8 Exercises for Section 9.2 615
. 9.3 Foundations of Data-Flow Analysis 618

. 9.3.1 Semilattices 618
. 9.3.2 Transfer Functions 623

. 9.3.3 The Iterative Algorithm for General Frameworks 626
. 9.3.4 Meaning of a Data-Flow Solution 628

. 9.3.5 Exercises for Section 9.3 631
. 9.4 Constant Propagation 632

9.4.1 Data-Flow Values for the Constant-Propagation Frame-
. work 633

9.4.2 The Meet for the Constant-Propagation Framework . . . 633
9.4.3 Transfer Functions for the Constant-Propagation Frame-

. work 634
9.4.4 Monotonicity of the Constant-Propagation Framework . . 635
9.4.5 Nondistributivity of the Constant-Propagation Framework 635
9.4.6 Interpretation of the Results 637
9.4.7 Exercises for Section 9.4 637

9.5 Partial-Redundancy Elimination 639
9.5.1 The Sources of Redundancy 639
9.5.2 Can All Redundancy Be Eliminated? 642
9.5.3 The Lazy-Code-Motion Problem 644
9.5.4 Anticipation of Expressions 645
9.5.5 The Lazy-Code-Motion Algorithm 646
9.5.6 Exercises for Section 9.5 655

9.6 Loops in Flow Graphs . 655
9.6.1 Dominators . 656
9.6.2 Depth-First Ordering . 660
9.6.3 Edges in a Depth-First Spanning Tree 661
9.6.4 Back Edges and Reducibility 662
9.6.5 Depth of a Flow Graph 665
9.6.6 Natural Loops . 665
9.6.7 Speed of Convergence of Iterative Data-Flow Algorithms . 667
9.6.8 Exercises for Section 9.6 669

. 9.7 Region-Based Analysis 672
9.7.1 Regions . 672
9.7.2 Region Hierarchies for Reducible Flow Graphs 673

TABLE OF CONTENTS

9.7.3 Overview of a Region-Based Analysis 676
9.7.4 Necessary Assumptions About Transfer Functions 678
9.7.5 An Algorithm for Region-Based Analysis 680
9.7.6 Handling Nonreducible Flow Graphs 684
9.7.7 Exercises for Section 9.7 686

9.8 Symbolic Analysis . 686
9.8.1 Affine Expressions of Reference Variables 687
9.8.2 Data-Flow Problem Formulation 689
9.8.3 Region-Based Symbolic Analysis 694
9.8.4 Exercises for Section 9.8 699

. 9.9 Summary of Chapter 9 700
. 9.10 References for Chapter 9 703

10 Instruct ion-Level Parallelism 707
. 10.1 Processor Architectures 708

10.1.1 Instruction Pipelines and Branch Delays 708
. 10.1.2 Pipelined Execution 709

10.1.3 Multiple Instruction Issue 710
. 10.2 Code-Scheduling Constraints 710

. 10.2.1 Data Dependence 711
10.2.2 Finding Dependences Among Memory Accesses 712
10.2.3 Tradeoff Between Register Usage and Parallelism 713
10.2.4 Phase Ordering Between Register Allocation and Code

. Scheduling 716
. 10.2.5 Control Dependence 716

. 10.2.6 Speculative Execution Support 717
. 10.2.7 A Basic Machine Model 719

. 10.2.8 Exercises for Section 10.2 720
. 10.3 Basic-Block Scheduling 721

. 10.3.1 Data-Dependence Graphs 722
. 10.3.2 List Scheduling of Basic Blocks 723
. 10.3.3 Prioritized Topological Orders 725

. 10.3.4 Exercises for Section 10.3 726
. 10.4 Global Code Scheduling 727

. 10.4.1 Primitive Code Motion 728
. 10.4.2 Upward Code Motion 730

. 10.4.3 Downward Code Motion 731
. 10.4.4 Updating Data Dependences 732
. 10.4.5 Global Scheduling Algorithms 732

. 10.4.6 Advanced Code Motion Techniques 736
. 10.4.7 Interaction with Dynamic Schedulers 737

. 10.4.8 Exercises for Section 10.4 737
. 10.5 Software Pipelining 738

. 10.5.1 Introduction 738
. 10.5.2 Software Pipelining of Loops 740

TABLE OF CONTENTS xxi

. 10.5.3 Register Allocation and Code Generation 743
. 10.5.4 Do-Across Loops 743

. 10.5.5 Goals and Constraints of Software Pipelining 745
. 10.5.6 A Software-Pipelining Algorithm 749

. 10.5.7 Scheduling Acyclic Data-Dependence Graphs 749
. 10.5.8 Scheduling Cyclic Dependence Graphs 751

. 10.5.9 Improvements to the Pipelining Algorithms 758
. 10.5.10 Modular Variable Expansion 758

. 10.5.11 Conditional Statements 761
. 10.5.12 Hardware Support for Software Pipelining 762

. 10.5.13 Exercises for Section 10.5 763
. 10.6 Summary of Chapter 10 765

. 10.7 References for Chapter 10 766

11 Optimizing for Parallelism and Locality 769
. 11.1 Basic Concepts 771

. . 11.1 1 Multiprocessors 772
. 11.1.2 Parallelism in Applications 773

11.1.3 Loop-Level Parallelism . 775
11.1.4 Data Locality . 777

. 11.1.5 Introduction to Affine Transform Theory 778
. 11.2 Matrix Multiply: An In-Depth Example 782

. 11.2.1 The Matrix-Multiplication Algorithm 782
. 11.2.2 Optimizations 785

11.2.3 Cache Interference . 788
. 11.2.4 Exercises for Section 11.2 788

11.3 Iteration Spaces . 788
11.3.1 Constructing Iteration Spaces from Loop Nests 788
11.3.2 Execution Order for Loop Nests 791
11.3.3 Matrix Formulation of Inequalities 791
11.3.4 Incorporating Symbolic Constants 793
11.3.5 Controlling the Order of Execution 793
11.3.6 Changing Axes . 798
11.3.7 Exercises for Section 11.3 799

11.4 Affine Array Indexes . 801
11.4.1 Affine Accesses . 802
11.4.2 Affine and Nonaffine Accesses in Practice 803
11.4.3 Exercises for Section 11.4 804

11.5 Data Reuse . 804
11.5.1 Types of Reuse . 805
11.5.2 Self Reuse . 806
11.5.3 Self-spatial Reuse . 809
11.5.4 Group Reuse . 811
11.5.5 Exercises for Section 11.5 814

11.6 Array Data-Dependence Analysis 815

xxii TABLE O F CONTENTS

11.6.1 Definition of Data Dependence of Array Accesses 816
11.6.2 Integer Linear Programming 817

. 11.6.3 The GCD Test 818
11.6.4 Heuristics for Solving Integer Linear Programs 820
11.6.5 Solving General Integer Linear Programs 823
11.6.6 Summary . 825

. 11.6.7 Exercises for Section 11.6 826
11.7 Finding Synchronization-Free Parallelism 828

11.7.1 An Introductory Example 828
. 11.7.2 Affine Space Partitions 830

11.7.3 Space-Partition Constraints 831
11.7.4 Solving Space-Partition Constraints 835
11.7.5 A Simple Code-Generation Algorithm 838
11.7.6 Eliminating Empty Iterations 841
11.7.7 Eliminating Tests from Innermost Loops 844
11.7.8 Source-Code Transforms 846
11.7.9 Exercises for Section 11.7 851

11.8 Synchronization Between Parallel Loops 853
11.8.1 A Constant Number of Synchronizations 853
11.8.2 Program-Dependence Graphs 854
11.8.3 Hierarchical Time . 857
11.8.4 The Parallelization Algorithm 859

. 11.8.5 Exercises for Section 11.8 860
. 11.9 Pipelining 861

. 11.9.1 What is Pipelining? 861
. 11.9.2 Successive Over-Relaxation (SOR): An Example 863

. 11.9.3 Fully Permutable Loops 864
. 11.9.4 Pipelining Fully Permutable Loops 864

. 11.9.5 General Theory 867
. 11.9.6 Time-Partition Constraints 868

11.9.7 Solving Time-Partition Constraints by Farkas' Lemma . . 872
. 11.9.8 Code Transformations 875

. 11.9.9 Parallelism With Minimum Synchronization 880
. 11.9.10 Exercises for Section 11.9 882

. 11.10 Locality Optimizations 884
. 11.10.1 Temporal Locality of Computed Data 885

. 11.10.2 Array Contraction 885
. 11.10.3 Partition Interleaving 887

. 11.10.4 Putting it All Together 890
. 11.10.5 Exercises for Section 11.10 892
. 11.11 Other Uses of Affine Transforms 893

. I1 .1 1.1 Distributed memory machines 894
. 11.11.2 Multi-Instruction-Issue Processors 895

. 11 .l 1.3 Vector and SIMD Instructions 895
. 11.11.4 Prefetching 896

TABLE OF CONTENTS xxiii

. 11.12 Summary of Chapter 11 897
. 11.13 References for Chapter 11 899

12 Interprocedural Analysis 903
. 12.1 Basic Concepts 904

. 12.1.1 Call Graphs 904
. 12.1.2 Context Sensitivity 906

. 12.1.3 Call Strings 908
. 12.1.4 Cloning-Based Context-Sensitive Analysis 910

. 12.1.5 Summary-Based Context-Sensitive Analysis 911
. 12.1.6 Exercises for Section 12.1 914

. 12.2 Why Interprocedural Analysis? 916
. 12.2.1 Virtual Method Invocation 916

. 12.2.2 Pointer Alias Analysis 917
. 12.2.3 Parallelization 917

. 12.2.4 Detection of Software Errors and Vulnerabilities 917
. 12.2.5 SQL Injection 918

. 12.2.6 Buffer Overflow 920
. 12.3 A Logical Representation of Data Flow 921

. 12.3.1 Introduction to Datalog 921
. 12.3.2 Datalog Rules 922

. 12.3.3 Intensional and Extensional Predicates 924
. 12.3.4 Execution of Datalog Programs 927

. 12.3.5 Incremental Evaluation of Datalog Programs 928
. 12.3.6 Problematic Datalog Rules 930

12.3.7 Exercises for Section 12.3 932
12.4 A Simple Pointer-Analysis Algorithm 933

12.4.1 Why is Pointer Analysis Difficult 934
12.4.2 A Model for Pointers and References 935
12.4.3 Flow Insensitivity . 936
12.4.4 The Formulation in Datalog 937
12.4.5 Using Type Information 938
12.4.6 Exercises for Section 12.4 939

12.5 Context-Insensitive Interprocedural Analysis 941
12.5.1 Effects of a Method Invocation 941
12.5.2 Call Graph Discovery in Datalog 943
12.5.3 Dynamic Loading and Reflection 944

. 12.5.4 Exercises for Section 12.5 945
12.6 Context-Sensitive Pointer Analysis 945

12.6.1 Contexts and Call Strings 946
. 12.6.2 Adding Context to Datalog Rules 949

12.6.3 Additional Observations About Sensitivity 949
. 12.6.4 Exercises for Section 12.6 950

12.7 Datalog Implementation by BDD's 951
12.7.1 Binary Decision Diagrams 951

TABLE OF CONTENTS

12.7.2 Transformations on BDD7s 953
12.7.3 Representing Relations by BDD7s 954

. 12.7.4 Relational Operations as BDD Operations 954
. 12.7.5 Using BDD7s for Points-to Analysis 957

. 12.7.6 Exercises for Section 12.7 958
. 12.8 Summary of Chapter 12 958

. 12.9 References for Chapter 12 961

A A Complete Front End 965
. A.l The Source Language 965

. A.2 Main 966
. A.3 Lexical Analyzer 967

. A.4 Symbol Tables and Types 970
. A.5 Intermediate Code for Expressions 971

. A.6 Jumping Code for Boolean Expressions 974
. A.7 Intermediate Code for Statements 978

. A.8 Parser 981
. A.9 Creating the Front End 986

B Finding Linearly Independent Solutions 989

Index 993

Chapter 1

Introduction

Programming languages are notations for describing computations to people
and to machines. The world as we know it depends on programming languages,
because all the software running on all the computers was written in some
programming language. But, before a program can be run, it first must be
translated into a form in which it can be executed by a computer.

The software systems that do this translation are called compilers.
This book is about how to design and implement compilers. We shall dis-

cover that a few basic ideas can be used to construct translators for a wide
variety of languages and machines. Besides compilers, the principles and tech-
niques for compiler design are applicable to so many other domains that they
are likely to be reused many times in the career of a computer scientist. The
study of compiler writing touches upon programming languages, machine ar-
chitecture, language theory, algorithms, and software engineering.

In this preliminary chapter, we introduce the different forms of language
translators, give a high level overview of the structure of a typical compiler,
and discuss the trends in programming languages and machine architecture
that are shaping compilers. We include some observations on the relationship
between compiler design and computer-science theory and an outline of the
applications of compiler technology that go beyond compilation. We end with
a brief outline of key programming-language concepts that will be needed for
our study of compilers.

1.1 Language Processors

Simply stated, a compiler is a program that can read a program in one lan-
guage - the source language - and translate it into an equivalent program in
another language - the target language; see Fig. 1.1. An important role of the
compiler is to report any errors in the source program that it detects during
the translation process.

CHAPTER 2. INTRODUCTION

source program

Compiles h +
target program

Figure 1.1 : A compiler

If the target program is an executable machine-language program, it can
then be called by the user to process inputs and produce outputs; see Fig. 1.2.

Target Program output t-
Figure 1.2: Running the target program

An in terpreter is another common kind of language processor. Instead of
producing a target program as a translation, an interpreter appears to directly
execute the operations specified in the source program on inputs supplied by
the user, as shown in Fig. 1.3.

source program 1 Interpreter t- output
input

Figure 1.3: An interpreter

The machine-language target program produced by a compiler is usually
much faster than an interpreter at mapping inputs to outputs . An interpreter,
however, can usually give better error diagnostics than a compiler, because it
executes the source program statement by statement.

Example 1.1 : Java language processors combine compilation and interpreta-
tion, as shown in Fig. 1.4. A Java source program may first be compiled into
an intermediate form called bytecodes. The bytecodes are then interpreted by a
virtual machine. A benefit of this arrangement is that bytecodes compiled on
one machine can be interpreted on another machine, perhaps across a network.

In order to achieve faster processing of inputs to outputs, some Java compil-
ers, called jus t - in- t ime compilers, translate the bytecodes into machine language
immediately before they run the intermediate program to process the input.

1.1. LANGUAGE PROCESSORS

source program

Translator

intermediate program

input

Figure 1.4: A hybrid compiler

In addition to a compiler, several other programs may be required to create
an executable target program, as shown in Fig. 1.5. A source program may be
divided into modules stored in separate files. The task of collecting the source
program is sometimes entrusted to a separate program, called a preprocessor.
The preprocessor may also expand shorthands, called macros, into source lan-
guage st at ements.

The modified source program is then fed to a compiler. The compiler may
produce an assembly-language program as its output, because assembly lan-
guage is easier to produce as output and is easier to debug. The assembly
language is then processed by a program called an assembler that produces
relocatable machine code as its output.

Large programs are often compiled in pieces, so the relocatable machine
code may have to be linked together with other relocatable object files and
library files into the code that actually runs on the machine. The l inker resolves
external memory addresses, where the code in one file may refer to a location
in another file. The loader then puts together all of the executable object files
into memory for execution.

1 .11 Exercises for Section 1.1

Exercise 1.1.1 : What is the difference between a compiler and an interpreter?

Exercise 1.1.2 : What are the advantages of (a) a compiler over an interpreter
(b) an interpreter over a compiler?

Exercise 1.1.3 : What advantages are there to a language-processing system in
which the compiler produces assembly language rather than machine language?

Exercise 1.1.4 : A compiler that translates a high-level language into another
high-level language is called a source-to-source translator. What advantages are
there to using C as a target language for a compiler?

Exercise 1.1.5 : Describe some of the tasks that an assembler needs to per-
form.

CHAPTER 1 . INTRODUCTION

source program

i
Preprocessor J

t
modified source program

I

Compiler fi
t

target assembly program

i / Assembler 1
i

relocatable machine code

library files
relocatable obiect files

t
target machine code

Figure 1.5: A language-processing system

1.2 The Structure of a Compiler

Up to this point we have treated a compiler as a single box that maps a source
program into a semantically equivalent target program. If we open up this box
a little, we see that there are two parts to this mapping: analysis and synthesis.

The analysis part breaks up the source program into constituent pieces and
imposes a grammatical structure on them. It then uses this structure to cre-
ate an intermediate representation of the source program. If the analysis part
detects that the source program is either syntactically ill formed or semanti-
cally unsound, then it must provide informative messages, so the user can take
corrective action. The analysis part also collects information about the source
program and stores it in a data structure called a symbol table, which is passed
along with the intermediate representation to the synthesis part.

The synthesis part constructs the desired target program from the interme-
diate representation and the information in the symbol table. The analysis part
is often called the front end of the compiler; the synthesis part is the back end.

If we examine the compilation process in more detail, we see that it operates
as a sequence of phases, each of which transforms one representation of the
source program to another. A typical decomposition of a compiler into phases
is shown in Fig. 1.6. In practice, several phases may be grouped together,
and the intermediate representations between the grouped phases need not be
constructed explicitly. The symbol table, which stores information about the

1.2. THE STRUCTURE O F A COMPILER

Symbol Table E l

, characte; stream ,
/ Lexical Analyzer 1

token Atream
f

Syntax Analyzer

syntax tree +
1 Semantic Analyzer

I Intermediate Code Generator I
I I

I

intermediate represent ation
i

Machine-Independent

intermediate representation

i 1 Code Generator I
I I

I

target-machine code
C

Machine-Dependent I Code Optimizer
I ,

I

t arget-machine code
t

Figure 1.6: Phases of a compiler

entire source program, is used by all phases of the compiler.
Some compilers have a machine-independent optimization phase between

the front end and the back end. The purpose of this optimization phase is to
perform transformations on the intermediate representation, so that the back
end can produce a better target program than it would have otherwise pro-
duced from an unoptimized intermediate representation. Since optimization is
optional, one or the other of the two optimization phases shown in Fig. 1.6 may
be missing.

1.2.1 Lexical Analysis

The first phase of a compiler is called lexical analysis or scanning. The lex-
ical analyzer reads the stream of characters making up the source program

6 CHAPTER 1. INTRODUCTION

and groups the characters into meaningful sequences called lexemes. For each
lexeme, the lexical analyzer produces as output a token of the form

(token-name, attribute-value)

that it passes on to the subsequent phase, syntax analysis. In the token, the
first component token-name is an abstract symbol that is used during syntax
analysis, and the second component attribute-value points to an entry in the
symbol table for this token. Information from the symbol-table entry 'is needed
for semantic analysis and code generation.

For example, suppose a source program contains the assignment statement

p o s i t i o n = i n i t i a l + r a t e * 60 (1.1)

The characters in this assignment could be grouped into the following lexemes
and mapped into the following tokens passed on to the syntax analyzer:

1. p o s i t ion is a lexeme that would be mapped into a token (id, I) , where i d
is an abstract symbol standing for identifier and 1 points to the symbol-
table entry for pos i t i on . The symbol-table entry for an identifier holds
information about the identifier, such as its name and type.

2. The assignment symbol = is a lexeme that is mapped into the token (=).
Since this token needs no attribute-value, we have omitted the second
component. We could have used any abstract symbol such as assign for
the token-name, but for notational convenience we have chosen to use the
lexeme itself as the name of the abstract symbol.

3. i n i t i a l is a lexeme that is mapped into the token (id, 2), where 2 points
to the symbol-table entry for i n i t i a l .

4. + is a lexeme that is mapped into the token (+).

5 . r a t e is a lexeme that is mapped into the token (id, 3), where 3 points to
the symbol-table entry for r a t e .

6. * is a lexeme that is mapped into the token (*) .

7. 60 is a lexeme that is mapped into the token (60) .'
Blanks separating the lexemes would be discarded by the lexical analyzer.

Figure 1.7 shows the representation of the assignment statement (1.1) after
lexical analysis as the sequence of tokens

In this representation, the token names =, +, and * are abstract symbols for
the assignment, addition, and multiplication operators, respectively.

'Technically speaking, for the lexeme 60 we should make up a token like (number,4),
where 4 points to the symbol table for the internal representation of integer 60 but we shall
defer the discussion of tokens for numbers until Chapter 2. Chapter 3 discusses techniques
for building lexical analyzers.

1.2. THE STRUCTURE OF A COMPILER

;m
3 r a t e

p o s i t i o n = i n i t i a l + r a t e * 60

t
Lexical Analyzer

t
(id, 1) (=) (id, 2) (+) (id, 3) (*) (60)

t
Syntax Analyzer

(id, 2)/ JF

(id, 3)/
\

60

Semantic Analyzer s
\+,

(id, 2)' *
\

(id, 3)' int t ofloat

t
I
60

I Intermediate Code Generator I
t

t l = i n t t o f l o a t (6 0)
t 2 = i d 3 * ti
t 3 = i d 2 + t 2
i d 1 = t 3

t l = i d 3 * 60.0
i d 1 = i d 2 + t1

LDF R2, i d 3
MULF R2, R2, #60.0
LDF R1, i d 2
ADDF R 1 , R 1 , R2
STF i d l y R l

Figure 1.7: Translation of an assignment statement

8 CHAPTER 1. INTRODUCTION

1.2.2 Syntax Analysis

The second phase of the compiler is syntax analysis or parsing. The parser uses
the first components of the tokens produced by the lexical analyzer to create
a tree-like intermediate representation that depicts the grammatical structure
of the token stream. A typical representation is a syntax tree in which each
interior node represents an operation and the children of the node represent the
arguments of the operation. A syntax tree for the token stream (1.2) is shown
as the output of the syntactic analyzer in Fig. 1.7.

This tree shows the order in which the operations in the assignment

p o s i t i o n = i n i t i a l + r a t e * 60

are to be performed. The tree has an interior node labeled * with (id, 3) as
its left child and the integer 60 as its right child. The node (id, 3) represents
the identifier r a t e . The node labeled * makes it explicit that we must first
multiply the value of r a t e by 60. The node labeled + indicates that we must
add the result of this multiplication to the value of i n i t i a l . The root of the
tree, labeled =, indicates that we must store the result of this addition into the
location for the identifier p o s i t ion. This ordering of operations is consistent
with the usual conventions of arithmetic which tell us that multiplication has
higher precedence than addition, and hence that the multiplication is to be
performed before the addition.

The subsequent phases of the compiler use the grammatical structure to help
analyze the source program and generate the target program. In Chapter 4
we shall use context-free grammars to specify the grammatical structure of
programming languages and discuss algorithms for constructing efficient syntax
analyzers automatically from certain classes of grammars. In Chapters 2 and 5
we shall see that syntax-directed definitions can help specify the translation of
programming language constructs.

1.2.3 Semantic Analysis

The semantic analyzer uses the syntax tree and the information in the symbol
table to check the source program for semantic consistency with the language
definition. It also gathers type information and saves it in either the syntax tree
or the symbol table, for subsequent use during intermediate-code generation.

An important part of semantic analysis is type checking, where the compiler
checks that each operator has matching operands. For example, many program-
ming language definitions require an array index to be an integer; the compiler
must report an error if a floating-point number is used to index an array.

The language specification may permit some type conversions called coer-
cions. For example, a binary arithmetic operator may be applied to either a
pair of integers or to a pair of floating-point numbers. If the operator is applied
to a floating-point number and an integer, the compiler may convert or coerce
the integer into a floating-point number.

1.2. THE STRUCTURE OF A COMPILER 9

Such a coercion appears in Fig. 1.7. Suppose that pos i t i on , i n i t i a l , and
r a t e have been declared to be floating-point numbers, and that the lexeme 60
by itself forms an integer. The type checker in the semantic analyzer in Fig. 1.7
discovers that the operator * is applied to a floating-point number r a t e and
an integer 60. In this case, the integer may be converted into a floating-point
number. In Fig. 1.7, notice that the output of the semantic analyzer has an
extra node for the operator inttofloat, which explicitly converts its integer
argument into a floating-point number. Type checking and semantic analysis
are discussed in Chapter 6.

1.2.4 Intermediate Code Generation

In the process of translating a source program into target code, a compiler may
construct one or more intermediate representations, which can have a variety
of forms. Syntax trees are a form of intermediate representation; they are
commonly used during syntax and semantic analysis.

After syntax and semantic analysis of the source program, many compil-
ers generate an explicit low-level or machine-like intermediate representation,
which we can think of as a program for an abstract machine. This intermedi-
ate representation should have two important properties: it should be easy to
produce and it should be easy to translate into the target machine.

In Chapter 6, we consider an intermediate form called three-address code,
which consists of a sequence of assembly-like instructions with three operands
per instruction. Each operand can act like a register. The output of the inter-
mediate code generator in Fig. 1.7 consists of the three-address code sequence

t l = i n t t o f l o a t (60)
t 2 = i d3 * t l
t 3 = i d2 + t 2
i d 1 = t 3

There are several points worth noting about three-address instructions.
First, each three-address assignment instruction has at most one operator on the
right side. Thus, these instructions fix the order in which operations are to be
done; the multiplication precedes the addition in the source program (1.1). Sec-
ond, the compiler must generate a temporary name to hold the value computed
by a three-address instruction. Third, some "three-address instructions" like
the first and last in the sequence (1.3), above, have fewer than three operands.

In Chapter 6, we cover the principal intermediate representations used in
compilers. Chapters 5 introduces techniques for syntax-directed translation
that are applied in Chapter 6 to type checking and intermediate-code generation
for typical programming language constructs such as expressions, flow-of-control
constructs, and procedure calls.

10 CHAPTER 1. INTRODUCTION

1.2.5 Code Optimization

The machine-independent code-optimization phase attempts to improve the
intermediate code so that better target code will result. Usually better means
faster, but other objectives may be desired, such as shorter code, or target code
that consumes less power. For example, a straightforward algorithm generates
the intermediate code (1.3), using an instruction for each operator in the tree
representation that comes from the semantic analyzer.

A simple intermediate code generation algorithm followed by code optimiza-
tion is a reasonable way to generate good target code. The optimizer can deduce
that the conversion of 60 from integer to floating point can be done once and for
all at compile time, so the inttofloat operation can be eliminated by replacing
the integer 60 by the floating-point number 60.0. Moreover, t3 is used only
once to transmit its value to id1 so the optimizer can transform (1.3) into the
shorter sequence

There is a great variation in the amount of code optimization different com-
pilers perform. In those that do the most, the so-called "optimizing compilers,"
a significant amount of time is spent on this phase. There are simple opti-
mizations that significantly improve the running time of the target program
without slowing down compilation too much. The chapters from 8 on discuss
machine-independent and machine-dependent optimizations in detail.

1.2.6 Code Generation

The code generator takes as input an intermediate representation of the source
program and maps it into the target language. If the target language is machine
code, registers or memory locations are selected for each of the variables used by
the program. Then, the intermediate instructions are translated into sequences
of machine instructions that perform the same task. A crucial aspect of code
generation is the judicious assignment of registers to hold variables.

For example, using registers R 1 and R2, the intermediate code in (1.4) might
get translated into the machine code

LDF R 2 , i d3
MULF R 2 , R 2 , #60.0
LDF R l , id2
ADDF R l , R l , R2
S T F i d l , R l

The first operand of each instruction specifies a destination. The F in each
instruction tells us that it deals with floating-point numbers. The code in

1.2. THE STRUCTURE OF A COMPILER 11

(1.5) loads the contents of address id3 into register R2, then multiplies it with
floating-point constant 60.0. The # signifies that 60.0 is to be treated as an
immediate constant. The third instruction moves id2 into register R 1 and the
fourth adds to it the value previously computed in register R2. Finally, the value
in register R1 is stored into the address of i d l , so the code correctly implements
the assignment statement (1.1). Chapter 8 covers code generation.

This discussion of code generation has ignored the important issue of stor-
age allocation for the identifiers in the source program. As we shall see in
Chapter 7, the organization of storage at run-time depends on the language be-
ing compiled. Storage-allocation decisions are made either during intermediate
code generation or during code generation.

1.2.7 Symbol-Table Management

An essential function of a compiler is to record the variable names used in the
source program and collect information about various attributes of each name.
These attributes may provide information about the storage allocated for a
name, its type, its scope (where in the program its value may be used), and
in the ca,se of procedure names, such things as the number and types of its
arguments, the method of passing each argument (for example, by value or by
reference), and the type returned.

The symbol table is a data structure containing a record for each variable
name, with fields for the attributes of the name. The data structure should be
designed to allow the compiler to find the record for each name quickly and to
store or retrieve data from that record quickly. Symbol tables are discussed in
Chapter 2.

1.2.8 The Grouping of Phases into Passes

The discussion of phases deals with the logical organization of a compiler. In
an implementation, activities from several phases may be grouped together
into a pass that reads an input file and writes an output file. For example,
the front-end phases of lexical analysis, syntax analysis, semantic analysis, and
intermediate code generation might be grouped together into one pass. Code
optimization might be an optional pass. Then there could be a back-end pass
consisting of code generation for a particular target machine.

Some compiler collections have been created around carefully designed in-
termediate representations that allow the front end for a particular language to
interface with the back end for a certain target machine. With these collections,
we can produce compilers for different source languages for one target machine
by combining different front ends with the back end for that target machine.
Similarly, we can produce compilers for different target machines, by combining
a front end with back ends for different target machines.

12 CHAPTER 1. INTRODUCTION

1.2.9 Compiler-Construction Tools

The compiler writer, like any software developer, can profitably use modern
software development environments containing tools such as language editors,
debuggers, version managers, profilers, test harnesses, and so on. In addition
to these general software-development tools, other more specialized tools have
been created to help implement various phases of a compiler.

These tools use specialized languages for specifying and implementing spe-
cific components, and many use quite sophisticated algorithms. The most suc-
cessful tools are those that hide the details of the generation algorithm and
produce components that can be easily integrated into the remainder of the
compiler. Some commonly used compiler-construction tools include

1. Parser generators that automatically produce syntax analyzers from a
grammatical description of a programming language.

2. Scanner generators that produce lexical analyzers from a regular-expres-
sion description of the tokens of a language.

3. Syntax-directed translat ion engines that produce collections of routines
for walking a parse tree and generating intermediate code.

4. Code-generator generators that produce a code generator from a collection
of rules for translating each operation of the intermediate language into
the machine language for a target machine.

5. Data-flow analysis engines that facilitate the gathering of information
about how values are transmitted from one part of a program to each
other part. Data-flow analysis is a key part of code optimization.

6. Compiler-construct ion toolk2ts that provide an integrated set of routines
for constructing various phases of a compiler.

We shall describe many of these tools throughout this book.

1.3 The Evolution of Programming Languages

The first electronic computers appeared in the 1940's and were programmed in
machine language by sequences of 0's and 1's that explicitly told the computer
what operations to execute and in what order. The operations themselves
were very low level: move data from one location to another, add the contents
of two registers, compare two values, and so on. Needless to say, this kind
of programming was slow, tedious, and error prone. And once written, the
programs were hard to understand and modify.

1.3. THE EVOLUTION OF PROGRAMMING LANGUAGES

1.3.1 The Move to Higher-level Languages

The first step towards more people-friendly programming languages was the
development of mnemonic assembly languages in the early 1950's. Initially,
the instructions in an assembly language were just mnemonic representations
of machine instructions. Later, macro instructions were added to assembly
languages so that a programmer could define parameterized shorthands for
frequently used sequences of machine instructions.

A major step towards higher-level languages was made in the latter half of
the 1950's with the development of Fortran for scientific computation, Cobol
for business data processing, and Lisp for symbolic computation. The philos-
ophy behind these languages was to create higher-level notations with which
programmers could more easily write numerical computations, business appli-
cations, and symbolic programs. These languages were so successful that they
are still in use today.

In the following decades, many more languages were created with innovative
features to help make programming easier, more natural, and more robust.
Later in this chapter, we shall discuss some key features that are common to
many modern programming languages.

Today, there are thousands of programming languages. They can be classi-
fied in a variety of ways. One classification is by generation. First-generation
languages are the machine languages, second-generation the assembly languages,
and third-generation the higher-level languages like Fortran, Cobol, Lisp, C,
C++, C#, and Java. Fourth-generation languages are languages designed
for specific applications like NOMAD for report generation, SQL for database
queries, and Postscript for text formatting. The term fifth-generation language
has been applied to logic- and constraint-based languages like Prolog and OPS5.

Another classification of languages uses the term imperative for languages
in which a program specifies how a computation is to be done and declarative
for languages in which a program specifies what computation is to be done.
Languages such as C, C++, C#, and Java are imperative languages. In imper-
ative languages there is a notion of program state and statements that change
the state. Functional languages such as ML and Haskell and constraint logic
languages such as Prolog are often considered to be declarative languages.

The term von Neumann language is applied to programming languages
whose computational model is based on the von Neumann computer archi-
tecture. Many of today's languages, such as Fortran and C are von Neumann
languages.

An object-oriented language is one that supports object-oriented program-
ming, a programming style in which a program consists of a collection of objects
that interact with one another. Simula 67 and Smalltalk are the earliest major
object-oriented languages. Languages such as C++, C#, Java, and Ruby are
more recent ob ject-oriented languages.

Scripting languages are interpreted languages with high-level operators de-
signed for "gluing toget her" computations. These computations were originally

14 CHAPTER 1. INTRODUCTION

called "scripts." Awk, JavaScript, Perl, PHP, Python, Ruby, and Tcl are pop-
ular examples of scripting languages. Programs written in scripting languages
are often much shorter than equivalent programs written in languages like C.

1.3.2 Impacts on Compilers

Since the design of programming languages and compilers are intimately related,
the advances in programming languages placed new demands on compiler writ-
ers. They had to devise algorithms and representations to translate and support
the new language features. Since the 1940's, computer architecture has evolved
as well. Not only did the compiler writers have to track new language fea-
tures, they also had to devise translation algorithms that would take maximal
advantage of the new hardware capabilities.

Compilers can help promote the use of high-level languages by minimizing
the execution overhead of the programs written in these languages. Compilers
are also critical in making high-performance computer architectures effective
on users' applications. In fact, the performance of a computer system is so
dependent on compiler technology that compilers are used as a tool in evaluating
architectural concepts before a computer is built.

Compiler writing is challenging. A compiler by itself is a large program.
Moreover, many modern language-processing systems handle several source lan-
guages and target machines within the same framework; that is, they serve as
collections of compilers, possibly consisting of millions of lines of code. Con-
sequently, good software-engineering techniques are essential for creating and
evolving modern language processors.

A compiler must translate correctly the potentially infinite set of programs
that could be written in the source language. The problem of generating the
optimal target code from a source program is undecidable in general; thus,
compiler writers must evaluate tradeoffs about what problems to tackle and
what heuristics to use to approach the problem of generating efficient code.

A study of compilers is also a study of how theory meets practice, as we
shall see in Section 1.4.

The purpose of this text is to teach the methodology and fundamental ideas
used in compiler design. It is not the intention of this text to teach all the
algorithms and techniques that could be used for building a st ate-of-the-art
language-processing system. However, readers of this text will acquire the basic
knowledge and understanding to learn how to build a compiler relatively easily.

1.3.3 Exercises for Section 1.3

Exercise 1.3.1 : Indicate which of the following terms:

a) imperative b) declarative c) von Neumann
d) object-oriented e) functional f) third-generation
g) fourth-generation h) scripting

1.4. THE SCIENCE OF BUILDING A COMPILER

apply to which of the following languages:

1) C 2) C++ 3) Cobol 4) Fortran 5) Java
6) Lisp 7) ML 8) Per1 9) Python 10) VB.

1.4 The Science of Building a Compiler

Compiler design is full of beautiful examples where complicated real-world prob-
lems are solved by abstracting the essence of the problem mathematically. These
serve as excellent illustrations of how abstractions can be used to solve prob-
lems: take a problem, formulate a mathematical abstraction that captures the
key characteristics, and solve it using mathematical techniques. The problem
formulation must be grounded in a solid understanding of the characteristics of
computer programs, and the solution must be validated and refined empirically.

A compiler must accept all source programs that conform to the specification
of the language; the set of source programs is infinite and any program can be
very large, consisting of possibly millions of lines of code. Any transformation
performed by the compiler while translating a source program must preserve the
meaning of the program being compiled. Compiler writers thus have influence
over not just the compilers they create, but all the programs that their com-
pilers compile. This leverage makes writing compilers particularly rewarding;
however, it also makes compiler development challenging.

1.4.1 Modeling in Compiler Design and Implementation

The study of compilers is mainly a study of how we design the right mathe-
matical models and choose the right algorithms, while balancing the need for
generality and power against simplicity and efficiency.

Some of most fundamental models are finite-state machines and regular
expressions, which we shall meet in Chapter 3. These models are useful for de-
scribing the lexical units of programs (keywords, identifiers, and such) and for
describing the algorithms used by the compiler to recognize those units. Also
among the most fundamental models are context-free grammars, used to de-
scribe the syntactic structure of programming languages such as the nesting of
parentheses or control constructs. We shall study grammars in Chapter 4. Sim-
ilarly, trees are an important model for representing the structure of programs
and their translation into object code, as we shall see in Chapter 5.

1.4.2 The Science of Code Optimization

The term "optimization" in compiler design refers to the attempts that a com-
piler makes to produce code that is more efficient than the obvious code. "Op-
timization" is thus a misnomer, since there is no way that the code produced
by a compiler can be guaranteed to be as fast or faster than any other code
that performs the same task.

CHAPTER 1. INTRODUCTION

In modern times, the optimization of code that a compiler performs has
become both more important and more complex. It is more complex because
processor architectures have become more complex, yielding more opportunities
to improve the way code executes. It is more important because massively par-
allel computers require substantial optimization, or their performance suffers by
orders of magnitude. With the likely prevalence of multicore machines (com-
puters with chips that have large numbers of processors on them), all compilers
will have to face the problem of taking advantage of multiprocessor machines.

It is hard, if not impossible, to build a robust compiler out of "hacks."
Thus, an extensive and useful theory has been built up around the problem of
optimizing code. The use of a rigorous mathematical foundation allows us to
show that an optimization is correct and that it produces the desirable effect
for all possible inputs. We shall see, starting in Chapter 9, how models such
as graphs, matrices, and linear programs are necessary if the compiler is to
produce well optimized code.

On the other hand, pure theory alone is insufficient. Like many real-world
problems, there are no perfect answers. In fact, most of the questions that
we ask in compiler optimization are undecidable. One of the most important
skills in compiler design is the ability to formulate the right problem to solve.
We need a good understanding of the behavior of programs to start with and
thorough experimentation and evaluation to validate our intuitions.

Compiler optimizations must meet the following design objectives:

The optimization must be correct, that is, preserve the meaning of the
compiled program,

The optimization must improve the performance of many programs,

The compilation time must be kept reasonable, and

The engineering effort required must be manageable.

It is impossible to overemphasize the importance of correctness. It is trivial
to write a compiler that generates fast code if the generated code need not
be correct! Optimizing compilers are so difficult to get right that we dare say
that no optimizing compiler is completely error-free! Thus, the most important
objective in writing a compiler is that it is correct.

The second goal is that the compiler must be effective in improving the per-
formance of many input programs. Normally, performance means the speed of
the program execution. Especially in embedded applications, we may also wish
to minimize the size of the generated code. And in the case of mobile devices,
it is also desirable that the code minimizes power consumption. Typically, the
same optimizations that speed up execution time also conserve power. Besides
performance, usability aspects such as error reporting and debugging are also
import ant.

Third, we need to keep the compilation time short to support a rapid devel-
opment and debugging cycle. This requirement has become easier to meet as

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 17

machines get faster. Often, a program is first developed and debugged without
program optimizations. Not only is the compilation time reduced, but more
importantly, unoptimized programs are easier to debug, because the optimiza-
tions introduced by a compiler often obscure the relationship between the source
code and the object code. Turning on optimizations in the compiler sometimes
exposes new problems in the source program; thus testing must again be per-
formed on the optimized code. The need for additional testing sometimes deters
the use of optimizations in applications, especially if their performance is not
critical.

Finally, a compiler is a complex system; we must keep the system sim-
ple to assure that the engineering and maintenance costs of the compiler are
manageable. There is an infinite number of program optimizations that we
could implement, and it takes a nontrivial amount of effort to create a correct
and effective optimization. We must prioritize the optimizations, implementing
only those that lead to the greatest benefits on source programs encountered in
practice.

Thus, in studying compilers, we learn not only how to build a compiler, but
also the general methodology of solving complex and open-ended problems. The
approach used in compiler development involves both theory and experimenta-
tion. We normally start by formulating the problem based on our intuitions on
what the important issues are.

1.5 Applications of Compiler Technology

Compiler design is not only about compilers, and many people use the technol-
ogy learned by studying compilers in school, yet have never, strictly speaking,
written (even part of) a compiler for a major programming language. Compiler
technology has other important uses as well. Additionally, compiler design im-
pacts several other areas of computer science. In this section, we review the
most important interactions and applications of the technology.

1.5.1 Implementation of High-Level Programming
Languages

A high-level programming language defines a programming abstraction: the
programmer expresses an algorithm using the language, and the compiler must
translate that program to the target language. Generally, higher-level program-
ming languages are easier to program in, but are less efficient, that is, the target
programs run more slowly. Programmers using a low-level language have more
control over a computation and can, in principle, produce more efficient code.
Unfortunately, lower-level programs are harder to write and - worse still -
less portable, more prone to errors, and harder to maintain. Optimizing com-
pilers include techniques to improve the performance of generated code, thus
offsetting the inefficiency introduced by high-level abstractions.

18 CHAPTER 1. INTRODUCTION

Example 1.2 : The register keyword in the C programming language is an
early example of the interaction between compiler technology and language evo-
lution. When the C language was created in the mid 1970s, it was considered
necessary to let a programmer control which program variables reside in regis-
ters. This control became unnecessary as effective register-allocation techniques
were developed, and most modern programs no longer use this language feature.

In fact, programs that use the register keyword may lose efficiency, because
programmers often are not the best judge of very low-level matters like register
allocation. The optimal choice of register allocation depends greatly on the
specifics of a machine architecture. Hardwiring low-level resource-management
decisions like register allocation may in fact hurt performance, especially if the
program is run on machines other than the one for which it was written.

The many shifts in the popular choice of programming languages have been
in the direction of increased levels of abstraction. C was the predominant
systems programming language of the 80's; many of the new projects started
in the 90's chose C++; Java, introduced in 1995, gained popularity quickly
in the late 90's. The new programming-language features introduced in each
round spurred new research in compiler optimization. In the following, we give
an overview on the main language features that have stimulated significant
advances in compiler technology.

Practically all common programming languages, including C, Fortran and
Cobol, support user-defined aggregate data types, such as arrays and structures,
and high-level control flow, such as loops and procedure invocations. If we just
take each high-level construct or data-access operation and translate it directly
to machine code, the result would be very inefficient. A body of compiler
optimizations, known as data-flow optimizations, has been developed to analyze
the flow of data through the program and removes redundancies across these
constructs. They are effective in generating code that resembles code written
by a skilled programmer at a lower level.

Object orientation was first introduced in Simula in 1967, and has been
incorporated in languages such as Smalltalk, C++, C#, and Java. The key
ideas behind object orientation are

1. Data abstraction and

2. Inheritance of properties,

both of which have been found to make programs more modular and easier to
maintain. Object-oriented programs are different from those written in many
other languages, in that they consist of many more, but smaller, procedures
(called methods in object-oriented terms). Thus, compiler optimizations must
be able to perform well across the procedural boundaries of the source program.
Procedure inlining, which is the replacement of a procedure call by the body
of the procedure, is particularly useful here. Optimizations to speed up virtual
met hod dispatches have also been developed.

APPLICATIONS OF COMPILER TECHNOLOGY

Java has many features that make programming easier, many of which have
been introduced previously in other languages. The Java language is type-safe;
that is, an object cannot be used as an object of an unrelated type. All array
accesses are checked to ensure that they lie within the bounds of the array.
Java has no pointers and does not allow pointer arithmetic. It has a built-in
garbage-collection facility that automatically frees the memory of variables that
are no longer in use. While all these features make programming easier, they
incur a run-time overhead. Compiler optimizations have been developed to
reduce the overhead, for example, by eliminating unnecessary range checks and
by allocating objects that are not accessible beyond a procedure on the stack
instead of the heap. Effective algorithms also have been developed to minimize
the overhead of garbage collection.

In addition, Java is designed to support portable and mobile code. Programs
are distributed as Java bytecode, which must either be interpreted or compiled
into native code dynamically, that is, at run time. Dynamic compilation has also
been studied in other contexts, where information is extracted dynamically at
run time and used to produce better-optimized code. In dynamic optimization,
it is important to minimize the compilation time as it is part of the execution
overhead. A common technique used is to only compile and optimize those
parts of the program that will be frequently executed.

1.5.2 Optimizations for Computer Architectures

The rapid evolution of computer architectures has also led to an insatiable
demand for new compiler technology. Almost all high-performance systems
take advantage of the same two basic techniques: parallelism and memory hi-
erarchies. Parallelism can be found at several levels: at the instruction level,
where multiple operations are executed simultaneously and at the processor
level, where different threads of the same application are run on different pro-
cessors. Memory hierarchies are a response to the basic limitation that we can
build very fast storage or very large storage, but not storage that is both fast
and large.

Parallelism

All modern microprocessors exploit instruction-level parallelism. However, this
parallelism can be hidden from the programmer. Programs are written as if all
instructions were executed in sequence; the hardware dynamically checks for
dependencies in the sequential instruction stream and issues them in parallel
when possible. In some cases, the machine includes a hardware scheduler that
can change the instruction ordering to increase the parallelism in the program.
Whether the hardware reorders the instructions or not, compilers can rearrange
the instructions to make instruction-level parallelism more effective.

Instruction-level parallelism can also appear explicitly in the instruction set.
VLIW (Very Long Instruction Word) machines have instructions that can issue

CHAPTER 2. INTRODUCTION

multiple operations in parallel. The Intel IA64 is a well-known example of such
an architecture. All high-performance, general-purpose microprocessors also
include instructions that can operate on a vector of data at the same time.
Compiler techniques have been developed to generate code automatically for
such machines from sequential programs.

Multiprocessors have also become prevalent ; even personal computers of-
ten have multiple processors. Programmers can write multithreaded code for
multiprocessors, or parallel code can be automatically generated by a com-
piler from conventional sequential programs. Such a compiler hides from the
programmers the details of finding parallelism in a program, distributing the
computation across the machine, and minimizing synchronization and com-
munication among the processors. Many scientific-computing and engineering
applications are computation-intensive and can benefit greatly from parallel
processing. Parallelization techniques have been developed to translate auto-
matically sequential scientific programs into multiprocessor code.

Memory Hierarchies

A memory hierarchy consists of several levels of storage with different speeds
and sizes, with the level closest to the processor being the fastest but small-
est. The average memory-access time of a program is reduced if most of its
accesses are satisfied by the faster levels of the hierarchy. Both parallelism and
the existence of a memory hierarchy improve the potential performance of a
machine, but they must be harnessed effectively by the compiler to deliver real
performance on an application.

Memory hierarchies are found in all machines. A processor usually has
a small number of registers consisting of hundreds of bytes, several levels of
caches containing kilobytes to megabytes, physical memory containing mega-
bytes to gigabytes, and finally secondary storage that contains gigabytes and
beyond. Correspondingly, the speed of accesses between adjacent levels of the
hierarchy can differ by two or three orders of magnitude. The performance of a
system is often limited not by the speed of the processor but by the performance
of the memory subsystem. While compilers traditionally focus on optimizing
the processor execution, more emphasis is now placed on making the memory
hierarchy more effective.

Using registers effectively is probably the single most important problem in
optimizing a program. Unlike registers that have to be managed explicitly in
software, caches and physical memories are hidden from the instruction set and
are managed by hardware. It has been found that cache-management policies
implemented by hardware are not effective in some cases, especially in scientific
code that has large data structures (arrays, typically). It is possible to improve
the effectiveness of the memory hierarchy by changing the layout of the data,
or changing the order of instructions accessing the data. We can also change
the layout of code to improve the effectiveness of instruction caches.

1.5. APPLICATIONS OF COMPILER TECHNOLOGY

1.5.3 Design of New Computer Architectures

In the early days of computer architecture design, compilers were developed
after the machines were built. That has changed. Since programming in high-
level languages is the norm, the performance of a computer system is determined
not by its raw speed but also by how well compilers can exploit its features.
Thus, in modern computer architecture development, compilers are developed
in the processor-design stage, and compiled code, running on simulators, is used
to evaluate the proposed architectural features.

RISC

One of the best known examples of how compilers influenced the design of
computer architecture was the invention of the RISC (Reduced Instruction-Set
Computer) architecture. Prior to this invention, the trend was to develop pro-
gressively complex instruction sets intended to make assembly programming
easier; these architectures were known as CISC (Complex Instruction-Set Com-
puter). For example, CISC instruction sets include complex memory-addressing
modes to support data-structure accesses and procedure-invocation instructions
that save registers and pass parameters on the stack.

Compiler optimizations often can reduce these instructions to a small num-
ber of simpler operations by eliminating the redundancies across complex in-
structions. Thus, it is desirable to build simple instruction sets; compilers can
use them effectively and the hardware is much easier to optimize.

Most general-purpose processor architectures, including PowerPC, SPARC,
MIPS, Alpha, and PA-RISC, are based on the RISC concept. Although the
x86 architecture-the most popular microprocessor-has a CISC instruction
set, many of the ideas developed for RISC machines are used in the imple-
mentation of the processor itself. Moreover, the most effective way to use a
high-performance x86 machine is to use just its simple instructions.

Specialized Architectures

Over the last three decades, many architectural concepts have been proposed.
They include data flow machines, vector machines, VLIW (Very Long Instruc-
tion Word) machines, SIMD (Single Instruction, Multiple Data) arrays of pro-
cessors, systolic arrays, multiprocessors with shared memory, and multiproces-
sors with distributed memory. The development of each of these architectural
concepts was accompanied by the research and development of corresponding
compiler technology.

Some of these ideas have made their way into the designs of embedded
machines. Since entire systems can fit on a single chip, processors need no
longer be prepackaged commodity units, but can be tailored to achieve better
cost-effectiveness for a particular application. Thus, in contrast to general-
purpose processors, where economies of scale have led computer architectures

22 CHAPTER 1. INTRODUCTION

to converge, application-specific processors exhibit a diversity of computer ar-
chitectures. Compiler technology is needed not only to support programming
for these architectures, but also to evaluate proposed architectural designs.

1.5.4 Program Translations

While we normally think of compiling as a translation from a high-level lan-
guage to the machine level, the same technology can be applied to translate
between different kinds of languages. The following are some of the important
applications of program-translation techniques.

Binary Translation

Compiler technology can be used to translate the binary code for one machine
to that of another, allowing a machine to run programs originally compiled for
another instruction set. Binary translation technology has been used by various
computer companies to increase the availability of software for their machines.
In particular, because of the domination of the x86 personal-computer mar-
ket, most software titles are available as x86 code. Binary translators have
been developed to convert x86 code into both Alpha and Sparc code. Binary
translation was also used by Transmeta Inc. in their implementation of the x86
instruction set. Instead of executing the complex x86 instruction set directly in
hardware, the Transmeta Crusoe processor is a VLIW processor that relies on
binary translation to convert x86 code into native VLIW code.

Binary translation can also be used to provide backward compatibility.
When the processor in the Apple Macintosh was changed from the Motorola MC
68040 to the PowerPC in 1994, binary translation was used to allow PowerPC
processors run legacy MC 68040 code.

Hardware Synthesis

Not only is most software written in high-level languages; even hardware de-
signs are mostly described in high-level hardware description languages like
Verilog and VHDL (Very high-speed integrated circuit Hardware Description
Language). Hardware designs are typically described at the register trans-
fer level (RTL), where variables represent registers and expressions represent
combinational logic. Hardware-synthesis tools translate RTL descriptions auto-
matically into gates, which are then mapped to transistors and eventually to a
physical layout. Unlike compilers for programming languages, these tools often
take hours optimizing the circuit. Techniques to translate designs at higher
levels, such as the behavior or functional level, also exist.

Database Query Interpreters

Besides specifying software and hardware, languages are useful in many other
applications. For example, query languages, especially SQL (Structured Query

1.5. APPLICATIONS OF COMPILER TECHNOLOGY

Language), are used to search databases. Database queries consist of predicates
containing relational and boolean operators. They can be interpreted or com-
piled into commands to search a database for records satisfying that predicate.

Compiled Simulation

Simulation is a general technique used in many scientific and engineering disci-
plines to understand a phenomenon or to validate a design. Inputs to a simula-
tor usually include the description of the design and specific input parameters
for that particular simulation run. Simulations can be very expensive. We typi-
cally need to simulate many possible design alternatives on many different input
sets, and each experiment may take days to complete on a high-performance
machine. Instead of writing a simulator that interprets the design, it is faster
to compile the design to produce machine code that simulates that particular
design natively. Compiled simulation can run orders of magnitude faster than
an interpreter-based approach. Compiled simulation is used in many state-of-
the-art tools that simulate designs written in Verilog or VHDL.

1.5.5 Software Productivity Tools

Programs are arguably the most complicated engineering artifacts ever pro-
duced; they consist of many many details, every one of which must be correct
before the program will work completely. As a result, errors are rampant in
programs; errors may crash a system, produce wrong results, render a system
vulnerable to security attacks, or even lead to catastrophic failures in critical
systems. Testing is the primary technique for locating errors in programs.

An interesting and promising complementary approach is to use data-flow
analysis to locate errors statically (that is, before the program is run). Data-
flow analysis can find errors along all the possible execution paths, and not
just those exercised by the input data sets, as in the case of program testing.
Many of the data-flow-analysis techniques, originally developed for compiler
optimizations, can be used to create tools that assist programmers in their
software engineering tasks.

The problem of finding all program errors is undecidable. A data-flow analy-
sis may be designed to warn the programmers of all possible statements violating
a particular category of errors. But if most of these warnings are false alarms,
users will not use the tool. Thus, practical error detectors are often neither
sound nor complete. That is, they may not find all the errors in the program,
and not all errors reported are guaranteed to be real errors. Nonetheless, var-
ious static analyses have been developed and shown to be effective in finding
errors, such as dereferencing null or freed pointers, in real programs. The fact
that error detectors may be unsound makes them significantly different from
compiler optimizations. Optimizers must be conservative and cannot alter the
semantics of the program under any circumstances.

24 CHAPTER 1. INTRODUCTION

In the balance of this section, we shall mention several ways in which pro-
gram analysis, building upon techniques originally developed to optimize code
in compilers, have improved software productivity. Of special importance are
techniques that detect statically when a program might have a security vulner-
ability.

Type Checking

Type checking is an effective and well-established technique to catch inconsis-
tencies in programs. It can be used to catch errors, for example, where an
operation is applied to the wrong type of object, or if parameters passed to a
procedure do not match the signature of the procedure. Program analysis can
go beyond finding type errors by analyzing the flow of data through a program.
For example, if a pointer is assigned n u l l and then immediately dereferenced,
the program is clearly in error.

The same technology can be used to catch a variety of security holes, in
which an attacker supplies a string or other data that is used carelessly by the
program. A user-supplied string can be labeled with a type "dangerous." If
this string is not checked for proper format, then it remains "dangerous," and
if a string of this type is able to influence the control-flow of the code at some
point in the program, then there is a potential security flaw.

Bounds Checking

It is easier to make mistakes when programming in a lower-level language than
a higher-level one. For example, many security breaches in systems are caused
by buffer overflows in programs written in C. Because C does not have array-
bounds checks, it is up to the user to ensure that the arrays are not accessed
out of bounds. Failing to check that the data supplied by the user can overflow
a buffer, the program may be tricked into storing user data outside of the
buffer. An attacker can manipulate the input data that causes the program to
misbehave and compromise the security of the system. Techniques have been
developed to find buffer overflows in programs, but with limited success.

Had the program been written in a safe language that includes automatic
range checking, this problem would not have occurred. The same data-flow
analysis that is used to eliminate redundant range checks can also be used to
locate buffer overflows. The major difference, however, is that failing to elimi-
nate a range check would only result in a small run-time cost, while failing to
identify a potential buffer overflow may compromise the security of the system.
Thus, while it is adequate to use simple techniques to optimize range checks, so-
phisticated analyses, such as tracking the values of pointers across procedures,
are needed to get high-quality results in error detection tools.

1.6. PROGRAMMING LANGUAGE BASICS

Memory-Management Tools

Garbage collection is another excellent example of the tradeoff between effi-
ciency and a combination of ease of programming and software reliability. Au-
tomatic memory management obliterates all memory-management errors (e.g.,
"memory leaks"), which are a major source of problems in C and C++ pro-
grams. Various tools have been developed to help programmers find memory
management errors. For example, Purify is a widely used tool that dynamically
catches memory management errors as they occur. Tools that help identify
some of these problems statically have also been developed.

1.6 Programming Language Basics

In this section, we shall cover the most important terminology and distinctions
that appear in the study of programming languages. It is not our purpose to
cover all concepts or all the popular programming languages. We assume that
the reader is familiar with at least one of C, C++, C#, or Java, and may have
encountered other languages as well.

1.6.1 The Static/Dynarnic Distinction

Among the most important issues that we face when designing a compiler for
a language is what decisions can the compiler make about a program. If a
language uses a policy that allows the compiler to decide an issue, then we say
that the language uses a static policy or that the issue can be decided a t compile
t ime. On the other hand, a policy that only allows a decision to be made when
we execute the program is said to be a dynamic policy or to require a decision
at r u n t ime.

One issue on which we shall concentrate is the scope of declarations. The
scope of a declaration of x is the region of the program in which uses of x refer t o
this declaration. A language uses static scope or lexical scope if it is possible to
determine the scope of a declaration by looking only a t the program. Otherwise,
the language uses dynamic scope. With dynamic scope, as the program runs,
the same use of x could refer to any of several different declarations of x.

Most languages, such as C and Java, use static scope. We shall discuss static
scoping in Section 1.6.3.

Example 1.3 : As another example of the staticldynamic distinction, consider
the use of the term "static" as it applies to data in a Java class declaration. In
Java, a variable is a name for a location in memory used to hold a data value.
Here, "static" refers not to the scope of the variable, but rather to the ability of
the compiler to determine the location in memory where the declared variable
can be found. A declaration like

public s t a t i c i n t x ;

CHAPTER 1. INTRODUCTION

makes x a class variable and says that there is only one copy of x, no matter how
many objects of this class are created. Moreover, the compiler can determine a
location in memory where this integer x will be held. In contrast, had "static"
been omitted from this declaration, then each object of the class would have its
own location where x would be held, and the compiler could not determine all
these places in advance of running the program.

1.6.2 Environments and States

Another important distinction we must make when discussing programming
languages is whether changes occurring as the program runs affect the values of
data elements or affect the interpretation of names for that data. For example,
the execution of an assignment such as x = y + 1 changes the value denoted by
the name x. More specifically, the assignment changes the value in whatever
location is denoted by x.

It may be less clear that the location denoted by x can change at run time.
For instance, as we discussed in Example 1.3, if x is not a static (or "class")
variable, then every object of the class has its own location for an instance
of variable x. In that case, the assignment to x can change any of those "in-
stance" variables, depending on the object to which a method containing that
assignment is applied.

environment state

names
n n

locations values
(variables)

Figure 1.8: Two-stage mapping from names to values

The association of names with locations in memory (the store) and then
with values can be described by two mappings that change as the program runs
(see Fig. 1.8):

1. The environment is a mapping from names to locations in the store. Since
variables refer to locations ('L1-values" in the terminology of C), we could
alternatively define an environment as a mapping from names to variables.

2. The state is a mapping from locations in store to their values. That is, the
state maps 1-values to their corresponding r-values, in the terminology of
C.

Environments change according to the scope rules of a language.

Example 1.4: Consider the C program fragment in Fig. 1.9. Integer i is
declared a global variable, and also declared as a variable local to function f .
When f is executing, the environment adjusts so that name i refers to the

1.6. PROGRAMMING LANGUAGE BASICS

i n t i ;
...
void f(.--) {

i n t i ;

/* global i */

/* local i */

/* use of local i */

x = i + I ; /* use of global i */

Figure 1.9: Two declarations of the name i

location reserved for the i that is local to f , and any use of i , such as the
assignment i = 3 shown explicitly, refers to that location. Typically, the local
i is given a place on the run-time stack.

Whenever a function g other than f is executing, uses of i cannot refer to
the i that is local to f . Uses of name i in g must be within the scope of some
other declaration of i. An example is the explicitly shown statement x = i+l,
which is inside some procedure whose definition is not shown. The i in i + 1
presumably refers to the global i . As in most languages, declarations in C must
precede their use, so a function that comes before the global i cannot refer to
it.

The environment and state mappings in Fig. 1.8 are dynamic, but there are
a few exceptions:

1. Static versus dynamic binding of names to locations. Most binding of
names to locations is dynamic, and we discuss several approaches to this
binding throughout the section. Some declarations, such as the global i
in Fig. 1.9, can be given a location in the store once and for all, as the
compiler generates object code.2

2. Static versus dynamic binding of locations to values. The binding of lo-
cations to values (the second stage in Fig. 1.8), is generally dynamic as
well, since we cannot tell the value in a location until we run the program.
Declared constants are an exception. For instance, the C definition

#define ARRAYSIZE 1000
-- --

2~echnically, the C compiler will assign a location in virtual memory for the global i,
leaving it to the loader and the operating system to determine where in the physical memory
of the machine i will be located. However, we shall not worry about "relocation" issues such
as these, which have no impact on compiling. Instead, we treat the address space that the
compiler uses for its output code as if it gave physical memory locations.

28 CHAPTER I . INTRODUCTION

Names, Identifiers, and Variables

Although the terms "name" and "variable," often refer to the same thing,
we use them carefully to distinguish between compile-time names and the
run-time locations denoted by names.

An identifier is a string of characters, typically letters or digits, that
refers to (identifies) an entity, such as a data object, a procedure, a class,
or a type. All identifiers are names, but not all names are identifiers.
Names can also be expressions. For example, the name x.y might denote
the field y of a structure denoted by x. Here, x and y are identifiers, while
x.y is a name, but not an identifier. Composite names like x.y are called
qualified names.

A variable refers to a particular location of the store. It is common for
the same identifier to be declared more than once; each such declaration
introduces a new variable. Even if each identifier is declared just once, an
identifier local to a recursive procedure will refer to different locations of
the store at different times.

binds the name ARRAYSIZE to the value 1000 statically. We can determine
this binding by looking at the statement, and we know that it is impossible
for this binding to change when the program executes.

1.6.3 Static Scope and Block Structure

Most languages, including C and its family, use static scope. The scope rules
for C are based on program structure; the scope of a declaration is determined
implicitly by where the declaration appears in the program. Later languages,
such as C++, Java, and C#, also provide explicit control over scopes through
the use of keywords like public, private, and protected.

In this section we consider static-scope rules for a language with blocks,
where a block is a grouping of declarations and statements. C uses braces I and
) to delimit a block; the alternative use of begin and end for the same purpose
dates back to Algol.

Example 1.5 : To a first approximation, the C static-scope policy is as follows:

1. A C program consists of a sequence of top-level declarations of variables
and functions.

2. Functions may have variable declarations within them, where variables
include local variables and parameters. The scope of each such declaration
is restricted to the function in which it appears.

1.6. PROGRAMMING LANGUAGE BASICS 29

Procedures, Functions, and Methods

To avoid saying "procedures, functions, or methods," each time we want
to talk about a subprogram that may be called, we shall usually refer to
all of them as "procedures." The exception is that when talking explicitly
of programs in languages like C that have only functions, we shall refer
to them as "functions." Or, if we are discussing a language like Java that
has only methods, we shall use that term instead.

A function generally returns a value of some type (the "return type"),
while a procedure does not return any value. C and similar languages,
which have only functions, treat procedures as functions that have a special
return type "void," to signify no return value. Object-oriented languages
like Java and C++ use the term "methods." These can behave like either
functions or procedures, but are associated with a particular class.

3. The scope of a top-level declaration of a name x consists of the entire
program that follows, with the exception of those statements that lie
within a function that also has a declaration of x.

The additional detail regarding the C static-scope policy deals with variable
declarations within statements. We examine such declarations next and in
Example 1.6.

In C, the syntax of blocks is given by

1. One type of statement is a block. Blocks can appear anywhere that other
types of statements, such as assignment statements, can appear.

2. A block is a sequence of declarations followed by a sequence of statements,
all surrounded by braces.

Note that this syntax allows blocks to be nested inside each other. This
nesting property is referred to as block structure. The C family of languages
has block structure, except that a function may not be defined inside another
function.

We say that a declaration D "belongs" to a block B if B is the most closely
nested block containing D; that is, D is located within B , but not within any
block that is nested within B.

The static-scope rule for variable declarations in a block-structured lan-
guages is as follows. If declaration D of name x belongs to block B, then the
scope of D is all of B , except for any blocks B' nested to any depth within B ,
in which x is redeclared. Here, x is redeclared in B' if some other declaration
D' of the same name x belongs to B'.

30 CHAPTER 1. INTRODUCTION

An equivalent way to express this rule is to focus on a use of a name x.
Let B1, B2, . . . , Bk be all the blocks that surround this use of x, with Bk the
smallest, nested within Bk-1, which is nested within Bk-2, and so on. Search
for the largest i such that there is a declaration of x belonging to Bi. This use
of x refers to the declaration in Bi. Alternatively, this use of x is within the
scope of the declaration in Bi.

'int b = 2; \

.€
B2

int a = 3;
cout << a << b;

3

int b = 4;
cout << a << b;

3
,cout << a << b;

J

cout << a << b;
1

Figure 1.10: Blocks in a C++ program

Example 1.6 : The C++ program in Fig. 1.10 has four blocks, with several
definitions of variables a and b. As a memory aid, each declaration initializes
its variable to the number of the block to which it belongs.

For instance, consider the declaration int a = I in block B1. Its scope
is all of B1, except for those blocks nested (perhaps deeply) within B1 that
have their own declaration of a. B2, nested immediately within B1, does not
have a declaration of a , but B3 does. B4 does not have a declaration of a , so
block B3 is the only place in the entire program that is outside the scope of the
declaration of the name a that belongs to B1. That is, this scope includes f i
and all of B2 except for the part of B2 that is within B3. The scopes of all five
declarations are summarized in Fig. 1.11.

From another point of view, let us consider the output statement in block
B4 and bind the variables a and b used there to the proper declarations. The
list of surrounding blocks, in order of increasing size, is Bq , B2, B1. Note that
B3 does not surround the point in question. B4 has a declaration of b, so it
is to this declaration that this use of b refers, and the value of b printed is 4.
However, B4 does not have a declaration of a , so we next look at B2. That
block does not have a declaration of a either, so we proceed to B1. Fortunately,

1.6. PROGRAMMING LANGUAGE BASICS

DECLARATION
int a = 1;
int b = 1;
int b = 2;
int a = 3;
int b = 4;

Figure 1.11: Scopes of declarations in Example 1.6

there is a declaration int a = 1 belonging to that block, so the value of a
printed is I. Had there been no such declaration, the program would have been
erroneous. C1

1.6.4 Explicit Access Control

Classes and structures introduce a new scope for their members. If p is an
object of a class with a field (member) x, then the use of x in p.x refers to
field x in the class definition. In analogy with block structure, the scope of a
member declaration x in a class C extends to any subclass C', except if C' has
a local declaration of the same name x.

Through the use of keywords like public, private, and protected, object-
oriented languages such as C++ or Java provide explicit control over access
to member names in a superclass. These keywords support encapsulation by
restricting access. Thus, private names are purposely given a scope that includes
only the method declarations and definitions associated with that class and any
"friend" classes (the C++ term). Protected names are accessible to subclasses.
Public names are accessible from outside the class.

In C++, a class definition may be separated from the definitions of some
or all of its methods. Therefore, a name x associated with the class C may
have a region of the code that is outside its scope, followed by another region (a
method definition) that is within its scope. In fact, regions inside and outside
the scope may alternate, until all the methods have been defined.

1.6.5 Dynamic Scope

Technically, any scoping policy is dynamic if it is based on factor(s) that can
be known only when the program executes. The term dynamic scope, however,
usually refers to the following policy: a use of a name x refers to the declaration
of x in the most recently called procedure with such a declaration. Dynamic
scoping of this type appears only in special situations. We shall consider two ex-
amples of dynamic policies: macro expansion in the C preprocessor and method
resolution in ob ject-oriented programming.

32 CHAPTER 1. INTRODUCTION

Declarations and Definitions

The apparently similar terms "declaration" and "definition" for program-
ming-language concepts are actually quite different. Declarations tell us
about the types of things, while definitions tell us about their values. Thus,
int i is a declaration of i, while i = I is a definition of i .

The difference is more significant when we deal with methods or other
procedures. In C++, a method is declared in a class definition, by giving
the types of the arguments and result of the method (often called the
signature for the method. The method is then defined, i.e., the code for
executing the method is given, in another place. Similarly, it is common
to define a C function in one file and declare it in other files where the
function is used.

Example 1.7 : In the C program of Fig. 1.12, identifier a is a macro that
stands for expression (x + I). But what is x? We cannot resolve x statically,
that is, in terms of the program text.

int x = 2;

void b() (int x = I ; printf (ll%d\nll, a) ; 3

void c () (printf("%d\nI1, a);

void main() (b(); c () ; 3

Figure 1.12: A macro whose names must be scoped dynamically

In fact, in order to interpret x, we must use the usual dynamic-scope rule.
We examine all the function calls that are currently active, and we take the most
recently called function that has a declaration of x. It is to this declaration that
the use of x refers.

In the example of Fig. 1.12, the function main first calls function b. As b
executes, it prints the value of the macro a. Since (x + 1) must be substituted
for a , we resolve this use of x to the declaration int x=l in function b. The
reason is that b has a declaration of x, so the (x + 1) in the printf in b refers
to this x. Thus, the value printed is 1.

After b finishes, and c is called, we again need to print the value of macro
a. However, the only x accessible to c is the global x. The printf statement
in c thus refers to this declaration of x, and value 2 is printed.

Dynamic scope resolution is also essential for polymorphic procedures, those
that have two or more definitions for the same name, depending only on the

1.6. PROGRAMMING LANGUAGE BASICS

Analogy Between Static and Dynamic Scoping

While there could be any number of static or dynamic policies for scoping,
there is an interesting relationship between the normal (block-structured)
static scoping rule and the normal dynamic policy. In a sense, the dynamic
rule is to time as the static rule is to space. While the static rule asks us to
find the declaration whose unit (block) most closely surrounds the physical
location of the use, the dynamic rule asks us to find the declaration whose
unit (procedure invocation) most closely surrounds the time of the use.

types of the arguments. In some languages, such as ML (see Section 7.3.3), it
is possible to determine statically types for all uses of names, in which case the
compiler can replace each use of a procedure name p by a reference to the code
for the proper procedure. However, in other languages, such as Java and C++,
there are times when the compiler cannot make that determination.

Example 1.8 : A distinguishing feature of object-oriented programming is the
ability of each object to invoke the appropriate method in response to a message.
In other words, the procedure called when x.m() is executed depends on the
class of the object denoted by x at that time. A typical example is as follows:

1. There is a class iC with a method named m().

2. D is a subclass of C, and D has its own method named m().

3. There is a use of m of the form x.m(), where x is an object of class C.

Normally, it is impossible to tell at compile time whether x will be of class
C or of the subclass D. If the method application occurs several times, it is
highly likely that some will be on objects denoted by x that are in class C but
not D, while others will be in class D. It is not until run-time that it can be
decided which definition of rn is the right one. Thus, the code generated by the
compiler must determine the class of the object x, and call one or the other
method named m.

1.6.6 Parameter Passing Mechanisms

All programming languages have a notion of a procedure, but they can differ
in how these procedures get their arguments. In this section, we shall consider
how the actual parameters (the parameters used in the call of a procedure)
are associated with the formal parameters (those used in the procedure defi-
nition). Which mechanism is used determines how the calling-sequence code
treats parameters. The great majority of languages use either "call-by-value,"
or "call-by-reference," or both. We shall explain these terms, and another
method known as "call-by-name," that is primarily of historical interest.

CHAPTER 1. INTRODUCTION

In call-by-value, the actual parameter is evaluated (if it is an expression) or
copied (if it is a variable). The value is placed in the location belonging to
the corresponding formal parameter of the called procedure. This method is
used in C and Java, and is a common option in C++, as well as in most
other languages. Call-by-value has the effect that all computation involving the
formal parameters done by the called procedure is local to that procedure, and
the actual parameters themselves cannot be changed.

Note, however, that in C we can pass a pointer to a variable to allow that
variable to be changed by the callee. Likewise, array names passed as param-
eters in C, C++, or Java give the called procedure what is in effect a pointer
or reference to the array itself. Thus, if a is the name of an array of the calling
procedure, and it is passed by value to corresponding formal parameter x, then
an assignment such as x[i] = 2 really changes the array element a[2]. The
reason is that, although x gets a copy of the value of a , that value is really a
pointer to the beginning of the area of the store where the array named a is
located.

Similarly, in Java, many variables are really references, or pointers, to the
things they stand for. This observation applies to arrays, strings, and objects
of all classes. Even though Java uses call-by-value exclusively, whenever we
pass the name of an object to a called procedure, the value received by that
procedure is in effect a pointer to the object. Thus, the called procedure is able
to affect the value of the object itself.

Call- by-Reference

In call- b y-reference, the address of the actual parameter is passed to the callee as
the value of the corresponding formal parameter. Uses of the formal parameter
in the code of the callee are implemented by following this pointer to the location
indicated by the caller. Changes to the formal parameter thus appear as changes
to the actual parameter.

If the actual parameter is an expression, however, then the expression is
evaluated before the call, and its value stored in a location of its own. Changes
to the formal parameter change this location, but can have no effect on the
data of the caller.

Call-by-reference is used for "ref" parameters in C++ and is an option in
many other languages. It is almost essential when the formal parameter is a
large object, array, or structure. The reason is that strict call-by-value requires
that the caller copy the entire actual parameter into the space belonging to
the corresponding formal parameter. This copying gets expensive when the
parameter is large. As we noted when discussing call-by-value, languages such
as Java solve the problem of passing arrays, strings, or other objects by copying
only a reference to those objects. The effect is that Java behaves as if it used
call-by-reference for anything other than a basic type such as an integer or real.

1.6. PROGRAMMING LANGUAGE BASICS

Call- by-Name

A third mechanism - call-by-name - was used in the early programming
language Algol 60. It requires that the callee execute as if the actual parameter
were substituted literally for the formal parameter in the code of the callee, as
if the formal parameter were a macro standing for the actual parameter (with
renaming of local names in the called procedure, to keep them distinct). When
the actual parameter is an expression rather than a variable, some unintuitive
behaviors occur, which is one reason this mechanism is not favored today.

1.6.7 Aliasing

There is an interesting consequence of call-by-reference parameter passing or
its simulation, as in Java, where references to objects are passed by value. It
is possible that two formal parameters can refer to the same location; such
variables are said to be aliases of one another. As a result, any two variables,
which may appear to take their values from two distinct formal parameters, can
become aliases of each other, as well.

Example 1.9 : Suppose a is an array belonging to a procedure p, and p calls
another procedure q(x, y) with a call q(a, a) . Suppose also that parameters
are passed by value, but that array names are really references to the location
where the array is stored, as in C or similar languages. Now, x and y have
become aliases of each other. The important point is that if within q there is
an assignment x [lo] = 2, then the value of y[10] also becomes 2.

It turns out that understanding aliasing and the mechanisms that create it
is essential if a compiler is to optimize a program. As we shall see starting in
Chapter 9, there are many situations where we can only optimize code if we
can be sure certain variables are not aliased. For instance, we might determine
that x = 2 is the only place that variable x is ever assigned. If so, then we can
replace a use of x by a use of 2; for example, replace a = x+3 by the simpler
a = 5. But suppose there were another variable y that was aliased to x. Then
an assignment y = 4 might have the unexpected effect of changing x. It might
also mean that replacing a = x+3 by a = 5 was a mistake; the proper value of
a could be 7 there.

1.6.8 Exercises for Section 1.6

Exercise 1.6.1 : For the block-structured C code of Fig. 1.13(a), indicate the
values assigned to w, x, y, and x.

Exercise 1.6.2 : Repeat Exercise 1.6.1 for the code of Fig. 1.13(b).

Exercise 1.6.3 : For the block-structured code of Fig. 1.14, assuming the usual
static scoping of declarations, give the scope for each of the twelve declarations.

CHAPTER 1. INTRODUCTION

i n t w , x , y , z ;
i n t i = 4 ; i n t j = 5 ;
(i n t j = 7 ;

i = 6 ;
w = i + j ;

3
x = i + j ;
{ i n t i = 8 ;

y = i + j ;

i n t w , x , y , z ;
i n t i = 3 ; i n t j = 4;
(i n t i = 5 ;

w = i + j ;
3
x = i + j ;
(i n t j = 6 ;

i = 7 ;
y = i + j ;

(a) Code for Exercise 1.6.1 (b) Code for Exercise 1.6.2

Figure 1.13: Block-structured code

C i n t w, x , y , z ; /* Block B 1 */
C i n t x , z ; /* Block B2 */

(i n t w , x ; /* Block B3 */ 3
3
{ i n t w , x ; /* Block B4 */

{ i n t y , z ; /* Block B5 */ 3
3

3

Figure 1.14: Block structured code for Exercise 1.6.3

Exercise 1.6.4 : What is printed by the following C code?

#define a (x+l)
i n t x = 2;
void b() (x = a ; p r i n t f (l l%d\nlf , x) ; 3
void c () (i n t x = 1 ; p r i n t f ("%d\n"), a ;)
void main() (b(); c () ; 3

1.7 Summary of Chapter 1

+ Language Processors. An integrated software development environment
includes many different kinds of language processors such as compilers,
interpreters, assemblers, linkers, loaders, debuggers, profilers.

+ Compiler Phases. A compiler operates as a sequence of phases, each of
which transforms the source program from one intermediate representa-
tion to another.

1.7. SUMMARY OF CHAPTER 1

+ Machine and Assembly Languages. Machine languages were the first-
generation programming languages, followed by assembly languages. Pro-
gramming in these languages was time consuming and error prone.

+ Modeling in Compiler Design. Compiler design is one of the places where
theory has had the most impact on practice. Models that have been found
useful include automata, grammars, regular expressions, trees, and many
others.

+ Code Optimization. Although code cannot truly be "optimized," the sci-
ence of improving the efficiency of code is both complex and very impor-
tant. It is a major portion of the study of compilation.

+ Higher-Level Languages. As time goes on, programming languages take
on progressively more of the tasks that formerly were left to the program-
mer, such as memory management, type-consistency checking, or parallel
execution of code.

+ Compilers and Computer Architecture. Compiler technology influences
computer architecture, as well as being influenced by the advances in ar-
chitecture. Many modern innovations in architecture depend on compilers
being able to extract from source programs the opportunities to use the
hardware capabilities effectively.

+ Software Productivity and Software Security. The same technology that
allows compilers to optimize code can be used for a variety of program-
analysis tasks, ranging from detecting common program bugs to discov-
ering that a program is vulnerable to one of the many kinds of intrusions
that "hackers" have discovered.

+ Scope Rules. The scope of a declaration of x is the context in which uses
of x refer to this declaration. A language uses static scope or lexical scope
if it is possible to determine the scope of a declaration by looking only at
the program. Otherwise, the language uses dynamic scope.

+ Environments. The association of names with locations in memory and
then with values can be described in terms of environments, which map
names to locations in store, and states, which map locations to their
values.

+ Block Structure. Languages that allow blocks to be nested are said to
have block structure. A name x in a nested block B is in the scope of a
declaration D of x in an enclosing block if there is no other declaration
of x in an intervening block.

+ Parameter Passing. Parameters are passed from a calling procedure to
the callee either by value or by reference. When large objects are passed
by value, the values passed are really references to the objects themselves,
resulting in an effective call-by-reference.

38 CHAPTER 1. INTRODUCTION

+ Aliasing. When parameters are (effectively) passed by reference, two for-
mal parameters can refer to the same object. This possibility allows a
change in one variable to change another.

1.8 References for Chapter 1

For the development of programming languages that were created and in use
by 1967, including Fortran, Algol, Lisp, and Simula, see [7]. For languages that
were created by 1982, including C, C++, Pascal, and Smalltalk, see [I].

The GNU Compiler Collection, gcc, is a popular source of open-source
compilers for C, C-t- +, Fortran, Java, and other languages [2]. Phoenix is a
compiler-construction toolkit that provides an integrated framework for build-
ing the program analysis, code generation, and code optimization phases of
compilers discussed in this book [3].

For more information about programming language concepts, we recom-
mend [5,6]. For more on computer architecture and how it impacts compiling,
we suggest [4].

1. Bergin, T. J. and R. G. Gibson, History of Programming Languages, ACM
Press, New York, 1996.

2. http: //gcc .gnu.org/ .

4. Hennessy, J. L. and D. A. Patterson, Computer Organization and De-
sign: The Hardware/Software Interface, Morgan-Kaufmann, San Fran-
cisco, CA, 2004.

5. Scott, M. L., Programming Language Pragmatics, second edition, Morgan-
Kaufmann, San Francisco, CA, 2006.

6. Sethi, R., Programming Languages: Concepts and Constructs, Addison-
Wesley, 1996.

7. Wexelblat, R. L., History of Programming Languages, Academic Press,
New York, 1981.

Chapter 2

A Simple Syntax-Directed
Translator

This chapter is an introduction to the compiling techniques in Chapters 3
through 6 of this book. It illustrates the techniques by developing a working
Java program that translates representative programming language statements
into three-address code, an intermediate representation. In this chapter, the
emphasis is on the front end of a compiler, in particular on lexical analysis,
parsing, and intermediate code generation. Chapters 7 and 8 show how to
generate machine instructions from three-address code.

We start small by creating a syntax-directed translator that maps infix arith-
metic expressions into postfix expressions. We then extend this translator to
map code fragments as shown in Fig. 2.1 into three-address code of the form
in Fig. 2.2.

The working Java translator appears in Appendix A. The use of Java is
convenient, but not essential. In fact, the ideas in this chapter predate the
creation of both Java and C.

<
i n t i ; i n t j ; f loat[100] a ; f l o a t v ; f l o a t x ;

while (t r u e) (
do i = i + l ; while (a[i] < v) ;
do j = j - I ; while (a[j] > v) ;
i f (i >= j) break;
x = a [i l ; a [i l = a [j] ; a [j] = x ;

Figure 2.1: A code fragment to be translated

39

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Figure 2.2: Simplified intermediate code for the program fragment in Fig. 2.1

2.1 Introduction

The analysis phase of a compiler breaks up a source program into constituent
pieces and produces an internal representation for it, called intermediate code.
The synthesis phase translates the intermediate code into the target program.

Analysis is organized around the "syntax" of the language to be compiled.
The syntax of a programming language describes the proper form of its pro-
grams, while the semantics of the language defines what its programs mean; that
is, what each program does when it executes. For specifying syntax, we present
a widely used notation, called context-free grammars or BNF (for Backus-Naur
Form) in Section 2.2. With the notations currently available, the semantics of
a language is much more difficult to describe than the syntax. For specifying
semantics, we shall therefore use informal descriptions and suggestive examples.

Besides specifying the syntax of a language, a context-free grammar can be
used to help guide the translation of programs. In Section 2.3, we introduce
a grammar-oriented compiling technique known as syntax-directed translation.
Parsing or syntax analysis is introduced in Section 2.4.

The rest of this chapter is a quick tour through the model of a compiler
front end in Fig. 2.3. We begin with the parser. For simplicity, we consider the
syntax-directed translation of infix expressions to postfix form, a notation in
which operators appear after their operands. For example, the postfix form of
the expression 9 - 5 + 2 is 95 - 2+. Translation into postfix form is rich enough
to illustrate syntax analysis, yet simple enough that the translator is shown in
full in Section 2.5. The simple translator handles expressions like 9 - 5 + 2,
consisting of digits separated by plus and minus signs. One reason for starting
with such simple expressions is that the syntax analyzer can work directly with
the individual characters for operators and operands.

2.1. INTRODUCTION

Symbol 1 Table 1
Figure 2.3: A model of a compiler front end

t hree-address
code

A lexical analyzer allows a translator to handle multicharacter constructs
like identifiers, which are written as sequences of characters, but are treated
as units called tokens during syntax analysis; for example, in the expression
count + 1, the identifier count is treated as a unit. The lexical analyzer in
Section 2.6 allows numbers, identifiers, and "white space" (blanks, tabs, and
newlines) to appear within expressions.

Next, we consider intermediate-code generation. Two forms of intermedi-
ate code are illustrated in Fig. 2.4. One form, called abstract syntax trees or
simply syntax trees, represents the hierarchical syntactic structure of the source
program. In the model in Fig. 2.3, the parser produces a syntax tree, that
is further translated into three-address code. Some compilers combine parsing
and intermediate-code generation into one component.

body

I

syntax
tree Parser

source
prograz

assign

/ \

Intermediate
Code

Generator

Figure 2.4: Intermediate code for "do i = i + 1 ; while (a [il < v) ; "

Y

~ ~ ~ i ~ ~ l
Analyzer

The root of the abstract syntax tree in Fig. 2.4(a) represents an entire do-
while loop. The left child of the root represents the body of the loop, which
consists of only the assignment i = i + 1 ; . The right child of the root repre-
sents the condition a Cil < v. An implementation of syntax trees appears in
Section 2.8(a).

The other common intermediate representation, shown in Fig. 2.4(b), is a

tokens
c-

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

sequence of "three-address" instructions; a more complete example appears in
Fig. 2.2. This form of intermediate code takes its name from instructions of
the form x = y op z, where op is a binary operator, y and z the are addresses
for the operands, and x is the address for the result of the operation. A three-
address instruction carries out at most one operation, typically a computation,
a comparison, or a branch.

In Appendix A, we put the techniques in this chapter together to build a
compiler front end in Java. The front end translates statements into assembly-
level instructions.

2.2 Syntax Definition

In this section, we introduce a notation - the "context-free grammar," or
"grammar" for short - that is used to specify the syntax of a language. Gram-
mars will be used throughout this book to organize compiler front ends.

A grammar naturally describes the hierarchical structure of most program-
ming language constructs. For example, an if-else statement in Java can have
the form

if (expression) statement else statement

That is, an if-else statement is the concatenation of the keyword if, an open-
ing parenthesis, an expression, a closing parenthesis, a statement, the keyword
else, and another statement. Using the variable expr to denote an expres-
sion and the variable stmt to denote a statement, this structuring rule can be
expressed as

stmt -+ if (expr) stmt else stmt

in which the arrow may be read as "can have the form." Such a rule is called a
production. In a production, lexical elements like the keyword if and the paren-
theses are called terminals. Variables like expr and stmt represent sequences of
terminals and are called nonterminals.

2.2.1 Definition of Grammars

A context-free grammar has four components:

1. A set of terminal symbols, sometimes referred to as "tokens." The termi-
nals are the elementary symbols of the language defined by the grammar.

2. A set of nonterminals, sometimes called "syntactic variables." Each non-
terminal represents a set of strings of terminals, in a manner we shall
describe.

3. A set of productions, where each production consists of a nonterminal,
called the head or left side of the production, an arrow, and a sequence of

2.2. SYNTAX DEFINITION 43

Tokens Versus Terminals

In a compiler, the lexical analyzer reads the characters of the source pro-
gram, groups them into lexically meaningful units called lexemes, and pro-
duces as output tokens representing these lexemes. A token consists of two
components, a token name and an attribute value. The token names are
abstract symbols that are used by the parser for syntax analysis. Often,
we shall call these token names terminals, since they appear as terminal
symbols in the grammar for a programming language. The attribute value,
if present, is a pointer to the symbol table that contains additional infor-
mation about the token. This additional information is not part of the
grammar, so in our discussion of syntax analysis, often we refer to tokens
and terminals synonymously.

terminals and/or nonterminals, called the body or right side of the produc-
tion. The intuitive intent of a production is to specify one of the written
forms of a construct; if the head nonterminal represents a construct, then
the body represents a written form of the construct.

4. A designation of one of the nonterminals as the start symbol.

We specify grammars by listing their productions, with the productions
for the start symbol listed first. We assume that digits, signs such as < and
<=, and boldface strings such as while are terminals. An italicized name is a
nonterminal, and any nonitalicized name or symbol may be assumed to be a
terminal.' For notational convenience, productions with the same nonterminal
as the head can have their bodies grouped, with the alternative bodies separated
by the symbol 1 , which we read as "or."

Example 2.1 : Several examples in this chapter use expressions consisting of
digits and plus and minus signs; e.g., strings such as 9-5+2, 3-1, or 7. Since a
plus or minus sign must appear between two digits, we refer to such expressions
as "lists of digits separated by plus or minus signs." The following grammar
describes the syntax of these expressions. The productions are:

list -+ list + digit

list -+ list - digit

list -+ digit

digit -+ 0 1 1 1 2) 3) 4 (5 1 6 1 7 1 8 1 9

l~ndividual italic letters will be used for additional purposes, especially when grammars
are studied in detail in Chapter 4. For example, we shall use X, Y, and Z to talk about a
symbol that is either a terminal or a nonterminal. However, any italicized name containing
two or more characters will continue to represent a nonterminal.

44 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

The bodies of the three productions with nonterminal l ist as head equiva-
lently can be grouped:

l i s t + l i s t + digit 1 l i s t - digit I digit

According to our conventions, the terminals of the grammar are the symbols

The nonterminals are the italicized names l ist and digit, with l ist being the start
symbol because its productions are given first.

We say a production is for a nonterminal if the nonterminal is the head of
the production. A string of terminals is a sequence of zero or more terminals.
The string of zero terminals, written as E , is called the e m p t y string2

2.2.2 Derivations

A grammar derives strings by beginning with the start symbol and repeatedly
replacing a nonterminal by the body of a production for that nonterminal. The
terminal strings that can be derived from the start symbol form the language
defined by the grammar.

Example 2.2 : The language defined by the grammar of Example 2.1 consists
of lists of digits separated by plus and minus signs. The ten productions for the
nonterminal digit allow it to stand for any of the terminals 0 ,1 , . . . ,9. From
production (2.3), a single digit by itself is a list. Productions (2.1) and (2.2)
express the rule that any list followed by a plus or minus sign and then another
digit makes up a new list.

Productions (2.1) to (2.4) are all we need to define the desired language.
For example, we can deduce that 9-5+2 is a l ist as follows.

a) 9 is a l ist by production (2.3), since 9 is a digit.

b) 9-5 is a l ist by production (2.2), since 9 is a l ist and 5 is a digit.

c) 9-5+2 is a l ist by production (2.1), since 9-5 is a l ist and 2 is a digit.

Example 2.3 : A somewhat different sort of list is the list of parameters in a
function call. In Java, the parameters are enclosed within parentheses, as in
the call max(x, y) of function max with parameters x and y. One nuance of such
lists is that an empty list of parameters may be found between the terminals
(and). We may start to develop a grammar for such sequences with the
productions:

2~echnically, e can be a string of zero symbols from any alphabet (collection of symbols).

2.2. SYNTAX DEFINITION

call + id (optparams)
optparams -+ params I 6

params -+ params , param I param

Note that the second possible body for optpamms ("optional parameter list")
is t, which stands for the empty string of symbols. That is, optparams can be
replaced by the empty string, so a call can consist of a function name followed
by the two-terminal string () . Notice that the productions for params are
analogous to those for dist in Example 2.1, with comma in place of the arithmetic
operator + or -, and param in place of digit. We have not shown the productions
for param, since parameters are really arbitrary expressions. Shortly, we shall
discuss the appropriate productions for the various language constructs, such
as expressions, statements, and so on.

Parsing is the problem of taking a string of terminals and figuring out how
to derive it from the start symbol of the grammar, and if it cannot be derived
from the start symbol of the grammar, then reporting syntax errors within the
string. Parsing is one of the most fundamental problems in all of compiling;
the main approaches to parsing are discussed in Chapter 4. In this chapter, for
simplicity, we begin with source programs like 9-5+2 in which each character
is a terminal; in general, a source program has multicharacter lexemes that are
grouped by the lexical analyzer into tokens, whose first components are the
terminals processed by the parser.

2.2.3 Parse Trees

A parse tree pictorially shows how the start symbol of a grammar derives a
string in the language. If nonterminal A has a production A -+ XYZ, then a
parse tree may have an interior node labeled A with three children labeled X,
Y, and Z, from left to right:

/ 1 \
X Y Z

Formally, given a context-free grammar, a parse tree according to the gram-
mar is a tree with the following properties:

1. The root is labeled by the start symbol.

2. Each leaf is labeled by a terminal or by e.

3. Each interior node is labeled by a nonterminal.

4. If A is the nonterminal labeling some interior node and XI , Xz, . . . , Xn are
the labels of the children of that node from left to right, then there must
be a production A -+ X1X2 . . Xn. Here, X1, X2, . . . , X, each stand

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Tree Terminology

Tree data structures figure prominently in compiling.

A tree consists of one or more nodes. Nodes may have labels, which
in this book typically will be grammar symbols. When we draw a
tree, we often represent the nodes by these labels only.

Exactly one node is the root. All nodes except the root have a unique
parent; the root has no parent. When we draw trees, we place the
parent of a node above that node and draw an edge between them.
The root is then the highest (top) node.

If node N is the parent of node M , then M is a child of N. The
children of one node are called siblings. They have an order, from
the left, and when we draw trees, we order the childen of a given
node in this manner.

A node with no children is called a leaf. Other nodes - those with
one or more children - are interior nodes.

A descendant of a node N is either N itself, a child of N , a child of
a child of N, and so on, for any number of levels. We say node N is
an ancestor of node M if M is a descendant of N.

for a symbol that is either a terminal or a nonterminal. As a special case,
if A -+ c is a production, then a node labeled A may have a single child
labeled E .

Example 2.4: The derivation of 9-5+2 in Example 2.2 is illustrated by the
tree in Fig. 2.5. Each node in the tree is labeled by a grammar symbol. An
interior node and its children correspond to a production; the interior node
corresponds to the head of the production, the children to the body.

In Fig. 2.5, the root is labeled list, the start symbol of the grammar in
Example 2.1. The children of the root are labeled, from left to right, list, +,
and digit. Note that

list -+ list + digit

is a production in the grammar of Example 2.1. The left child of the root is
similar to the root, with a child labeled - instead of +. The three nodes labeled
digit each have one child that is labeled by a digit.

From left to right, the leaves of a parse tree form the yield of the tree, which
is the string generated or derived from the nonterminal at the root of the parse

2.2. SYNTAX DEFINITION

list

list -----' 1 ' d i g i t

Figure 2.5: Parse tree for 9-5+2 according to the grammar in Example 2.1

list
/

I
digit

I

tree. In Fig. 2.5, the yield is 9-5+2; for convenience, all the leaves are shown
at the bottom level. Henceforth, we shall not necessarily line up the leaves in
this way. Any tree imparts a natural left-to-right order to its leaves, based on
the idea that if X and Y are two children with the same parent, and X is to
the left of Y, then all descendants of X are to the left of descendants of Y.

Another definition of the language generated by a grammar is as the set of
strings that can be generated by some parse tree. The process of finding a parse
tree for a given string of terminals is called parsing that string.

\
digit

2.2.4 Ambiguity

We have to be careful in talking about the structure of a string according to a
grammar. A grammar can have more than one parse tree generating a given
string of terminals. Such a grammar is said to be ambiguous. To show that a
grammar is ambiguous, all we need to do is find a terminal string that is the
yield of more than one parse tree. Since a string with more than one parse tree
usually has more than one meaning, we need to design unambiguous grammars
for compiling applications, or to use ambiguous grammars with additional rules
to resolve the ambiguities.

Example 2.5 : Suppose we used a single nonterminal string and did not dis-
tinguish between digits and lists, as in Example 2.1. We could have written the
grammar

string -+ string + string I s t k g - string 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 / 9

Merging the notion of digit and list into the nonterminal string makes superficial
sense, because a single digit is a special case of a list.

However, Fig. 2.6 shows that an expression like 9-5+2 has more than one
parse tree with this grammar. The two trees for 9-5+2 correspond to the two
ways of parenthesizing the expression: (9-5) +2 and 9- (5+2) . This second
parenthesization gives the expression the unexpected value 2 rather than the
customary value 6. The grammar of Example 2.1 does not permit this inter-
pretation.

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

string

/ I \
string + string

/ I \ I
string - string 2

I I
9 5

string - string

I / I \
9 string + string

I I
5 2

Figure 2.6: Two parse trees for 9-5+2

2.2.5 Associativity of Operators

By convention, 9+5+2 is equivalent to (9+5)+2 and 9-5-2 is equivalent to
(9-5)-2. When an operand like 5 has operators to its left and right, con-
ventions are needed for deciding which operator applies to that operand. We
say that the operator + associates to the left, because an operand with plus signs
on both sides of it belongs to the operator to its left. In most programming
languages the four arithmetic operators, addition, subtraction, multiplication,
and division are left-associative.

Some common operators such as exponentiation are right-associative. As
another example, the assignment operator = in C and its descendants is right-
associative; that is, the expression a=b=c is treated in the same way as the
expression a= (b=c) .

Strings like a=b=c with a right-associative operator are generated by the
following grammar:

right + letter = right I letter
letter -+ a I b I . 1 z

The contrast between a parse tree for a left-associative operator like - and
a parse tree for a right-associative operator like = is shown by Fig. 2.7. Note
that the parse tree for 9-5-2 grows down towards the left, whereas the parse
tree for a=b=c grows down towards the right.

2.2.6 Precedence of Operators

Consider the expression 9+5*2. There are two possible interpretations of this
expression: (9+5) *2 or 9+ (5*2). The associativity rules for + and * apply to
occurrences of the same operator, so they do not resolve this ambiguity. Rules
defining the relative precedence of operators are needed when more than one
kind of operator is present.

We say that * has higher precedence than + if * takes its operands before +
does. In ordinary arithmetic, multiplication and division have higher precedence
than addition and subtraction. Therefore, 5 is taken by * in both 9+5*2 and
9*5+2; i.e., the expressions are equivalent to 9+ (5*2) and (9*5) +2, respectively.

2.2. SYNTAX DEFINITION

list - digit

/ I \ I
list - digit 2

I I
digit 5

I
9

letter = right

I / I \
a letter = right

I I
b letter

Figure 2.7: Parse trees for left- and right-associative grammars

Example 2.6 : A grammar for arithmetic expressions can be constructed from
a table showing the associativity and precedence of operators. We start with
the four common arithmetic operators and a precedence table, showing the
operators in order of increasing precedence. Operators on the same line have
the same associativity and precedence:

left-associative: + -
left-associative: * /

We create two nonterminals expr and t e r m for the two levels of precedence,
and an extra nonterminal factor for generating basic units in expressions. The
basic units in expressions are presently digits and parenthesized expressions.

factor + digit I (expr)

Now consider the binary operators, * and /, that have the highest prece-
dence. Since these operators associate to the left, the productions are similar
to those for lists that associate to the left.

t e r m + t e r m * factor
I t e r m / factor
I factor

Similarly, expr generates lists of terms separated by the additive operators.

expr + expr + t e r m
I expr - t e r m
I t e r m

The resulting grammar is therefore

expr -+ expr + t e r m (expr - t e r m (t e r m
t e r m -+ t e r m * factor I t e r m / factor (factor

factor --+ digit 1 (expr)

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Generalizing the Expression Grammar of Example 2.6

We can think of a factor as an expression that cannot be "torn apart" by
any operator. By "torn apart," we mean that placing an operator next
to any factor, on either side, does not cause any piece of the factor, other
than the whole, to become an operand of that operator. If the factor is a
parenthesized expression, the parentheses protect against such "tearing,"
while if the factor is a single operand, it cannot be torn apart.

A term (that is not also a factor) is an expression that can be torn
apart by operators of the highest precedence: * and /, but not by the
lower-precedence operators. An expression (that is not a term or factor)
can be torn apart by any operator.

We can generalize this idea to any number n of precedence levels. We
need n+ 1 nonterminals. The first, like factor in Example 2.6, can never be
torn apart. Typically, the production bodies for this nonterminal are only
single operands and parenthesized expressions. Then, for each precedence
level, there is one nonterminal representing expressions that can be torn
apart only by operators at that level or higher. Typically, the productions
for this nonterminal have bodies representing uses of the operators at that
level, plus one body that is just the nonterminal for the next higher level.

With this grammar, an expression is a list of terms separated by either + or
- signs, and a term is a list of factors separated by * or / signs. Notice that
any parenthesized expression is a factor, so with parentheses we can develop
expressions that have arbitrarily deep nesting (and arbitrarily deep trees).

Example 2.7: Keywords allow us to recognize statements, since most state-
ment begin with a keyword or a special character. Exceptions to this rule
include assignments and procedure calls. The statements defined by the (am-
biguous) grammar in Fig. 2.8 are legal in Java.

In the first production for stmt, the terminal id represents any identifier.
The productions for expression are not shown. The assignment statements
specified by the first production are legal in Java, although Java treats = as an
assignment operator that can appear within an expression. For example, Java
allows a = b = c, which this grammar does not.

The nonterminal stmts generates a possibly empty list of statements. The
second production for stmts generates the empty list E . The first production
generates a possibly empty list of statements followed by a statement.

The placement of semicolons is subtle; they appear at the end of every body
that does not end in stmt. This approach prevents the build-up of semicolons
after statements such as if- and while-, which end with nested substatements.
When the nested substatement is an assignment or a do-while, a semicolon will
be generated as part of the substatement.

2.2. SYNTAX DEFINITION

stmt -+ id = expression ;

(if (expression) stmt

I if (expression) stmt else stmt

I while (expression) stmt

I do stmt while (expression) ;
I C stmts 3

stmts -+ stmts stmt

I t:

Figure 2.8: A grammar for a subset of Java statements

2.2.7 Exercises for Section 2.2

Exercise 2.2 .I : Consider the context-free grammar

S -+ S S + I S S * 1 a

a) Show how the string aa+a* can be generated by this grammar.

b) Construct a parse tree for this string.

c) What language does this grammar generate? Justify your answer.

Exercise 2.2.2 : What language is generated by the following grammars? In
each case justify your answer.

Exercise 2.2.3 : Which of the grammars in Exercise 2.2.2 are ambiguous?

Exercise 2.2.4 : Construct unambiguous context-free grammars for each of
the following languages. In each case show that your grammar is correct.

a) Arithmetic expressions in postfix notation.

b) Left-associative lists of identifiers separated by commas.

c) Right-associative lists of identifiers separated by commas.

d) Arithmetic expressions of integers and identifiers with the four binary
operators +, -, *, /.

52 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

! e) Add unary plus and minus to the arithmetic operators of (d).

Exercise 2.2.5 :

a) Show that all binary strings generated by the following grammar have
values divisible by 3. Hint. Use induction on the number of nodes in a
parse tree.

num += I1 I 1001 I numO I numnum

b) Does the grammar generate all binary strings with values divisible by 3?

Exercise 2.2.6 : Construct a context-free grammar for roman numerals.

2.3 Syntax-Directed Translation

Syntax-directed translation is done by attaching rules or program fragments to
productions in a grammar. For example, consider an expression expr generated
by the production

expr += expr, + term

Here, expr is the sum of the two subexpressions expr, and term. (The subscript
in expr, is used only to distinguish the instance of expr in the production body
from the head of the production). We can translate expr by exploiting its
structure, as in the following pseudo-code:

translate expr, ;
translate term;
handle +;

Using a variant of this pseudocode, we shall build a syntax tree for expr in
Section 2.8 by building syntax trees for exprl and term and then handling + by
constructing a node for it. For convenience, the example in this section is the
translation of infix expressions into postfix notation.

This section introduces two concepts related to syntax-directed translation:

Attributes. An attribute is any quantity associated with a programming
construct. Examples of attributes are data types of expressions, the num-
ber of instructions in the generated code, or the location of the first in-
struction in the generated code for a construct, among many other pos-
sibilities. Since we use grammar symbols (nonterminals and terminals)
to represent programming constructs, we extend the notion of attributes
from constructs to the symbols that represent them.

2.3. SYNTAX-DIRECTED TRANSLATION 53

(Syntax-directed) translation schemes. A translation scheme is a notation
for attaching program fragments to the productions of a grammar. The
program fragments are executed when the production is used during syn-
tax analysis. The combined result of all these fragment executions, in
the order induced by the syntax analysis, produces the translation of the
program to which this analysis/synthesis process is applied.

Syntax-directed translations will be used throughout this chapter to trans-
late infix expressions into postfix notation, to evaluate expressions, and to build
syntax trees for programming constructs. A more detailed discussion of syntax-
directed formalisms appears in Chapter 5 .

2.3.1 Postfix Notation

The examples in this section deal with translation into postfix notation. The
postfix notation for an expression E can be defined inductively as follows:

1. If E is a variable or constant, then the postfix notation for E is E itself.

2. If E is an expression of the form El o p E2, where o p is any binary
operator, then the postfix notation for E is Ei Eh op, where Ei and Eh
are the postfix notations for El and E2, respectively.

3. If E is a parenthesized expression of the form (El), then the postfix
notation for E is the same as the postfix notation for El .

Example 2.8 : The postfix notation for (9-5)+2 is 95-2+. That is, the trans-
lations of 9, 5, and 2 are the constants themselves, by rule (1). Then, the
translation of 9-5 is 95- by rule (2). The translation of (9-5) is the same
by rule (3). Having translated the parenthesized subexpression, we may apply
rule (2) to the entire expression, with (9-5) in the role of El and 2 in the role
of E2, to get the result 95-2+.

As another example, the postfix notation for 9- (5+2) is 952+-. That is, 5+2
is first translated into 52+, and this expression becomes the second argument
of the minus sign.

No parentheses are needed in postfix notation, because the position and
arity (number of arguments) of the operators permits only one decoding of a
postfix expression. The "trick" is to repeatedly scan the postfix string from the
left, until you find an operator. Then, look to the left for the proper number
of operands, and group this operator with its operands. Evaluate the operator
on the operands, and replace them by the result. Then repeat the process,
continuing to the right and searching for another operator.

Example 2.9 : Consider the postfix expression 952+-3*. Scanning from the
left, we first encounter the plus sign. Looking to its left we find operands 5 and
2. Their sum, 7, replaces 52+, and we have the string 97-3*. Now, the leftmost

54 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

operator is the minus sign, and its operands are 9 and 7. Replacing these by
the result of the subtraction leaves 23*. Last, the multiplication sign applies to
2 and 3, giving the result 6.

2.3.2 Synthesized Attributes

The idea of associating quantities with programming constructs-for example,
values and types with expressions-can be expressed in terms of grammars. We
associate attributes with nonterminals and terminals. Then, we attach rules to
the productions of the grammar; these rules describe how the attributes are
computed at those nodes of the parse tree where the production in question is
used to relate a node to its children.

A syntax-directed definition associates

1. With each grammar symbol, a set of attributes, and

2. With each production, a set of semantic rules for computing the values of
the attributes associated with the symbols appearing in the production.

Attributes can be evaluated as follows. For a given input string x, construct
a parse tree for x. Then, apply the semantic rules to evaluate attributes at each
node in the parse tree, as follows.

Suppose a node N in a parse tree is labeled by the grammar symbol X . We
write X.a to denote the value of attribute a of X at that node. A parse tree
showing the attribute values at each node is called an annotated parse tree. For
example, Fig. 2.9 shows an annotated parse tree for 9-5+2 with an attribute
t associated with the nonterminals expr and term. The value 95-2+ of the
attribute at the root is the postfix notation for 9-5+2. We shall see shortly how
these expressions are computed.

Figure 2.9: Attribute values at nodes in a parse tree

An attribute is said to be synthesized if its value at a parse-tree node N is de-
termined from attribute values at the children of N and at N itself. Synthesized

2.3. SYNTAX-DIRECTED TRANSLATION 55

attributes have the desirable property that they can be evaluated during a sin-
gle bottom-up traversal of a parse tree. In Section 5.1.1 we shall discuss another
important kind of attribute: the "inherited" attribute. Informally, inherited at-
tributes have their value at a parse-tree node determined from attribute values
at the node itself, its parent, and its siblings in the parse tree.

Example 2.10 : The annotated parse tree in Fig. 2.9 is based on the syntax-
directed definition in Fig. 2.10 for translating expressions consisting of digits
separated by plus or minus signs into postfix notation. Each nonterminal has a
string-valued attribute t that represents the postfix notation for the expression
generated by that nonterminal in a parse tree. The symbol 1 1 in the semantic
rule is the operator for string concatenation.

expr -+ exprl + term

expr -+ exprl - term

expr -+ term

term -+ 0

term -+ I
. . .

term -+ 9

expr.t = exprl.t 1 1 term.t 1 1 '+I

expr.t = exprl.t) I term.t 1 1 I-'
expr.t = term.t

term.t = '0'

term.t = 'I'
. . .

term.t = '9'

Figure 2.10: Syntax-directed definition for infix to postfix translation

The postfix form of a digit is the digit itself; e.g., the semantic rule associ-
ated with the production term -+ 9 defines term.t to be 9 itself whenever this
production is used at a node in a parse tree. The other digits are translated
similarly. As another example, when the production expr -+ term is applied,
the value of term.t becomes the value of expr.t.

The production expr -+ exprl + term derives an expression containing a plus
operator.3 The left operand of the plus operator is given by expr, and the right
operand by term. The semantic rule

associated with this production constructs the value of attribute expr.t by con-
catenating the postfix forms expr, .t and term.t of the left and right operands,
respectively, and then appending the plus sign. This rule is a formalization of
the definition of "postfix expression."

3 ~ n this and many other rules, the same nonterminal (e x p r , here) appears several times.
The purpose of the subscript 1 in expr l is to distinguish the two occurrences of e x p r in the
production; the "1" is not part of the nonterminal. See the box on "Convention Distinguishing
Uses of a Nonterminal" for more details.

56 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Convention Distinguishing Uses of a Nonterminal

In rules, we ~ftem have a need to distinguish among several uses of the
same nonterminal in the head and/or body of a production; e.g., see Ex-
ample 2.10. The reason is that in the parse tree, different nodes labeled
by the same nonterminal usually have different values for their transla-
tions. We shall adopt the following convention: the nonterminal appears
unsubscripted in the head and with distinct subscripts in the body. These
are all occurrences of the same nonterminal, and the subscript is not part
of its name. However, the reader should be alert to the difference be-
tween examples of specific translations, where this convention is used, and
generic productions like A -+ X1X2,. . . , X,, where the subscripted X's
represent an arbitrary list of grammar symbols, and are not instances of
one particular nonterminal called X .

2.3.3 Simple Syntax-Directed Definitions

The syntax-directed definition in Example 2.10 has the following important
property: the string representing the translation of the nonterminal at the head
of each production is the concatenation of the translations of the nonterminals
in the production body, in the same order as in the production, with some
optional additional strings interleaved. A syntax-directed definition with this
property is termed simple.

Example 2.1 1 : Consider the first production and semantic rule from Fig. 2.10:

PRODUCTION SEMANTIC RULE
expr -+ exprl + term expr.t = expr, .t I I term.t I I '+' (2.5)

Here the translation expr.t is the concatenation of the translations of expr, and
term, followed by the symbol +. Notice that exprl and term appear in the
same order in both the production body and the semantic rule. There are no
additional symbols before or between their translations. In this example, the
only extra symbol occurs at the end.

When translation schemes are discussed, we shall see that a simple syntax-
directed definition can be implemented by printing only the additional strings,
in the order they appear in the definition.

2.3.4 Tree Traversals

Tree traversals will be used for describing attribute evaluation and for specifying
the execution of code fragments in a translation scheme. A traversal of a tree
starts at the root and visits each node of the tree in some order.

2.3. SYNTAX-DIRE CTED TRANSLATION

A depth-first traversal starts at the root and recursively visits the children
of each node in any order, not necessarily from left to right. It is called "depth-
first" because it visits an unvisited child of a node whenever it can, so it visits
nodes as far away from the root (as "deep") as quickly as it can.

The procedure visit(N) in Fig. 2.11 is a depth first traversal that visits the
children of a node in left-to-right order, as shown in Fig. 2.12. In this traversal,
we have included the action of evaluating translations at each node, just before
we finish with the node (that is, after translations at the children have surely
been computed). In general, the actions associated with a traversal can be
whatever we choose, or nothing at all.

procedure visit(node N) {
for (each child C of N, from left to right) {

visit (C) ;
1
evaluate semantic rules at node N;

Figure 2.11: A depth-first traversal of a tree

Figure 2.12: Example of a depth-first traversal of a tree

A syntax-directed definition does not impose any specific order for the eval-
uation of attributes on a parse tree; any evaluation order that computes an
attribute a after all the other attributes that a depends on is acceptable. Syn-
thesized attributes can be evaluated during any bottom-up traversal, that is, a
traversal that evaluates attributes at a node after having evaluated attributes
at its children. In general, with both synthesized and inherited attributes, the
matter of evaluation order is quite complex; see Section 5.2.

2.3.5 Translation Schemes

The syntax-directed definition in Fig. 2.10 builds up a translation by attaching
strings as attributes to the nodes in the parse tree. We now consider an alter-
native approach that does not need to manipulate strings; it produces the same
translation increment ally, by executing program fragments.

58 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Preorder and Postorder Traversals

Preorder and postorder traversals are two important special cases of depth-
first traversals in which we visit the children of each node from left to right.

Often, we traverse a tree to perform some particular action at each
node. If the action is done when we first visit a node, then we may refer
to the traversal as a preorder traversal. Similarly, if the action is done
just before we leave a node for the last time, then we say it is a postorder
traversal of the tree. The procedure visit(N) in Fig. 2.11 is an example of
a postorder traversal.

Preorder and postorder traversals define corresponding orderings on
nodes, based on when the action at a node would be performed. The
preorder of a (sub)tree rooted at node N consists of N, followed by the
preorders of the subtrees of each of its children, if any, from the left. The
postorder of a (sub)tree rooted at N consists of the postorders of each of
the subtrees for the children of N, if any, from the left, followed by N
itself.

A syntax-directed translation scheme is a notation for specifying a transla-
tion by attaching program fragments to productions in a grammar. A transla-
tion scheme is like a syntax-directed definition, except that the order of evalu-
ation of the semantic rules is explicitly specified.

Program fragments embedded within production bodies are called semantic
actions. The position at which an action is to be executed is shown by enclosing
it between curly braces and writing it within the production body, as in

rest -+ + t e r m {print('+')) restl

We shall see such rules when we consider an alternative form of grammar for
expressions, where the nonterminal rest represents "everything but the first
term of an expression." This form of grammar is discussed in Section 2.4.5.
Again, the subscript in restl distinguishes this instance of nonterminal rest in
the production body from the instance of rest at the head of the production.

When drawing a parse tree for a translation scheme, we indicate an action
by constructing an extra child for it, connected by a dashed line to the node
that corresponds to the head of the production. For example, the portion of
the parse tree for the above production and action is shown in Fig. 2.13. The
node for a semantic action has no children, so the action is performed when
that node is first seen.

Example 2.12: The parse tree in Fig. 2.14 has print statements at extra
leaves, which are attached by dashed lines to interior nodes of the parse tree.
The translation scheme appears in Fig. 2.15. The underlying grammar gen-
erates expressions consisting of digits separated by plus and minus signs. The

2.3. SYNTAX-DIRECTED TRANSLATION

Figure 2.13: An extra leaf is constructed for a semantic action

actions embedded in the production bodies translate such expressions into post-
fix notation, provided we perform a left-to-right depth-first traversal of the tree
and execute each print statement when we visit its leaf.

xprK. \ \ .
\

+ term iprint ('+I)) A e x 7 - - - - - - -- . / \ \ \ \

expr - term {print (I-') 2 {print ('2'))

I / \ \ \ \

term 5 {print ('5'))

/ \ \ \ \

9 {print ('9'))

Figure 2.14: Actions translating 9-5+2 into 95-2+

expr -+ expr, + term {print('+'))
expr -+ expr, - term {print('-'))
e x + term
term + 0 {print ('0'))
term + 1 {print (' 1'))

. . .
term -+ 9 {print ('9'))

Figure 2.15: Actions for translating into postfix notation

The root of Fig. 2.14 represents the first production in Fig. 2.15. In a
postorder traversal, we first perform all the actions in the leftmost subtree of
the root, for the left operand, also labeled expr like the root. We then visit the
leaf + at which there is no action. We next perform the actions in the subtree
for the right operand term and, finally, the semantic action {print('+')) at the
extra node.

Since the productions for term have only a digit on the right side, that digit
is printed by the actions for the productions. No output is necessary for the
production expr + term, and only the operator needs to be printed in the

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

action for each of the first two productions. When executed during a postorder
traversal of the parse tree, the actions in Fig. 2.14 print 95-2+.

Note that although the schemes in Fig. 2.10 and Fig. 2.15 produce the same
translation, they construct it differently; Fig. 2.10 attaches strings as attributes
to the nodes in the parse tree, while the scheme in Fig. 2.15 prints the translation
incrementally, through semantic actions.

The semantic actions in the parse tree in Fig. 2.14 translate the infix ex-
pression 9-5+2 into 95-2+ by printing each character in 9-5+2 exactly once,
without using any storage for the translation of subexpressions. When the out-
put is created incrementally in this fashion, the order in which the characters
are printed is significant.

The implementation of a translation scheme must ensure that semantic ac-
tions are performed in the order they would appear during a postorder traversal
of a parse tree. The implementation need not actually construct a parse tree
(often it does not), as long as it ensures that the semantic actions are per-
formed as if we constructed a parse tree and then executed the actions during
a postorder traversal.

2.3.6 Exercises for Section 2.3

Exercise 2.3.1 : Construct a syntax-directed translation scheme that trans-
lates arithmetic expressions from infix notation into prefix notation in which an
operator appears before its operands; e.g., -xy is the prefix notation for x - y.
Give annotated parse trees for the inputs 9-5+2 and 9-5*2.

Exercise 2.3.2 : Construct a syntax-directed translation scheme that trans-
lates arithmetic expressions from postfix notation into infix notation. Give
annotated parse trees for the inputs 95-2* and 952*-.

Exercise 2.3.3 : Construct a syntax-directed translation scheme that trans-
lates integers into roman numerals.

Exercise 2.3.4 : Construct a syntax-directed translation scheme that trans-
lates roman numerals into integers.

Exercise 2.3.5 : Construct a syntax-directed translation scheme that trans-
lates postfix arithmetic expressions into equivalent infix arithmetic expressions.

2.4 Parsing

Parsing is the process of determining how a string of terminals can be generated
by a grammar. In discussing this problem, it is helpful to think of a parse tree
being constructed, even though a compiler may not construct one, in practice.
However, a parser must be capable of constructing the tree in principle, or else
the translation cannot be guaranteed correct.

2.4. PARSING

This section introduces a parsing method called "recursive descent," which
can be used both to parse and to implement syntax-directed translators. A com-
plete Java program, implementing the translation scheme of Fig. 2.15, appears
in the next section. A viable alternative is to use a software tool to generate
a translator directly from a translation scheme. Section 4.9 describes such a
tool - Yacc; it can implement the translation scheme of Fig. 2.15 without
modification.

For any context-free grammar there is a parser that takes at most O(n3)
time to parse a string of n terminals. But cubic time is generally too expen-
sive. Fortunately, for real programming languages, we can generally design a
grammar that can be parsed quickly. Linear-time algorithms suffice to parse
essentially all languages that arise in practice. Programming-language parsers
almost always make a single left-to-right scan over the input, looking ahead one
terminal at a time, and constructing pieces of the parse tree as they go.

Most parsing methods fall into one of two classes, called the top-down and
bottom-up methods. These terms refer to the order in which nodes in the parse
tree are constructed. In top-down parsers, construction starts at the root and
proceeds towards the leaves, while in bottom-up parsers, construction starts at
the leaves and proceeds towards the root. The popularity of top-down parsers
is due to the fact that efficient parsers can be constructed more easily by hand
using top-down methods. Bottom-up parsing, however, can handle a larger class
of grammars and translation schemes, so software tools for generating parsers
directly from grammars often use bottom-up methods.

2.4.1 Top-Down Parsing

We introduce top-down parsing by considering a grammar that is well-suited
for this class of methods. Later in this section, we consider the construction
of top-down parsers in general. The grammar in Fig. 2.16 generates a subset
of the statements of C or Java. We use the boldface terminals if and for for
the keywords "if" and "for", respectively, to emphasize that these character
sequences are treated as units, i.e., as single terminal symbols. Further, the
terminal expr represents expressions; a more complete grammar would use a
nonterminal expr and have productions for nonterminal expr. Similarly, other
is a terminal representing other statement constructs.

The top-down construction of a parse tree like the one in Fig. 2.17, is done
by starting with the root, labeled with the starting nonterminal stmt, and re-
peatedly performing the following two steps.

1. At node N, labeled with nonterminal A, select one of the productions for
A and construct children at N for the symbols in the production body.

2. Find the next node at which a subtree is to be constructed, typically the
leftmost unexpanded nonterminal of the tree.

For some grammars, the above steps can be implemented during a single
left-to-right scan of the input string. The current terminal being scanned in the

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

s t m t + expr ;

1 if (expr) s t m t
I for (optexpr ; optexpr ; optexpr) st&
1 other

optexpr + E:

I expr

Figure 2.16: A grammar for some statements in C and Java

At%\\
for (optexpr ; optexpr ; optexpr s t m t

E expr expr other

Figure 2.17: A parse tree according to the grammar in Fig. 2.16

input is frequently referred to as the lookahead symbol. Initially, the lookahead
symbol is the first, i.e., leftmost, terminal of the input string. Figure 2.18
illustrates the construction of the parse tree in Fig. 2.17 for the input string

for (; expr ; expr) other

Initially, the terminal for is the lookahead symbol, and the known part of the
parse tree consists of the root, labeled with the starting nonterminal s t m t in
Fig. 2.18(a). The objective is to construct the remainder of the parse tree in
such a way that the string generated by the parse tree matches the input string.

For a match to occur, the nonterminal s t m t in Fig. 2.18(a) must derive a
string that starts with the lookahead symbol for. In the grammar of Fig. 2.16,
there is just one production for s t m t that can derive such a string, so we select it,
and construct the children of the root labeled with the symbols in the production
body. This expansion of the parse tree is shown in Fig. 2.18(b).

Each of the three snapshots in Fig. 2.18 has arrows marking the lookahead
symbol in the input and the node in the parse tree that is being considered.
Once children are constructed at a node, we next consider the leftmost child. In
Fig. 2.18(b), children have just been constructed at the root, and the leftmost
child labeled with for is being considered.

When the node being considered in the parse tree is for a terminal, and
the terminal matches the lookahead symbol, then we advance in both the parse
tree and the input. The next terminal in the input becomes the new lookahead
symbol, and the next child in the parse tree is considered. In Fig. 2.18(c), the
arrow in the parse tree has advanced to the next child of the root, and the arrow

2.4. PARSING 63

PARSE s tm t
TREE $.

(4
I N P U T for (; expr ; expr) other

4

PARSE
TREE

4
for (optexpr ; optexpr ; optexpr) s tm t

I N P U T for (; expr ; expr) other
4

PARSE
TREE

optexpr ; optexpr ; optexpr s t m t

I N P U T ; expr ; expr other

Figure 2.18: Top-down parsing while scanning the input from left to right

in the input has advanced to the next terminal, which is (. A further advance
will take the arrow in the parse tree to the child labeled with nonterminal
optexpr and take the arrow in the input to the terminal ; .

At the nonterminal node labeled optexpr, we repeat the process of selecting a
production for a nonterminal. Productions with t as the body (“e-productions7')
require special treatment. For the moment, we use them as a default when
no other production can be used; we return to them in Section 2.4.3. With
nonterminal optexpr and lookahead ; , the €-production is used, since ; does
not match the only other production for optexpr, which has terminal expr as
its body.

In general, the selection of a production for a nonterminal may involve trial-
and-error; that is, we may have to try a production and backtrack to try another
production if the first is found to be unsuitable. A production is unsuitable
if, after using the production, we cannot complete the tree to match the input

64 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

string. Backtracking is not needed, however, in an important special case called
predictive parsing, which we discuss next.

2.4.2 Predictive Parsing

Recursive-descent parsing is a top-down method of syntax analysis in which
a set of recursive procedures is used to process the input. One procedure is
associated with each nonterminal of a grammar. Here, we consider a simple form
of recursive-descent parsing, called predictive parsing, in which the lookahead
symbol unambiguously determines the flow of control through the procedure
body for each nonterminal. The sequence of procedure calls during the analysis
of an input string implicitly defines a parse tree for the input, and can be used
to build an explicit parse tree, if desired.

The predictive parser in Fig. 2.19 consists of procedures for the nontermi-
nals stmt and optexpr of the grammar in Fig. 2.16 and an additional procedure
match, used to simplify the code for stmt and optexpr. Procedure match(t) com-
pares its argument t with the lookahead symbol and advances to the next input
terminal if they match. Thus match changes the value of variable lookahead, a
global variable that holds the currently scanned input terminal.

Parsing begins with a call of the procedure for the starting nonterminal stmt.
With the same input as in Fig. 2.18, lookahead is initially the first terminal for.
Procedure stmt executes code corresponding to the production

stmt -+ for (optexpr ; optexpr ; optexpr) stmt

In the code for the production body - that is, the for case of procedure stmt -
each terminal is matched with the lookahead symbol, and each nonterminal
leads to a call of its procedure, in the following sequence of calls:

match(for) ; match(' (I);
O P ~ ~ X P ~ () ; match(';'); optexpr(); match(';'); optexpr();
match ('1 ') ; stmt () ;

Predictive parsing relies on information about the first symbols that can be
generated by a production body. More precisely, let a be a string of grammar
symbols (terminals and/or nonterminals). We define FIRST(^) tb be the set of
terminals that appear as the first symbols of one or more strings of terminals
generated from a . If a is E or can generate t, then t is also in FIRST(&).

The details of how one computes FIRST(^) are in Section 4.4.2. Here, we
shall just use ad hoc reasoning to deduce the symbols in FIRST(^); typically, a
will either begin with a terminal, which is therefore the only symbol in FIRST(^),
or a will begin with a nonterminal whose production bodies begin with termi-
nals, in which case these terminals are the only members of FIRST(^).

For example, with respect to the grammar of Fig. 2.16, the following are
correct calculations of FIRST.

2.4. PARSING

void stmt() {
switch (lookahead) {
case expr:

match(expr); match(' ; '); break;
case if:

match(if); match(' (I); match (expr); match(') '); stmt ();
break;

case for:
match (for); match (' (') ;
optexpr (); match(' ; I) ; optexpr(); match(' ; '); optexpr();
match(') '); stmt (); break;

case other;
match (ot her) ; break;

default:
report ("synt ax er ror") ;

)
1

void optexpro {
if (lookahead == expr) match(expr);

1

void match(termina1 t) {
if (Eookahead == t) Eookahead = nextTermina1;
else report ("syntax e r r o r If);

1

Figure 2.19: Pseudocode for a predictive parser

 FIRST(^^^^) = {expr, if, for, other)
FIRST(expr ;) = {expr}

The FIRST sets must be considered if there are two productions A -+ a, and
A -+ p. Ignoring E-productions for the moment, predictive parsing requires
FIRST@!) and FIRST(,^) to be disjoint. The lookahead symbol can then be used
to decide which production to use; if the lookahead symbol is in FIRST(Q), then
a, is used. Otherwise, if the lookahead symbol is in FIRST@), then /3 is used.

2.4.3 When to Use c-Productions

Our predictive parser uses an r-production as a default when no other produc-
tion can be used. With the input of Fig. 2.18, after the terminals for and (are
matched, the lookahead symbol is ; . At this point procedure optexpr is called,
and the code

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

if (lookahead == expr) match(expr);

in its body is executed. Nonterminal optexpr has two productions, with bodies
expr and E . The lookahead symbol ";" does not match the terminal expr, so
the production with body expr cannot apply. In fact, the procedure returns
without changing the lookahead symbol or doing anything else. Doing nothing
corresponds to applying an e-production.

More generally, consider a variant of the productions in Fig. 2.16 where
optexpr generates an expression nonterminal instead of the terminal expr:

optexpr + expr

I E

Thus, optexpr either generates an expression using nonterminal expr or it gen-
erates e. While parsing optexpr, if the lookahead symbol is not in F I R S T (~ X ~ ~) ,
then the €-production is used.

For more on when to use e-productions, see the discussion of LL(1) grammars
in Section 4.4.3.

2.4.4 Designing a Predictive Parser

We can generalize the technique introduced informally in Section 2.4.2, to apply
to any grammar that has disjoint FIRST sets for the production bodies belonging
to any nonterminal. We shall also see that when we have a translation scheme -
that is, a grammar with embedded actions - it is possible to execute those
actions as part of the procedures designed for the parser.

Recall that a predictive parser is a program consisting of a procedure for
every nonterminal. The procedure for nonterminal A does two things.

1. It decides which A-production to use by examining the lookahead symbol.
The production with body a (where a is not E , the empty string) is used
if the lookahead symbol is in FIRST(&). If there is a conflict between
two nonempty bodies for any lookahead symbol, then we cannot use this
parsing method on this grammar. In addition, the E-production for A, if
it exists, is used if the lookahead symbol is not in the FIRST set for any
other production body for A.

2. The procedure then mimics the body of the chosen production. That
is, the symbols of the body are "executed" in turn, from the left. A
nonterrninal is "executed" by a call to the procedure for that nonterminal,
and a terminal matching the lookahead symbol is "executed" by reading
the next input symbol. If at some point the terminal in the body does
not match the lookahead symbol, a syntax error is reported.

Figure 2.19 is the result of applying these rules to the grammar in Fig. 2.16.

2.4. PARSING 67

Just as a translation scheme is formed by extending a grammar, a syntax-
directed translator can be formed by extending a predictive parser. An algo-
rithm for this purpose is given in Section 5.4. The following limited construction
suffices for the present:

1. Construct a predictive parser, ignoring the actions in productions.

2. Copy the actions from the translation scheme into the parser. If an action
appears after grammar symbol X in production p, then it is copied after
the implementation of X in the code for p. Otherwise, if it appears at the
beginning of the production, then it is copied just before the code for the
production body.

We shall construct such a translator in Section 2.5.

2.4.5 Left Recursion

It is possible for a recursive-descent parser to loop forever. A problem arises
with "left-recursive" productions like

expr -+ expr + term

where the leftmost symbol of the body is the same as the nonterminal at the
head of the production. Suppose the procedure for expr decides to apply this
production. The body begins with expr so the procedure for expr is called
recursively. Since the lookahead symbol changes only when a terminal in the
body is matched, no change to the input took place between recursive calls of
expr. As a result, the second call to expr does exactly what the first call did,
which means a third call to expr, and so on, forever.

A left-recursive production can be eliminated by rewriting the offending
production. Consider a nonterminal A with two productions

where a and ,8 are sequences of terminals and nonterminals that do not start
with A. For example, in

e x + expr + term 1 term

nonterminal A = expr, string a = + term, and string ,6 = term.
The nonterminal A and its production are said to be left recurs2ve, because

the production A -+ Aa has A itself as the leftmost symbol on the right side.4
Repeated application of this production builds up a sequence of a's to the right
of A, as in Fig. 2.20(a). When A is finally replaced by P, we have a ,8 followed
by a sequence of zero or more a's.

The same effect can be achieved, as in Fig. 2.20(b), by rewriting the pro-
ductions for A in the following manner, using a new nonterminal R:

4 ~ n a general left-recursive grammar, instead of a production A -+ Aa, the nonterminal A
may derive Aa through intermediate productions.

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Figure 2.20: Left- and right-recursive ways of generating a string

Nonterminal R and its production R --+ cxR are right recursive because this pro-
duction for R has R itself as the last symbol on the right side. Right-recursive
productions lead to trees that grow down towards the right, as in Fig. 2.20(b).
Trees growing down to the right make it harder to translate expressions con-
taining left-associative operators, such as minus. In Section 2.5.2, however, we
shall see that the proper translation of expressions into postfix notation can
still be attained by a careful design of the translation scheme.

In Section 4.3.3, we shall consider more general forms of left recursion and
show how all left recursion can be eliminated from a grammar.

2.4.6 Exercises for Section 2.4

Exercise 2.4.1 : Construct recursive-descent parsers, starting with the follow-
ing grammars:

2.5 A Translator for Simple Expressions

Using the techniques of the last three sections, we now construct a syntax-
directed translator, in the form of a working Java program, that translates
arithmetic expressions into postfix form. To keep the initial program manage-
ably small, we start with expressions consisting of digits separated by binary
plus and minus signs. We extend the program in Section 2.6 to translate ex-
pressions that include numbers and other operators. It is worth studying the

2.5. A TRANSLATOR FOR SIMPLE EXPRESSIONS 69

translation of expressions in detail, since they appear as a construct in so many
languages.

A syntax-directed translation scheme often serves as the specification for
a translator. The scheme in Fig. 2.21 (repeated from Fig. 2.15) defines the
translation to be performed here.

expr -+ expr + term { print('+'))
I expr - term { print('-') }
I term

term 3 0 { print ('0'))
I 1 { print('I1))

. . .
9 { print ('9'))

Figure 2.21: Actions for translating into postfix notation

Often, the underlying grammar of a given scheme has to be modified before
it can be parsed with a predictive parser. In particular, the grammar underlying
the scheme in Fig. 2.21 is left recursive, and as we saw in the last section, a
predictive parser cannot handle a left-recursive grammar.

We appear to have a conflict: on the one hand we need a grammar that
facilitates translation, on the other hand we need a significantly different gram-
mar that facilitates parsing. The solution is to begin with the grammar for
easy translation and carefully transform it to facilitate parsing. By eliminating
the left recursion in Fig. 2.21, we can obtain a grammar suitable for use in a
predictive recursive-descent translator.

2.5.1 Abstract and Concrete Syntax

A useful starting point for designing a translator is a data structure called
an abstract syntax tree. In an abstract syntax tree for an expression, each
interior node represents an operator; the children of the node represent the
operands of the operator. More generally, any programming construct can be
handled by making up an operator for the construct and treating as operands
the semantically meaningful components of that construct.

In the abstract syntax tree for 9-5+2 in Fig. 2.22, the root represents the
operator +. The subtrees of the root represent the subexpressions 9-5 and
2. The grouping of 9-5 as an operand reflects the left-to-right evaluation of
operators at the same precedence level. Since - and + have the same precedence,
9-5+2 is equivalent to (9-5)+2.

Abstract syntax trees, or simply syntax trees, resemble parse trees to an
extent. However, in the syntax tree, interior nodes represent programming
constructs while in the parse tree, the interior nodes represent nonterminals.
Many nonterminals of a grammar represent programming constructs, but others

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Figure 2.22: Syntax tree for 9-5+2

are "helpers" of one sort of another, such as those representing terms, factors,
or other variations of expressions. In the syntax tree, these helpers typically are
not needed and are hence dropped. To emphasize the contrast, a parse tree is
sometimes called a concrete syntax tree, and the underlying grammar is called
a concrete syntax for the language.

In the syntax tree in Fig. 2.22, each interior node is associated with an
operator, with no "helper" nodes for single productions (a production whose
body consists of a single nonterminal, and nothing else) like expr --+ term or for
E-productions like rest --+ E .

It is desirable for a translation scheme to be based on a grammar whose parse
trees are as close to syntax trees as possible. The grouping of subexpressions
by the grammar in Fig. 2.21 is similar to their grouping in syntax trees. For
example, subexpressions of the addition operator are given by expr and term in
the production body expr+ term.

2.5.2 Adapting the Translation Scheme

The left-recursion-elimination technique sketched in Fig. 2.20 can also be ap-
plied to productions containing semantic actions. First, the technique extends
to multiple productions for A. In our example, A is expr, and there are two left-
recursive productions for expr and one that is not left recursive. The technique
transforms the productions A --+ A a I AP 1 y into

Second, we need to transform productions that have embedded actions, not
just terminals and nonterminals. Semantic actions embedded in the productions
are simply carried along in the transformation, as if they were terminals.

Example 2.13 : Consider the translation scheme of Fig. 2.21. Let

A = expr
a = + term { print ('+'))
/3 = - term { print('-'))
Y = term

2.5. A TRANSLATOR FOR SIMPLE EXPRESSIONS 71

Then the left-recursion-eliminating transformation produces the translation
scheme in Fig. 2.23. The expr productions in Fig. 2.21 have been transformed
into the productions for expr, and a new nonterminal rest plays the role of R.
The productions for term are repeated from Fig. 2.21. Figure 2.24 shows how
9-5+2istranslatedusingthegrammarinFig. 2.23.

e x -+ term rest

rest -+ + term { print('+') } rest
I - term { print('-') } rest

I l5

term -+ 0 { print('ol))
(1 { print ('1') }

. . .
1 9 { print(I9'))

Figure 2.23: Translation scheme after left-recursion elimination

/ T t \\

9 {print ('9')) - j . ~ \ {prini('-')) /Tt\\
5 {print('5')) + 7 , { p i t (+) } rest

\
\
\ I

2 {print ('2')) E

Figure 2.24: Translation of 9-5+2 to 95-2+

Left-recursion elimination must be done carefully, to ensure that we preserve
the ordering of semantic actions. For example, the transformed scheme in
Fig. 2.23 has the actions { print('+') } and { print('-') } in the middle of
a production body, in each case between nonterminals term and rest. If the
actions were to be moved to the end, after rest, then the translations would
become incorrect. We leave it to the reader to show that 9-5+2 would then be
translated incorrectly into 952+-, the postfix notation for 9- (5+2), instead of
the desired 95-2+, the postfix notation for (9-5)+2.

72 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

2.5.3 Procedures for the Nonterminals

Functions expr, rest, and term in Fig. 2.25 implement the syntax-directed trans-
lation scheme in Fig. 2.23. These functions mimic the production bodies of
the corresponding nonterminals. Function expr implements the production
expr -+ term rest by the calls term() followed by rest ().

void expro {
term () ; rest () ;

1

void rest() {
if (lookahead == '+I) {

match('+') ; term () ; print (' + I) ; rest () ;
1
else if (lookahead == I-') {

match('-'); term(); print (I-'); rest ();
1
else { } /* do nothing with the input */ ;

1

void term() (
if (lookahead is a digit) {

t = lookahead, match(1ookahead); print (t);

1
else report (" syntax error") ;

1

Figure 2.25: Pseudocode for nonterminals expr, rest, and term.

Function rest implements the three productions for nonterminal rest in
Fig. 2.23. It applies the first production if the lookahead symbol is a plus
sign, the second production if the lookahead symbol is a minus sign, and the
production rest -+ t in all other cases. The first two productions for rest are
implemented by the first two branches of the if-statement in procedure rest.
If the lookahead symbol is +, the plus sign is matched by the call match('+').
After the call term(), the semantic action is implemented by writing a plus
character. The second production is similar, with - instead of +. Since the
third production for rest has t as its right side, the last else-clause in function
rest does nothing.

The ten productions for t e n generate the ten digits. Since each of these
productions generates a digit and prints it, the same code in Fig. 2.25 imple-
ments them all. If the test succeeds, variable t saves the digit represented by
lookahead so it can be written after the call to match. Note that match changes

2.5. A TRANSLATOR FOR SIMPLE EXPRESSIONS

the lookahead symbol, so the digit needs to be saved for later printing.5

2.5.4 Simplifying the Translator

Before showing a complete program, we shall make two simplifying transfor-
mations to the code in Fig. 2.25. The simplifications will fold procedure rest
into procedure expr. When expressions with multiple levels of precedence are
translated, such simplifications reduce the number of procedures needed.

First, certain recursive calls can be replaced by iterations. When the last
statement executed in a procedure body is a recursive call to the same proce-
dure, the call is said to be tail recursive. For example, in function rest, the
calls of rest() with lookahead + and - are tail recursive because in each of these
branches, the recursive call to rest is the last statement executed by the given
call of rest.

For a procedure without parameters, a tail-recursive call can be replaced
simply by a jump to the beginning of the procedure. The code for rest can be
rewritten as the pseudocode of Fig. 2.26. As long as the lookahead symbol is
a plus or a minus sign, procedure rest matches the sign, calls term to match
a digit, and continues the process. Otherwise, it breaks out of while loop and
returns from rest.

void rest() {
while(t rue) {

i f (lookahead == I+') {
match('+'); term(); print ('+I); continue;

}
else i f (lookahead == '-') {

match('-'); term(); print (I-'); continue;
1
break ;

1
1

Figure 2.26: Eliminating tail recursion in the procedure rest of Fig. 2.25.

Second, the complete Java program will include one more change. Once
the tail-recursive calls to rest in Fig. 2.25 are replaced by iterations, the only
remaining call to rest is from within procedure expr. The two procedures can
therefore be integrated into one, by replacing the call rest() by the body of
procedure rest.

5 ~ s a minor optimization, we could print before calling match to avoid the need to save
the digit. In general, changing the order of actions and grammar symbols is risky, since it
could change what the translation does.

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

2.5.5 The Complete Program

The complete Java program for our translator appears in Fig. 2.27. The first
line of Fig. 2.27, beginning with import, provides access to the package j ava. i o
for system input and output. The rest of the code consists of the two classes
Parser and Postf ix. Class Parser contains variable lookahead and functions
Parser, expr, term, and match.

Execution begins with function main, which is defined in class Postf ix.
Function main creates an instance parse of class Parser and calls its function
expr to parse an expression.

The function Parser, with the same name as its class, is a constructor;
it is called automatically when an object of the class is created. Notice from
its definition at the beginning of class Parser that the constructor Parser
initializes variable lookahead by reading a token. Tokens, consisting of single
characters, are supplied by the system input routine read, which reads the next
character from the input file. Note that lookahead is declared to be an integer,
rather than a character, to anticipate the fact that additional tokens other than
single characters will be introduced in later sections.

Function expr is the result of the simplifications discussed in Section 2.5.4;
it implements nonterminals expr and rest in Fig. 2.23. The code for expr
in Fig. 2.27 calls term and then has a while-loop that forever tests whether
lookahead matches either ' +' or ' - ' . Control exits from this while-loop when
it reaches the return statement. Within the loop, the input/output facilities of
the System class are used to write a character.

Function term uses the routine i sDigi t from the Java class Character
to test if the lookahead symbol is a digit. The routine i sDigi t expects to
be applied to a character; however, lookahead is declared to be an integer,
anticipating future extensions. The construction (char) lookahead casts or
coerces lookahead to be a character. In a small change from Fig. 2.25, the
semantic action of writing the lookahead character occurs before the call to
match.

The function match checks terminals; it reads the next input terminal if the
lookahead symbol is matched and signals an error otherwise by executing

throw new Error(I1syntax e r ro r ") ;

This code creates a new exception of class Error and supplies it the string
syntax e r ro r as an error message. Java does not require Error exceptions
to be declared in a throws clause, since they are meant to be used only for
abnormal events that should never occur.6

"rror handling can be streamlined using the exception-handling facilities of Java. One ap-
proach is to define a new exception, say SyntaxError, that extends the system class Exception.
Then, throw SyntaxError instead of Error when an error is detected in either term or match.
Further, handle the exception in main by enclosing the call parse. expr () within a t r y state-
ment that catches exception SyntaxError, writes a message, and terminates. We would need
to add a class SyntaxError to the program in Fig. 2.27. To complete the extension, in addition
to IOException, functions match and term must now declare that they can throw SyntaxError.
Function expr, which calls them, must also declare that it can throw SyntaxError.

2.5. A TRANSLATOR FOR SIMPLE EXPRESSIONS

import java.io.*;
class Parser (

static int lookahead;

public Parser() throws IOException (
lookahead = System.in.read();

3

void expro throws IOException (
term() ;
while (true) (

if (lookahead == '+') (
match('+') ; term() ; System.out .write('+)) ;

3
else if (lookahead == '-') (

match('-'); term(); System.out .write('-');
J
else return;

>
3

void term() throws IOException (
if (Character. isDigit ((char) lookahead)) (

System. out. write((char) lookahead) ; match(1ookahead) ;
3
else throw new Error("syntax error") ;

void match(int t) throws IOException (
if (lookahead == t) lookahead = System. in.read() ;
else throw new Error("syntax error") ;

public class Postfix (
public static void main(StringC1 args) throws IOException (

Parser parse = new Parser();
parse. expro ; System. out. write()\n)) ;

3
J

Figure 2.27: Java program to translate infix expressions into postfix form

76 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

A Few Salient Features of Java

Those unfamiliar with Java may find the following notes on Java helpful
in reading the code in Fig. 2.27:

A class in Java consists of a sequence of variable and function defi-
nitions.

Parentheses enclosing function parameter lists are needed even if
there are no parameters; hence we write expr () and term(). These
functions are actually procedures, because they do not return values,
signified by the keyword void before the function name.

Functions communicate either by passing parameters "by value"
or by accessing shared data. For example, the functions expro
and term() examine the lookahead symbol using the class variable
lookahead that they can all access since they all belong to the same
class Parser.

Like C, Java uses = for assignment, == for equality, and ! = for in-
equality.

The clause "throws IOExcept ion" in the definition of term() de-
clares that an exception called IOExcept ion can occur. Such an
exception occurs if there is no input to be read when the function
match uses the routine read. Any function that calls match must also
declare that an IOException can occur during its own execution.

2.6 Lexical Analysis

A lexical analyzer reads characters from the input and groups them into "token
objects." Along with a terminal symbol that is used for parsing decisions,
a token object carries additional information in the form of attribute values.
So far, there has been no need to distinguish between the terms "token" and
"terminal," since the parser ignores the attribute values that are carried by a
token. In this section, a token is a terminal along with additional information.

A sequence of input characters that comprises a single token is called a
lexeme. Thus, we can say that the lexical analyzer insulates a parser from the
lexeme representation of tokens.

The lexical analyzer in this section allows numbers, identifiers, and "white
space" (blanks, tabs, and newlines) to appear within expressions. It can be used
to extend the expression translator of the previous section. Since the expression
grammar of Fig. 2.21 must be extended to allow numbers and identifiers, we

2.6. LEXICAL ANALYSIS 77

shall take this opportunity to allow multiplication and division as well. The
extended translation scheme appears in Fig. 2.28.

expr expr + term { print (I+') }
I expr - term { print('-') }
1 term

term -+ term * factor { print('*') }
I term / factor { print ('/I) }
I factor

factor -+ (expr)
I n u m { print (num. value) }
I id { print (id. lexeme) }

Figure 2.28: Actions for translating into postfix notation

In Fig. 2.28, the terminal n u m is assumed to have an attribute num.value,
which gives the integer value corresponding to this occurrence of num. Termi-
nal id has a string-valued attribute written as id.lexeme; we assume this string
is the actual lexeme comprising this instance of the token id.

The pseudocode fragments used to illustrate the workings of a lexical ana-
lyzer will be assembled into Java code at the end of this section. The approach
in this section is suitable for hand-written lexical analyzers. Section 3.5 de-
scribes a tool called Lex that generates a lexical analyzer from a specification.
Symbol tables or data structures for holding information about identifiers are
considered in Section 2.7.

2.6.1 Removal of White Space and Comments

The expression translator in Section 2.5 sees every character in the input, so
extraneous characters, such as blanks, will cause it to fail. Most languages
allow arbitrary amounts of white space to appear between tokens. Comments
are likewise ignored during parsing, so they may also be treated as white space.

If white space is eliminated by the lexical analyzer, the parser will never
have to consider it. The alternative of modifying the grammar to incorporate
white space into the syntax is not nearly as easy to implement.

The pseudocode in Fig. 2.29 skips white space by reading input characters
as long as it sees a blank, a tab, or a newline. Variable peek holds the next
input character. Line numbers and context are useful within error messages to
help pinpoint errors; the code uses variable line to count newline characters in
the input.

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

for (; ; peek = next input character) {
if (peek is a blank or a tab) do nothing;
else if (peek is a newline) line = line+-I;
else break;

I

Figure 2.29: Skipping white space

2.6.2 Reading Ahead

A lexical analyzer may need to read ahead some characters before it can decide
on the token to be returned to the parser. For example, a lexical analyzer for
C or Java must read ahead after it sees the character >. If the next character
is =, then > is part of the character sequence >=, the lexeme for the token for
the "greater than or equal to" operator. Otherwise > itself forms the "greater
than" operator, and the lexical analyzer has read one character too many.

A general approach to reading ahead on the input, is to maintain an input
buffer from which the lexical analyzer can read and push back characters. Input
buffers can be justified on efficiency grounds alone, since fetching a block of
characters is usually more efficient than fetching one character at a time. A
pointer keeps track of the portion of the input that has been analyzed; pushing
back a character is implemented by moving back the pointer. Techniques for
input buffering are discussed in Section 3.2.

One-character read-ahead usually suffices, so a simple solution is to use a
variable, say peek, to hold the next input character. The lexical analyzer in
this section reads ahead one character while it collects digits for numbers or
characters for identifiers; e.g., it reads past 1 to distinguish between 1 and 10,
and it reads past t to distinguish between t and true.

The lexical analyzer reads ahead only when it must. An operator like * can
be identified without reading ahead. In such cases, peek is set to a blank, which
will be skipped when the lexical analyzer is called to find the next token. The
invariant assertion in this section is that when the lexical analyzer returns a
token, variable peek either holds the character beyond the lexeme for the current
token, or it holds a blank.

2.6.3 Constants

Anytime a single digit appears in a grammar for expressions, it seems reasonable
to allow an arbitrary integer constant in its place. Integer constants can be
allowed either by creating a terminal symbol, say num, for such constants or
by incorporating the syntax of integer constants into the grammar. The job
of collecting characters into integers and computing their collective numerical
value is generally given to a lexical analyzer, so numbers can be treated as single
units during parsing and translation.

2.6. LEXICAL ANALYSIS 79

When a sequence of digits appears in the input stream, the lexical analyzer
passes to the parser a token consisting of the terminal num along with an
integer-valued attribute computed from the digits. If we write tokens as tuples
enclosed between (), the input 31 + 28 + 59 is transformed into the sequence

(num,31) (+) (num,28) (+) (num,59)

Here, the terminal symbol + has no attributes, so its tuple is simply (+). The
pseudocode in Fig. 2.30 reads the digits in an integer and accumulates the value
of the integer using variable u.

if (peek holds a digit) {
u = 0;

d o {
v = v * 10 + integer value of digit peek
peek = next input character;

) while (peek holds a digit) ;
r e tu rn token (num, v);

1

Figure 2.30: Grouping digits into integers

2.6.4 Recognizing Keywords and Identifiers

Most languages use fixed character strings such as fo r , do, and i f , as punctua-
tion marks or to identify constructs. Such character strings are called keywords.

Character strings are also used as identifiers to name variables, arrays, func-
tions, and the like. Grammars routinely treat identifiers as terminals to sim-
plify the parser, which can then expect the same terminal, say id, each time
any identifier appears in the input. For example, on input

count = count + increment; (2.6)

the parser works with the terminal stream id = id + id. The token for id has
an attribute that holds the lexeme. Writing tokens as tuples, we see that the
tuples for the input stream (2.6) are

(id, llcount 'I) (=) (id, "count ") (+) (id, "increment ") (;)

Keywords generally satisfy the rules for forming identifiers, so a mechanism
is needed for deciding when a lexeme forms a keyword and when it forms an
identifier. The problem is easier to resolve if keywords are reserved; i.e., if they
cannot be used as identifiers. Then, a character string forms an identifier only
if it is not a keyword.

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

The lexical analyzer in this section solves two problems by using a table to
hold character strings:

Single Representation. A string table can insulate the rest of the compiler
from the representation of strings, since the phases of the compiler can
work with references or pointers to the string in the table. References can
also be manipulated more efficiently than the strings themselves.

Reserved Words. Reserved words can be implemented by initializing the
string table with the reserved strings and their tokens. When the lexical
analyzer reads a string or lexeme that could form an identifier, it first
checks whether the lexeme is in the string table. If so, it returns the
token from the table; otherwise, it returns a token with terminal id.

In Java, a string table can be implemented as a hash table using a class
called Hashtable. The declaration

Hashtable words = new Hashtable();

sets up words as a default hash table that maps keys to values. We shall use it
to map lexemes to tokens. The pseudocode in Fig. 2.31 uses the operation get
to look up reserved words.

if (peek holds a letter) {
collect letters or digits into a buffer b;
s = string formed from the characters in b;
w = token returned by words.get(s);
if (w is not null) return w;
else (

Enter the key-value pair (s, (id, s)) into words
return token (id, s);

1
1

Figure 2.31: Distinguishing keywords from identifiers

This pseudocode collects from the input a string s consisting of letters and
digits beginning with a letter. We assume that s is made as long as possible;
i.e., the lexical analyzer will continue reading from the input as long as it
encounters letters and digits. When something other than a letter or digit, e.g.,
white space, is encountered, the lexeme is copied into a buffer b. If the table
has an entry for s , then the token retrieved by words.get is returned. Here, s
could be either a keyword, with which the words table was initially seeded, or
it could be an identifier that was previously entered into the table. Otherwise,
token id and attribute s are installed in the table and returned.

2.6. LEXICAL ANALYSIS 81

2.6.5 A Lexical Analyzer

The pseudocode fragments so far in this section fit together to form a function
scan that returns token objects, as follows:

Token scan() {
skip white space, as in Section 2.6.1;
handle numbers, as in Section 2.6.3;
handle reserved words and identifiers, as in Section 2.6.4;
/* if we get here, treat read-ahead character peek as a token */
Token t = new Token(peelc);
peek = blank /* initialization, as discussed in Section 2.6.2 */ ;
return t ;

The rest of this section implements function scan as part of a Java package
for lexical analysis. The package, called lexer has classes for tokens and a class
Lexer containing function scan.

The classes for tokens and their fields are illustrated in Fig. 2.32; their
methods are not shown. Class Token has a field t a g that is used for parsing
decisions. Subclass Num adds a field value for an integer value. Subclass Word
adds a field lexeme that is used for reserved words and identifiers.

class Token

class N u m class Ward
1 int ualue I string lexeme I

Figure 2.32: Class Token and subclasses Nurn and Word

Each class is in a file by itself. The file for class Token is as follows:

1) package l exe r ; // File Token.java
2) public c l a s s Token (
3) public f i n a l i n t t a g ;

4) public Token(int t) (t a g = t ;)
5) 3

Line 1 identifies the package lexer . Field t a g is declared on line 3 to be f i n a l
so it cannot be changed once it is set. The constructor Token on line 4 is used
to create token objects, as in

new Token('+')

which creates a new object of class Token and sets its field t a g to an integer
representation of ' + ' . (For brevity, we omit the customary method to s t r ing ,
which would return a string suitable for printing.)

82 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Where the pseudocode had terminals like num and id, the Java code uses
integer constants. Class Tag implements such constants:

1) package lexer; // File Tag.java
2) public class Tag (
3) public final static int

4) NUM = 256, I D = 257, TRUE = 258, FALSE = 259;
5) 3

In addition to the integer-valued fields NUM and I D , this class defines two addi-
tional fields, TRUE and FALSE, for future use; they will be used to illustrate the
treatment of reserved keywords.7

The fields in class Tag are public, so they can be used outside the package.
They are static, so there is just one instance or copy of these fields. The
fields are final, so they can be set just once. In effect, these fields represent
constants. A similar effect is achieved in C by using define-statements to allow
names such as NUM to be used as symbolic constants, e.g.:

#define NUM 256

The Java code refers to Tag. NUM and Tag. I D in places where the pseudocode
referred to terminals num and id. The only requirement is that Tag. NUM and
Tag. I D must be initialized with distinct values that differ from each other and
from the constants representing single-character tokens, such as ' + ' or ' * ' .

1) package lexer; // File Num.java
2) public class Num extends Token {
3) public final int value;

4) public Num(int v) { super(Tag.NUM) ; value = v; 3
5) 3
1) package lexer; // File Word.java
2) public class Word extends Token {
3) public final String lexeme;
4) public Word(iqt t, String s) (
5) super(t) ; lexeme = new String(s) ;

6) 1
7) 3

Figure 2.33: Subclasses Num and Word of Token

Classes Num and Word appear in Fig. 2.33. Class Num extends Token by
declaring an integer field value on line 3. The constructor Num on line 4 calls
super (Tag. NUM) , which sets field tag in the superclass Token to Tag. NUM.

7~~~~~ characters are typically converted into integers between 0 and 255. We therefore
use integers greater than 255 for terminals.

2.6. LEXICAL ANALYSIS

I) package lexer; // File Lexer.java

2) import j ava. io . * ; import j ava. ut il . * ;
3) public class Lexer I
4) public int line = I;
5) private char peek =)) ;

6) private Hashtable words = new Hashtable() ;

7) void reserve(Word t) { words.put (t . lexeme, t) ; 3
8) public Lexer() (

9) reserve(new Word(Tag.TRUE, "true")) ;
10) reserve (new Word(Tag .FALSE, "false")) ;

11) 3
12) public Token scan() throws IOException I
I31 for(; ; peek = (char)System. in.read()) {
14) if (peek ==)) I I peek ==) \t)) continue ;

15) else if(peek ==)\n)) line = line + 1;
16) else break;
17) 3

/* continues in Fig. 2.35 */

Figure 2.34: Code for a lexical analyzer, part 1 of 2

Class Word is used for both reserved words and identifiers, so the constructor
Word on line 4 expects two parameters: a lexeme and a corresponding integer
value for tag. An object for the reserved word true can be created by executing

new Word(Tag . TRUE, "true")
which creates a new object with field tag set to Tag. TRUE and field lexeme set
to the string "true".

Class Lexer for lexical analysis appears in Figs. 2.34 and 2.35. The integer
variable line on line 4 counts input lines, and character variable peek on line 5
holds the next input character.

Reserved words are handled on lines 6 through 11. The table words is
declared on line 6. The helper function reserve on line 7 puts a string-word
pair in the table. Lines 9 and 10 in the constructor Lexer initialize the table.
They use the constructor Word to create word objects, which are passed to the
helper function reserve. The table is therefore initialized with reserved words
"truef1 and "false" before the first call of scan.

The code for scan in Fig. 2.34-2.35 implements the pseudocode fragments
in this section. The for-statement on lines 13 through 17 skips blank, tab,
and newline characters. Control leaves the for-statement with peek holding a
non-white-space character.

The code for reading a sequence of digits is on lines 18 through 25. The
function isDigit is from the built-in Java class Character. It is used on
line 18 to check whether peek is a digit. If so, the code on lines 19 through 24

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

if (Character. isDigit (peek)) (
int v = 0;
do (

v = 1O*v + Character.digit(peek, 10);
peek = (char) System. in. read() ;

) while (Character. isDigit (peek)) ;
return new Num(v) ;

1
if (Character. isLetter (peek)) (

StringBuffer b = new StringBufferO;
do (

b . append (peek) ;
peek = (char)System. in. read() ;

) while(~haracter.is~etterOr~igit(peek)) ;
String s = b.toString();
Word w = (Word) words. get (s) ;
if (w ! = null) return w;
w = new Word(Tag. ID, s) ;
words .put (s, w) ;
return w;

3
Token t = new Token(peek) ;
peek = ' ' ;
return t;

Figure 2.35: Code for a lexical analyzer, part 2 of 2

accumulates the integer value of the sequence of digits in the input and returns
a new Num object.

Lines 26 through 38 analyze reserved words and identifiers. Keywords true
and false have already been reserved on lines 9 and 10. Therefore, line 35 is
reached if string s is not reserved, so it must be the lexeme for an identifier.
Line 35 therefore returns a new word object with lexeme set to s and tag set
to Tag. ID. Finally, lines 39 through 41 return the current character as a token
and set peek to a blank that will be stripped the next time scan is called.

2.6.6 Exercises for Section 2.6

Exercise 2.6.1 : Extend the lexical analyzer in Section 2.6.5 to remove com-
ments, defined as follows:

2.7. SYMBOL TABLES 85

a) A comment begins with // and includes all characters until the end of
that line.

b) A comment begins with /* and includes all characters through the next
occurrence of the character sequence */.

Exercise 2.6.2 : Extend the lexical analyzer in Section 2.6.5 to recognize the
relational operators <, <=, ==, !=, >=, >.

Exercise 2.6.3 : Extend the lexical analyzer in Section 2.6.5 to recognize float-
ing point numbers such as 2 . , 3.14, and .5.

2.7 Symbol Tables

Symbol tables are data structures that are used by compilers to hold information
about source-program constructs. The information is collected incrementally by
the analysis phases of a compiler and used by the synthesis phases to generate
the target code. Entries in the symbol table contain information about an
identifier such as its character string (or lexeme) , its type, its position in storage,
and any other relevant information. Symbol tables typically need to support
multiple declarations of the same identifier within a program.

From Section 1.6.1, the scope of a declaration is the portion of a program
to which the declaration applies. We shall implement scopes by setting up a
separate symbol table for each scope. A program block with declarations8 will
have its own symbol table with an entry for each declaration in the block. This
approach also works for other constructs that set up scopes; for example, a class
would have its own table, with an entry for each field and method.

This section contains a symbol-table module suitable for use with the Java
translator fragments in this chapter. The module will be used as is when we
put together the translator in Appendix A. Meanwhile, for simplicity, the main
example of this section is a stripped-down language with just the key constructs
that touch symbol tables; namely, blocks, declarations, and factors. All of the
other statement and expression constructs are omitted so we can focus on the
symbol-table operations. A program consists of blocks with optional declara-
tions and "statements" consisting of single identifiers. Each such statement
represents a use of the identifier. Here is a sample program in this language:

The examples of block structure in Section 1.6.3 dealt with the definitions and
uses of names; the input (2.7) consists solely of definitions and uses of names.

The task we shall perform is to print a revised program, in which the decla-
rations have been removed and each "statement" has its identifier followed by
a colon and its type.

'1n C, for instance, program blocks are either functions or sections of functions that are
separated by curly braces and that have one or more declarations within them.

86 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Who Creates Symbol-Table Entries?

Symbol-table entries are created and used during the analysis phase by the
lexical analyzer, the parser, and the semantic analyzer. In this chapter,
we have the parser create entries. With its knowledge of the syntactic
structure of a program, a parser is often in a better position than the
lexical analyzer to distinguish among different declarations of an identifier.

In some cases, a lexical analyzer can create a symbol-table entry as
soon as it sees the characters that make up a lexeme. More often, the
lexical analyzer can only return to the parser a token, say id, along with
a pointer to the lexeme. Only the parser, however, can decide whether to
use a previously created symbol-table entry or create a new one for the
identifier.

Example 2.14 : On the above input (2.7), the goal is to produce:

The first x and y are from the inner block of input (2.7). Since this use of x
refers to the declaration of x in the outer block, it is followed by i n t , the type
of that declaration. The use of y in the inner block refers to the declaration of
y in that very block and therefore has boolean type. We also see the uses of x
and y in the outer block, with their types, as given by declarations of the outer
block: integer and character, respectively.

2.7.1 Symbol Table Per Scope

The term "scope of identifier 2' really refers to the scope of a particular dec-
laration of x. The term scope by itself refers to a portion of a program that is
the scope of one or more declarations.

Scopes are important, because the same identifier can be declared for differ-
ent purposes in different parts of a program. Common names like i and x often
have multiple uses. As another example, subclasses can redeclare a method
name to override a method in a superclass.

If blocks can be nested, several declarations of the same identifier can appear
within a single block. The following syntax results in nested blocks when stmts
can generate a block:

block -+ '(I decls stmts '3'

(We quote curly braces in the syntax to distinguish them from curly braces for
semantic actions.) With the grammar in Fig. 2.38, decls generates an optional
sequence of declarations and stmts generates an optional sequence of statements.

2.7. SYMBOL TABLES 87

Optimization of Symbol Tables for Blocks

Implementations of symbol tables for blocks can take advantage of the
most-closely nested rule. Nesting ensures that the chain of applicable
symbol tables forms a stack. At the top of the stack is the table for
the current block. Below it in the stack are the tables for the enclosing
blocks. Thus, symbol tables can be allocated and deallocated in a stack-
like fashion.

Some compilers maintain a single hash table of accessible entries; that
is, of entries that are not hidden by a declaration in a nested block. Such
a hash table supports essentially constant-time lookups, at the expense of
inserting and deleting entries on block entry and exit. Upon exit from a
block B, the compiler must undo any changes to the hash table due to
declarations in block B. It can do so by using an auxiliary stack to keep
track of changes to the hash table while block B is processed.

Moreover, a statement can be a block, so our language allows nested blocks,
where an identifier can be redeclared.

The most-closely nested rule for blocks is that an identifier x is in the scope
of the most-closely nested declaration of x; that is, the declaration of x found
by examining blocks inside-out, starting with the block in which x appears.

Example 2.15 : The following pseudocode uses subscripts to distinguish a-
mong distinct declarations of the same identifier:

1) { int xl; int yl;
2) { int w2; boo1 y2; int zz;
3) . . . w2 ...; ... XI ...; . . . y2 ' . " . . . , 22 " ' ;
4) 1

The subscript is not part of an identifier; it is in fact the line number of the
declaration that applies to the identifier. Thus, all occurrences of x are within
the scope of the declaration on line 1. The occurrence of y on line 3 is in the
scope of the declaration of y on line 2 since y is redeclared within the inner block.
The occurrence of y on line 5, however, is within the scope of the declaration
of y on line 1.

The occurrence of w on line 5 is presumably within the scope of a declaration
of w outside this program fragment; its subscript 0 denotes a declaration that
is global or external to this block.

Finally, z is declared and used within the nested block, but cannot be used
on line 5, since the nested declaration applies only to the nested block.

CHAPTER 2. A SIMPLE SYNTAX-DIRE CTED TRANSLATOR

The most-closely nested rule for blocks can be implemented by chaining
symbol tables. That is, the table for a nested block points to the table for its
enclosing block.

Example 2.16 : Figure 2.36 shows symbol tables for the pseudocode in Exam-
ple 2.15. B1 is for the block starting on line 1 and B2 is for the block starting at
line 2. At the top of the figure is an additional symbol table Bo for any global
or default declarations provided by the language. During the time that we are
analyzing lines 2 through 4, the environment is represented by a reference to
the lowest symbol table - the one for B2. When we move to line 5 , the symbol
table for B2 becomes inaccessible, and the environment refers instead to the
symbol table for B1, from which we can reach the global symbol table, but not
the table for B2.

Figure 2.36: Chained symbol tables for Example 2.15

Bo:

The Java implementation of chained symbol tables in Fig. 2.37 defines a
class Env, short for env~ronrnent.~ Class Env supports three operations:

W I
. . .

Create a new symbol table. The constructor Env (p) on lines 6 through
8 of Fig. 2.37 creates an Env object with a hash table named t ab l e .
The object is chained to the environment-valued parameter p by setting
field next to p. Although it is the Env objects that form a chain, it is
convenient to talk of the tables being chained.

Put a new entry in the current table. The hash table holds key-value
pairs, where:

- The key is a string, or rather a reference to a string. We could
alternatively use references to token objects for identifiers as keys.

- The value is an entry of class Symbol. The code on lines 9 through
11 does not need to know the structure of an entry; that is, the code
is independent of the fields and methods in class Symbol.

9''Environment" is another term for the collection of symbol tables that are relevant at a
point in the program.

2.7. SYMBOL TABLES

1) package symbols;
2) import j ava. u t il . * ;
3) publ ic c l a s s Env {
4) p r i v a t e Hashtable t a b l e ;
5) pro tec ted Env prev;

// File Env.java

6) pub l i cEnv(Envp) i
7) t a b l e = new Hashtable() ; prev = p;

8) 3

9) publ ic void put (S t r i ng s , Symbol sym) {

10) t a b l e . put (s , sym) ;
11) 1

12) publ ic Symbol g e t (S t r i n g s) i
l3) f o r (Env e = t h i s ; e != n u l l ; e = e .prev) C
14) Symbol found = (Symbol) (e . t a b l e . g e t (s)) ;

I51 i f (found != n u l l) r e t u r n found;

16) 3
17) r e t u r n n u l l ;
18) 1
19) 1

Figure 2.37: Class Env implements chained symbol tables

Get an entry for an identifier by searching the chain of tables, starting
with the table for the current block. The code for this operation on lines
12 through 18 returns either a symbol-table entry or n u l l .

Chaining of symbol tables results in a tree structure, since more than one
block can be nested inside an enclosing block. The dotted lines in Fig. 2.36 are
a reminder that chained symbol tables can form a tree.

2.7.2 The Use of Symbol Tables

In effect, the role of a symbol table is to pass information from declarations to
uses. A semantic action "puts" information about identifier x into the symbol
table, when the declaration of x is analyzed. Subsequently, a semantic action
associated with a production such as factor +- id "gets" information about
the identifier from the symbol table. Since the translation of an expression
El o p E2, for a typical operator op, depends only on the translations of El and
Ez, and does not directly depend on the symbol table, we can add any number
of operators without changing the basic flow of information from declarations
to uses, through the symbol table.

Example 2.17 : The translation scheme in Fig. 2.38 illustrates how class Env
can be used. The translation scheme concentrates on scopes, declarations, and

CHAPTER 2. A SIlMPLE SYNTAX-DIRECTED TRANSLATOR

uses. It implements the translation described in Example 2.14. As noted earlier,
on input

program --+ { top = nu l l ;)
block

block --+ '(I { saved = top;
top = new Enu(top);
print (" (I t) ; }

decls stmts '3' { top = saved;
print (I 1 3 I t) ;)

decls + decls decl

I

decl + t y p e i d ;

stmts + stmts stmt

I 6

strnt + block
I factor ;

factor + i d

{ s = n e w Symbol;
s.type = type.lexeme
top.put (id . lexeme, s);)

{ print (" ;

{ s = top.get(id.lexeme);
print (i d . lexeme) ;
print (" : I t) ;)
print (s. type) ;

Figure 2.38: The use of symbol tables for translating a language with blocks

(int x; char y; (boo1 y; X; J T ; 3 x; y; 3

the translation scheme strips the declarations and produces

Notice that the bodies of the productions have been aligned in Fig. 2.38
so that all the grammar symbols appear in one column, and all the actions in
a second column. As a result, components of the body are often spread over
several lines.

Now, consider the semantic actions. The translation scheme creates and
discards symbol tables upon block entry and exit, respectively. Variable top
denotes the top table, at the head of a chain of tables. The first production of

2.8. INTERMEDIATE CODE GENERATION 91

the underlying grammar is program -+ block. The semantic action before block
initializes top to null, with no entries.

The second production, block -+ '(I declsstmts')', has actions upon block
entry and exit. On block entry, before decls, a semantic action saves a reference
to the current table using a local variable saved. Each use of this production
has its own local variable saved, distinct from the local variable for any other
use of this production. In a recursive-descent parser, saved would be local to
the procedure for block. The treatment of local variables of a recursive function
is discussed in Section 7.2. The code

top = new Env(top);

sets variable top to a newly created new table that is chained to the previous
value of top just before block entry. Variable top is an object of class Env; the
code for the constructor Env appears in Fig. 2.37.

On block exit, after I)', a semantic action restores top to its value saved on
block entry. In effect, the tables form a stack; restoring top to its saved value
pops the effect of the declarations in the block.1° Thus, the declarations in the
block are not visible outside the block.

A declaration, decls -+ t ype id results in a new entry for the declared iden-
tifier. We assume that tokens type and id each have an associated attribute,
which is the type and lexeme, respectively, of the declared identifier. We shall
not go into all the fields of a symbol object s, but we assume that there is a
field type that gives the type of the symbol. We create a new symbol object s
and assign its type properly by s.type = type.lexeme. The complete entry is
put into the top symbol table by top.put(id.lexeme, s).

The semantic action in the production factor -+ id uses the symbol table
to get the entry for the identifier. The get operation searches for the first entry
in the chain of tables, starting with top. The retrieved entry contains any
information needed about the identifier, such as the type of the identifier.

2.8 Intermediate Code Generation

The front end of a compiler constructs an intermediate representation of the
source program from which the back end generates the target program. In
this section, we consider intermediate representations for expressions and state-
ments, and give tutorial examples of how to produce such representations.

2.8.1 Two Kinds of Intermediate Representations

As was suggested in Section 2.1 and especially Fig. 2.4, the two most important
intermediate representations are:

1°1nstead of explicitly saving and restoring tables, we could alternatively add static opera-
tions push and pop to class Env.

92 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Trees, including parse trees and (abstract) syntax trees.

Linear representations, especially "three-address code."

Abstract-syntax trees, or simply syntax trees, were introduced in Section
2.5.1, and in Section 5.3.1 they will be reexamined more formally. During
parsing, syntax-tree nodes are created to represent significant programming
constructs. As analysis proceeds, information is added to the nodes in the form
of attributes associated with the nodes. The choice of attributes depends on
the translation to be performed.

Three-address code, on the other hand, is a sequence of elementary program
steps, such as the addition of two values. Unlike the tree, there is no hierarchical
structure. As we shall see in Chapter 9, we need this representation if we are
to do any significant optimization of code. In that case, we break the long
sequence of three-address statements that form a program into "basic blocks,"
which are sequences of statements that are always executed one-after-the-other,
with no branching.

In addition to creating an intermediate representation, a compiler front end
checks that the source program follows the syntactic and semantic rules of the
source language. This checking is called static checking; in general "static"
means "done by the compiler." l1 Static checking assures that certain kinds
of programming errors, including type mismatches, are detected and reported
during compilation.

It is possible that a compiler will construct a syntax tree at the same time
it emits steps of three-address code. However, it is common for compilers to
emit the three-address code while the parser "goes through the motions" of
constructing a syntax tree, without actually constructing the complete tree
data structure. Rather, the compiler stores nodes and their attributes needed
for semantic checking or other purposes, along with the data structure used for
parsing. By so doing, those parts of the syntax tree that are needed to construct
the three-address code are available when needed, but disappear when no longer
needed. We take up the details of this process in Chapter 5 .

2.8.2 Construction of Syntax Trees

We shall first give a translation scheme that constructs syntax trees, and later,
in .Section 2.8.4, show how the scheme can be modified to emit three-address
code, along with, or instead of, the syntax tree.

Recall from Section 2.5.1 that the syntax tree

l l l ts opposite, "dynamic," means "while the program is running." Many languages also
make certain dynamic checks. For instance, an object-oriented language like Java sometimes
must check types during program execution, since the method applied to an object may
depend on thk-particulaFsubGass of the object.

2.8. INTERMEDIATE CODE GENERATION

represents an expression formed by applying the operator op to the subexpres-
sions represented by El and E2. Syntax trees can be created for any construct,
not just expressions. Each construct is represented by a node, with children
for the semantically meaningful components of the construct. For example, the
semantically meaningful components of a C while-statement:

while (expr) stmt

are the expression expr and the statement stmt.12 The syntax-tree node for such
a while-statement has an operator, which we call while, and two children-the
syntax trees for the expr and the stmt.

The translation scheme in Fig. 2.39 constructs syntax trees for a repre-
sentative, but very limited, language of expressions and statements. All the
nonterminals in the translation scheme have an attribute n, which is a node of
the syntax tree. Nodes are implemented as objects of class Node.

Class Node has two immediate subclasses: Expr for all kinds of expressions,
and Stmt for all kinds of statements. Each type of statement has a corresponding
subclass of Stmt; for example, operator while corresponds to subclass While.
A syntax-tree node for operator while with children x and y is created by the
pseudocode

new While (x, y)

which creates an object of class While by calling constructor function While,
with the same name as the class. Just as constructors correspond to operators,
constructor parameters correspond to operands in the abstract syntax.

When we study the detailed code in Appendix A, we shall see how methods
are placed where they belong in this hierarchy of classes. In this section, we
shall discuss only a few of the methods, informally.

We shall consider each of the productions and rules of Fig. 2.39, in turn.
First, the productions defining different types of statements are explained, fol-
lowed by the productions that define our limited types of expressions.

Syntax Trees for Statements

For each statement construct, we define an operator in the abstract syntax. For
constructs that begin with a keyword, we shall use the keyword for the operator.
Thus, there is an operator while for while-statements and an operator do for
do-while statements. Conditionals can be handled by defining two operators

1 2 ~ h e right parenthesis serves only to separate the expression from the statement. The left
parenthesis actually has no meaning; it is there only to please the eye, since without it, C
would allow unbalanced parentheses.

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

program --+ block { return blockn; }

block --+ '{I stmts '3' { b1ock.n = stmts.n; }

stmts --+ stmtsl stmt { stmts.n = new Seq (stmtsl .n, stmt.n); }
I { stmts.n = null; }

stmt --+ expr ; { stmt.n = new Eva1 (expr.n); }
I i f (expr) stmtl

{ stmt.n = new If (expr.n, stmtl .n); }
I while (expr) stmtl

{ stmt.n = new While (expr.n, stmtl .n); }
I d o stmtl while (expr) ;

{ stmt.n = new Do (stmtl .n, expr.n); }
I block { stmt.n = b1ock.n; }

expr --+ re1 = exprl { expr.n = new Assign (' = I , reLn, expr, .n); }
I re1 { expr.n = re1.n; }

re1 --+ re11 < add { re1.n = new Re1 ('<I, re11 .n, add.n); }
I re11 <= add { re1.n = new Re1 ('st, reh .n, add.n); }
I add { re1.n = add.n; }

add --+ addl + term { add.n = new Op (I + ' , add1 .n, term.n); 1
I term { add.n = term.n; }

term --+ terml * factor { term.n = new Op (I * ' , terml.n,factor.n); }
I factor { term.n = fact0r.n; }

factor -+ (expr) { fact0r.n = expr.n; }
I num { fact0r.n = new Num (num.value); }

Figure 2.39: Construction of syntax trees for expressions and statements

2.8. INTERMEDIATE CODE GENERATION 95

ifelse and if for if-statements with and without an else part, respectively. In our
simple example language, we do not use else, and so have only an if-statement.
Adding else presents some parsing issues, which we discuss in Section 4.8.2.

Each statement operator has a corresponding class of the same name, with
a capital first letter; e.g., class If corresponds to if. In addition, we define
the subclass Seq, which represents a sequence of statements. This subclass
corresponds to the nonterminal stmts of the grammar. Each of these classes are
subclasses of Stmt, which in turn is a subclass of Node.

The translation scheme in Fig. 2.39 illustrates the construction of syntax-
tree nodes. A typical rule is the one for if-statements:

stmt -+ if (expr) stmtl { stmt.n = new If(expr.n, stmtl .n); }

The meaningful components of the if-statement are expr and stmtl . The se-
mantic action defines the node stmt.n as a new object of subclass If. The code
for the constructor If is not shown. It creates a new node labeled if with the
nodes expr.n and stmt1.n as children.

Expression statements do not begin with a keyword, so we define a new op-
erator eval and class Eval, which is a subclass of Stmt, to represent expressions
that are statements. The relevant rule is:

stmt -+ expr ; { stmt.n = new Eval (expr.n); }

Representing Blocks in Syntax Trees

The remaining statement construct in Fig. 2.39 is the block, consisting of a
sequence of statements. Consider the rules:

stmt -+ block { stmt.n = b1ock.n; }
block -+ 'C' stmts ') I { b1ock.n = stmts.n; }

The first says that when a statement is a block, it has the same syntax tree as
the block. The second rule says that the syntax tree for nonterminal block is
simply the syntax tree for the sequence of statements in the block.

For simplicity, the language in Fig. 2.39 does not include declarations. Even
when declarations are included in Appendix A, we shall see that the syntax
tree for a block is still the syntax tree for the statements in the block. Since
information from declarations is incorporated into the symbol table, they are
not needed in the syntax tree. Blocks, with or without declarations, therefore
appear to be just another statement construct in intermediate code.

A sequence of statements is represented by using a leaf null for an empty
statement and a operator seq for a sequence of statements, as in

stmts -t stmtsl stmt { stmts.n = new Seq(stmtsl.n, stmt.n); }

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Example 2.18 : In Fig. 2.40 we see part of a syntax tree representing a block
or statement list. There are two statements in the list, the first an if-statement
and the second a while-statement. We do not show the portion of the tree
above this statement list, and we show only as a triangle each of the necessary
subtrees: two expression trees for the conditions of the if- and while-statements,
and two statement trees for their substatements.

null

Figure 2.40: Part of a syntax tree for a statement list consisting of an if-
statement and a while-statement

Syntax Trees for Expressions

Previously, we handled the higher precedence of * over + by using three non-
terminals expr, term, and factor. The number of nonterminals is precisely one
plus the number of levels of precedence in expressions, as we suggested in Sec-
tion 2.2.6. In Fig. 2.39, we have two comparison operators, < and <= at one
precedence level, as well as the usual + and * operators, so we have added one
additional nonterminal, called add.

Abstract syntax allows us to group "similar" operators to reduce the number
of cases arid subclasses of nodes in an implementation of expressions. In this
chapter, we take "similar" to mean that the type-checking and code-generation
rules for the operators are similar. For example, typically the operators + and *
can be grouped, since they can be handled in the same way - their requirements
regarding the types of operands are the same, and they each result in a single
three-address instruction that applies one operator to two values. In general,
the grouping of operators in the abstract syntax is based on the needs of the
later phases of the compiler. The table in Fig. 2.41 specifies the correspondence
between the concrete and abstract syntax for several of the operators of Java.

In the concrete syntax, all operators are left associative, except the assign-
ment operator =, which is right associative. The operators on a line have the

2.8. INTERMEDIATE CODE GENERATION

CONCRETE SYNTAX ABSTRACT SYNTAX
- - assign

I I cond
&& cond

-- -- I = re1
< <= >= > re1

+ -
O P

* / % 0 P
! not

-
unary minus

C 1 access

Figure 2.41: Concrete and abstract syntax for several Java operators

same precedence; that is, == and != have the same precedence. The lines are
in order of increasing precedence; e.g., == has higher precedence than the oper-
ators && and =. The subscript unary in -,,ary is solely to distinguish a leading
unary minus sign, as in -2, from a binary minus sign, as in 2-a. The operator
[I represents array access, as in aCil .

The abstract-syntax column specifies the grouping of operators. The assign-
ment operator = is in a group by itself. The group cond contains the conditional
boolean operators && and I I . The group re1 contains the relational comparison
operators on the lines for == and <. The group op contains the arithmetic
operators like + and *. Unary minus, boolean negation, and array access are in
groups by themselves.

The mapping between concrete and abstract syntax in Fig. 2.41 can be
implemented by writing a translation scheme. The productions for nonterminals
expr, rel, add, term, and factor in Fig. 2.39 specify the concrete syntax for a
representative subset of the operators in Fig. 2.41. The semantic actions in
these productions create syntax-tree nodes. For example, the rule

term + terml * factor { term.n = new Op (I*', terml .n, fact0r.n); }

creates a node of class Op, which implements the operators grouped under op
in Fig. 2.41. The constructor 0 p has a parameter I*' to identify the actual
operator, in addition to the nodes term1.n and fact0r.n for the subexpressions.

2.8.3 Static Checking
Static checks are consistency checks that are done during compilation. Not only
do they assure that a program can be compiled successfully, but they also have
the potential for catching programming errors early, before a program is run.
Static checking includes:

Syntactic Checking. There is more to syntax than grammars. For ex-
ample, constraints such as an identifier being declared at most once in a

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

scope, or that a break statement must have an enclosing loop or switch
statement, are syntactic, although they are not encoded in, or enforced
by, a grammar used for parsing.

Type Checking. The type rules of a language assure that an operator or
function is applied to the right number and type of operands. If conversion
between types is necessary, e.g., when an integer is added to a float, then
the type-checker can insert an operator into the syntax tree ta represent
that conversion. We discuss type conversion, using the common term
"coercion," below.

L-values and R-values

We now consider some simple static checks that can be done during the con-
struction of a syntax tree for a source program. In general, complex static checks
may need to be done by first constructing an intermediate representation and
then analyzing it.

There is a distinction between the meaning of identifiers on the left and
right sides of an assignment. In each of the assignments

the right side specifies an integer value, while the left side specifies where the
value is to be stored. The terms 1-value and r-value refer to values that are
appropriate on the left and right sides of an assigfiment, respectively. That is,
r-values are what we usually think of as "values," while bvalues are locations.

Static checking must assure that the left side of an assignment denotes an
1-value. An identifier like i has an 1-value, as does an array access like aC21.
But a constant like 2 is not appropriate on the left side of an assignment, since
it has an r-value, but not an Cvalue.

Type Checking

Type checking assures that the type of a construct matches that expected by
its context. For example, in the if-statement

if (expr) stmt

the expression expr is expected to have type boolean.
Type checking rules follow the operator/operand structure of the abstract

syntax. Assume the operator re1 represents relational operators such as <=.
The type rule for the operator group re1 is that its two operands must have the
same type, and the result has type boolean. Using attribute type for the type
of an expression, let E consist of re1 applied to El and Ez. The type of E can
be checked when its node is constructed, by executing code like the following:

2.8. INTERMEDIATE CODE GENERATION

if (El .type == E2 .type) E.type = boolean;
else error;

The idea of matching actual with expected types continues to apply, even
in the following situations:

Coercions. A coercion occurs if the type of an operand is automatically
converted to the type expected by the operator. In an expression like
2 * 3.14, the usual transformation is to convert the integer 2 into an
equivalent floating-point number, 2.0, and then perform a floating-point
operation on the resulting pair of floating-point operands. The language
definition specifies the allowable coercions. For example, the actual rule
for re1 discussed above might be that El .type and E2.type are convertible
to the same type. In that case, it would be legal to compare, say, an
integer with a float.

Overloading. The operator + in Java represents addition when applied
to integers; it means concatenation when applied to strings. A symbol is
said to be overloaded if it has different meanings depending on its context.
Thus, + is overloaded in Java. The meaning of an overloaded operator is
determined by considering the known types of its operands and results.
For example, we know that the + in z = x + y is concatenation if we know
that any of x, y, or z is of type string. However, if we also know that
another one of these is of type integer, then we have a type error and
there is no meaning to this use of +.

2.8.4 Three-Address Code

Once syntax trees are constructed, further analysis and synthesis can be done
by evaluating attributes and executing code fragments at nodes in the tree.
We illustrate the possibilities by walking syntax trees to generate three-address
code. Specifically, we show how to write functions that process the syntax tree
and, as a side-effect, emit the necessary three-address code.

Three- Address Instructions

Three-address code is a sequence of instructions of the form

x = y o p x

where x, y, and z are names, constants, or compiler-generated temporaries; and
o p stands for an operator.

Arrays will be handled by using the following two variants of instructions:

100 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

The first puts the value of z in the location x[y], and the second puts the value
of y[x] in the location x.

Three-address instructions are executed in numerical sequence unless forced
to do otherwise by a conditional or unconditional jump. We choose the following
instructions for control flow:

i f F a l s e x goto L if x is false, next execute the instruction labeled L
i fTrue x goto L if x is true, next execute the instruction labeled L
goto L next execute the instruction labeled L

A label L can be attached to any instruction by prepending a prefix L:. An
instruction can have more than one label.

Finally, we need instructions that copy a value. The following three-address
instruction copies the value of y into x:

Translation of Statements

Statements are translated into three-address code by using jump instructions
to implement the flow of control through the statement. The layout in Fig. 2.42
illustrates the translation of if expr then stmtl. The jump instruction in the
layout

i f F a l s e x goto after

jumps over the translation of stmtl if expr evaluates to false. Other statement
constructs are similarly translated using appropriate jumps around the code for
their components.

code to compute
expr into x

ifFalse x goto after

code for stmtl

Figure 2.42: Code layout for if-statements

For concreteness, we show the pseudocode for class 1' in Fig. 2.43. Class
If is a subclass of Stmt, as are the classes for the other statement constructs.
Each subclass of Stmt has a constructor - If in this case - and a function gen
that is called to generate three-address code for this kind of statement.

2.8. INTERMEDIATE CODE GENERATION

class If extends Stmt {
Expr E; Stmt S ;
public If(Expr x, Stmt y) { E = x; S = y ; after = newlabel(); }
public void gen() {

Expr n = E.rvalue();
emit("ifFalse " + n.toString() + " goto " + after);
S-genO;
emit (after + " : ") ;

Figure 2.43: Function gen in class If generates three-address code

The constructor If in Fig. 2.43 creates syntax-tree nodes for if-statements.
It is called with two parameters, an expression node x and a statement node
y , which it saves as attributes E and S. The constructor also assigns attribute
after a unique new label, by calling function newlabel(). The label will be used
according to the layout in Fig. 2.42.

Once the entire syntax tree for a source program is constructed, the function
gen is called at the root of the syntax tree. Since a program is a block in
our simple language, the root of the syntax tree represents the sequence of
statements in the block. All statement classes contain a function gen.

The pseudocode for function gen of class If in Fig. 2.43 is representative. It
calls E.rvalue() to translate the expression E (the boolean-valued expression
that is part of the if-statements) and saves the result node returned by E.
Translation of expressions will be discussed shortly. Function gen then emits a
conditional jump and calls S.gen() to translate the substatement S.

Translation of Expressions

We now illustrate the translation of expressions by considering expressions con-
taining binary operators op, array accesses, and assignments, in addition to
constants and identifiers. For simplicity, in an array access y [x], we require that
y be an identifier.13 For a detailed discussion of intermediate code generation
for expressions, see Section 6.4.

We shall take the simple approach of generating one three-address instruc-
tion for each operator node in the syntax tree for an expression. No code is
generated for identifiers and constants, since they can appear as addresses in
instructions. If a node x of class Expr has operator op, then an instruction is
emitted to compute the value at node x into a compiler generated "temporary"
name, say t . Thus, i-j+k translates into two instructions

13This simple language supports aCa Cnl I , but not a [ml [nl . Note that a [a [nl I has the
form a [El, where E is a Cnl .

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

With array accesses and assignments comes the need to distinguish between
1-values and r-values. For example, 2*a [il can be translated by computing the
r-value of a [i] into a temporary, as in

But, we cannot simply use a temporary in place of a[i] , if a[i] appears on
the left side of an assignment.

The simple approach uses the two functions lualue and rualue, which appear
in Fig. 2.44 and 2.45, respectively. When function rualue is applied to a nonleaf
node x, it generates instructions to compute x into a temporary, and returns
a new node representing the temporary. When function lualue is applied to a
nonleaf, it also generates instructions to compute the subtrees below x, and
returns a node representing the "address" for x.

We describe function lualue first, since it has fewer cases. When applied
to a node x, function lualue simply returns x if it is the node for an identifier
(i.e., if x is of class Id). In our simple language, the only other case where
an expression has an I-value occurs when x represents an array access, such as
a[il . In this case, x will have the form Access(y, x), where class Access is a
subclass of Expr, y represents the name of the accessed array, and x represents
the offset (index) of the chosen element in that array. From the pseudo-code
in Fig. 2.44, function lualue calls rualue(z) to generate instructions, if needed,
to compute the r-value of x. It then con.structs and returns a new Access node
with children for the array name y and the r-value of x.

Expr lvalue(x : Expr) {
if (x is an Id node) r e tu rn x;
else if (x is an Access (y, z) node and y is an Id node) {

r e tu rn new Access (y , ruaIue(z)) ;

1
else error;

Figure 2.44: Pseudocode for function lualue

Example 2.19: When node x represents the array access a[2*k], the call
lualue(x) generates an instruction

and returns a new node x1 representing the 1-value ac t] , where t is a new
temporary name.

In detail, the code fragment

2.8. INTERMEDIATE CODE GENERATION

return new Access (y , rvalue(z));

is rea,ched with y being the node for a and z being the node for expression 2*k.
The call rvalue(z) generates code for the expression 2*k (i.e., the three-address
statement t = 2 * k) and returns the new node z' representing the temporary
name t. That node x' becomes the value of the second field in the new Access
node x' that is created.

Expr rvalue(x : Expr) {
if (x is an Id or a Constant node) return x;
else if (x is an Op (op, y , x) or a Re1 (op, y , x) node) {

t = new temporary;
emit string for t = rvalue(y) o p rvalue(x);
return a new node for t;

1
else if (x is an Access (y, z) node) {

t = new temporary;
call lvalue(x), which returns Access (y ,xl);
emit string for t = Access (y, z');
return a new node for t;

1
else if (x is an Assign (y, x) node) {

Z' = rvalue(x);
emit string for lvalue(y) = x';
return x';

1
1

Figure 2.45: Pseudocode for function rvalue

Function rvalue in Fig. 2.45 generates instructions and returns a possibly
new node. When x represents an identifier or a constant, rvalue returns x itself.
In all other cases, it returns an Id node for a new temporary t. The cases are
as follows:

When x represents y o p z, the code first computes y' = rvalue(y) and
x' = rvalue(z). It creates a new temporary t and generates an instruc-
tion t = y' o p z' (more precisely, an instruction formed from the string
representations of t , y', op, and 2'). It returns a node for identifier t.

When x represents an array access y Czl, we can reuse function lvalue.
The call lvalue(x) returns an access y Cz'l , where z' represents an identifier
holding the offset for the array access. The code creates a new temporary
t, generates an instruction based on t = y Cx'l , and returns a node for t.

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

When s represents y = z, then the code first computes x' = rvalue(z). It
generates an instruction based on lvalue(y) = x' and returns the node x'.

Example 2.20 : When applied to the syntax tree for

function rvalue generates

That is, the root is an Assign node with first argument a [i] and second ar-
gument 2*a C j -kl . Thus, the third case applies, and function rvalue recursively
evaluates 2*a [j -kl . The root of this subtree is the Op node for *, which causes
a new temporary t 1 to be created, before the left operand, 2 is evaluated, and
then the right operand. The constant 2 generates no three-address code, and
its r-value is returned as a Constant node with value 2.

The right operand a [j -k] is an Access node, which causes a new temporary
t 2 to be created, before function lvalue is called on this node. Recursively,
rvalue is called on the expression j -k. As a side-effect of this call, the three-
address statement t 3 = j - k is generated, after the new temporary t 3 is
created. Then, returning to the call of lvalue on a [j -k] , the temporary t 2 is
assigned the r-value of the entire access-expression, that is, t 2 = a [t 3 1.

Now, we return to the call of rvalue on the Op node 2*a [j -k] , which earlier
created temporary t I. A three-address statement t 1 = 2 * t 2 is generated as
a side-effect, to evaluate this multiplication-expression. Last, the call to rvalue
on the whole expression completes by calling lvalue on the left side a h 1 and
then generating a three-address instruction a [i 1 = ti, in which the right
side of the assignment is assigned to the left side.

Better Code for Expressions

We can improve on function rvalue in Fig. 2.45 and generate fewer three-address
instructions, in several ways:

Reduce the number of copy instructions in a subsequent optimization
phase. For example, the pair of instructions t = i+l and i = t can be
combined into i = i + l , if there are no subsequent uses of t.

Generate fewer instructions in the first place by taking context into ac-
count. For example, if the left side of a three-address assignment is an
array access a [t] , then the right side must be a name, a constant, or a
temporary, all of which use just one address. But if the left side is a name
x, then the right side can be an operation y op z that uses two addresses.

2.9. SUMMARY OF CHAPTER 2 105

We can avoid some copy instructions by modifying the translation functions
generate a partial instruction that computes, say j+k, but does not commit
where the result is to be placed, signified by a null address for the result:

null = j + k (2.8)

The null result address is later replaced by either an identifier or a temporary,
as appropriate. It is replaced by an identifier if j+k is on the right side of an
assigriment, as in i= j +k ; , in which case (2.8) becomes

But, if j+k is a subexpression, as in j+k+l, then the null result address in (2.8)
is replaced by a new temporary t , and a new partial instruction is generated

t = j + k
null = t + 1

Many compilers make every effort to generate code that is as good as or bet-
ter than hand-written assembly code produced by experts. If code-optimization
techniques, such as the ones in Chapter 9 are used, then an effective strategy
may well be to use a simple approach for intermediate code generation, and
rely on the code optimizer to eliminate unnecessary instructions.

2.8.5 Exercises for Section 2.8

Exercise 2.8.1 : For-statements in C and Java have the form:

f o r (exprl ; expr2 ; expr3) stmt

The first expression is executed before the loop; it is typically used for initializ-
ing the loop index. The second expression is a test made before each iteration
of the loop; the loop is exited if the expression becomes 0. The loop itself can be
thought of as the statement Cstrnt expr3 ; 1. The third expression is executed
at the end of each iteration; it is typically used to increment the loop index.
The meaning of the for-statement is similar to

exprl ; while (expr2) (stmt exprs ;)

Define a class For for for-statements, similar to class If in Fig. 2.43.

Exercise 2.8.2 : The programming language C does not have a boolean type.
Show how a C compiler might translate an if-statement into three-address code.

2.9 Summary of Chapter 2

The syntax-directed techniques in this chapter can be used to construct compiler
front ends, such as those illustrated in Fig. 2.46.

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

if(peek == '\n' 1 line = line + 1;

r

Lexical Analyzer

(if') (() (id, "peek") (eq) (const, '\nY) ())
(id, "line") (assign) (id, "line") (+) (num, 1) (;)

Syntax-Directed Translator

/if\

1: tl = (int) '\nY

2: ifFalse peek == ti goto 4

/""\ assi n
/ B 3: line = line + I

4:
peek (int) line

I /+\
' \n ' l ine 1

Figure 2.46: Two possible translations of a statement

+ The starting point for a syntax-directed translator is a grammar for the
source language. A grammar describes the hierarchical structure of pro-
grams. It is defined in terms of elementary symbols called terminals and
variable symbols called nonterminals. These symbols represent language
constructs. The rules or productions of a grammar consist of a nonterminal
called the head or left side of a production and a sequence of terminals
and nonterminals called the body or right side of the production. One
nonterminal is designated as the start symbol.

+ In specifying a translator, it is helpful to attach attributes to programming
construct, where an attribute is any quantity associated with a construct.
Since constructs are represented by grammar symbols, the concept of
attributes extends to grammar symbols. Examples of attributes include
an integer value associated with a terminal nurn representing numbers,
and a string associated with a terminal id representing identifiers.

+ A lexical analyzer reads the input one character at a time and produces
as output a stream of tokens, where a token consists of a terminal symbol
along with additional information in the form of attribute values. In
Fig. 2.46, tokens are written as tuples enclosed between (). The token
(id, "peek") consists of the terminal id and a pointer to the symbol-table
entry containing the string "peek". The translator uses the table to keep

2.9. SUMMARY OF CHAPTER 2

track of reserved words and identifiers that have already been seen.

+ Parsing is the problem of figuring out how a string of terminals can be
derived from the start symbol of the grammar by repeatedly replacing a
nonterminal by the body of one of its productions. Conceptually, a parser
builds a parse tree in which the root is labeled with the start symbol,
each nonleaf corresponds to a production, and each leaf is labeled with
a terminal or the empty string E-. The parse tree derives the string of
terminals at the leaves, read from left to right.

+ Efficient parsers can be built by hand, using a top-down (from the root to
the leaves of a parse tree) method called predictive parsing. A predictive
parser has a procedure for each nonterminal; procedure bodies mimic the
productions for nonterminals; and, the flow of control through the pro-
cedure bodies can be determined unambiguously by looking one symbol
ahead in the input stream. See Chapter 4 for other approaches to parsing.

+ Syntax-directed translation is done by attaching either rules or program
fragments to productions in a grammar. In this chapter, we have consid-
ered only synthesized attributes - the value of a synthesized attribute at
any node x can depend only on attributes at the children of x, if any. A
syntax-directed definition attaches rules to productions; the rules compute
attribute vales. A translation scheme embeds program fragments called
semantic actions in production bodies. The actions are executed in the
order that productions are used during syntax analysis.

+ The result of syntax analysis is a representation of the source program,
called intermediate code. Two primary forms of intermediate code are il-
lustrated in Fig. 2.46. An abstract syntax tree has nodes for programming
constructs; the children of a node give the meaningful subconstructs. Al-
ternatively, three-address code is a sequence of instructions in which each
instruction carries out a single operation.

+ Symbol tables are data structures that hold information about identifiers.
Information is put into the symbol table when the declaration of an iden-
tifier is analyzed. A semantic action gets information from the symbol
table when the identifier is subsequently used, for example, as a factor in
an expression.

Chapter 3

Lexical Analysis

In this chapter we show how to construct a lexical analyzer. To implement a
lexical analyzer by hand, it helps to start with a diagram or other description for
the lexemes of each token. We can then write code to identify each occurrence of
each lexeme on the input and to return information about the token identified.

We can also produce a lexical analyzer automatically by specifying the lex-
eme patterns to a lexical-analyzer generator and compiling those patterns into
code that functions as a lexical analyzer. This approach makes it easier to mod-
ify a lexical analyzer, since we have only to rewrite the affected patterns, not
the entire program. It also speeds up the process of implementing the lexical
analyzer, since the programmer specifies the software at the very high level of
patterns and relies on the generator to produce the detailed code. We shall
introduce in Section 3.5 a lexical-analyzer generator called Lex (or Flex in a
more recent embodiment).

We begin the study of lexical-analyzer generators by introducing regular
expressions, a convenient notation for specifying lexeme patterns. We show
how this notation can be transformed, first into nondeterministic automata
and then into deterministic automata. The latter two notations can be used as
input to a "driver," that is, code which simulates these automata and uses them
as a guide to determining the next token. This driver and the specification of
the automaton form the nucleus of the lexical analyzer.

3.1 The Role of the Lexical Analyzer
As the first phase of a compiler, the main task of the lexical analyzer is to
read the input characters of the source program, group them into lexemes, and
produce as output a sequence of tokens for each lexeme in the source program.
The stream of tokens is sent to the parser for syntax analysis. It is common
for the lexical analyzer to interact with the symbol table as well. When the
lexical analyzer discovers a lexeme constituting an identifier, it needs to enter
that lexeme into the symbol table. In some cases, information regarding the

110 CHAPTER 3. LEXICAL ANALYSIS

kind of identifier may be read from the symbol table by the lexical analyzer to
assist it in determining the proper token it must pass to the parser.

These interactions are suggested in Fig. 3.1. Commonly, the interaction is
implemented by having the parser call the lexical analyzer. The call, suggested
by the getNextToken command, causes the lexical analyzer to read characters
from its input until it can identify the next lexeme and produce for it the next
token, which it returns to the parser.

Symbol
Table

source
program -t

Figure 3.1: Interactions between the lexical analyzer and the parser

Since the lexical analyzer is the part of the compiler that reads the source
text, it may perform certain other tasks besides identification of lexemes. One
such task is stripping out comments and whitespace (blank, newline, tab, and
perhaps other characters that are used to separate tokens in the input). Another
task is correlating error messages generated by the compiler with the source
program. For instance, the lexical analyzer may keep track of the number
of newline characters seen, so it can associate a line number with each error
message. In some compilers, the lexical analyzer makes a copy of the source
program with the error messages inserted at the appropriate positions. If the
source program uses a macro-preprocessor, the expansion of macros may also
be performed by the lexical analyzer.

Sometimes, lexical analyzers are divided into a cascade of two processes:

Lexical
Analyzer

a) Scanning consists of the simple processes that do not require tokenization
of the input, such as deletion of comments and compaction of consecutive
whitespace characters into one.

b) Lexical analysis proper is the more complex portion, where the scanner
produces the sequence of tokens as output.

token
b

+

getNextToken

3.1.1 Lexical Analysis Versus Parsing

There are a number of reasons why the analysis portion of a compiler is normally
separated into lexical analysis and parsing (syntax analysis) phases.

Parser
to semantic

-t analysis

3.1. THE ROLE OF THE LEXICAL ANALYZER

1. Simplicity of design is the most important consideration. The separation
of lexical and syntactic analysis often allows us to simplify at least one
of these tasks. For example, a parser that had to deal with comments
and whitespace as syntactic units would be considerably more complex
than one that can assume comments and whitespace have already been
removed by the lexical analyzer. If we are designing a new language,
separating lexical and syntactic concerns can lead to a cleaner overall
language design.

2. Compiler efficiency is improved. A separate lexical analyzer allows us to
apply specialized techniques that serve only the lexical task, not the job
of parsing. In addition, specialized buffering techniques for reading input
characters can speed up the compiler significantly.

3. Compiler portability is enhanced. Input-device-specific peculiarities can
be restricted to the lexical analyzer.

3.1.2 Tokens, Patterns, and Lexemes

When discussing lexical analysis, we use three related but distinct terms:

A token is a pair consisting of a token name and an optional attribute
value. The token name is an abstract symbol representing a kind of
lexical unit, e.g., a particular keyword, or a sequence of input characters
denoting an identifier. The token names are the input symbols that the
parser processes. In what follows, we shall generally write the name of a
token in boldface. We will often refer to a token by its token name.

A pattern is a description of the form that the lexemes of a token may take.
In the case of a keyword as a token, the pattern is just the sequence of
characters that form the keyword. For identifiers and some other tokens,
the pattern is a more complex structure that is matched by many strings.

A lexeme is a sequence of characters in the source program that matches
the pattern for a token and is identified by the lexical analyzer as an
ihstance of that token.

Example 3.1 : Figure 3.2 gives some typical tokens, their informally described
patterns, and some sample lexemes. To see how these concepts are used in
practice, in the C statement

p r in t f ("Total = %d\nI1, score) ;

both p r in t f and score are lexemes matching the pattern for token id, and
"Total = %d\nI1 is a lexeme matching literal.

In many programming languages, the following classes cover most or all of
the tokens:

112 CHAPTER 3. LEXICAL ANALYSIS

else 1 characters e, 1, s, e I e l s e

TOKEN
if

lit era1 1 anything but ", surrounded by If's 1 "core dumped"

INFORMAL DESCRIPTION
characters i, f

comparison

id

number

Figure 3.2: Examples of tokens

SAMPLE LEXEMES
i f

1. One token for each keyword. The pattern for a keyword is the same as
the keyword itself.

< or > or <= or >= or == or ! =

letter followed by letters and digits

any numeric constant

2. Tokens for thd operators, either individually or in classes such as the token
comparison rhentioned in Fig. 3.2.

<=, !=

p i , score, D2

3.14159, 0, 6.02e23

3. One token representing all identifiers.

4. One or more tokens representing constants, such as numbers and literal
strings.

5. Tokens for each punctuation symbol, such as left and right parentheses,
comma, and semicolon.

3.1.3 Attributes for Tokens

When more than one lexeme can match a pattern, the lexical analyzer must
provide the subsequent compiler phases additional information about the par-
ticular lexeme that matched. For example, the pattern for token number
matches both 0 and 1, but it is extremely important for the code generator to
know which lexeme was found in the source program. Thus, in many cases the
lexical analyzer returns to the parser not only a token name, but an attribute
value that describes the lexeme represented by the token; the token name in-
fluences parsing decisions, while the attribute value influences translation of
tokens after the parse.

We shall assume that tokens have at most one associated attribute, although
this attribute may have a structure that combines several pieces of information.
The most important example is the token id, where we need to associate with
the token a great deal of information. Normally, information about an identi-
fier - e.g., its lexeme, its type, and the location at which it is first found (in
case an error message about that identifier must be issued) - is kept in the
symbol table. Thus, the appropriate attribute value for an identifier is a pointer
to the symbol-table entry for that identifier.

3.1. THE ROLE OF THE LEXICAL ANALYZER 113

Tricky Problems When Recognizing Tokens

Usually, given the pattern describing the lexemes of a token, it is relatively
simple to recognize matching lexemes when they occur on the input. How-
ever, in some languages it is not immediately apparent when we have seen
an instance of a lexeme corresponding to a token. The following example
is taken from Fortran, in the fixed-format still allowed in Fortran 90. In
the statement

DO 5 I = 1.25

it is not apparent that the first lexeme is D051, an instance of the identifier
token, until we see the dot following the 1. Note that blanks in fixed-format
Fortran are ignored (an archaic convention). Had we seen a comma instead
of the dot, we would have had a do-statement

DO 5 I = 1,25

in which the first lexeme is the keyword DO.

Example 3.2 : The token names and associated attribute values for the For-
tran statement

are written below as a sequence of pairs.

<id, pointer to symbol-table entry for E>
< assign-op >
<id, pointer to symbol-table entry for M>
<mul t -op>
<id, pointer to symbol-table entry for C>
<exp-op>
<number , integer value 2 >

Note that in certain pairs, especially operators, punctuation, and keywords,
there is no need for an attribute value. In this example, the token number has
been given an integer-valued attribute. In practice, a typical compiler would
instead store a character string representing the constant and use as an attribute
value for n u m b e r a pointer to that string. I3

3.1.4 Lexical Errors
It is hard for a lexical analyzer to tell, without the aid of other components,
that there is a source-code error. For instance, if the string f i is encountered
for the first time in a C program in the context:

CHAPTER 3. LEXICAL ANALYSIS

a lexical analyzer cannot tell whether f i is a misspelling of the keyword i f or
an undeclared function identifier. Since f i is a valid lexeme for the token id,
the lexical analyzer must return the token id to the parser and let some other
phase of the compiler - probably the parser in this case - handle an error
due to transposition of the letters.

However, suppose a situation arises in which the lexical analyzer is unable
to proceed because none of the patterns for tokens matches any prefix of the
remaining input. The simplest recovery strategy is "panic mode" recovery. We
delete successive characters from the remaining input, until the lexical analyzer
can find a well-formed token at the beginning of what input is left. This recovery
technique may confuse the parser, but in an interactive computing environment
it may be quite adequate.

Other possible error-recovery actions are:

1. Delete one character from the remaining input.

2. Insert a missing character into the remaining input.

3. Replace a character by another character.

4. Transpose two adjacent characters.

Transformations like these may be tried in an attempt to repair the input. The
simplest such strategy is to see whether a prefix of the remaining input can
be transformed into a valid lexeme by a single transformation. This strategy
makes sense, since in practice most lexical errors involve a single character. A
more general correction strategy is to find the smallest number of transforma-
tions needed to convert the source program into one that consists only of valid
lexemes, but this approach is considered too expensive in practice to be worth
the effort.

3.1.5 Exercises for Section 3.1

Exercise 3.1.1 : Divide the following C + + program:

f l o a t lirnitedSquare(x) f l o a t x (
/* r e tu rns x-squared, but never more than 100 */
r e t u r n (x<=-10.01 ~x>=lO.O)?iOO:x*x;

>
into appropriate lexemes, using the discussion of Section 3.1.2 as a guide. Which
lexemes should get associated lexical values? What should those values be?

! Exercise 3.1.2 : Tagged languages like HTML or XML are different from con-
ventional programming languages in that the punctuation (tags) are either very
numerous (as in HTML) or a user-definable set (as in XML). Further, tags can
often have parameters. Suggest how to divide the following HTML document:

3.2. INPUT BUFFERING

Here is a photo of my house:
<P>

See More Pictures if you
liked that one. <P>

into appropriate lexemes. Which lexemes should get associated lexical values,
and what should those values be?

3.2 Input Buffering

Before discussing the problem of recognizing lexemes in the input, let us examine
some ways that the simple but important task of reading the source program
can be speeded. This task is made difficult by the fact that we often have
to look one or more characters beyond the next lexeme before we can be sure
we have the right lexeme. The box on "Tricky Problems When Recognizing
Tokens" in Section 3.1 gave an extreme example, but there are many situations
where we need to look at least one additional character ahead. For instance,
we cannot be sure we've seen the end of an identifier until we see a character
that is not a letter or digit, and therefore is not part of the lexeme for id. In
C, single-character operators like -, =, or < could also be the beginning of a
two-character operator like ->, ==, or <=. Thus, we shall introduce a two-buffer
scheme that handles large lookaheads safely. We then consider an improvement
involving "sentinels" that saves time checking for the ends of buffers.

3.2.1 Buffer Pairs

Because of the amount of time taken to process characters and the large number
of characters that must be processed during the compilation of a large source
program, specialized buffering techniques have been developed to reduce the
amount of overhead required to process a single input character. An impor-
tant scheme involves two buffers that are alternately reloaded, as suggested in
Fig. 3.3.

I forward

Figure 3.3: Using a pair of input buffers

Each buffer is of the same size N , and N is usually the size of a disk block,
e.g., 4096 bytes. Using one system read command we can read N characters
inio a buffer, rather than using one system call per character. If fewer than N
characters remain in the input file, then a special character, represented by eof,

116 CHAPTER 3. LEXICAL ANALYSIS

marks the end of the source file and is different from any possible character of
the source program.

Two pointers to the input are maintained:

I. Pointer lexemeBegin, marks the beginning of the current lexeme, whose
extent we are attempting to determine.

2. Pointer forward scans ahead until a pattern match is found; the exact
strategy whereby this determination is made will be covered in the balance
of this chapter.

Once the next lexeme is determined, forward is set to the character at its right
end. Then, after the lexeme is recorded as an attribute value of a token returned
to the parser, 1exemeBegin is set to the character immediately after the lexeme
just found. In Fig. 3.3, we see forward has passed the end of the next lexeme,
** (the Fortran exponentiation operator), and must be retracted one position
to its left.

Advancing forward requires that we first test whether we have reached the
end of one of the buffers, and if so, we must reload the other buffer from the
input, and move forward to the beginning of the newly loaded buffer. As long
as we never need to look so far ahead of the actual lexeme that the sum of the
lexeme's length plus the distance we look ahead is greater than N, we shall
never overwrite the lexeme in its buffer before determining it.

3.2.2 Sentinels

If we use the scheme of Section 3.2.1 as described, we must check, each time we
advance forward, that we have not moved off one of the buffers; if we do, then
we must also reload the other buffer. Thus, for each character read, we make
two tests: one for the end of the buffer, and one to determine what character
is read (the latter may be a multiway branch). We can combine the buffer-end
test with the test for the current character if we extend each buffer to hold a
sentinel character at the end. The sentinel is a special character that cannot
be part of the source program, and a natural choice is the character eof.

Figure 3.4 shows the same arrangement as Fig. 3.3, but with the sentinels
added. Note that eof retains its use as a marker for the end of the entire input.
Any eof that appears other than at the end of a buffer means that the input
is at an end. Figure 3.5 summarizes the algorithm for advancing forward.
Notice how the first test, which can be part of a multiway branch based on the
character pointed to by forward, is the only test we make, except in the case
where we actually are at the end of a buffer or the end of the input.

3.3 Specification of Tokens

Regular expressions are an important notation for specifying lexeme patterns.
While they cannot express all possible patterns, they are very effective in spec-

3.3. SPECIFICATION OF TOKENS 117

Can We Run Out of Buffer Space?

In most modern languages, lexemes are short, and one or two characters
of lookahead is sufficient. Thus a buffer size N in the thousands is ample,
and the double-buffer scheme of Section 3.2.1 works without problem.
However, there are some risks. For example, if character strings can be
very long, extending over many lines, then we could face the possibility
that a lexeme is longer than N. To avoid problems with long character
strings, we can treat them as a concatenation of components, one from
each line over which the string is written. For instance, in Java it is
conventional to represent long strings by writing a piece on each line and
concatenating pieces with a + operator at the end of each piece.

A more difficult problem occurs when arbitrarily long lookahead may
be needed. For example, some languages like PL/I do not treat key-
words as reserved; that is, you can use identifiers with the same name as
a keyword like DECLARE. If the lexical analyzer is presented with text of a
PL/I program that begins DECLARE (ARGI, ARG2,. . . it cannot be sure
whether DECLARE is a keyword, and ARGI and so on are variables being de-
clared, or whether DECLARE is a procedure name with its arguments. For
this reason, modern languages tend to reserve their keywords. However, if
not, one can treat a keyword like DECLARE as an ambiguous identifier, and
let the parser resolve the issue, perhaps in conjunction with symbol-table
lookup.

ifying those types of patterns that we actually need for tokens. In this section
we shall study the formal notation for regular expressions, and in Section 3.5
we shall see how these expressions are used in a lexical-analyzer generator.
Then, Section 3.7 shows how to build the lexical analyzer by converting regular
expressions to automata that perform the recognition of the specified tokens.

3.3.1 Strings and Languages

An alphabet is any finite set of symbols. Typical examples of symbols are let-
ters, digits, and punctuation. The set {0,1) is the binary alphabet. ASCII is an
important example of an alphabet; it is used in many software systems. Uni-

Figure 3.4: Sentinels at the end of each buffer

' ' . ' . a ' ' . .
' " . ' ' ' - : : : : E : - :
" . " a ' . "

' . ' . ' . ' . I '

. . # . . ,

: ~ ~ * ~ e o f ~ ~ * ! * ~ 2 ! e o f : : : : : :eof
" " ' * " ' .

forward
lexemeBegin

CHAPTER 3. LEXICAL ANALYSIS

switch (*forward++) {
case eof:

if (forward is at end of first buffer) {
reload second buffer;
forward = beginning of second buffer;

1
else if (forward is at end of second buffer) {

reload first buffer;
forward = beginning of first buffer;

1
else /* eof within a buffer marks the end of input */

terminate lexical analysis;
break;

Cases for the other characters
1

Figure 3.5: Lookahead code with sentinels

Implementing Multiway Branches

We might imagine that the switch in Fig. 3.5 requires many steps to exe-
cute, and that placing the case eof first is not a wise choice. Actually, it
doesn't matter in what order we list the cases for each character. In prac-
tice, a multiway branch depending on the input character is be made in
one step by jumping to an address found in an array of addresses, indexed
by characters.

code, which includes approximately 100,000 characters from alphabets around
the world, is another important example of an alphabet.

A string over an alphabet is a finite sequence of symbols drawn from that
alphabet. In language theory, the terms "sentence" and "word" are often used
as synonyms for "string." The length of a string s , usually written Isl, is the
number of occurrences of symbols in s. For example, banana is a string of
length six. The empty string, denoted 6, is the string of length zero.

A language is any countable set of strings over some fixed alphabet. This
definition is very broad. Abstract languages like 0, the empty set, or (€1, the
set containing only the empty string, are languages under this definition. So
too are the set of all syntactically well-formed C programs and the set of all
grammatically correct English sentences, although the latter two languages are
difficult to specify exactly. Note that the definition of "language" does not
require that any meaning be ascribed to the strings in the language. Methods
for defining the "meaning" of strings are discussed in Chapter 5.

3.3. SPECIFICATION OF TOKENS 119

Terms for Parts of Strings

The following string-related terms are commonly used:

1. A prefix of string s is any string obtained by removing zero or more
symbols from the end of s. For example, ban, banana, and E are
prefixes of banana.

2. A sufix of string s is any string obtained by removing zero or more
symbols from the beginning of s. For example, nana, banana, and E

are suffixes of banana.

3. A substring of s is obtained by deleting any prefix and any suffix
from s. For instance, banana, nan, and E are substrings of banana.

4. The proper prefixes, suffixes, and substrings of a string s are those,
prefixes, suffixes, and substrings, respectively, of s that are not E or
not equal to s itself.

5 . A subsequence of s is any string formed by deleting zero or more
not necessarily consecutive positions of s. For example, baan is a
subsequence of banana.

If x and y are strings, then the concatenation of x and y , denoted xy, is the
string formed by appending y to x. For example, if x = dog and y = house,
then xy = doghouse. The empty string is the identity under concatenation;
that is, for any string s , ES = SE = s.

If we think of concatenation as a product, we can define the 'kxponentiation"
of strings as follows. Define so to be E, and for all i > 0, define si to be si-ls.
Since ES = S, it follows that s1 = s. Then s2 = ss, s3 = sss, and so on.

3.3.2 Operations on Languages

In lexical analysis, the most important operations on languages are union, con-
catenation, and closure, which are defined formally in Fig. 3.6. Union is the
familiar operation on sets. The concatenation of languages is all strings formed
by taking a string from the first language and a string from the second lan-
guage, in all possible ways, and concatenating them. The (Kleene) closure of a
language L, denoted L*, is the set of strings you get by concatenating L zero
or more times. Note that Lo, the "concatenation of L zero times," is defined to
be {E), and inductively, L~ is Li-'L. Finally, the positive closure, denoted L+,
is the same as the Kleene closure, but without the term Lo. That is, E will not
be in L+ unless it is in L itself.

CHAPTER 3. LEXICAL ANALYSIS

OPERATION ,

Union of L and M

Figure 3.6: Definitions of operations on languages

DEFINITION AND NOTATION

L U M = {s (s is in L or s is in M)

Concatenation of L and M

Kleene closure of L

Positive closure of L

Example 3.3 ': Let L be the set of letters {A, B, . . . , Z, a, b, . . . , z) and let D
be the set of digits {0,1,. . .9). We may think of L and D in two, essentially
equivalent, ways. One way is that L and D are, respectively, the alphabets of
uppercase and lowercase letters and of digits. The second way is that L and D
are languages, all of whose strings happen to be of length one. Here are some
other languages that can be constructed from languages L and D, using the
operators of Fig. 3.6:

LM = {st I s is in L and t is in M)

L* = U F O Li

L f =U& L~

1. L U D is the set of letters and digits - strictly speaking the language
with 62 strings of length one, each of which strings is either one letter or
one digit.

2. LD is the set df 520 strings of length two, each consisting of one letter
followed by one digit.

3. L4 is the set of all 4-letter strings.

4. L* is the set of ail strings of letters, including e, the empty string.

5. L (L U D)* is the set of all strings of letters and digits beginning with a
letter.

6. D+ is the set of all strings of one or more digits.

3.3.3 Regular Expressions

Suppose we wanted to describe the set of valid C identifiers. It is almost ex-
actly the language described in item (5) above; the only difference is that the
underscore is included among the letters.

In Example 3.3, we were able to describe identifiers by giving names to sets
of letters and digits and using the language operators union, concatenation,
and closure. This process is so useful that a notation called regular expressions
has come into common use for describing all the languages that can be built
from these operators applied to the symbols of some alphabet. In this notation,
if letter- is established to stand for any letter or the underscore, and digit- is

3.3. SPECIFICATION OF TOKENS 121

established to stand for any digit, then we could describe the language of C
identifiers by:

letter- (letter- I digit)*

The vertical bar above means union, the parentheses are used to group subex-
pressions, the star means "zero or more occurrences of," and the juxtaposition
of letter- with the remainder of the expression signifies concatenation.

The regular expressions are built recursively out of smaller regular expres-
sions, using the rules described below. Each regular expression r denotes a
language L(r), which is also defined recursively from the languages denoted by
r's subexpressions. Here are the rules that define the regular expressions over
some alphabet C and the languages that those expressions denote.

BASIS: There are two rules that form the basis:

1. E is a regular expression, and L (E) is {E) , that is, the language whose sole
member is the empty string.

2. If a is a symbol in C, then a is a regular expression, and L(a) = {a), that
is, the language with one string, of length one, with a in its one position.
Note that by convention, we use italics for symbols, and boldface for their
corresponding regular expression.'

INDUCTION: There are four parts to the induction whereby larger regular
expressions are built from smaller ones. Suppose r and s are regular expressions
denoting languages L(r) and L(s), respectively.

1. (r) 1 (9) is a regular expression denoting the language L(r) U L(s).

2. (r) (s) is a regular expression denoting the language L(r) L(s) .

3. (r) * is a regular expression denoting (L (r)) * .

4. (r) is a regular expression denoting L(r). This last rule says that we can
add additional pairs of parentheses around expressions without changing
the language they denote.

As defined, regular expressions often contain unnecessary pairs of paren-
theses. We may drop certain pairs of parentheses if we adopt the conventions
that:

a) The unary operator * has highest precedence and is left associative.

b) Concatenation has second highest precedence and is left associative.

 o ow ever, when talking about specific characters from the ASCII character set, we shall
generally use teletype font for both the character and its regular expression.

122 CHAPTER 3. LEXICAL ANALYSIS

c) I has lowest precedence and is left associative.

Under these conventions, for example, we may replace the regular expression
(a) I ((b) * (c)) by a / b*c. Both expressions denote the set of strings that are either
a single a or are zero or more b's followed by one c.

Example 3.4: Let C = {a, b}.

1. The regular expression a1 b denotes the language {a, b}.

2. (a1 b) (alb) denotes {aa, ab, ba, bb), the language of all strings of length two
over the alphabet C. Another regular expression for the same language is
aalablbal bb.

3. a* denotes the language consisting of all strings of zero or more a's, that
is, {E, a, aa, aaa, . . . }.

4. (alb)* denotes the set of all strings consisting of zero or more instances
of a or b, that is, all strings of a's and b's: { e , a, b, aa, ab, ba, bb, aaa, . . .}.
Another regular expression for the same language is (a*b*)*.

5. ala*b denotes the language {a, b, ab, aab,aaab,. . .), that is, the string a
and all strings consisting of zero or more a's and ending in b.

A language that can be defined by a regular expression is called a regular
set. If two regular expressions r and s denote the same regular set, we say they
are equivalent and write r = s. For instance, (alb) = (bla). There are a number
of algebraic laws for regular expressions; each law asserts that expressions of
two different forms are equivalent. Figure 3.7 shows some of the algebraic laws
that hold for arbitrary regular expressions r, s, and t.

Figure 3.7: Algebraic laws for regular expressions

rIs = slr

rI(sIt) = (rIs>It
r(st) = (rs)t

r(slt) = rslrt; (slt)r = srltr

Er = re = r

r* = (T I E) *
r** = r*

I is commutative

I is associative

Concatenation is associative

Concatenation distributes over I
E is the identity for concatenation

r: is guaranteed in a closure

* is idempotent

3.3. SPECIFICATION OF TOKENS 123

3.3.4 Regular Definitions

For notational convenience, we may wish to give names to certain regular ex-
pressions and use those names in subsequent expressions, as if the names were
themselves symbols. If C is an alphabet of basic symbols, then a regular defi-
ni t ion is a sequence of definitions of the form:

where:

1. Each di is a new symbol, not in C and not the same as any other of the
d's, and

2. Each ri is a regular expression over the alphabet C U {dl, d2 , . . . , di-l).

By restricting r i to C and the previously defined d's, we avoid recursive defini-
tions, and we can construct a regular expression over C alone, for each ri. We
do so by first replacing uses of dl in r2 (which cannot use any of the d's except
for dl), then replacing uses of dl and d2 in r3 by rl and (the substituted) 7-2,

and so on. Finally, in rn we replace each di, for i = 1,2 , . . . ,n - 1, by the
substituted version of ri, each of which has only symbols of C.

Example 3.5 : C identifiers are strings of letters, digits, and underscores. Here
is a regular definition for the language of C identifiers. We shall conventionally
use italics for the symbols defined in regular definitions.

letter- + A (B I . - . [Z 1 a 1 b l . - - l z 1 -
digit -+ 0 1 1 1 - - . 1 9

id + letter- (letter- I digit) *

Example 3.6 : Unsigned numbers (integer or floating point) are strings such
as 5280, 0.01234, 6.336E4, or 1.89E-4. The regular definition

digit + 0 I 1 (. - . (9
digits -+ digit digit*

optionalFraction + . digits 1 c
optionalExponent -+ (E (+ (- [c) digits) 1 c

number + digits optionalFraction optionalExponent

is a precise specification for this set of strings. That is, an optionalFraction is
either a decimal point (dot) followed by one or more digits, or it is missing (the
empty string). An optionalExponent, if not missing, is the letter E followed by
an optional + or - sign, followed by one or more digits. Note that at least one
digit must follow the dot, so number does not match I . , but does match 1.0.

124 CHAPTER 3. LEXICAL ANALYSIS

3.3.5 Extensions of Regular Expressions

Since Kleene introduced regular expressions with the basic operators for union,
concatenation, and Kleene closure in the 1950s, many extensions have been
added to regular expressions to enhance their ability to specify string patterns.
Here we mention a few notational extensions that were first incorporated into
Unix utilities such as Lex that are particularly useful in the specification lexical
analyzers. The references to this chapter contain a discussion of some regular-
expression variants in use today.

1. One or more instances. The unary, postfix operator + represents the
positive closure of a regular expression and its language. That is, if r is a
regular expression, then (r)+ denotes the language (~ (r)) ' . The operator

has the same precedence and associativity as the operator *. Two useful
algebraic laws, r* = r+Jc and r f = rr* = r*r relate the Kleene closure
and positive closure.

2. Zero or one instance. The unary postfix operator ? means "zero or one
occurrence." That is, r? is equivalent to rlc, or put another way, L(r?) =
L(r) U (€1. The ? operator has the same precedence and associativity as
* and +.

3. Character classes. A regular expression allazl. .. lan, where the ai's
are each symbols of the alphabet, can be replaced by the shorthand
[ala2 . . . a,]. More importantly, when a1 , a2, . . . , a, form a logical se-
quence, e.g., consecutive uppercase letters, lowercase letters, or digits, we
can replace them by al-a,, that is, just the first and last separated by
a hyphen. Thus, [abc] is shorthand for alblc, and [a-z] is shorthand for
a J b J . . . Jz.

Example 3.7 : Using these shorthands, we can rewrite the regular definition
of Example 3.5 as:

letter- + [A-Za-z-]
digit + [O-91

id -+ letter- (letter 1 digit)*

The regular definition of Example 3.6 can also be simplified:

digit + [o-91
digits += digit+

number + digits (. digits)? (E [+-I? digits)?

3.3. SPECIFICATION OF TOKENS

3.3.6 Exercises for Section 3.3

Exercise 3.3.1 : Consult the language reference manuals to determine (i) the
sets of characters that form the input alphabet (excluding those that may only
appear in character strings or comments), (ii) the lexical form of numerical
constants, and (iii) the lexical form of identifiers, for each of the following
languages: (a) C (b) C++ (c) C# (d) Fortran (e) Java (f) Lisp (g) SQL.

! Exercise 3.3.2 : Describe the languages denoted by the following regular ex-
pressions:

d) a* ba* ba* ba* .

Exercise 3.3.3 : In a string of length n, how many of the following are there?

a) Prefixes.

b) Suffixes.

c) Proper prefixes.

! d) Substrings.

! e) Subsequences.

Exercise 3.3.4 : Most languages are case sensitive, so keywords can be written
only one way, and the regular expressions describing their lexeme is very simple.
However, some languages, like SQL, are case insensitive, so a keyword can be
written either in lowercase or in uppercase, or in any mixture of cases. Thus,
the SQL keyword SELECT can also be written se l ec t , Select , or sElEcT, for
instance. Show how to write a regular expression for a keyword in a case-
insensitive language. Illustrate the idea by writing the expression for "select"
in SQL.

! Exercise 3.3.5 : Write regular definitions for the following languages:

a) All strings of lowercase letters that contain the five vowels in order.

b) All strings of lowercase letters in which the letters are in ascending lexi-
cographic order.

c) Comments, consisting of a string surrounded by /* and */, without an
intervening */, unless it is inside double-quotes (").

126 CHAPTER 3. LEXICAL ANALYSIS

!! d) All strings of digits with no repeated digits. Hint: Try this problem first
with a few digits, such as {O,1,2).

!! e) All strings of digits with at most one repeated digit.

!! f) All strings of a's and b's with an even number of a's and an odd number
of b's.

g) The set of Chess moves, in the informal notation, such as p-k4 or kbp x qn.

!! h) All strings of a's and b's that do not contain the substring abb.

i) All strings of a's and b's that do not contain the subsequence abb.

Exercise 3.3.6 : Write character classes for the following sets of characters:

a) The first ten letters (up to "j") in either upper or lower case.

b) The lowercase consonants.

c) The "digits" in a hexadecimal number (choose either upper or lower case
for the "digits" above 9).

d) The characters that can appear at the end of a legitimate English sentence
(e.g., exclamation point).

The following exercises, up to and including Exercise 3.3.10, discuss the
extended regular-expression notation from Lex (the lexical-analyzer generator
that we shall discuss extensively in Section 3.5). The extended notation is listed
in Fig. 3.8.

Exercise 3.3.7 : Note that these regular expressions give all of the following
symbols (operator characters) a special meaning:

Their special meaning must be turned off if they are needed to represent them-
selves in a character string. We can do so by quoting the character within a
string of length one or more; e.g., the regular expression It ** I t matches the string
**. We can also get the literal meaning of an operator character by preceding
it by a backslash. Thus, the regular expression ** also matches the string
**. Write a regular expression that matches the string "\.

Exercise 3.3.8 : In Lex, a complemented character class represents any char-
acter except the ones listed in the character class. We denote a complemented
class by using * as the first character; this symbol (caret) is not itself part of
the class being complemented, unless it is listed within the class itself. Thus,
[^ A-Za-z] matches any character that is not an uppercase or lowercase letter,
and [^\^I represents any character but the caret (or newline, since newline
cannot be in any character class). Show that for every regular expression with
complemented character classes, there is an equivalent regular expression with-
out complemented character classes.

3.3. SPECIFICATION OF TOKENS

the one non-operator character c

character c literally

string s literally

any character but newline

beginning of a line

end of a line

any one of the characters in string s

any one character not in string s

zero or more strings matching r

one or more strings matching r

zero or one r

between m and n occurrences of r

an r l followed by an r2

an r1 or an r2

same as r

r l when followed by 7-2

Figure 3.8: Lex regular expressions

! Exercise 3.3.9 : The regular expression r{m, n } matches from m to n occur-
rences of the pattern r . For example, a [I , 51 matches a string of one to five a's.
Show that for every regular expression containing repetition operators of this
form, there is an equivalent regular expression without repetition operators.

! Exercise 3.3.10 : The operator A matches the left end of a line, and $ matches
the right end of a line. The operator A is also used to introduce complemented
character classes, but the context always makes it clear which meaning is in-
tended. For example, ^ CAaeioul *$ matches any complete line that does not
contain a lowercase vowel.

a) How do you tell which meaning of A is intended?

b) Can you always replace a regular expression using the A and $ operators
by an equivalent expression that does not use either of these operators?

! Exercise 3.3.1 1 : The UNIX shell command sh uses the operators in Fig. 3.9
in filename expressions to describe sets of file names. For example, the filename
expression * . o matches all file names ending in . o; sort 1. ? matches all file-
names of the form sort . c, where c is any character. Show how sh filename

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.9: Filename expressions used by the shell command sh

EXPRESSION
I I s

\
*
?

[s]

expressions can be replaced by equivalent regular expressions using only the
basic union, concatenation, and closure operators.

! Exercise 3.3.12 : SQL allows a rudimentary form of patterns in which two
characters have special meaning: underscore (-) stands for any one character
and percent-sign (%) stands for any string of 0 or more characters. In addition,
the programmer may define any character, say e, to be the escape character, so
e preceding an e preceding -, %, or another e gives the character that follows its
literal meaning. Show how to express any SQL pattern as a regular expression,
given that we know which character is the escape character.

MATCHES
string s literally

character c literally

any string

any character

any character in s

3.4 Recognition of Tokens

EXAMPLE

J\J
\
*.o

sort 1. ?

sort 1. [cso]

In the previous section we learned how to express patterns using regular expres-
sions. Now, we must study how to take the patterns for all the needed tokens
and build a piece of code that examines the input string and finds a prefix that
is a lexeme matching one of the patterns. Our discussion will make use of the
following running example.

stmt + if expr then stmt
I if expr then stmt else stmt
I E.

expr + term relop term
I term

term + id
I number

Figure 3.10: A grammar for branching statements

Example 3.8 : The grammar fragment of Fig. 3.10 describes a simple form
of branching statements and conditional expressions. This syntax is similar to
that of the language Pascal, in that then appears explicitly after conditions.

3.4. RECOGNITION OF TOKENS 129

For relop, we use the comparison operators of languages like Pascal or SQL,
where = is "equals" and <> is "not equals," because it presents an interesting
structure of lexemes.

The terminals of the grammar, which are if, then , else, relop, id, and
number, are the names of tokens as far as the lexical analyzer is concerned. The
patterns for these tokens are described using regular definitions, as in Fig. 3.11.
The patterns for id and n u m b e r are similar to what we saw in Example 3.7.

digit
digits

n u m b e r
le t ter

id
if

t h e n
else

relop

Lo-91
digit+
digits (. digits)? (E [+-I? digits)?
[A-~a-z]
le t ter (le t ter I digit)*
i f
then
e l s e
< I > I < = I > = I =) < >

Figure 3.11: Patterns for tokens of Example 3.8

For this language, the lexical analyzer will recognize the keywords i f , then,
and e l se , as well as lexemes that match the patterns for relop, id , and number.
To simplify matters, we make the common assumption that keywords are also
reserved words: that is, they are not identifiers, even though their lexemes
match the pattern for identifiers.

In addition, we assign the lexical analyzer the job of stripping out white-
space, by recognizing the "token" w s defined by:

w s -+ (blank I t a b (newline)+

Here, blank, tab , and newline are abstract symbols that we use to express
the ASCII characters of the same names. Token w s is different from the other
tokens in that, when we recognize it, we do not return it to the parser, but rather
restart the lexical analysis from the character that follows the whitespace. It is
the following token that gets returned to the parser.

Our goal for the lexical analyzer is summarized in Fig. 3.12. That table
shows, for each lexeme or family of lexemes, which token name is returned to
the parser and what attribute value, as discussed in Section 3.1.3, is returned.
Note that for the six relational operators, symbolic constants LT, LE, and so
on are used as the attribute value, in order to indicate which instance of the
token relop we have found. The particular operator found will influence the
code that is output from the compiler.

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.12: Tokens, their patterns, and attribute values

LEXEMES
Any ws

i f
then
else

Any id
Any number

<
<=
- -

<>
>

>=

3.4.1 Transition Diagrams

As an intermediate step in the construction of a lexical analyzer, we first convert
patterns into stylized flowcharts, called "transition diagrams." In this section,
we perform the conversion from regular-expression patterns to transition dia-
grams by hand, but in Section 3.6, we shall see that there is a mechanical way
to construct these diagrams from collections of regular expressions.

Transition diagrams have a collection of nodes or circles, called states. Each
state represents a condition that could occur during the process of scanning
the input looking for a lexeme that matches one of several patterns. We may
think of a state as summarizing all we need to know about what characters we
have seen between the lexemeBegin pointer and the forward pointer (as in the
situation of Fig. 3.3).

Edges are directed from one state of the transition diagram to another.
Each edge is labeled by a symbol or set of symbols. If we are in some state
s , and the next input symbol is a , we look for an edge out of state s labeled
by a (and perhaps by other symbols, as well). If we find such an edge, we
advance the forward pointer arid enter the state of the transition diagram to
which that edge leads. We shall assume that all our transition diagrams are
deterministic, meaning that there is never more than one edge out of a given
state with a given symbol among its labels. Starting in Section 3.5, we shall
relax the condition of determinism, making life much easier for the designer
of a lexical analyzer, although trickier for the implementer. Some important
conventions about transition diagrams are:

TOKEN NAME
-

if
then
else
id

number
relop
relop
relop
relop
relop
relop

1. Certain states are said to be accepting, or final. These states indicate that
a lexeme has been found, although the actual lexeme may not consist of
all positions between the ZexemeBegin and forward pointers. We always

ATTRIBUTE VALUE
-

-

-

-

Pointer to table entry
Pointer to table entry

LT
LE
EQ
NE
GT
GE

3.4. RECOGNITION OF TOKENS 131

indicate an accepting state by a double circle, and if there is an action
to be taken - typically returning a token and an attribute value to the
parser - we shall attach that action to the accepting state.

2. In addition, if it is necessary to retract the forward pointer one position
(i.e., the lexeme does not include the symbol that got us to the accepting
state), then we shall additionally place a * near that accepting state. In
our example, it is never necessary to retract forward by more than one
position, but if it were, we could attach any number of *'s to the accepting
state.

3. One state is designated the start state, or initial state; it is indicated by
an edge, labeled "start ," entering from nowhere. The transition diagram
always begins in the start state before any input symbols have been read.

Example 3.9 : Figure 3.13 is a transition diagram that recognizes the lexemes
matching the token relop. We begin in state 0, the start state. If we see < as the
first input symbol, then among the lexemes that match the pattern for relop
we can only be looking at <, <>, or <=. We therefore go to state 1, and look at
the next character. If it is =, then we recognize lexeme <=, enter state 2, and
return the token relop with attribute LE, the symbolic constant representing
this particular comparison operator. If in state 1 the next character is >, then
instead we have lexeme <>, and enter state 3 to return an indication that the
not-equals operator has been found. On any other character, the lexeme is <,
and we enter state 4 to return that information. Note, however, that state 4
has a * to indicate that we must retract the input one position.

return(relop, LE)

return(relop, NE)

return(relop, LT)

' return relop, GE)

o* return (relop, GT)

Figure 3.13: Transition diagram for relop

On the other hand, if in state 0 the first character we see is =, then this one
character must be the lexeme. We immediately return that fact from state 5.

132 CHAPTER 3. LEXICAL ANALYSIS

The remaining possibility is that the first character is >. Then, we must enter
state 6 and decide, on the basis of the next character, whether the lexeme is >=
(if we next see the = sign), or just > (on any other character). Note that if, in
state 0, we see any character besides C, =, or >, we can not possibly be seeing
a re lop lexeme, so this transition diagram will not be used.

3.4.2 Recognition of Reserved Words and Identifiers

Recognizing keywords and identifiers presents a problem. Usually, keywords like
i f or then are reserved (as they are in our running example), so they are not
identifiers even though they look like identifiers. Thus, although we typically
use a transition diagram like that of Fig. 3.14 to search for identifier lexemes,
this diagram will also recognize the keywords i f , then, and e l s e of our running
example.

letter or digit

*
@) return (getToken(), installZD ())

Figure 3.14: A transition diagram for id's and keywords

There are two ways that we can handle reserved words that look like iden-
tifiers:

1. Install the reserved words in the symbol table initially. A field of the
symbol-table entry indicates that these strings are never ordinary identi-
fiers, and tells which token they represent. We have supposed that this
method is in use in Fig. 3.14. When we find an identifier, a call to installID
places it in the symbol table if it is not already there and returns a pointer
to the symbol-table entry for the lexeme found. Of course, any identifier
not in the symbol table during lexical analysis cannot be a reserved word,
so its token is id. The function getToken examines the symbol table entry
for the lexeme found, and returns whatever token name the symbol table
says this lexeme represents - either id or one of the keyword tokens that
was initially installed in the table.

2. Create separate transition diagrams for each keyword; an example for
the keyword then is shown in Fig. 3.15. Note that such a transition
diagram consists of states representing the situation after each successive
letter of the keyword is seen, followed by a test for a "nonletter-or-digit,"
i.e., any character that cannot be the continuation of an identifier. It is
necessary to check that the identifier has ended, or else we would return
token then in situations where the correct token was id, with a lexeme
like thenextvalue that has then as a proper prefix. If we adopt this
approach, then we must prioritize the tokens so that the reserved-word

3.4. RECOGNITION OF TOKENS 133

tokens are recognized in preference to id, when the lexeme matches both
patterns. We do not use this approach in our example, which is why the
states in Fig. 3.15 are unnumbered.

Figure 3.15: Hypothetical transition diagram for the keyword then

3.4.3 Completion of the Running Example

The transition diagram for id's that we saw in Fig. 3.14 has a simple structure.
Starting in state 9, it checks that the lexeme begins with a letter and goes to
state 10 if so. We stay in state 10 as long as the input contains letters and digits.
When we first encounter anything but a letter or digit, we go to state 11 and
accept the lexeme found. Since the last character is not part of the identifier,
we must retract the input one position, and as discussed in Section 3.4.2, we
enter what we have found in the symbol table and determine whether we have
a keyword or a true identifier.

The transition diagram for token number is shown in Fig. 3.16, and is so
far the most complex diagram we have seen. Beginning in state 12, if we see a
digit, we go to state 13. In that state, we can read any number of additional
digits. However, if we see anything but a digit or a dot, we have seen a number
in the form of an integer; 123 is an example. That case is handled by entering
state 20, where we return token number and a pointer to a table of constants
where the found lexeme is entered. These mechanics are not shown on the
diagram but are analogous to the way we handled identifiers.

digit digit

digit

Figure 3.16: A transition diagram for unsigned numbers

If we instead see a dot in state 13, then we have an "optional fraction."
State 14 is entered, and we look for one or more additional digits; state 15 is
used for that purpose. If we see an E, then we have an "optional exponent,"
whose recognition is the job of states 16 through 19. Should we, in state 15,
instead see anything but E or a digit, then we have come to the end of the
fraction, there is no exponent, and we return the lexeme found, via state 21.

134 CHAPTER 3. LEXICAL ANALYSIS

The final transition diagram, shown in Fig. 3.17, is for whitespace. In that
diagram, we look for one or more "whitespace" characters, represented by delim
in that diagram - typically these characters would be blank, tab, newline, and
perhaps other characters that are not considered by the language design to be
part of any token.

delim

start
22

-:, delim 8 23 other @ *

Figure 3.17: A transition diagram for whitespace

Note that in state 24, we have found a block of consecutive whitespace
characters, followed by a nonwhitespace character. We retract the input to
begin at the nonwhitespace, but we do not return to the parser. Rather, we
must restart the process of lexical analysis after the whitespace.

3.4.4 Architecture of a Transition-Diagram-Based Lexical
Analyzer

There are several ways that a collection of transition diagrams can be used
to build a lexical analyzer. Regardless of the overall strategy, each state is
represented by a piece of code. We may imagine a variable s t a t e holding the
number of the current state for a transition diagram. A switch based on the
value of s t a t e takes us to code for each of the possible states, where we find
the action of that state. Often, the code for a state is itself a switch statement
or multiway branch that determines the next state by reading and examining
the next input character.

Example 3.10: In Fig. 3.18 we see a sketch of getRelop(), a C++ function
whose job is to simulate the transition diagram of Fig. 3.13 and return an object
of type TOKEN, that is, a pair consisting of the token name (which must be relop
in this case) and an attribute value (the code for one of the six comparison
operators in this case). getRelop() first creates a new object retToken and
initializes its first component to RELOP, the symbolic code for token relop.

We see the typical behavior of a state in case 0, the case where the current
state is 0. A function nextchar() obtains the next character from the input
and assigns it to local variable c. We then check c for the three characters we
expect to find, making the state transition dictated by the transition diagram
of Fig. 3.13 in each case. For example, if the next input character is =, we go
to state 5.

If the next input character is not one that can begin a comparison operator,
then a function f a i l () is called. What fail () does depends on the global error-
recovery strategy of the lexical analyzer. It should reset the forward pointer
to lexemeBegin, in order to allow another transition diagram to be applied to

3.4. RECOGNITION OF TOKENS

TOKEN getRelop()

TOKEN retToken = new(REL0P);
while(1) (/* r epea t cha r ac t e r p rocess ing u n t i l a r e t u r n

o r f a i l u r e occurs */
swi t ch (s t a t e) (

case 0: c = nex t cha r () ;
i f (c == ' 0) s t a t e = 1 ;
e l s e i f (c ==)=)) s t a t e = 5;
e l s e i f (c ==) >)) s t a t e = 6;
e l s e f a i l () ; /* lexeme i s no t a r e l o p */
break;

case 1: . . .
. . .
case 8: r e t r a c t () ;

r e tToken . a t t r i bu t e = GT;
return(retToken) ;

1

Figure 3.18: Sketch of implementation of relop transition diagram

the true beginning of the unprocessed input. It might then change the value
of s t a t e to be the start state for another transition diagram, which will search
for another token. Alternatively, if there is no other transition diagram that
remains unused, f a i l () could initiate an error-correction phase that will try
to repair the input and find a lexeme, as discussed in Section 3.1.4.

We also show the action for state 8 in Fig. 3.18. Because state 8 bears a *,
we must retract the input pointer one position (i.e., put c back on the input
stream). That task is accomplished by the function r e t r a c t () . Since state 8
represents the recognition of lexeme >=, we set the second component of the
returned object, which we suppose is named a t t r i b u t e , to GT, the code for this
operator. CI

To place the simulation of one transition diagram in perspective, let us
consider the ways code like Fig. 3.18 could fit into the entire lexical analyzer.

I . We could arrange for the transition diagrams for each token to be tried se-
quentially. Then, the function f a i l () of Example 3.10 resets the pointer
forward and starts the next transition diagram, each time it is called.
This method allows us to use transition diagrams for the individual key-
words, like the one suggested in Fig. 3.15. We have only to use these
before we use the diagram for id, in order for the keywords to be reserved
words.

136 CHAPTER 3. LEXICAL ANALYSIS

2. We could run the various transition diagrams "in parallel," feeding the
next input character to all of them and allowing each one to make what-
ever transitions it required. If we use this strategy, we must be careful
to resolve the case where one diagram finds a lexeme that matches its
pattern, while one or more other diagrams are still able to process input.
The normal strategy is to take the longest prefix of the input that matches
any pattern. That rule allows us to prefer identifier thenext to keyword
then, or the operator -> to -, for example.

3. The preferred approach, and the one we shall take up in the following
sections, is to combine all the transition diagrams into one. We allow the
transition diagram to read input until there is no possible next state, and
then take the longest lexeme that matched any pattern, as we discussed
in item (2) above. In our running example, this combination is easy,
because no two tokens can start with the same character; i.e., the first
character immediately tells us which token we are looking for. Thus, we
could simply combine states 0, 9, 12, and 22 into one start state, leaving
other transitions intact. However, in general, the problem of combining
transition diagrams for several tokens is more complex, as we shall see
shortly.

3.4.5 Exercises for Section 3.4

Exercise 3.4.1 : Provide transition diagrams to recognize the same languages
as each of the regular expressions-in Exercise 3.3.2.

Exercise 3.4.2 : Provide transition diagrams to recognize the same languages
as each of the regular expressions in Exercise 3.3.5.

The following exercises, up to Exercise 3.4.12, introduce the Aho-Corasick
algorithm for recognizing a collection of keywords in a text string in time pro-
portional to the length of the text and the sum of the length of the keywords.
This algorithm uses a special form of transition diagram called a trie. A trie is
a tree-structured transition diagram with distinct labels on the edges leading
from a node to its children. Leaves of the trie represent recognized keywords.

Knuth, Morris, and Pratt presented an algorithm for recognizing a single
keyword b lb2 . . b, in a text string. Here the trie is a transition diagram with
n states, 0 through n. State 0 is the initial state, and state n represents ac-
ceptance, that is, discovery of the keyword. From each state s from 0 through
n - 1, there is a transition to state s + 1, labeled by symbol b,+~. For example,
the trie for the keyword ababaa is:

In order to process text strings rapidly and search those strings for a key-
word, it is useful to define, for keyword blb2 - . . b, and position s in that keyword
(corresponding to state s of its trie), a failure function, f (s), computed as in

3.4. RECOGNITION OF TOKENS 137

Fig. 3.19. The objective is that blbz . . - bf(,) is the longest proper prefix of
bl b2 . - . b, that is also a suffix of bl bz . . . b,. The reason f (s) is important is that
if we are trying to match a text string for bl b2 - - . b,, and we have matched the
first s positions, but we then fail (i.e., the next position of the text string does
not hold b,+l), then f (s) is the longest prefix of bl b2 . . bn that could possibly
match the text string up to the point we are at. Of course, the next character of
the text string must be bf or else we still have problems and must consider
a yet shorter prefix, which will be bf (

1) t = 0;

2) f (1) = 0;
3) for (s = 1; s < n ; s + +) {
4) while (t > 0 && b,+l ! = bt+l) t = f (t) ;
5) if (b,+l == bt+l) {
6) t = t + l ;
7) f (s + 1) = t ;

1
8) else f (s + 1) = 0;

I

Figure 3.19: Algorithm to compute the failure function for keyword blb2 . . . bn

As an example, the failure function for the trie constructed above for ababaa
is:

For instance, states 3 and 1 represent prefixes aba and a, respectively. f (3) = 1
because a is the longest proper prefix of aba that is also a suffix of aba. Also,
f (2) = 0 , because the longest proper prefix of ab that is also a suffix is the
empty string.

Exercise 3.4.3 : Construct the failure function for the strings:

a) abababaab.

b) aaaaaa.

c) abbaabb.

! Exercise 3.4.4 : Prove, by induction on s, that the algorithm of Fig. 3.19
correctly computes the failure function.

!! Exercise 3.4.5 : Show that the assignment t = f (t) in line (4) of Fig. 3.19 is
executed at most n times. Show that therefore, the entire algorithm takes only
0 (n) time on a keyword of length n.

138 CHAPTER 3. LEXICAL ANALYSIS

Having computed the failure function for a keyword blb2 . . . b,, we can scan
a string ala2 .. -a, in time O(m) to tell whether the keyword occurs in the
string. The algorithm, shown in Fig. 3.20, slides the keyword along the string,
trying to make progress by matching the next character of the keyword with the
next character of the string. If it cannot do so after matching s characters, then
it "slides" the keyword right s - f (s) positions, so only the first f (s) characters
of the keyword are considered matched with the string.

1) s = 0;
2) for (i = I; i 5 m; i++) {
3 while (S > 0 && ai ! = bs+l) s = f (s);
4) if (ai == bs+l) s = s + 1;
5 if (9 == n) return "yes" ;

I
6) return "no";

Figure 3.20: The KMP algorithm tests whether string ala2 . . a, contains a
single keyword bl b2 . . . bn as a substring in O(m + n) time

Exercise 3.4.6: Apply Algorithm KMP to test whether keyword ababaa is a
substring of:

a) abababaab.

b) abababbaa.

!! Exercise 3.4.7 : Show that the algorithm of Fig. 3.20 correctly tells whether
the keyword is a substring of the given string. Hint: proceed by induction on
i. Show that for all i , the value of s after line (4) is the length of the longest
prefix of the keyword that is a suffix of a1 a2 . ai.

!! Exercise 3.4.8 : Show that the algorithm of Fig. 3.20 runs in time O(m + n) ,
assuming that function f is already computed and its values stored in an array
indexed by s.

Exercise 3.4.9 : The Fibonacci strings are defined as follows:

For example, sy = ab, s4 = aba, and ss = abaab.

a) What is the length of s,?

3.4. RECOGNITION OF TOKENS

b) Construct the failure function for se.

c) Construct the failure function for 37.

!! d) Show that the failure function for any s, can be expressed by f (I) =
f (2) = 0, and for 2 < j 5 Is,[, f (j) is j - IS^-^^, where k is the largest
integer such that IsIc 1 5 j + 1.

!! e) In the KMP algorithm, what is the largest number of consecutive applica-
tions of the failure function, when we try to determine whether keyword
sk appears in text string sk+1?

Aho and Corasick generalized the KMP algorithm to recognize any of a
set of keywords in a text string. In this case, the trie is a true tree, with
branching from the root. There is one state for every string that is a prefix
(not necessarily proper) of any keyword. The parent of a state corresponding
to string bl b2 . bh is the state that corresponds to bl b2 . . - bk-1. A state is
accepting if it corresponds to a complete keyword. For example, Fig. 3.21
shows the trie for the keywords he, she, h i s , and hers.

Figure 3.21: Trie for keywords he, she, h i s , hers

The failure function for the general trie is defined as follows. Suppose s
is the state that corresponds to string blb2 . bn. Then f (s) is the state that
corresponds to the longest proper suffix of blb2 - . . b, that is also a prefix of
some keyword. For example, the failure function for the trie of Fig. 3.21 is:

! Exercise 3.4.10 : Modify the algorithm of Fig. 3.19 to compute the failure
function for general tries. Hint: The major difference is that we cannot simply
test for equality or inequality of b,+l and bt+1 in lines (4) and (5) of Fig. 3.19.
Rather, from any state there may be several transitions out on several charac-
ters, as there are transitions on both e and i from state 1 in Fig. 3.21. Any of

140 CHAPTER 3. LEXICAL ANALYSIS

those transitions could lead to a state that represents the longest suffix that is
also a prefix.

Exercise 3.4.11 : Construct the tries and compute the failure function for the
following sets of keywords:

a) aaa, abaaa, and ababaaa.

b) a l l , f a l l , f a t a l , llama, and lame.

c) pipe, pet , item, temper, and perpetual.

! Exercise 3.4.12 : Show that your algorithm from Exercise 3.4.10 still runs in
time that is linear in the sum of the lengths of the keywords.

3.5 The Lexical- Analyzer Generator Lex

In this section, we introduce a tool called Lex, or in a more recent implemen-
tation Flex, that allows one to specify a lexical analyzer by specifying regular
expressions to describe patterns for tokens. The input notation for the Lex tool
is referred to as the Lex language and the tool itself is the Lex compiler. Behind
the scenes, the Lex compiler transforms the input patterns into a transition
diagram and generates code, in a file called l ex . yy . c, that simulates this tran-
sition diagram. The mechanics of how this translation from regular expressions
to transition diagrams occurs is the subject of the next sections; here we only
learn the Lex language.

3.5.1 Use of Lex

Figure 3.22 suggests how Lex is used. An input file, which we call lex.1, is
written in the Lex language and describes the lexical analyzer to be generated.
The Lex compiler transforms l ex . 1 to a C program, in a file that is always
named lex . yy . c. The latter file is compiled by the C compiler into a file called
a . out, as always. The C-compiler output is a working lexical analyzer that can
take a stream of input characters and produce a stream of tokens.

The normal use of the compiled C program, referred to as a . out in Fig. 3.22,
is as a subroutine of the parser. It is a C function that returns an integer, which
is a code for one of the possible token names. The attribute value, whether it
be another numeric code, a pointer to the symbol table, or nothing, is placed
in a global variable yylval,2 which is shared between the lexical analyzer and
parser, thereby making it simple to return both the name and an attribute value
of a token.

2~ncidentally, the yy that appears in y y l v a l and l e x . yy . c refers to the Yacc parser-
generator, which we shall describe in Section 4.9, and which is commonly used in conjunction
with Lex.

3.5. THE LEXICAL-ANALYZER GENERATOR LEX

Lex source program

compiler

Input stream a. out - I t -
* a. out

Sequence of tokens

C
compiler

Figure 3.22: Creating a lexical analyzer with Lex

*

3.5.2 Structure of Lex Programs

A Lex program has the following form:

declarations
%%
translation rules
%%
auxiliary functions

The declarations section includes declarations of variables, manifest constants
(identifiers declared to stand for a constant, e.g., the name of a token), and
regular definitions, in the style of Section 3.3.4.

The translation rules each have the form

Pattern { Action)

Each pattern is a regular expression, which may use the regular definitions of
the declaration section. The actions are fragments of code, typically written in
C, although many variants of Lex using other languages have been created.

The third section holds whatever additional functions are used in the actions.
Alternatively, these functions can be compiled separately and loaded with the
lexical analyzer.

The lexical analyzer created by Lex behaves in concert with the parser as
follows. When called by the parser, the lexical analyzer begins reading its
remaining input, one character at a time, until it finds the longest prefix of the
input that matches one of the patterns Pi. It then executes the associated action
Ai. Typically, Ai will return to the parser, but if it does not (e.g., because Pi
describes whitespace or comments), then the lexical analyzer proceeds to find
additional lexemes, until one of the corresponding actions causes a return to
the parser. The lexical analyzer returns a single value, the token name, to
the parser, but uses the shared, integer variable yy lva l to pass additional
information about the lexeme found, if needed.

142 CHAPTER 3. LEXICAL ANALYSIS

Example 3.1 1 : Figure 3.23 is a Lex program that recognizes the tokens of
Fig. 3.12 and returns the token found. A few observations about this code will
introduce us to many of the important features of Lex.

In the declarations section we see a pair of special brackets, %(and %).
Anything within these brackets is copied directly to the file l ex . yy . c, and is
not treated as a regular definition. It is common to place there the definitions of
the manifest constants, using C #define statements to associate unique integer
codes with each of the manifest constants. In our example, we have listed in a
comment the names of the manifest constants, LT, IF, and so on, but have not
shown them defined to be particular integer^.^

Also in the declarations section is a sequence of regular definitions. These
use the extended notation for regular expressions described in Section 3.3.5.
Regular definitions that are used in later definitions or in the patterns of the
translation rules are surrounded by curly braces. Thus, for instance, delim is
defined to be a shorthand for the character class consisting of the blank, the
tab, and the newline; the latter two are represented, as in all UNIX commands,
by backslash followed by t or n, respectively. Then, ws is defined to be one or
more delimiters, by the regular expression (del im)+.

Notice that in the definition of id and number, parentheses are used as
grouping metasymbols and do not stand for themselves. In contrast, E in the
definition of number stands for itself. If we wish to use one of the Lex meta-
symbols, such as any of the parentheses, +, *, or ?, to stand for themselves, we
may precede them with a backslash. For instance, we see \ . in the definition of
number, to represent the dot, since that character is a metasymbol representing
"any character," as usual in UNIX regular expressions.

In the auxiliary-function section, we see two such functions, i n s t a l l I D 0
and installNum() . Like the portion of the declaration section that appears
between %(. . .%I, everything in the auxiliary section is copied directly to file
lex . yy . c, but may be used in the actions.

Finally, let us examine some of the patterns and rules in the middle section of
Fig. 3.23. First, ws, an identifier declared in the first section, has an associated
empty action. If we find whitespace, we do not return to the parser, but look
for another lexeme. The second token has the simple regular expression pattern
i f . Should we see the two letters i f on the input, and they are not followed
by another letter or digit (which would cause the lexical analyzer to find a
longer prefix of the input matching the pattern for id), then the lexical analyzer
consumes these two letters from the input and returns the token name IF, that
is, the integer for which the manifest constant IF stands. Keywords then and
e l s e are treated similarly.

The fifth token has the pattern defined by id. Note that, although keywords
like i f match this pattern as well as an earlier pattern, Lex chooses whichever

31f Lex is used along with Yacc, then it would be normal to define the manifest constants
in the Yacc program and use them without definition in the Lex program. Since lex .yy. c is
compiled with the Yacc output, the constants thus will be available to the actions in the Lex
program.

3.5. THE LEXICAL-ANALYZER GENERATOR LEX

%(
/* definitions of manifest constants
LT, LE, EQ, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELOP */

%3

/* regular definitions */
delim [\t\nl
ws (delim)+
letter [A-Za-z]
digit [o-91
id (letter) ((letter) 1 (digit)) *
number (digit)+ (\ . (digit)+)? (E [+-I ?(digit)+)?

(ws3
if
then
else
(id)
(number)
11 < 11

11 < = I 1

11=11

(/* no action and no return */)
(return(1F) ;)
(return(THEN) ;)
(return(ELSE) ;)
(yylval = (int) installID(); return(1D);)
(yylval = (int) installNum() ; return(NUMBER) ;)
(yylval = LT; return(REL0P) ;)
(yylval = LE; return(REL0P) ;)
(yylval = EQ ; return(REL0P) ;)
(yylval = NE; return(REL0P);)
(yylval = GT; return(REL0P);)
Cyylval = GE; return(REL0P);)

int installID0 (/* function to install the lexeme, whose
first character is pointed to by yytext,
and whose length is yyleng, into the
symbol table and return a pointer
thereto */

3

int installNum() (/* similar to installID, but puts numer-
ical constants into a separate table */

3

Figure 3.23: Lex program for the tokens of Fig. 3.12

144 CHAPTER 3. LEXICAL ANALYSIS

pattern is listed first in situations where the longest matching prefix matches
two or more patterns. The action taken when id is matched is threefold:

I. Function installID0 is called to place the lexeme found in the symbol
table.

2. This function returns a pointer to the symbol table, which is placed in
global variable yylval, where it can be used by the parser or a later
component of the compiler. Note that installID () has available to it
two variables that are set automatically by the lexical analyzer that Lex
generates:

(a) yytext is a pointer to the beginning of the lexeme, analogous to
1exemeBegin in Fig. 3.3.

(b) yyleng is the length of the lexeme found.

3. The token name I D is returned to the parser.

The action taken when a lexeme matching the pattern number is similar, using
the auxiliary function ins t allNum () . 17

3.5.3 Conflict Resolution in Lex

We have alluded to the two rules that Lex uses to decide on the proper lexeme
to select, when several prefixes of the input match one or more patterns:

1. Always prefer a longer prefix to a shorter prefix.

2. If the longest possible prefix matches two or more patterns, prefer the
pattern listed first in the Lex program.

Example 3.12 : The first rule tells us to continue reading letters and digits to
find the longest prefix of these characters to group as an identifier. It also tells
us to treat <= as a single lexeme, rather than selecting < as one lexeme and =
as the next lexeme. The second rule makes keywords reserved, if we list the
keywords before id in the program. For instance, if then is determined to be
the longest prefix of the input that matches any pattern, and the pattern then
precedes {id), as it does in Fig. 3.23, then the token THEN is returned, rather
than ID.

3.5.4 The Lookahead Operator

Lex automatically reads one character ahead of the last character that forms
the selected lexeme, and then retracts the input so only the lexeme itself is
consumed from the input. However, sometimes, we want a certain pattern to
be matched to the input only when it is followed by a certain other characters.
If so, we may use the slash in a pattern to indicate the end of the part of the

3.5. THE LEXICAL-ANALYZER GENERATOR LEX 145

pattern that matches the lexeme. What follows / is additional pattern that
must be matched before we can decide that the token in question was seen, but
what matches this second pattern is not part of the lexeme.

Example 3.13 : In Fortran and some other languages, keywords are not re-
served. That situation creates problems, such as a statement

where IF is the name of an array, not a keyword. This statement contrasts with
statements of the form

IF (condition) THEN . . .

where IF is a keyword. Fortunately, we can be sure that the keyword IF is
always followed by a left parenthesis, some text - the condition - that may
contain parentheses, a right parenthesis and a letter. Thus, we could write a
Lex rule for the keyword IF like:

This rule says that the pattern the lexeme matches is just the two letters IF.
The slash says that additional pattern follows but does not match the lexeme.
In this pattern, the first character is the left parentheses. Since that character is
a Lex metas~mbol, it must be preceded by a backslash to indicate that it has its
literal meaning. The dot and star match "any string without a newline." Note
that the dot is a Lex metasymbol meaning "any character except newline." It
is followed by a right parenthesis, again with a backslash to give that character
its literal meaning. The additional pattern is followed by the symbol letter,
which is a regular definition representing the character class of all letters.

Note that in order for this pattern to be foolproof, we must preprocess
the input to delete whitespace. We have in the pattern neither provision for
whitespace, nor can we deal with the possibility that the condition extends over
lines, since the dot will not match a newline character.

For instance, suppose this pattern is asked to match a prefix of input:

the first two characters match IF, the next character matches \ (, the next nine
characters match . *, and the next two match \) and letter. Note the fact that
the first right parenthesis (after C) is not followed by a letter is irrelevant; we
only need to find some way of matching the input to the pattern. We conclude
that the letters IF constitute the lexeme, and they are an instance of token if.

146 CHAPTER 3. LEXICAL ANALYSIS

3.5.5 Exercises for Section 3.5

Exercise 3.5.1 : Describe how to make the following modifications to the Lex
program of Fig. 3.23:

a) Add the keyword while.

b) Change the comparison operators to be the C operators of that kind.

c) Allow the underscore (-) as an additional letter.

! d) Add a new pattern with token STRING. The pattern consists of a double-
quote ("), any string of characters and a final double-quote. However,
if a double-quote appears in the string, it must be escaped by preceding
it with a backslash (\), and therefore a backslash in the string must be
represented by two backslashes. The lexical value, which is the string
without the surrounding double-quotes, and with backslashes used to es-
cape a character removed. Strings are to be installed in a table of strings.

Exercise 3.5.2 : Write a Lex program that copies a file, replacing each non-
empty sequence of white space by a single blank.

Exercise 3.5.3 : Write a Lex program that copies a C program, replacing each
instance of the keyword f l o a t by double.

! Exercise 3.5.4: Write a Lex program that converts a file to "Pig latin."
Specifically, assume the file is a sequence of words (groups of letters) separated
by whitespace. Every time you encounter a word:

1. If the first letter is a consonant, move it to the end of the word and then
add ay.

2. If the first letter is a vowel, just add ay to the end of the word.

All nonletters are copied intact to the output.

! Exercise 3.5.5 : In SQL, keywords and identifiers are case-insensitive. Write
a Lex program that recognizes the keywords SELECT, FROM, and WHERE (in any
combination of capital and lower-case letters), and token I D , which for the
purposes of this exercise you may take to be any sequence of letters and digits,
beginning with a letter. You need not install identifiers in a symbol table, but
tell how the "install" function would differ from that described for case-sensitive
identifiers as in Fig. 3.23.

3.6. FINITE AUTOMATA

3.6 Finite Automata

We shall now discover how Lex turns its input program into a lexical analyzer.
At the heart of the transition is the formalism known as f inite automata. These
are essentially graphs, like transition diagrams, with a few differences:

1. Finite automata are recognizers; they simply say "yes" or "no" about each
possible input string.

2. Finite automata come in two flavors:

(a) Nondeterministic finite automata (NFA) have no restrictions on the
labels of their edges. A symbol can label several edges out of the
same state, and E, the empty string, is a possible label.

(b) Deterministic finite automata (DFA) have, for each state, and for
each symbol of its input alphabet exactly one edge with that symbol
leaving that state.

Both deterministic and nondeterministic finite automata are capable of rec-
ognizing the same languages. In fact these languages are exactly the same
languages, called the regular languages, that regular expressions can de~cr ibe .~

3.6. I Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) consists of:

1. A finite set of states S.

2. A set of input symbols C, the input alphabet. We assume that E, which
stands for the empty string, is never a member of C.

3. A transition function that gives, for each state, and for each symbol in
C U (E) a set of next states.

4. A state so from S that is distinguished as the start state (or init ial state).

5 . A set of states F, a subset of S, that is distinguished as the accepting
states (or final states).

We can represent either an NFA or DFA by a transition graph, where the
nodes are states and the labeled edges represent the transition function. There
is an edge labeled a from state s to state t if and only if t is one of the next
states for state s and input a. This graph is very much like a transition diagram,
except:

-- -

4 ~ h e r e is a small lacuna: as we defined them, regular expressions cannot describe the
empty language, since we would never want to use this pattern in practice. However, finite
automata can define the empty language. In the theory, 0 is treated as an additional regular
expression for the sole purpose of defining the empty language.

148 CHAPTER 3. LEXICAL ANALYSIS

a) The same symbol can label edges from one state to several different states,
and

b) An edge may be labeled by c, the empty string, instead of, or in addition
to, symbols from the input alphabet.

Example 3.14: The transition graph for an NFA recognizing the language
of regular expression (aJb)*abb is shown in Fig. 3.24. This abstract example,
describing all strings of a's and b's ending in the particular string abb, will be
used throughout this section. It is similar to regular expressions that describe
languages of real interest, however. For instance, an expression describing all
files whose name ends in .o is any* .o, where any stands for any printable
character .

Figure 3.24: A nondeterministic finite automaton

Following our convention for transition diagrams, the double circle around
state 3 indicates that this state is accepting. Notice that the only ways to get
from the start state 0 to the accepting state is to follow some path that stays
in state 0 for a while, then goes to states 1, 2, and 3 by reading abb from the
input. Thus, the only strings getting to the accepting state are those that end
in abb.

3.6.2 Transition Tables

We can also represent an NFA by a transition table, whose rows correspond to
states, and whose columns correspond to the input symbols and c. The entry for
a given state and input is the value of the transition function applied to those
arguments. If the transition function has no information about that state-input
pair, we put Q) in the table for the pair.

Example 3.15: The transition table for the NFA of Fig. 3.24 is shown in
Fig. 3.25.

The transition table has the advantage that we can easily find the transitions
on a given state and input. Its disadvantage is that it takes a lot of space, when
the input alphabet is large, yet most states do not have any moves on most of
the input symbols.

3.6. FINITE AUTOMATA

Figure 3.25: Transition table for the NFA of Fig. 3.24

3.6.3 Acceptance of Input Strings by Automata

An NFA accepts input string x if and only if there is some path in the transition
graph from the start state to one of the accepting states, such that the symbols
along the path spell out x. Note that c labels along the path are effectively
ignored, since the empty string does not contribute to the string constructed
along the path.

Example 3.16: The string aabb is accepted by the NFA of Fig. 3.24. The
path labeled by aabb from state 0 to state 3 demonstrating this fact is:

a a b b
0-0-1-2-3

Note that several paths labeled by the same string may lead to different states.
For instance, path

a a b b
0-0-0-0-0

is another path from state 0 labeled by the string aabb. This path leads to
state 0, which is not accepting. However, remember that an NFA accepts a
string as long as some path labeled by that string leads from the start state
to an accepting state. The existence of other paths leading to a nonaccepting
state is irrelevant.

The language defined (or accepted) by an NFA is the set of strings labeling
some path from the start to an accepting state. As was mentioned, the NFA of
Fig. 3.24 defines the same language as does the regular expression (aJb)* abb,
that is, all strings from the alphabet { a , b} that end in abb. We may use L(A)
to stand for the language accepted by automaton A.

Example 3.17 : Figure 3.26 is an NFA accepting L(aa* lbb*). String aaa is
accepted because of the path

E a a a
0 -- 1 -------- 2 -------- 2 - 2

Note that E'S "disappear" in a concatenation, so the label of the path is aaa.

3.6.4 Deterministic Finite Automata

A determinist ic f in i te automaton (DFA) is a special case of an NFA where:

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.26: NFA accepting aa* 1 bb*

1. There are no moves on input E , and

2. For each state s and input symbol a, there is exactly one edge out of s
labeled a.

If we are using a transition table to represent a DFA, then each entry is a single
state. we may therefore represent this state without the curly braces that we
use to form sets.

While the NFA is an abstract representation of an algorithm to recognize
the strings of a certain language, the DFA is a simple, concrete algorithm for
recognizing strings. It is fortunate indeed that every regular expression and
every NFA can be converted to a DFA accepting the same language, because it
is the DFA that we really implement or simulate when building lexical analyzers.
The following algorithm shows how to apply a DFA to a string.

Algorithm 3.18 : Simulating a DFA.

INPUT: An input string x terminated by an end-of-file character eof. A DFA
D with start state so, accepting states F, and transition function moue.

OUTPUT: Answer ''yes" if D accepts x; "no" otherwise.

METHOD: Apply the algorithm in Fig. 3.27 to the input string x. The function
moue(s, c) gives the state to which there is an edge from state s on input c.
The function next Char returns the next character of the input string x.

Example 3.19 : In Fig. 3.28 we see the transition graph of a DFA accepting
the language (alb)*abb, the same as that accepted by the NFA of Fig. 3.24.
Given the input string ababb, this DFA enters the sequence of states 0,1,2,1,2,3
and returns "yes."

3.6. FINITE AUTOMATA

S = so;
c = nextchar();
while (c != eof) {

s = move(s, c);
c = nextchar();

1
if (s is in F) return "yes";
else return "no";

Figure 3.27: Simulating a DFA

Figure 3.28: DFA accepting (aJb)*abb

3.6.5 Exercises for Section 3.6

! Exercise 3.6.1 : Figure 3.19 in the exercises of Section 3.4 computes the failure
function for the KMP algorithm. Show how, given that failure function, we
can construct, from a keyword blb2 . bn an n + I-state DFA that recognizes
.* bl b2 . bn, where the dot stands for "any character." Moreover, this DFA can
be constructed in O(n) time.

Exercise 3.6.2 : Design finite automata (deterministic or nondeterministic)
for each of the languages of Exercise 3.3.5.

Exercise 3.6.3 : For the NFA of Fig. 3.29, indicate all the paths labeled aabb.
Does the NFA accept aabb?

start 8-83 a a

Figure 3.29: NFA for Exercise 3.6.3

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.30: NFA for Exercise 3.6.4

Exercise 3.6.4 : Repeat Exercise 3.6.3 for the NFA of Fig. 3.30.

Exercise 3.6.5 : Give the transition tables for the NFA of:

a) Exercise 3.6.3.

b) Exercise 3.6.4.

c) Figure 3.26.

3.7 From Regular Expressions to Automata

The regular expression is the notation of choice for describing lexical analyzers
and other pattern-processing software, as was reflected in Section 3.5. How-
ever, implementation of that software requires the simulation of a DFA, as in
Algorithm 3.18, or perhaps simulation of an NFA. Because an NFA often has a
choice of move on an input symbol (as Fig. 3.24 does on input a from state 0)
or on e (as Fig. 3.26 does from state 0), or even a choice of making a transition
on E: or on a real input symbol, its simulation is less straightforward than for a
DFA. Thus often it is important to convert an NFA to a DFA that accepts the
same language.

In this section we shall first show how to convert NFA's to DFA's. Then, we
use this technique, known as "the subset construction," to give a useful algo-
rit hm for simulating NFA's directly, in situations (other than lexical analysis)
where the NFA-to-DFA conversion takes more time than the direct simulation.
Next, we show how to convert regular expressions to NFA's, from which a DFA
can be constructed if desired. We conclude with a discussion of the time-space
tradeoffs inherent in the various methods for implementing regular expressions,
and see how to choose the appropriate method for your application.

3.7.1 Conversion of an NFA to a DFA

The general idea behind the subset construction is that each state of the
constructed DFA corresponds to a set of NFA states. After reading input

3.7. FROM REGULAR EXPRESSIONS T O AUTOMATA

ala2 - - . a,, the DFA is in that state which corresponds to the set of states that
the NFA can reach, from its start state, following paths labeled ala2 . . an.

It is possible that the number of DFA states is exponential in the number
of NFA states, which could lead to difficulties when we try to implement this
DFA. However, part of the power of the automaton-based approach to lexical
analysis is that for real languages, the NFA and DFA have approximately the
same number of states, and the exponential behavior is not seen.

Algorithm 3.20 : The subset construction of a DFA from an NFA.

OUTPUT: A DFA D accepting the same language as N.

METHOD: Our algorithm constructs a transition table Dtran for D. Each
state of D is a set of NFA states, and we construct Dtran so D will simulate
"in parallel" all possible moves N can make on a given input string. Our first
problem is to deal with e-transitions of N properly. In Fig. 3.31 we see the
definitions of several functions that describe basic computations on the states
of N that are needed in the algorithm. Note that s is a single state of N , while
T is a set of states of N .

t-closure(s) I Set of NFA states reachable from NFA state s

I in set T on €-transitions alone; = Us in T e-closure(s).

e-closure(T)

move(T,a) (Set of NFA states to which there is a transition on

on e-transitions alone.

Set of NFA states reachable from some NFA state s

I input symbol a from some state s in T.

Figure 3.31: Operations on NFA states

We must explore those sets of states that N can be in after seeing some input
string. As a basis, before reading the first input symbol, N can be in any of the
states of E-closure(so), where so is its start state. For the induction, suppose
that N can be in set of states T after reading input string x. If it next reads
input a , then N can immediately go to any of the states in move(T, a). However,
after reading a, it may also make several €-transitions; thus N could be in any
state of e-closure(move(T, a)) after reading input xu. Following these ideas, the
construction of the set of D's states, Dstates, and its transition function Dtran,
is shown in Fig. 3.32.

The start state of D is c-closure(so), and the accepting states of D are all
those sets of N's states that include at least one accepting state of N . To
complete our description of the subset construction, we need only to show how

CHAPTER 3.- LEXICAL ANALYSIS

initially, e-closure(so) is the only state in Dstates, and it is unmarked;
while (there is an unmarked state T in Dstates) {

mark T ;
for (each input symbol a) {

U = E- closure(moue(~, a)) ;
if (U is not in Dstates)

add U as an unmarked state to Dstates;
Dtran[T, a] = U;

3

Figure 3.32: The subset construction

E-closure(T) is computed for any set of NFA states T. This process, shown in
Fig. 3.33, is a straightforward search in a graph from a set of states. In this
case, imagine that only the €-labeled edges are available in the graph.

push all states of T onto stack;
initialize E- closure(T) to T;
while (stack is not empty) {

pop t, the top element, off stack;
for (each state u with an edge from t to u labeled e)

if (u is not in e-closure(T)) {
add u to e-closure(T);
push u onto stack

1

Figure 3.33: Computing E- closure(T)

Example 3.21 : Figure 3.34 shows another NFA accepting (a1 b) *abb; it hap-
pens to be the one we shall construct directly from this regular expression in
Section 3.7. Let us apply Algorithm 3.20 to Fig. 3.29.

The start state A of the equivalent DFA is E-closure(O), or A = {0,1,2,4,7),
since these are exactly the states reachable from state 0 via a path all of whose
edges have label e. Note that a path can have zero edges, so state 0 is reachable
from itself by an €-labeled path.

The input alphabet is {a, b). Thus, our first step is to mark A and compute
Dtran[A, a] = E-closure(moue(A, a)) and Dtran[A, b] = t- closure(moue(A, b)) .
Among the states 0, 1, 2, 4, and 7, only 2 and 7 have transitions on a, to
3 and 8, respectively. Thus, move(A, a) = {3,8). Also, t-closure({3,8) =
{1,2,3,4,6,7,8), so we conclude

3.7. FROM REGULAR EXPRESSIONS T O AUTOMATA

Figure 3.34: NFA N for (alb)*abb

Dtran[A, a] = e-closure(rnoue(A, a)) = e-closure({3, 8)) = {I, 2,3,4,6,7,8)

Let us call this set B, so Dtran[A, a] = B.
Now, we must compute Dtran[A, b]. Among the states in A, only 4 has a

transition on b, and it goes to 5. Thus,

Let us call the above set C, so Dtran[A, b] = C.

Figure 3.35: Transition table Dtran for DFA D

If we continue this process with the unmarked sets B and C, we eventually
reach a point where all the states of the DFA are marked. This conclusion is
guaranteed, since there are "only" 2'' different subsets of a set of eleven NFA
states. The five different DFA states we actually construct, their correspond-
ing sets of NFA states, and the transition table for the DFA D are shown in
Fig. 3.35, and the transition graph for D is in Fig. 3.36. State A is the start
state, and state E, which contains state 10 of the NFA, is the only accepting
state.

Note that D has one more state than the DFA of Fig. 3.28 for the same lan-
guage. States A and C have the same move function, and so can be merged. We
discuss the matter of minimizing the number of states of a DFA in Section 3.9.6.

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.36: Result of applying the subset construction to Fig. 3.34

3.7.2 Simulationofan NFA

A strategy that has been used in a number of text-editing programs is to con-
struct an NF'A from a regular expression and then simulate the NFA using
something like an on-the-fly subset construction. The simulation is outlined
below.

Algorit hrn 3.22 : Simulating an NFA.

INPUT: An input string x terminated by an end-of-file character eof. An NFA
N with start state so, accepting states F, and transition function moue.

OUTPUT: Answer "yes7' if M accepts x; "no" otherwise.

METHOD: The algorithm keeps a set of current states S, those that are reached
from so following a path labeled by the inputs read so far. If c is the next input
character, read by the function nextchar(), then we first compute move(S, c)
and then close that set using E-closure(). The algorithm is sketched in Fig. 3.37.

S = E-closure(so);
c = nextchar();
while (c != eof) {

S = E- closure (move(S, c)) ;
c = nextchar();

1
if (S n F != 0) return Ityesll;
else return "no";

Figure 3.37: Simulating an NFA

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA

3.7.3 Efficiency of NFA Simulation

If carefully implemented, Algorithm 3.22 can be quite efficient. As the ideas
involved are useful in a number of similar algorithms involving search of graphs,
we shall look at this implementation in additional detail. The data structures
we need are:

I . Two stacks, each of which holds a set of NFA states. One of these stacks,
oldstates, holds the "current" set of states, i.e., the value of S on the right
side of line (4) in Fig. 3.37. The second, newstates, holds the "next" set
of states - S on the left side of line (4). Unseen is a step where, as we
go around the loop of lines (3) through (6), newstates is transferred to
oldstates.

2. A boolean array alreadyon, indexed by the NFA states, to indicate which
states are in newstates. While the array and stack hold the same infor-
mation, it is much faster to interrogate alreadyOn[s] than to search for
state s on the stack newstates. It is for this efficiency that we maintain
both representations.

3. A two-dimensional array move[s, a] holding the transition table of the
NFA. The entries in this table, which are sets of states, are represented
by linked lists.

To implement line (1) of Fig. 3.37, we need to set each entry in array al-
readyon to FALSE, then for each state s in c-closure(so), push s onto oldstates
and set alreadyOn[s] to TRUE. This operation on state s , and the implementation
of line (4) as well, are facilitated by a function we shall call addState(s). This
function pushes state s onto newstates, sets alreadyOn[s] to TRUE, and calls
itself recursively on the states in move[s, €1 in order to further the computation
of c-closure(s). However, to avoid duplicating work, we must be careful never
to call addstate on a state that is already on the stack newstates. Figure 3.38
sketches this function.

9) addState(s) {
10) push s onto newstates;
l1> alreadyOn[s] = TRUE;
12) for (t on move[s, €1)
13) if (!alreadyOn(t))
14) addState(t) ;
15) >

Figure 3.38: Adding a new state s , which is known not to be on newstates

We implement line (4) of Fig. 3.37 by looking at each state s on oldstates.
We first find the set of states move[s, c], where c is the next input, and for each

158 CHAPTER 3. LEXICAL ANALYSIS

of those states that is not already on newstates, we apply addstate to it. Note
that addstate has the effect of computing the E-closure and adding all those
states to newstates as well, if they were not already on. This sequence of steps
is summarized in Fig. 3.39.

16) for (s on oldstates) {
17) for (t on move[s, c])
18) if (!alreadyOn[t])
19) addState(t) ;
20) pop s from oldstates;
21) >
22) for (s on newstates) {
23) pop s from newstates;
24) push s onto oldstates;
25) alreadyOn[s] = FALSE;
26) }

Figure 3.39: Implementation of step (4) of Fig. 3.37

Now, suppose that the NFA N has n states and m transitions; i.e., m is the
sum over all states of the number of symbols (or E) on which the state has a
transition out. Not counting the call to addstate at line (19) of Fig. 3.39, the
time spent in the loop of lines (16) through (21) is O(n). That is, we can go
around the loop at most n times, and each step of the loop requires constant
work, except for the time spent in addstate. The same is true of the loop of
lines (22) through (26).

During one execution of Fig. 3.39, i.e., of step (4) of Fig. 3.37, it is only
possible to call addstate on a given state once. The reason is that whenever
we call addState(s), we set alreadyOn[s] to TRUE at line (11) of Fig. 3.39. Once
alreadyOn[s] is TRUE, the tests at line (13) of Fig. 3.38 and line (18) of Fig. 3.39
prevent another call.

The time spent in one call to addstate, exclusive of the time spent in recur-
sive calls at line (14), is O(1) for lines (10) and (11). For lines (12) and (13),
the time depends on how many €-transitions there are out of state s. We do
not know this number for a given state, but we know that there are at most m
transitions in total, out of all states. As a result, the aggregate time spent in
lines (11) over all calls to addstate during one execution of the code of Fig. 3.39
is O(m). The aggregate for the rest of the steps of addstate is O(n), since it is
a constant per call, and there are at most n calls.

We conclude that, implemented properly, the time to execute line (4) of
Fig. 3.37 is O(n + m). The rest of the while-loop of lines (3) through (6) takes
O(1) time per iteration. If the input x is of length I F , then the total work in
that loop is O((k(n + m)). Line (1) of Fig. 3.37 can be executed in O(n + m)
time, since it is essentially the steps of Fig. 3.39 with oldstates containing only

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA 159

Big-Oh Notation

An expression like O(n) is a shorthand for "at most some constant times
n." Technically, we say a function f (n), perhaps the running time of some
step of an algorithm, is 0 (g(n)) if there are constants c and no, such that
whenever n 2 no, it is true that f (n) < cg(n). A useful idiom is "0(1),"
which means "some constant." The use of this big-oh notation enables
us to avoid getting too far into the details of what we count as a unit of
execution time, yet lets us express the rate at which the running time of
an algorithm grows.

the state so. Lines (2)) (7), and (8) each take O(1) time. Thus, the running
time of Algorithm 3.22, properly implemented, is O((lc(n + m)). That is, the
time taken is proportional to the length of the input times the size (nodes plus
edges) of the transition graph.

3.7.4 Construction of an NFA from a Regular Expression

We now give an algorithm for converting any regular expression to an NFA
that defines the same language. The algorithm is syntax-directed, in the sense
that it works recursively up the parse tree for the regular expression. For each
subexpression the algorithm constructs an NFA with a single accepting state.

Algorithm 3.23 : The McNaughton-Yamada-Thompson algorithm to convert
a regular expression to an NFA.

INPUT: A regular expression r over alphabet C.

OUTPUT: An NFA N accepting L(r).

METHOD: Begin by parsing r into its constituent subexpressions. The rules
for constructing an NFA consist of basis rules for handling subexpressions with
no operators, and inductive rules for constructing larger NFA's from the NFA's
for the immediate subexpressions of a given expression.

BASIS: For expression e construct the NFA

st a-

Here, i is a new state, the start state of this NFA, and f is another new state,
the accepting state for the NFA.

For any subexpressiop a in C, construct the NFA

160 CHAPTER 3. LEXICAL ANALYSIS

where again i and f are new states, the start and accepting states, respectively.
Note that in both of the basis constructions, we construct a distinct NFA, with
new states, for every occurrence of e or some a as a subexpression of r .

INDUCTION: Suppose N(s) and N(t) are NFA's for regular expressions s and
t, respectively.

a) Suppose r = slt. Then N (r), the NFA for r , is constructed as in Fig. 3.40.
Here, i and f are new states, the start and accepting states of N(r),
respectively. There are €-transitions from i to the start states of N(s)
and N(t), and each of their accepting states have €-transitions to the
accepting state f . Note that the accepting states of N(s) and N(t) are
not accepting in N(r) . Since any path from i to f must pass through
either N (s) or N (t) exclusively, and since the label of that path is not
changed by the e's leaving i or entering f , we conclude that N (r) accepts
L(s) U L(t), which is the same as L(r). That is, Fig. 3.40 is a correct
construction for the union operator.

Figure 3.40: NFA for the union of two regular expressions

b) Suppose r = st. Then construct N(r) as in Fig. 3.41. The start state of
N (s) becomes the start state of N (r), and the accepting state of N(t) is
the only accepting state of N(r). The accepting state of N (s) and the
start state of N (t) are merged into a single state, with all the transitions
in or out of either state. A path from i to f in Fig. 3.41 must go first
through N(s), and therefore its label will begin with some string in L(s).
The path then continues through N(t), so the path's label finishes with a
string in L(t). As we shall soon argue, accepting states never have edges
out and start states never have edges in, so it is not possible for a path to
re-enter N(s) after leaving it. Thus, N(r) accepts exactly L(s)L(t), and
is a correct NFA for r = st.

Figure 3.41: NFA for the concatenation of two regular expressions

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA 161

c) Suppose r = s*. Then for r we construct the NFA N (r) shown in Fig. 3.42.
Here, i and f are new states, the start state and lone accepting state of
N (r) . To get from i to f , we cail either follow the introduced path labeled
E , which takes care of the one string in ~ (s) ' , or we can go to the start
state of N(s), through that NFA, then from its accepting state back to
its start state zero or more times. These options allow N (r) to accept all
the strings in L(s)' , L (s) ~ , and so on, so the entire set of strings accepted
by N(r) is L(s*).

Figure 3.42: NFA for the closure of a regular expression

d) Finally, suppose r = (s). Then L(r) = L(s), and we can use the NFA
N(s) as N(r) .

The method description in Algorithm 3.23 contains hints as to why the
inductive construction works as it should. We shall not give a formal correctness
proof, but we shall list several properties of the constructed NFA's, in addition
to the all-important fact that N (r) accepts language L(r). These properties
are interesting in their own right, and helpful in making a formal proof.

1. N(r) has at most twice as many states as there are operators and operands
in r . This bound follows from the fact that each step of the algorithm
creates at most two new states.

2. N(r) has one start state and one accepting state. The accepting state has
no outgoing transitions, and the start state has no incoming transitions.

3. Each state of N (r) other than the accepting state has either one outgoing
transition on a symbol in C or two outgoing transitions, both on E .

Example 3.24: Let us use Algorithm 3.23 to construct an NFA for r =
(a(b)*abb. Figure 3.43 shows a parse tree for r that is analogous to the parse
trees constructed for arithmetic expressions in Section 2.2.3. For subexpression
r l , the first a , we construct the NFA:

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.43: Parse tree for (alb)*abb

State numbers have been chosen for consistency with what follows. For r2 we

We can now combine N (r l) and N(rz) , using the construction of Fig. 3.40 to
obtain the NFA for r3 = r l J r 2 ; this NFA is shown in Fig. 3.44.

Figure 3.44: NFA for r3

The NFA for r4 = (r3) is the same as that for r3. The NFA for r~ = (r3)* is
then as shown in ~ i ~ . 3.45. We have used the construction in ~ i ~ . 3.42 to build
this NFA from the NFA in Fig. 3.44.

Now, consider subexpression ra, which is another a. We use the basis con-
struction for a again, but we must use new states. It is not permissible to reuse

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA

Figure 3.45: NFA for r5

the NFA we constructed for r l , even though r l and 7-6 are the same expression.
The NFA for r6 is:

To obtain the NFA for r y = rgr6, we apply the construction of Fig. 3.41. We
merge states 7 and 7', yielding the NFA of Fig. 3.46. Continuing in this fashion
with new NFA's for the two subexpressions b called rs and rlo, we eventually
construct the NFA for (alb)*abb that we first met in Fig. 3.34.

E

Figure 3.46: NFA for r~

3.7.5 Efficiency of String-Processing Algorithms

We observed that Algorithm 3.18 processes a string x in time O(lxl), while in
Section 3.7.3 we concluded that we could simulate an NFA in time proportional
to the product of 1x1 and the size of the NFA's transition graph. Obviously, it

164 CHAPTER 3. LEXICAL ANALYSIS

is faster to have a DFA to simulate than an NFA, so we might wonder whether
it ever makes sense to simulate an NFA.

One issue that may favor an NFA is that the subset construction can, in the
worst case, exponentiate the number of states. While in principle, the number
of DFA states does not influence the running time of Algorithm 3.18, should
the number of states become so large that the transition table does not fit in
main memory, then the true running time would have to include disk 1/0 and
therefore rise noticeably.

Example 3.25 : Consider the family of languages described by regular expres-
sions of the form L, = (a/ b)*a(a/ b)"-', that is, each language L, consists of
strings of a's and b's such that the nth character to the left of the right end
holds a. An n + I-state NFA is easy to construct. It stays in its initial state
under any input, but also has the option, on input a , of going to state 1. From
state 1, it goes to state 2 on any input, and so on, until in state n it accepts.
Figure 3.47 suggests this NFA.

Figure 3.47: An NFA that has many fewer states than the smallest equivalent
DFA

However, any DFA for the language L, must have at least 2n states. We
shall not prove this fact, but the idea is that if two strings of length n can
get the DFA to the same state, then we can exploit the last position where
the strings differ (and therefore one must have a, the other b) to continue the
strings identically, until they are the same in the last n - 1 positions. The DFA
will then be in a state where it must both accept and not accept. Fortunately,
as we mentioned, it is rare for lexical analysis to involve patterns of this type,
and we do not expect to encounter DFA's with outlandish numbers of states in
practice.

However, lexical-analyzer generators and other string-processing systems
often start with a regular expression. We are faced with a choice of converting
the regular expression to an NFA or DFA. The additional cost of going to a DFA
is thus the cost of executing Algorithm 3.23 on the NFA (one could go directly
from a regular expression to a DFA, but the work is essentially the same). If
the string-processor is one that will be executed many times, as is the case for
lexical analysis, then any cost of converting to a DFA is worthwhile. However,
in other string-processing applications, such as grep, where the user specifies
one regular expression and one or several files to be searched for the pattern

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA 165

of that expression, it may be more efficient to skip the step of constructing a
DFA, and simulate the NFA directly.

Let us consider the cost of converting a regular expression r to an NFA by
Algorithm 3.23. A key step is constructing the parse tree for r . In Chapter 4
we shall see several methods that are capable of constructing this parse tree in
linear time, that is, in time O(lrl), where JrJ stands for the size of r - the sum
of the number of operators and operands in r . It is also easy to check that each
of the basis and inductive constructions of Algorithm 3.23 takes constant time,
so the entire time spent by the conversion to an NFA is O(lr().

Moreover, as we observed in Section 3.7.4, the NFA we construct has at
most Irl states and at most 21r(transitions. That is, in terms of the analysis
in Section 3.7.3, we have n 5 Irl and rn 2 21rJ. Thus, simulating this NFA on
an input string x takes time O((r (x 1x1). This time dominates the time taken
by the NFA construction, which is O(lrl), and therefore, we conclude that it is
possible to take a regular expression r and string x, and tell whether x is in
L(r) in time O(lrl x 1x1).

The time taken by the subset construction is highly dependent on the num-
ber of states the resulting DFA has. To begin, notice that in the subset con-
struction of Fig. 3.32, the key step, the construction of a set of states U from
a set of states T and an input symbol a , is very much like the construction of
a new set of states from the old set of states in the NFA simulation of Algo-
rithm 3.22. We already concluded that, properly implemented, this step takes
time at most proportional to the number of states and transitions of the NFA.

Suppose we start with a regular expression r and convert it to an NFA. This
NFA has at most lrl states and at most 217-1 transitions. Moreover, there are
at most lr(input symbols. Thus, for every DFA state constructed, we must
construct at most lr 1 new states, and each one takes at most O(lrl + 2(r 1) time.
The time to construct a DFA of s states is thus O(lrI2s).

In the common case where s is about lr(, the subset construction takes time
O(lrI3). However, in the worst case, as in Example 3.25, this time is 0((rl22Irl).
Figure 3.48 summarizes the options when one is given a regular expression r
and wants to produce a recognizer that will tell whether one or more strings x
are in L(r).

DFA typical case I O(JrI3) I O(lx()

AUTOMATON

NFA

DFA worst case (0(lr1~21'l) I O(lx1)

Figure 3.48: Initial cost and per-string-cost of various methods of recognizing
the language of a regular expression

INITIAL

O(H)

If the per-string cost dominates, as it does when we build a lexical analyzer,

PER STRING

O(b-1 1x1)

166 CHAPTER 3. LEXICAL ANALYSIS

we clearly prefer the DFA. However, in commands like grep, where we run the
automaton on only one string, we generally prefer the NFA. It is not until 1x1
approaches JrJ3 that we would even think about converting to a DFA.

There is, however, a mixed strategy that is about as good as the better of
the NFA and the DFA strategy for each expression r and string x. Start off
simulating the NFA, but remember the sets of NFA states (i.e., the DFA states)
and their transitions, as we compute them. Before processing the current set of
NFA states and the current input symbol, check to see whether we have already
computed this transition, and use the information if so.

3.7.6 Exercises for Section 3.7

Exercise 3.7.1 : Convert to DFA7s the NFA's of:

a) Fig. 3.26.

b) Fig. 3.29.

c) Fig. 3.30.

Exercise 3.7.2 : use Algorithm 3.22 to simulate the NFA7s:

a) Fig. 3.29.

b) Fig. 3.30.

on input aabb.

Exercise 3.7.3 : Convert the following regular expressions to deterministic
finite automata, using algorithms 3.23 and 3.20:

3.8 Design of a Lexical- Analyzer Generator

In this section we shall apply the techniques presented in Section 3.7 to see
how a lexical-analyzer generator such as Lex is architected. We discuss two
approaches, based on NFA's and DFA7s; the latter is essentially the implemen-
tation of Lex.

3.8. DESIGN OF A LEXICAL-ANALYZER GENERATOR

3.8.1 The Structure of the Generated Analyzer

Figure 3.49 overviews the architecture of a lexical analyzer generated by Lex.
The program that serves as the lexical analyzer includes a fixed program that
simulates an automaton; at this point we leave open whether that automaton
is deterministic or nondeterministic. The rest of the lexical analyzer consists of
components that are created from the Lex program by Lex itself.

Input buffer

lexemeBegin forward

Automaton
simulator

Figure 3.49: A Lex program is turned into a transition table and actions, which
are used by a finite-automaton simulator

I 1

A

These components are:

Lex
program

1. A transition table for the automaton.

2. Those functions that are passed directly through Lex to the output (see
Section 3.5.2).

Actions

Lex
compiler

3. The actions from the input program, which appear as fragments of code
to be invoked at the appropriate time by the automaton simulator.

To construct the automaton, we begin by taking each regular-expression
pattern in the Lex program and converting it, using Algorithm 3.23, to an NFA.
We need a single automaton that will recognize lexemes matching any of the
patterns in the program, so we combine all the NFA's into one by introducing
a new start state with €-transitions to each of the start states of the NFA's Ni
for pattern pi. This construction is shown in Fig. 3.50.

w

Example 3.26 : We shall illustrate the ideas of this section with the following
simple, abstract example:

Transition
table

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.50: An NFA constructed from a Lex program

a { action Al for pattern pl)
abb { action A2 for pattern p2 }
a*b+ { action A3 for pattern pg }

Note that these three patterns present some conflicts of the type discussed
in Section 3.5.3. In particular, string abb matches both the second and third
patterns, but we shall consider it a lexeme for pattern pa, since that pattern
is listed first in the above Lex program. Then, input strings such as aabbb . . .
have many prefixes that match the third pattern. The Lex rule is to take the
longest, so we continue reading b's, until another a is met, whereupon we report
the lexeme to be the initial a's followed by as many b's as there are.

Figure 3.51 shows three NFA's that recognize the three patterns. The third
is a simplification of what would come out of Algorithm 3.23. Then, Fig. 3.52
shows these three NFA's combined into a single NFA by the addition of start
state 0 and three €-transitions.

3.8.2 Pattern Matching Based on NFA's

If the lexical analyzer simulates an NFA such as that of Fig. 3.52, then it must
read input beginning at the point on its input which we have referred to as
ZexerneBegin. As it moves the pointer called forward ahead in the input, it
calculates the set of states it is in at each point, following Algorithm 3.22.

Eventually, the NFA simulation reaches a point on the input where there
are no next states. At that point, there is no hope that any longer prefix of the
input would ever get the NFA to an accepting state; rather, the set of states
will always be empty. Thus, we are ready to decide on the longest prefix that
is a lexeme matching some pattern.

3.8. DESIGN OF A LEXICAL-ANALYZER GENERATOR

Figure 3.51: NFA's for a, abb, and a*b+

Figure 3.52: Combined NFA

none

Figure 3.53: Sequence of sets of states entered when processing input aaba

170 CHAPTER 3. LEXICAL ANALYSIS

We look backwards in the sequence of sets of states, until we find a set that
includes one or more accepting states. If there are several accepting states in
that set, pick the one associated with the earliest pattern pi in the list from
the Lex program. Move the forward pointer back to the end of the lexeme, and
perform the action Ai associated with pattern pi.

Example 3.27 : Suppose we have the patterns of Example 3.26 and the input
begins aaba. Figure 3.53 shows the sets of states of the NFA of Fig. 3.52 that
we enter, starting with 6-closure of the initial state 0, which is (O , l , 3,7}, and
proceeding ftom there. After reading the fourth input symbol, we are in an
empty set of states, since in Fig. 3.52, there are no transitions out of state 8 on
input a.

Thus, we need to back up, looking for a set of states that includes an ac-
cepting state. Notice that, as indicated in Fig. 3.53, after reading a we are
in a set that includes state 2 and therefore indicates that the pattern a has
been matched. However, after reading aab, we are in state 8, which indicates
that a*b+ has been matched; prefix aab is the longest prefix that gets us to an
accepting state. We therefore select aab as the lexeme, and execute action A3,
which should include a return to the parser indicating that the token whose
pattern is ps = a*b+ has been found.

3.8.3 DFA's for Lexical Analyzers

Another architecture, resembling the output of Lex, is to convert the NFA
for all the patterns into an equivalent DFA, using the subset construction of
Algorithm 3.20. Within each DFA state, if there are one or more accepting
NFA states, determine the first pattern whose accepting state is represented,
and make that pattern the output of the DFA state.

Example 3.28: Figure 3.54 shows a transition diagram based on the DFA
that is constructed by the subset construction from the NFA in Fig. 3.52. The
accepting states are labeled by the pattern that is identified by that state. For
instance, the state {6,8} has two accepting states, corresponding to patterns
abb and a*b+. Since the former is listed first, that is the pattern associated
with state {6,8).

We use the DFA in a lexical analyzer much as we did the NFA. We simulate
the DFA until at some point there is no next state (or strictly speaking, the
next state is 0, the dead state corresponding to the empty set of NFA states).
At that point, we back up through the sequence of states we entered and, as
soon as we meet an accepting DFA state, we perform the action associated with
the pattern for that state.

Example 3.29: Suppose the DFA of Fig. 3.54 is given input abba. The se-
quence of states entered is 0137,247,58,68, and at the final a there is no tran-
sition out of state 68. Thus, we consider the sequence from the end, and in this
case, 68 itself is an accepting state that reports pattern pa = abb.

3.8. DESIGN OF A LEXICAL-ANALYZER GENERATOR

a
start a

b

a*b+ abb a*b+

Figure 3.54: Transition graph for DFA handling the patterns a , abb, and a*b+

3.8.4 Implementing the Lookahead Operator

Recall from Section 3.5.4 that the Lex lookahead operator / in a Lex pattern
rl/r2 is sometimes necessary, because the pattern r l for a particular token may
need to describe some trailing context r 2 in order to correctly identify the actual
lexeme. When converting the pattern rl /rz to an NFA, we treat the / as if it
were e, so we do not actually look for a / on the input. However, if the NFA
recognizes a prefix xy of the input buffer as matching this regular expression,
the end of the lexeme is not where the NFA entered its accepting state. Rather
the end occurs when the NFA enters a state s such that

1. s has an €-transition on the (imaginary) /,

2. There is a path from the start state of the NFA to state s that spells out
x.

3. There is a path from state s to the accepting state that spells out y.

4. x is as long as possible for any xy satisfying conditions 1-3.

If there is only one c-transition state on the imaginary / in the NFA, then
the end of the lexeme occurs when this state is entered for the last time as the
following example illustrates. If the NFA has more than one c-transition state
on the imaginary /, then the general problem of finding the correct state s is
much more difficult.

Example 3.30 : An NFA for the pattern for the Fortran I F with lookahead,
from Example 3.13, is shown in Fig. 3.55. Notice that the c-transition from
state 2 to state 3 represents the lookahead operator. State 6 indicates the pres-
ence of the keyword IF. However, we find the lexeme IF by scanning backwards
to the last occurrence of state 2, whenever state 6 is entered.

172 CHAPTER 3. LEXICAL ANALYSIS

Dead States in DFA's

Technically, the automaton in Fig. 3.54 is'not quite a DFA. The reason
is that a DFA has a transition from every state on every input symbol in
its input alphabet. Here, we have omitted transitions to the dead state
0, and we have therefore omitted the transitions from the dead state to
itself on every input. Previous NFA-to-DFA examples did not have a way
to get from the start state to 0, but the NFA of Fig. 3.52 does.

However, when we construct a DFA for use in a lexical analyzer, it
is important that we treat the dead state differently, since we must know
when there is no longer any possibility of recognizing a longer lexeme.
Thus, we suggest always omitting transitions to the dead state and elimi-
nating the dead state itself. In fact, the problem is harder than it appears,
since an NFA-to-DFA construction may yield several states that cannot
reach any accepting state, and we must know when any of these states
have been reached. Section 3.9.6 discusses how to combine all these states
into one dead state, so their identification becomes easy. It is also inter-
esting to note that if we construct a DFA from a regular expression using
Algorithms 3.20 and 3.23, then the DFA will not have any states besides
0 that cannot lead to an accepting state.

Figure 3.55: NFA recognizing the keyword I F

3.8.5 Exercises for Section 3.8

Exercise 3.8.1 : Suppose we have two tokens: (1) the keyword i f , and (2) id-
entifiers, which are strings of letters other than i f . Show:

a) The NFA for these tokens, and

b) The DFA for these tokens.

Exercise 3.8.2 : Repeat Exercise 3.8.1 for tokens consisting of (1) the keyword
while, (2) the keyword when, and (3) identifiers consisting of strings of letters
and digits, beginning with a letter.

! Exercise 3.8.3: Suppose we were to revise the definition of a DFA to allow
zero or one transition out of each state on each input symbol (rather than
exactly one such transition, as in the standard DFA definition). Some regular

3.9. OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 173

expressions would then have smaller "DFA's" than they do under the standard
definition of a DFA. Give an example of one such regular expression.

!! Exercise 3.8.4 : Design an algorithm to recognize Lex-lookahead patterns of
the form r l / r2 , where r1 and r2 are regular expressions. Show how your algo-
rithm works on the following inputs:

3.9 Optimization of DFA-Based Pattern
Matchers

In this section we present three algorithms that have been used to implement
and optimize pattern matchers constructed from regular expressions.

1. The first algorithm is useful in a Lex compiler, because it constructs a
DFA directly from a regular expression, without constructing an interme-
diate NFA. The resulting DFA also may have fewer states than the DFA
constructed via an NFA.

2. The second algorithm minimizes the number of states of any DFA, by
combining states that have the same future behavior. The algorithm
itself is quite efficient, running in time O(n log n), where n is the number
of states of the DFA.

3. The third algorithm produces more compact representations of transition
tables than the standard, two-dimensional table.

3.9.1 Important States of an NFA
To begin our discussion of how to go directly from a regular expression to a
DFA, we must first dissect the NFA construction of Algorithm 3.23 and consider
the roles played by various states. We call a state of an NFA important if it has a
non-e out-transition. Notice that the subset construction (Algorithm 3.20) uses
only the important states in a set T when it computes 6-closure(move(~, a)), the
set of states reachable from T on input a. That is, the set of states move(s, a)
is nonempty only if state s is important. During the subset construction, two
sets of NFA states can be identified (treated as if they were the same set) if
they:

1. Have the same important states, and

2. Either both have accepting states or neither does.

CHAPTER 3. LEXICAL ANALYSIS

When the NFA is constructed from a regular expression by Algorithm 3.23,
we can say more about the important states. The only important states are
those introduced as initial states in the basis part for a particular symbol posi-
tion in the regular expression. That is, each important state corresponds to a
particular operand in the regular expression.

The constructed NFA has only one accepting state, but this state, having
no out-transitions, is not an important state. By concatenating a unique right
endmarker # to a regular expression r, we give the accepting state for r a
transition on #, making it an important state of the NFA for (r)#. In other
words, by using the augmented regular expression (r)#, we can forget about
accepting states as the subset construction proceeds; when the construction is
complete, any state with a transition on # must be an accepting state.

The important states of the NFA correspond directly to the positions in
the regular expression that hold symbols of the alphabet. It is useful, as we
shall see, to present the regular expression by its syntax tree, where the leaves
correspond to operands and the interior nodes correspond to operators. An
interior node is called a cat-node, or-node, or star-node if it is labeled by the
concatenation operator (dot), union operator 1, or star operator *, respectively.
We can construct a syntax tree for a regular expression just as we did for
arithmetic expressions in Section 2.5.1.

Example 3.31 : Figure 3.56 shows the syntax tree for the regular expression
of our running example. Cat-nodes are represented by circles.

Figure 3.56: Syntax tree for (aJb)*abb#

Leaves in a syntax tree are labeled by e or by an alphabet symbol. To each
leaf not labeled e, we attach a unique integer. We refer to this integer as the

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 175

position of the leaf and also as a position of its symbol. Note that a symbol
can have several positions; for instance, a has positions 1 and 3 in Fig. 3.56.
The positions in the syntax tree correspond to the important states of the
constructed NFA.

Example 3.32 : Figure 3.57 shows the NFA for the same regular expression as
Fig. 3.56, with the important states numbered and other states represented by
letters. The numbered states in the NFA and the positions in the syntax tree
correspond in a way we shall soon see.

Figure 3.57: NFA constructed by Algorithm 3.23 for (a (b)*abb#

3.9.2 Functions Computed From the Syntax Tree

To construct a DFA directly from a regular expression, we construct its syntax
tree and then compute four functions: nullable, firstpos, lastpos, and followpas,
defined as follows. Each definition refers to the syntax tree for a particular
augmented regular expression (r) # .

1. nullable(n) is true for a syntax-tree node n if and only if the subexpression
represented by n has E in its language. That is, the subexpression can be
"made null" or the empty string, even though there may be other strings
it can represent as well.

2. firstpos(n) is the set of positions in the subtree rooted at n that corre-
spond to the first symbol of at least one string in the language of the
subexpression rooted at n.

3. lastpos(n) is the set of positions in the subtree rooted at n that corre-
spond to the last symbol of at least one string in the language of the
subexpression rooted at n.

176 CHAPTER 3. LEXICAL ANALYSIS

4. followpos(p), for a position p, is the set of positions q in the entire syntax
tree such that there is some string x = alaz - . a, in L ((r)#) such that
for some i, there is a way to explain the membership of x in ~ ((r) #) by
matching ai to position p of the syntax tree and ai+l to position q.

Example 3.33 : Consider the cat-node n in Fig. 3.56 that corresponds to the
expression (alb)*a. We claim nullable(n) is false, since this node generates all
strings of a's and b's ending in an a; it does not generate E . On the other hand,
the star-node below it is nullable; it generates c along with all other strings of
a's and b's.

firstpos(n) = {1,2,3). In a typical generated string like aa, the first position
of the string corresponds to position 1 of the tree, and in a string like ba, the
first position of the string comes from position 2 of the tree. However, when
the string generated by the expression of node n is just a , then this a comes
from position 3.

lastpos(n) = (3). That is, no matter what string is generated from the
expression of node n, the last position is the a from position 3 of the tree.

followpos is trickier to compute, but we shall see the rules for doing so
shortly. Here is an example of the reasoning: followpos(1) = {1,2,3). Consider
a string . . ac . . . , where the c is either a or b, and the a comes from position 1.
That is, this a is one of those generated by the a in expression (a1 b) * . This
a could be followed by another a or b coming from the same subexpression, in
which case c comes from position 1 or 2. It is also possible that this a is the
last in the string generated by (alb)*, in which case the symbol c must be the
a that comes from position 3. Thus, 1, 2, and 3 are exactly the positions that
can follow position 1.

3.9.3 Computing nullable, firstpos, and lastpos

We can compute nullable, firstpos, and lastpos by a straightforward recursion
on the height of the tree. The basis and inductive rules for nullable and firstpos
are summarized in Fig. 3.58. The rules for lastpos are essentially the same as
for firstpos, but the roles of children cl and cz must be swapped in the rule for
a cat-node.

Example 3.34 : Of all the nodes in Fig. 3.56 only the star-node is nullable.
We note from the table of Fig. 3.58 that none of the leaves are nullable, because
they each correspond to non-E operands. The or-node is not nullable, because
neither of its children is. The star-node is nullable, because every star-node is
nullable. Finally, each of the cat-nodes, having at least one nonnullable child,
is not nullable.

The computation of firstpos and lastpos for each of the nodes is shown in
Fig. 3.59, with firstpos(n) to the left of node n, and lastpos(n) to its right. Each
of the leaves has only itself for firstpos and lastpos, as required by the rule for
non-c leaves in Fig. 3.58. For the or-node, we take the union of firstpos at the

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 177

Figure 3.58: Rules for computing nullable and firstpos

children and do the same for lastpos. The rule for the star-node says that we
take the value of firstpos or lastpos at the one child of that node.

Yaw, consider the lowest cat-node, which we shall call n. To compute
firstpos(n), we first consider whether the left operand is nullable, which it is
in this case. Therefore, firstpos for n is the union of firstpos for each of its
children, that is {I, 2) U (3) = {1,2,3). The rule for lastpos does not ap-
pear explicitly in Fig. 3.58, but as we mentioned, the rules are the same as
for firstpos, with the children interchanged. That is, to compute lastpos(n) we
must ask whether its right child (the leaf with position 3) is nullable, which it
is not. Therefore, lastpos(n) is the same as lastpos of the right child, or {3).
17

firstpos(n)

8
{i>

firstpos(cl) U firstpos(c2)

if (nullable(cl))
firstpos(cl) U firstpos(c2)

else firstpos(cl)

firstpos(c1)

NODE n

A leaf labeled 6

A leaf with position i

An or-node n = cl /c2

A cat-node n = ~ 1 ~ 2

A star-node n = cl*

3.9.4 Computing followpos

nullable(n)

true

false

nullable(cl) or
nu1 1 able (c2)

nullable(cl) and
nu1 1 able (c2)

true

Finally, we need to see how to compute followpos. There are only two ways
that a position of a regular expression can be made to follow another.

1. If n is a cat-node with left child cl and right child c2, then for every
position i in lastpos(cl), all positions in firstpos(c2) are in followpos(i).

2. If n is a star-node, and i is a position in lastpos(n), then all positions in
firstpos(n) are in followpos(i) .

Example 3.35 : Let us continue with our running example; recall that firstpos
and lastpos were computed in Fig. 3.59. Rule 1 for followpos requires that we
look at each cat-node, and put each position in firstpos of its right child in
followpos for each position in lastpos of its left child. For the lowest cat-node in
Fig. 3.59, that rule says position 3 is in followpos(l) and followpos(2). The next
cat-node above says that 4 is in followpos(3), and the remaining two cat-nodes
give us 5 in followpos(4) and 6 in followpos(5).

CHAPTER 3. LEXICAL ANALYSIS

Figure 3.59: firstpos and lastpos for nodes in the syntax tree for (alb)*abb#

We must also apply rule 2 to the star-node. That rule tells us positions 1 and
2 are in both followpos(1) and followpos(2), since both firstpas and lastpos for
this node are {1,2). The complete sets followpos are summarized in Fig. 3.60.

Figure 3.60: The function followpos

We can represent the function followpos by creating a directed graph with
a node for each position and an arc from position i to position j if and only if
j is in followpos(i). Figure 3.61 shows this graph for the function of Fig. 3.60.

It should come as no surprise that the graph for followpos is almost an NFA
without €-transitions for the underlying regular expression, and would become
one if we:

1. Make all positions in firstpos of the root be initial states,

2. Label each arc from i to j by the symbol at position i, and

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS

Figure 3.61: Directed graph for the function followpos

3. Make the position associated with endmarker # be the only accepting
state.

3.9.5 Converting a Regular Expression Directly to a DFA

Algorithm 3.36 : Construction of a DFA from a regular expression r .

INPUT: A regular expression r .

OUTPUT: A DFA D that recognizes L(r) .

METHOD:

1. Construct a syntax tree T from the augmented regular expression (r)# .

2. Compute nullable, firstpos, lastpos, and followpos for T , using the methods
of Sections 3.9.3 and 3.9.4.

3. Construct Dstates, the set of states of DFA D, and Dtran, the transition
function for D, by the procedure of Fig. 3.62. The states of D are sets of
positions in T. Initially, each state is "unmarked," and a state becomes
"marked" just before we consider its out-transitions. The start state of
D is firstpos(no), where node no is the root of T. The accepting states
are those containing the position for the endmarker symbol #.

Example 3.37: We can now put together the steps of our running example
to construct a DFA for the regular expression r = (aJb)*abb. The syntax tree
for (r)# appeared in Fig. 3.56. We observed that for this tree, nullable is true
only for the star-node, and we exhibited firstpos and lastpos in Fig. 3.59. The
values of followpos appear in Fig. 3.60.

The value of firstpos for the root of the tree is (1,2,3), so this set is the
start state of D. Call this set of states A. We must compute Dtran[A, a]
and Dtran[A, b]. Among the positions of A, 1 and 3 correspond to a, while 2
corresponds to b. Thus, Dtran[A, a] = followpos(l) U followpos(3) = {I, 2,3,4),

CHAPTER 3. LEXICAL ANALYSIS

initialize Dstates to contain only the unmarked state firstpos(no),
where no is the root of syntax tree T for (r)#;

while (there is an unmarked state S in Dstates) {
mark S;
for (each input symbol a) {

let U be the union of followpos(p) for all p
in S that correspond to a;

if (U is not in Dstates)
add U as an unmarked state to Dstates;

Figure 3.62: Construction of a DFA directly from a regular expression

and Dtran[A, b] = followpos(2) = {1,2,3). The latter is state A, and so does
not have to be added to Dstates, but the former, B = {1,2,3,4}, is new, so we
add it to Dstates and proceed to compute its transitions. The complete DFA is
shown in Fig. 3.63.

start

Figure 3.63: DFA constructed from Fig. 3.57

3.9.6 Minimizing the Number of States of a DFA

There can be many DFA's that recognize the same language. For instance, note
that the DFA's of Figs. 3.36 and 3.63 both recognize language ~ ((a l b) * a b b) .
Not only do these automata have states with different names, but they don't
even have the same number of states. If we implement a lexical analyzer as
a DFA, we would generally prefer a DFA with as few states as possible, since
each state requires entries in the table that describes the lexical analyzer.

The matter of the names of states is minor. We shall say that two automata
are the same up to state names if one can be transformed into the other by doing
nothing more than changing the names of states. Figures 3.36 and 3.63 are not
the same up to state names. However, there is a close relationship between the

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 181

states of each. States A and C of Fig. 3.36 are actually equivalent, in the sense
that neither is an accepting state, and on any input they transfer to the same
state - to B on input a and to C on input b. Moreover, both states A and C
behave like state 123 of Fig. 3.63. Likewise, state B of Fig. 3.36 behaves like
state 1234 of Fig. 3.63, state D behaves like state 1235, and state E behaves
like state 1236.

It turns out that there is always a unique (up to state names) minimum
state DFA for any regular language. Moreover, this minimum-state DFA can be
constructed from any DFA for the same language by grouping sets of equivalent
states. In the case of L ((a1 b)*abb) , Fig. 3.63 is the minimum-state DFA, and it
can be constructed by partitioning the states of Fig. 3.36 as {A, C){B){D){E).

In order to understand the algorithm for creating the partition of states
that converts any DFA into its minimum-state equivalent DFA, we need to
see how input strings distinguish states from one another. We say that string
x distinguishes state s from state t if exactly one of the states reached from
s and t by following the path with label x is an accepting state. State s is
distinguishable from state t if there is some string that distinguishes them.

Example 3.38 : The empty string distinguishes any accepting state from any
nonaccepting state. In Fig. 3.36, the string bb distinguishes state A from state
B, since bb takes A to a nonaccepting state C, but takes B to accepting state
E.

The state-minimization algorithm works by partitioning the states of a DFA
into groups of states that cannot be distinguished. Each group of states is then
merged into a single state of the minimum-state DFA. The algorithm works
by maintaining a partition, whose groups are sets of states that have not yet
been distinguished, while any two states from different groups are known to be
distinguishable. When the partition cannot be refined further by breaking any
group into smaller groups, we have the minimum-state DFA.

Initially, the partition consists of two groups: the accepting states and the
nonaccepting states. The fundamental step is to take some group of the current
partition, say A = {sl , s2, . . . , sk), and some input symbol a, and see whether
a can be used to distinguish between any states in group A. We examine the
transitions from each of sl , s2, . . . , sk on input a , and if the states reached fall
into two or more groups of the current partition, we split A into a collection of
groups, so that si and s j are in the same group if and only if they go to the
same group on input a. We repeat this process of splitting groups, until for
no group, and for no input symbol, can the group be split further. The idea is
formalized in the next algorithm.

Algorithm 3.39 : Minimizing the number of states of a DFA.

INPUT: A DFA D with set of states S, input alphabet C, state state so, and
set of accepting states F.

OUTPUT: A DFA D' accepting the same language as D and having as few
states as possible.

CHAPTER 3. LEXICAL ANALYSIS

Why the State-Minimization Algorithm Works

We need to prove two things: that states remaining in the same group in
IIfinal are indistinguishable by any string, and that states winding up in
different groups are distinguishable. The first is an induction on i that
if after the ith iteration of step (2) of Algorithm 3.39, s and t are in the
same group, then there is no string of length i or less that distinguishes
them. We shall leave the details of the induction to you.

The second is an induction on i that if states s and t are placed in
different groups at the ith iteration of step (2), then there is a string that
distinguishes them. The basis, when s and t are placed in different groups
of the initial partition, is easy: one must be accepting and the other not,
so c distinguishes them. For the induction, there must be an input a and
states p and q such that s and t go to states p and q, respectively, on input
a. Moreover, p and q must already have been placed in different groups.
Then by the inductive hypothesis, there is some string x that distinguishes
p from q. Therefore, ax distinguishes s from t.

METHOD:

1. Start with an initial partition II with two groups, F and S - F, the
accepting and nonaccepting states of D.

2. Apply the procedure of Fig. 3.64 to construct a new partition anew.

initially, let IInew = II;
for (each group G of II) {

partition G into subgroups such that two states s and t
are in the same subgroup if and only if for all
input symbols a , states s and t have transitions on a
to states in the same group of 11;

/* at worst, a state will be in a subgroup by itself */
replace G in IInew by the set of all subgroups formed;

1

Figure 3.64: Construction of IInew

3. If IIne, = II, let IIfinal = ll and continue with step (4). Otherwise, repeat
step (2) with IInew in place of II.

4. Choose one state in each group of IIfinal as the representative for that
group. The representatives will be the states of the minimum-state DFA
D'. The other components of D' are constructed as follows:

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 183

Eliminating the Dead State

The minimization algorithm sometimes produces a DFA with one dead
state - one that is not accepting and transfers to itself on each input
symbol. This state is technically needed, because a DFA must have a
transition from every state on every symbol. However, as discussed in
Section 3.8.3, we often want to know when there is no longer any possibility
of acceptance, so we can establish that the proper lexeme has already been
seen. Thus, we may wish to eliminate the dead state and use an automaton
that is missing some transitions. This automaton has one fewer state than
the minimum-state DFA, but is strictly speaking not a DFA, because of
the missing transitions to the dead state.

(a) The state state of Dl is the representative of the group containing
the start state of D.

(b) The accepting states of D' are the representatives of those groups
that contain an accepting state of D. Note that each group contains
either only accepting states, or only nonaccepting states, because we
started by separating those two classes of states, and the procedure
of Fig. 3.64 always forms new groups that are subgroups of previously
constructed groups.

(c) Let s be the representative of some group G of IIfinal, and let the
transition of D from s on input a be to state t. Let r be the rep-
resentative of t's group H. Then in Dl, there is a transition from s
to r on input a. Note that in D , every state in group G must go to
some state of group H on input a, or else, group G would have been
split according to Fig. 3.64.

Example 3.40 : Let us reconsider the DFA of Fig. 3.36. The initial partition
consists of the two groups {A, B, C, D}{E}, which are respectively the nonac-
cepting states and the accepting states. To construct II,,,, the procedure of
Fig. 3.64 considers both groups and inputs a and b. The group {E} cannot be
split, because it has only one state, so (E} will remain intact in IT,,,.

The other group {A, B , C, D} can be split, so we must consider the effect of
each input symbol. On input a , each of these states goes to state B , so there
is no way to distinguish these states using strings that begin with a. On input
b, states A, B , and C go to members of group {A, B , C, D}, while state D goes
to E, a member of another group. Thus, in IInew, group {A, B , C, D} is split
into {A, B, C}{D}, and IInew for this round is {A, B, C){D){E}.

184 CHAPTER 3. LEXICAL ANALYSIS

In the next round, we can split {A, B, C} into {A, C}{B}, since A and
C each go to a member of {A, B, C) on input b, while B goes to a member of
another group, {D}. Thus, after the second round, It,,, = {A, C} {B} {D} {E).
For the third round, we cannot split the one remaining group with more than
one state, since A and C each go to the same state (and therefore to the same
group) on each input. We conclude that ITfinal = {A, C}{B){D){E).

Now, we shall construct the minimum-state DFA. It has four states, corre-
sponding to the four groups of ITfinal, and let us pick A, B, D, and E as the
representatives of these groups. The initial state is A, and the only accepting
state is 23. Figure 3.65 shows the transition function for the DFA. For instance,
the transition from state E on input b is to A, since in the original DFA, E goes
to C on input b, and A is the representative of C7s group. For the same reason,
the transition on b from state A is to A itself, while all other transitions are as
in Fig. 3.36.

Figure 3.65: Transition table of minimum-state DFA

3.9.7 State Minimization in Lexical Analyzers

To apply the state minimization procedure to the DFA7s generated in Sec-
tion 3.8.3, we must begin Algorithm 3.39 with the partition that groups to-
gether all states that recognize a particular token, and also places in one group
all those states that do not indicate any token. An example should make the
extension clear.

Example 3.41 : For the DFA of Fig. 3.54, the initial partition is

That is, states 0137 and 7 belong together because neither announces any token.
States 8 and 58 belong together because they both announce token a*b+. Note
that we have added a dead state 8, which we suppose has transitions to itself
on inputs a and b. The dead state is also the target of missing transitions on a
from states 8, 58, and 68.

We must split 0137 from 7, because they go to different groups on input a.
We also split 8 from 58, because they go to different groups on b. Thus, all
states are in groups by themselves, and Fig. 3.54 is the minimum-state DFA

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 185

recognizing its three tokens. Recall that a DFA serving as a lexical analyzer
will normally drop the dead state, while we treat missing transitions as a signal
to end token recognition.

3.9.8 Trading Time for Space in DFA Simulation

The simplest and fastest way to represent the transition function of a DFA is
a two-dimensional table indexed by states and characters. Given a state and
next input character, we access the array to find the next state and any special
action we must take, e.g., returning a token to the parser. Since a typical lexical
analyzer has several hundred states in its DFA and involves the ASCII alphabet
of 128 input characters, the array consumes less than a megabyte.

However, compilers are also appearing in very small devices, where even
a megabyte of storage may be too much. For such situations, there are many
methods that can be used to compact the transition table. For instance, we can
represent each state by a list of transitions - that is, character-state pairs -
ended by a default state that is to be chosen for any input character not on the
list. If we choose as the default the most frequently occurring next state, we
can often reduce the amount of storage needed by a large factor.

There is a more subtle data structure that allows us to combine the speed
of array access with the compression of lists with defaults. We may think of
this structure as four arrays, as suggested in Fig. 3.66.5 The base array is used
to determine the base location of the entries for state s , which are located in
the next and check arrays. The default array is used to determine an alternative
base location if the check array tells us the one given by base[s] is invalid.

default base next check

Figure 3.66: Data structure for representing transition tables

To compute nextState(s, a), the transition for state s on input a, we examine
the next and check entries in location 1 = base[s] +a, where character a is treated
as an integer, presumably in the range 0 to 127. If check[l] = s , then this entry

-

5 ~ n practice, there would be another array indexed by states to give the action associated
with that state, if any.

186 CHAPTER 3. LEXICAL ANALYSIS

is valid, and the next state for state s on input a is next[l]. If check[l] # s, then
we determine another state t = default[s] and repeat the process as if t were
the current state. More formally, the function nextstate is defined as follows:

int nextState(s, a) {
if (check[base[s] + a] = s) return next[base[s] + a];
else return nextState(default[s], a);

1
The intended use of the structure of Fig. 3.66 is to make the next-check

arrays short by taking advantage of the similarities among states. For instance,
state t , the default for state s , might be the state that says "we are working on
an identifier," like state 10 in Fig. 3.14. Perhaps state s is entered after seeing
the letters t h , which are a prefix of keyword then as well as potentially being
the prefix of some lexeme for an identifier. On input character e, we must go
from state s to a special state that remembers we have seen the, but otherwise,
state s behaves as t does. Thus, we set check[base[s] + el to s (to confirm that
this entry is valid for s) and we set next[base[s] + el to the state that remembers
the. Also, default[s] is set to t.

While we may not be able to choose base values so that no next-check entries
remain unused, experience has shown that the simple strategy of assigning base
values to states in turn, and assigning each base[s] value the lowest integer so
that the special entries for state s are not previously occupied utilizes little
more space than the minimum possible.

3.9.9 Exercises for Section 3.9

Exercise 3.9.1 : Extend the table of Fig. 3.58 to include the operators (a) ?
and (b) +.

Exercise 3.9.2 : Use Algorithm 3.36 to convert the regular expressions of Ex-
ercise 3.7.3 directly to deterministic finite automata.

! Exercise 3.9.3 : We can prove that two regular expressions are equivalent by
showing that their minimum-state DFA's are the same up to renaming of states.
Show in this way that the following regular expressions: (a[b)*, (a* /b*)*, and
((cla)b*)* are all equivalent. Note: You may have constructed the DFA7s for
these expressions in response to Exercise 3.7.3.

! Exercise 3.9.4 : Construct the minimum-state DFA7s for the following regular
expressions:

3.20. SUMMARY OF CHAPTER 3

Do you see a pattern?

!! Exercise 3.9.5 : To make formal the informal claim of Example 3.25, show
that any deterministic finite automaton for the regular expression

where (alb) appears n - 1 times at the end, must have at least 2" states. Hint:
Observe the pattern in Exercise 3.9.4. What condition regarding the history of
inputs does each state represent?

3.10 Summary of Chapter 3

+ Tokens. The lexical analyzer scans the source program and produces as
output a sequence of tokens, which are normally passed, one at a time to
the parser. Some tokens may consist only of a token name while others
may also have an associated lexical value that gives information about
the particular instance of the token that has been found on the input.

+ Lexernes. Each time the lexical analyzer returns a token to the parser,
it has an associated lexeme - the sequence of input characters that the
token represents.

+ Buffering. Because it is often necessary to scan ahead on the input in
order to see where the next lexeme ends, it is usually necessary for the
lexical analyzer to buffer its input. Using a pair of buffers cyclicly and
ending each buffer's contents with a sentinel that warns of its end are two
techniques that accelerate the process of scanning the input.

+ Patterns. Each token has a pattern that describes which sequences of
characters can form the lexemes corresponding to that token. The set
of words, or strings of characters, that match a given pattern is called a
language.

+ Regular Expressions. These expressions are commonly used to describe
patterns. Regular expressions are built from single characters, using
union, concatenation, and the Kleene closure, or any-number-of, oper-
ator.

+ Regular Definitions. Complex collections of languages, such as the pat-
terns that describe the tokens of a programming language, are often de-
fined by a regular definition, which is a sequence of statements that each
define one variable to stand for some regular expression. The regular ex-
pression for one variable can use previously defined variables in its regular
expression.

188 CHAPTER 3. LEXICAL ANALYSIS

+ Extended Regular-Expression Notation. A number of additional opera-
tors may appear as shorthands in regular expressions, to make it easier
to express patterns. Examples include the + operator (one-or-more-of),
? (zero-or-one-of), and character classes (the union of the strings each
consisting of one of the characters).

+ Transition Diagrams. The behavior of a lexical analyzer can often be
described by a transition diagram. These diagrams have states, each
of which represents something about the history of the characters seen
during the current search for a lexeme that matches one of the possible
patterns. There are arrows, or transitions, from one state to another,
each of which indicates the possible next input characters that cause the
lexical analyzer to make that change of state.

+ Finite Automata. These are a formalization of transition diagrams that
include a designation of a start state and one or more accepting states,
as well as the set of states, input characters, and transitions among
states. Accepting states indicate that the lexeme for some token has been
found. Unlike transition diagrams, finite automata can make transitions
on empty input as well as on input characters.

+ Deterministic Finite Automata. A DFA is a special kind of finite au-
tomaton that has exactly one transition out of each state for each input
symbol. Also, transitions on empty input are disallowed. The DFA is
easily simulated and makes a good implementation of a lexical analyzer,
similar to a transition diagram.

+ Nondeterministic Finite Automata. Automata that are not DFA7s are
called nondeterministic. NFA's often are easier to design than are DFA's.
Another possible architecture for a lexical analyzer is to tabulate all the
states that NFA7s for each of the possible patterns can be in, as we scan
the input characters.

+ Conversion Among Pattern Representations. It is possible to convert any
regular expression into an NFA of about the same size, recognizing the
same language as the regular expression defines. Further, any NFA can
be converted to a DFA for the same pattern, although in the worst case
(never encountered in common programming languages) the size of the
automaton can grow exponentially. It is also possible to convert any non-
deterministic or deterministic finite automaton into a regular expression
that defines the same language recognized by the finite automaton.

+ Lex. There is a family of software systems, including Lex and Flex,
that are lexical-analyzer generators. The user specifies the patterns for
tokens using an extended regular-expression notation. Lex converts these
expressions into a lexical analyzer that is essentially a deterministic finite
automaton that recognizes any of the patterns.

3.11. REFERENCES FOR CHAPTER 3 189

+ Mnimixat ion of Finite Automata. For every DFA there is a minimum-
st ate D M accepting the same language. Moreover, the minimum-state
DFA for a given language is unique except for the names given to the
various states.

3.11 References for Chapter 3

Regular expressions were first developed by Kleene in the 1950's [9]. Kleene was
interested in describing the events that could be represented by McCullough and
Pitts' [I 21 finite-automaton model of neural activity. Since that time regular
expressions and finite automata have become widely used in computer science.

Regular expressions in various forms were used from the outset in many
popular Unix utilities such as awk, ed, egrep, grep, lex , sed, sh, and v i . The
IEEE 1003 and ISO/IEC 9945 standards documents for the Portable Operating
System Interface (POSIX) define the POSIX extended regular expressions which
are similar to the original Unix regular expressions with a few exceptions such
as mnemonic representations for character classes. Many scripting languages
such as Perl, Python, and Tcl have adopted regular expressions but often with
incompatible extensions.

The familiar finite-automaton model and the minimization of finite au-
tomata, as in Algorithm 3.39, come from Huffman [6] and Moore [14]. Non-
deterministic finite automata were first proposed by Rabin and Scott [15]; the
subset construction of Algorithm 3.20, showing the equivalence of deterministic
and nondeterministic finite automata, is from there.

McNaughton and Yamada [13] first gave an algorithm to convert regular
expressions directly to deterministic finite automat a. Algorithm 3.36 described
in Section 3.9 was first used by Aho in creating the Unix regular-expression
matching tool egrep. This algorithm was also used in the regular-expression
pattern matching routines in awk [3]. The approach of using nondeterministic
automata as an intermediary is due Thompson [17]. The latter paper also con-
tains the algorithm for the direct simulation of nondeterministic finite automata
(Algorithm 3.22), which was used by Thompson in the text editor QED.

Lesk developed the first version of Lex and then Lesk and Schmidt created
a second version using Algorithm 3.36 [lo]. Many variants of Lex have been
subsequently implemented. The GNU version, Flex, can be downloaded, along
with documentation at [4]. Popular Java versions of Lex include JFlex (71 and
JLex [8].

The KMP algorithm, discussed in the exercises to Section 3.4 just prior to
Exercise 3.4.3, is from [l l] . Its generalization to many keywords appears in [2]
and was used by Aho in the first implementation of the Unix utility f grep.

The theory of finite automata and regular expressions is covered in [5]. A
survey of string-matching techniques is in [I].

1. Aho, A. V., "Algorithms for finding patterns in strings," in Handbook of
Theoretical Computer Science (J. van Leeuwen, ed.), Vol. A, Ch. 5, MIT

CHAPTER 3. LEXICAL ANALYSIS

Press, Cambridge, 1990.

2. Aho, A. V. and M. J . Corasick, "Efficient string matching: an aid to
bibliographic search," Comm. AC1M18:6 (1975), pp. 333-340.

3. Aho, A. V., B. W. Kernighan, and P. J . Weinberger, The AWK Program-
ming Language, Addison-Wesley, Boston, MA, 1988.

4. Flex home page h t t p : //www .gnu. org/sof tware/f lex / , Free Software
Foundation.

5. Hopcroft, J . E., R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley, Boston MA, 2006.

6. Huffman, D. A., "The synthesis of sequential machines," J. Franklin Inst.
257 (1954), pp. 3-4, 161, 190, 275-303.

7. JFlex home page h t t p : // j f l ex . de/ .

8. h t t p : //www. c s .princeton. edu/"appel/modern/java/J~ex .

9. Kleene, S. C., "Representation of events in nerve nets," in [16], pp. 3-40.

10. Lesk, M. E., "Lex - a lexical analyzer generator," Computing Science
Tech. Report 39, Bell Laboratories, Murray Hill, NJ, 1975. A similar
document with the same title but with E. Schmidt as a coauthor, appears
in Vol. 2 of the Unix Programmer's Manual, Bell laboratories, Murray Hill
NJ,1975; see http://dinosaur.compilertools.net/lex/index.html.

11. Knuth, D. E., J . H. Morris, and V. R. Pratt, "Fast pattern matching in
strings," SIAM J. Computing 6:2 (1977), pp. 323-350.

12. McCullough, W. S. and W. Pitts, "A logical calculus of the ideas imma-
nent in nervous activity," Bull. Math. Biophysics 5 (1943), pp. 115-133.

13. McNaughton, R. and H. Yamada, "Regular expressions and state graphs
for automata," IRE Trans. on Electronic Computers EC-9:l (1960), pp.
38-47.

14. Moore, E. F., "Gedanken experiments on sequential machines," in [16],
pp. 129-153.

15. Rabin, M. 0. and D. Scott, "Finite automata and their decision prob-
lems," IBM J. Res. and Devel. 3:2 (1959), pp. 114-125.

16. Shannon, C. and J . McCarthy (eds.), Automata Studies, Princeton Univ.
Press, 1956.

17. Thompson, K., "Regular expression search algorithm," Comm. A CM 11:6
(1968), pp. 419-422.

Chapter 4

Syntax Analysis

This chapter is devoted to parsing methods that are typically used in compilers.
We first present the basic concepts, then techniques suitable for hand implemen-
tation, and finally algorithms that have been used in automated tools. Since
programs may contain syntactic errors, we discuss extensions of the parsing
methods for recovery from common errors.

By design, every programming language has precise rules that prescribe the
syntactic structure of well-formed programs. In C, for example, a program is
made up of functions, a function out of declarations and statements, a statement
out of expressions, and so on. The syntax of programming language constructs
can be specified by context-free grammars or BNF (Backus-Naur Form) nota-
tion, introduced in Section 2.2. Grammars offer significant benefits for both
language designers and compiler writers.

A grammar gives a precise, yet easy-to-understand, syntactic specification
of a programming language.

From certain classes of grammars, we can construct automatically an effi-
cient parser that determines the syntactic structure of a source program.
As a side benefit, the parser-construction process can reveal syntactic
ambiguities and trouble spots that might have slipped through the initial
design phase of a language.

The structure imparted to a language by a properly designed grammar
is useful for translating source programs into correct object code and for
detecting errors.

A grammar allows a language to be evolved or developed iteratively, by
adding new constructs to perform new tasks. These new constructs can
be integrated more easily into an implementation that follows the gram-
matical structure of the language.

CHAPTER 4. SYNTAX ANALYSIS

4.1 Introduction

In this section, we examine the way the parser fits into a typical compiler. We
then look at typical grammars for arithmetic expressions. Grammars for ex-
pressions suffice for illustrating the essence of parsing, since parsing techniques
for expressions carry over to most programming constructs. This section ends
with a discussion of error handling, since the parser must respond gracefully to
finding that its input cannot be generated by its grammar.

4.1.1 The Role of the Parser

In our compiler model, the parser obtains a string of tokens from the lexical
analyzer, as shown in Fig. 4.1, and verifies that the string of token names
can be generated by the grammar for the source language. We expect the
parser to report any syntax errors in an intelligible fashion and to recover from
commonly occurring errors to continue processing the remainder of the program.
Conceptually, for well-formed programs, the parser constructs a parse tree and
passes it to the rest of the compiler for further processing. In fact, the parse
tree need not be constructed explicitly, since checking and translation actions
can be interspersed with parsing, as we shall see. Thus, the parser and the rest
of the front end could well be implemented by a single module.

Symbol
Table

Figure 4.1: Position of parser in compiler model

intermediate -
representatio6

SOurce

progra$

There are three general types of parsers for grammars: universal, top-down,
and bottom-up. Universal parsing methods such as the Cocke-Younger-Kasami
algorithm and Earley's algorithm can parse any grammar (see the bibliographic
notes). These general methods are, however, too inefficient to use in production
compilers.

The methods commonly used in compilers can be classified as being either
top-down or bottom-up. As implied by their names, top-down methods build
parse trees from the top (root) to the bottom (leaves), while bottom-up methods
start from the leaves and work their way up to the root. In either case, the
input to the parser is scanned from left to right, one symbol at a time.

token
Lexical / parse ~~~t of

-1

Analyzer I Front End

4.1. INTRODUCTION 193

The most efficient top-down and bottom-up methods work only for sub-
classes of grammars, but several of these classes, particularly, LL and LR gram-
mars, are expressive enough to describe most of the syntactic constructs in
modern programming languages. Parsers implemented by hand often use LL
grammars; for example, the predictive-parsing approach of Section 2.4.2 works
for LL grammars. Parsers for the larger class of LR grammars are usually
constructed using automated tools.

In this chapter, we assume that the output of the parser is some represent-
ation of the parse tree for the stream of tokens that comes from the lexical
analyzer. In practice, there are a number of tasks that might be conducted
during parsing, such as collecting information about various tokens into the
symbol table, performing type checking and other kinds of semantic analysis,
and generating intermediate code. We have lumped all of these activities into
the "rest of the front end" box in Fig. 4.1. These activities will be covered in
detail in subsequent chapters.

4.1.2 Representative Grammars

Some of the grammars that will be examined in this chapter are presented here
for ease of reference. Constructs that begin with keywords like while or int , are
relatively easy to parse, because the keyword guides the choice of the grammar
production that must be applied to match the input. We therefore concentrate
on expressions, which present more of challenge, because of the associativity
and precedence of operators.

Associativity and precedence are captured in the following grammar, which
is similar to ones used in Chapter 2 for describing expressions, terms, and
factors. E represents expressions consisting of terms separated by + signs, T
represents terms consisting of factors separated by * signs, and F represents
factors that can be either parenthesized expressions or identifiers:

E + E + T I T
T + T * F I F
F + (E) 1 id

Expression grammar (4.1) belongs to the class of LR grammars that are suitable
for bottom-up parsing. This grammar can be adapted to handle additional
operators and additional levels of precedence. However, it cannot be used for
top-down parsing because it is left recursive.

The following non-left-recursive variant of the expression grammar (4.1) will
be used for top-down parsing:

E + TE'
E' + +TE'I e
T + FT'
T' + * F T ' I e
F + (E) I id

194 CHAPTER 4. SYNTAX ANALYSIS

The following grammar treats + and * alike, so it is useful for illustrating
techniques for handling ambiguities during parsing:

Here, E represents expressions of all types. Grammar (4.3) permits more than
one parse tree for expressions like a + b * c.

4.1.3 Syntax Error Handling

The remainder of this section considers the nature of syntactic errors and gen-
eral strategies for error recovery. Two of these strategies, called panic-mode and
phrase-level recovery, are discussed in more detail in connection with specific
parsing methods.

If a compiler had to process only correct programs, its design and implemen-
tation would be simplified greatly. However, a compiler is expected to assist
the programmer in locating and tracking down errors that inevitably creep into
programs, despite the programmer's best efforts. Strikingly, few languages have
been designed with error handling in mind, even though errors are so common-
place. Our civilization would be radically different if spoken languages had
the same requirements for syntactic accuracy as computer languages. Most
programming language specifications do not describe how a compiler should
respond to errors; error handling is left to the compiler designer. Planning the
error handling right from the start can both simplify the structure of a compiler
and improve its handling of errors.

Common programming errors can occur at many different levels.

Lexical errors include misspellings of identifiers, keywords, or operators -
e.g., the use of an identifier e l i p ses i ze instead of e l l i p s e s i z e - and
missing quotes around text intended as a string.

Syntactic errors include misplaced semicolons or extra or missing braces;
that is, '((" or ")." As another example, in C or Java, the appearance
of a case statement without an enclosing switch is a syntactic error
(however, this situation is usually allowed by the parser and caught later
in the processing, as the compiler attempts to generate code).

Semantic errors include type mismatches between operators and operands.
An example is a r e tu rn statement in a Java method with result type void.

Logical errors can be anything from incorrect reasoning on the part of
the programmer to the use in a C program of the assignment operator =
instead of the comparison operator ==. The program containing = may
be well formed; however, it may not reflect the programmer's intent.

The precision of parsing methods allows syntactic errors to be detected very
efficiently. Several parsing methods, such as the LL and LR methods, detect

4.1. INTRODUCTION

an error as soon as possible; that is, when the stream of tokens from the lexical
analyzer cannot be parsed further according to the grammar for the language.
More precisely, they have the viable-prefix property, meaning that they detect
that an error has occurred as soon as they see a prefix of the input that cannot
be completed to form a string in the language.

Another reason for emphasizing error recovery during parsing is that many
errors appear syntactic, whatever their cause, and are exposed when parsing
cannot continue. A few semantic errors, such as type mismatches, can also be
detected efficiently; however, accurate detection of semantic and logical errors
at compile time is in general a difficult task.

The error handler in a parser has goals that are simple to state but chal-
lenging to realize:

Report the presence of errors clearly and accurately.

Recover from each error quickly enough to detect subsequent errors.

Add minimal overhead to the processing of correct programs.

Fortunately, common errors are simple ones, and a relatively straightforward
error-handling mechanism often suffices.

How should an error handler report the presence of an error? At the very
least, it must report the place in the source prograr.1 where an error is detected,
because there is a good chance that the actual error occurred within the previous
few tokens. A common strategy is to print the offending line with a pointer to
the position at which an error is detected.

4.1.4 Error-Recovery Strategies

Once an error is detected, how should the parser recover? Although no strategy
has proven itself universally acceptable, a few methods have broad applicabil-
ity. The simplest approach is for the parser to quit with an informative error
message when it detects the first error. Additional errors are often uncovered
if the parser can restore itself to a state where processing of the input can con-
tinue with reasonable hopes that the further processing will provide meaningful
diagnostic information. If errors pile up, it is better for the compiler to give
up after exceeding some error limit than to produce an annoying avalanche of
"spurious" errors.

The balance of this section is devoted to the following recovery strategies:
panic-mode, phrase-level, error-productions, and global-correction.

Panic-Mode Recovery

With this method, on discovering an error, the parser discards input symbols
one at a time until one of a designated set of synchronizing tokens is found.
The synchronizing tokens are usually delimiters, such as semicolon or 3, whose
role in the source program is clear and unambiguous. The compiler designer

CHAPTER 4. SYNTAX ANALYSIS

must select the synchronizing tokens appropriate for the source language. While
panic-mode correction often skips a considerable amount of input without check-
ing it for additional errors, it has the advantage of simplicity, and, unlike some
methods to be considered later, is guaranteed not to go into an infinite loop.

Phrase-Level Recovery

On discovering an error, a parser may perform local correction on the remaining
input; that is, it may replace a prefix of the remaining input by some string that
allows the parser to continue. A typical local correction is to replace a comma
by a semicolon, delete an extraneous semicolon, or insert a missing semicolon.
The choice of the local correction is left to the compiler designer. Of course,
we must be careful to choose replacements that do not lead to infinite loops, as
would be the case, for example, if we always inserted something on the input
ahead of the current input symbol.

Phrase-level replacement has been used in several error-repairing compilers,
as it can correct any input string. Its major drawback is the difficulty it has in
coping with situations in which the actual error has occurred before the point
of detection.

Error Product ions

By anticipating common errors that might be encountered, we can augment the
grammar for the language at hand with productions that generate the erroneous
constructs. A parser constructed from a grammar augmented by these error
productions detects the anticipated errors when an error production is used
during parsing. The parser can then generate appropriate error diagnostics
about the erroneous construct that has been recognized in the input.

Global Correction

Ideally, we would like a compiler to make as few changes as possible in processing
an incorrect input string. There are algorithms for choosing a minimal sequence
of changes to obtain a globally least-cost correction. Given an incorrect input
string x and grammar G, these algorithms will find a parse tree for a related
string y, such that the number of insertions, deletions, and changes of tokens
required to transform x into y is as small as possible. Unfortunately, these
methods are in general too costly to implement in terms of time and space, so
these techniques are currently only of theoretical interest.

Do note that a closest correct program may not be what the programmer had
in mind. Nevertheless, the notion of least-cost correction provides a yardstick
for evaluating error-recovery techniques, and has been used for finding optimal
replacement strings for phrase-level recovery.

4.2. CONTEXT-FREE GRAMMARS

4.2 Context-Free Grammars

Grammars were introduced in Section 2.2 to systematically describe the syntax
of programming language constructs like expressions and statements. Using
a syntactic variable stmt to denote statements and variable expr to denote
expressions, the production

stmt -+ if (expr) stmt else stmt (4.4)

specifies the structure of this form of conditional statement. Other productions
then define precisely what an expr is and what else a stmt can be.

This section reviews the definition of a context-free grammar and introduces
terminology for talking about parsing. In particular, the notion of derivations
is very helpful for discussing the order in which productions are applied during
parsing.

4.2.1 The Formal Definition of a Context-Free Grammar

From Section 2.2, a context-free grammar (grammar for short) consists of ter-
minals, nonterminals, a start symbol, and productions.

1. Terminals are the basic symbols from which strings are formed. The term
"token name" is a synonym for '"erminal" and frequently we will use the
word "token" for terminal when it is clear that we are talking about just
the token name. We assume that the terminals are the first components
of the tokens output by the lexical analyzer. In (4.4), the terminals are
the keywords if and else and the symbols "(" and ") ."

2. Nonterminals are syntactic variables that denote sets of strings. In (4.4),
stmt and expr are nonterminals. The sets of strings denoted by nontermi-
nals help define the language generated by the grammar. Nonterminals
impose a hierarchical structure on the language that is key to syntax
analysis and translation.

3. In a grammar, one nonterminal is distinguished as the start symbol, and
the set of strings it denotes is the language generated by the grammar.
Conventionally, the productions for the start symbol are listed first.

4. The productions of a grammar specify the manner in which the termi-
nals and nonterminals can be combined to form strings. Each production
consists of:

(a) A nonterminal called the head or left side of the production; this
production defines some of the strings denoted by the head.

(b) The symbol +. Sometimes : : = has been used in place of the arrow.

(c) A body or right side consisting of zero or more terminals and non-
terminals. The components of the body describe one way in which
strings of the nonterminal at the head can be constructed.

198 CHAPTER 4. SYNTAX ANALYSIS

Example 4.5 : The grammar in Fig. 4.2 defines simple arithmetic expressions.
In this grammar, the terminal symbols are

The nonterminal symbols are expression, term and factor, and expression is the
start symbol

expression
expression
expression

term
term
term

factor
factor

expression + term
expression - term
term
term * factor
term / factor
factor
(expression 1
id

Figure 4.2: Grammar for simple arithmetic expressions

4.2.2 Notational Convent ions

To avoid always having to state that "these are the terminals," "these are the
nontermiaals ," and so on, the following notational conventions for grammars
will be used throughout the remainder of this book.

1. These symbols are terminals:

(a) Lowercase letters early in the alphabet, such as a, b, e.

(b) Operator symbols such as +, r, and so on.

(c) Punctuation symbols such as parentheses, comma, and so on.

(d) The digits 0,1,. . . ,9.

(e) Boldface strings such as id or if, each of which represents a single
terminal symbol.

2. These symbols are nonterminals:

(a) Uppercase letters early in the alphabet, such as A, B, C.

(b) The letter S, which, when it appears, is usually the start symbol.

(c) Lowercase, italic names such as expr or stmt.

(d) When discussing programming constructs, uppercase letters may be
used to represent nonterminals for the constructs. For example, non-
terminals for expressions, terms, and factors are often represented by
E, T, and F, respectively.

4.2. CONTEXT-FREE GRAMMARS 199

3. Uppercase letters late in the alphabet, such as X, Y, 2, represent grammar
symbols; that is, either nonterminals or terminals.

4. Lowercase letters late in the alphabet, chiefly u, v, . . . , x , represent (pos-
sibly empty) strings of terminals.

5. Lowercase Greek letters, a, ,O, y for example, represent (possibly empty)
strings of grammar symbols. Thus, a generic production can be written
as A + a, where A is the head and a the body.

6. A set of productions A -+ al, A + a2, . . . , A -+ a k with a common head
A (call them A-productions), may be written A + a1 / a s I . . I ak. Call
a l , a2 , . . . , a k the alternatives for A.

7. Unless stated otherwise, the head of the first production is the start sym-
bol.

Example 4.6 : Using these conventions, the grammar of Example 4.5 can be
rewritten concisely as

E + E + T (E - T I T
T + T * F I T / F I F
F -+ (E) 1 id

The notational conventions tell us that E, T, and F are nonterminals, with E
the start symbol. The remaining symbols are terminals.

4.2.3 Derivations

The construction of a parse tree can be made precise by taking a derivational
view, in which productions are treated as rewriting rules. Beginning with the
start symbol, each rewriting step replaces a nonterminal by the body of one of its
productions. This derivational view corresponds to the top-down construction
of a parse tree, but the precision afforded by derivations will be especially helpful
when bottom-up parsing is discussed. As we shall see, bottom-up parsing is
related to a class of derivations known as "rightmost" derivations, in which the
rightmost nonterminal is rewritten at each step.

For example, consider the following grammar, with a single nonterminal E,
which adds a production E -+ - E to the grammar (4.3):

The production E -+ - E signifies that if E denotes an expression, then - E
must also denote an expression. The replacement of a single E by - E will be
described by writing

CHAPTER 4. SYNTAX ANALYSIS

which is read, "E derives -E." The production E --+ (E) can be applied
to replace any instance of E in any string of grammar symbols by (E), e.g.,
E * E + (E) * E or E * E + E * (E). We can take a single E and repeatedly
apply productions in any order to get a sequence of replacements. For example,

We call such a sequence of replacements a derivation of -(id) from E. This
derivation provides a proof that the string -(id) is one particular instance of
an expression.

For a general definition of derivation, consider a nonterminal A in the middle
of a sequence of grammar symbols, as in aAP, where a and ,O are arbitrary
strings of grammar symbols. Suppose A -+ y is a production. Then, we write
aAP =+- ayp. The symbol +- means, "derives in one step." When a sequence
of derivation steps a1 + a2 + . + a, rewrites a1 to a,, we say a1 derives
a,. Often, we wish to say, "derives in zero or more steps." For this purpose,
we can use the symbol &- . Thus,

1. a % a, for any string a, and

2. If a & p and p + y , then a % y.

+ Likewise, + means, "derives in one or more steps."
If S % a, where S is the start symbol of a grammar G, we say that a is a

sentential form of G. Note that a sentential form may contain both terminals
and nonterminals, and may be empty. A sentence of G is a sentential form with
no nonterminals. The language generated by a grammar is its set of sentences.
Thus, a string of terminals w is in L(G), the language generated by G, if and
only if w is a sentence of G (or S % w). A language that can be generated by
a grammar is said to be a context-free language. If two grammars generate the
same language, the grammars are said to be equivalent.

The string -(id + id) is a sentence of grammar (4.7) because there is a
derivation

E S- -E S- - (E) + -(E + E) 3 -(id + E) + -(id + id) (4.8)

The strings E, - E, - (E) , . . . , - (id + id) are all sentential forms of this gram-
mar. We write & % - (id + id) to indicate that - (id + id) can be derived
from E.

At each step in a derivation, there are two choices to be made. We need
to choose which nonterminal to replace, and having made this choice, we must
pick a production with that nonterminal as head. For example, the following
alternative derivation of -(id + id) differs from derivation (4.8) in the last two
steps:

4.2. CONTEXT-FREE GRAMMARS 20 1

Each nonterminal is replaced by the same body in the two derivations, but the
order of replacements is different.

To understand how parsers work, we shall consider derivations in which the
nonterminal to be replaced at each step is chosen as follows:

1. In lefimost derivations, the leftmost nonterminal in each sentential is al-
ways chosen. If a + p is a step in which the leftmost nonterminal in a is
replaced, we write a P.

lm

2. In rightmost derivations, the rightmost nonterminal is always chosen; we
write a + p in this case.

rm

Derivation (4.8) is leftmost, so it can be rewritten as

Note that (4.9) is a rightmost derivation.
Using our notational conventions, every leftmost step can be written as

wAy + wSy, where w consists of terminals only, A -+ 6 is the production
lm

applied, and y is a string of grammar symbols. To emphasize that a derives ,8
by a leftrnost derivation, we write a % p. If S % a, then we say that a is a

lm lm
left-sentential form of the grammar at hand.

Analogous definitions hold for rightmost derivations. Rightmost derivations
are sometimes called canonical derivations.

4.2.4 Parse Trees and Derivations

A parse tree is a graphical representation of a derivation that filters out the
order in which productions are applied to replace nonterminals. Each interior
node of a parse tree represents the application of a production. The interior
node is labeled with the ont terminal A in the head of the production; the
children of the node are labeled, from left to right, by the symbols in the body
of the production by which this A was replaced during the derivation.

For example, the parse tree for -(id + id) in Fig. 4.3, results from the
derivation (4.8) as well as derivation (4.9).

The leaves of a parse tree are labeled by nonterminals or terminals and, read
from left to right, constitute a sentential form, called the yield or frontier of the
tree.

To see the relationship between derivations and parse trees, consider any
derivation a1 .j a 2 + . - . + a,, where a1 is a single nonterminal A. For each
sentential form ai in the derivation, we can construct a parse tree whose yield
is ai. The process is an induction on i.

BASIS: The tree for a1 = A is a single node labeled A.

CHAPTER 4. SYNTAX ANALYSIS

Figure 4.3: Parse tree for -(id + id)

INDUCTION: Suppose we already have constructed a parse tree with yield
ai-1 = XI X2 . . Xk (note that according to our notational conventions, each
grammar symbol Xi is either a nonterminal or a terminal). Suppose ai is
derived from ai-1 by replacing Xj, a nonterminal, by ,8 = Y1Y2 . Ym. That
is, at the ith step of the derivation, production X j -+ ,8 is applied to ai-1 to
derive ai = XIXz - . -Xj-1,8Xj+l . exIE'

To model this step of the derivation, find the j th leaf from the left in the
current parse tree. This leaf is labeled Xj. Give this leaf m children, labeled
Yl, Y2,. . . , Ym, from the left. As a special case, if m = 0, then ,8 = e, and we
give the j th leaf one child labeled E .

Example 4.10 : The sequence of parse trees constructed from the derivation
(4.8) is shown in Fig. 4.4. In the first step of the derivation, E + -E. To
model this step, add two children, labeled - and E, to the root E of the initial
tree. The result is the second tree.

In the second step of the derivation, - E + - (E). Consequently, add three
children, labeled (, E , and), to the leaf labeled E of the second tree, to
obtain the third tree with yield -(E). Continuing in this fashion we obtain the
complete parse tree as the sixth tree.

Since a parse tree ignores variations in the order in which symbols in senten-
tial forms are replaced, there is a many-to-one relationship between derivations
and parse trees. For example, both derivations (4.8) and (4.9), are associated
with the same final parse tree of Fig. 4.4.

In what follows, we shall frequently parse by producing a leftmost or a
rightmost derivation, since there is a one-to-one relationship between parse
trees and either leftmost or rightmost derivations. Both leftmost and rightmost
derivations pick a particular order for replacing symbols in sentential forms, so
they too filter out variations in the order. It is not hard to show that every parse
tree has associated with it a unique leftmost and a unique rightmost derivation.

4.2. CONTEXT-FREE GRAMMARS

Figure 4.4: Sequence of parse trees for derivation (4.8)

4.2.5 Ambiguity

From Section 2.2.4, a grammar that produces more than one parse tree for some
sentence is said to be ambiguous. Put another way, an ambiguous grammar is
one that produces more than one leftmost derivation or more than one rightmost
derivation for the same sentence.

Example 4.11 : The arithmetic expression grammar (4.3) permits two distinct
leftmost derivations for the sentence id + id * id:

The corresponding parse trees appear in Fig. 4.5.
Note that the parse tree of Fig. 4.5(a) reflects the commonly assumed prece-

dence of + and *, while the tree of Fig. 4.5(b) does not. That is, it is customary
to treat operator * as having higher precedence than +, corresponding to the
fact that we would normally evaluate an expression like a + b * c as a + (b * c) ,
rather than as (a + b) * c.

For most parsers, it is desirable that the grammar be made unambiguous,
for if it is not, we cannot uniquely determine which parse tree to select for a
sentence. In other cases, it is convenient to use carefully chosen ambiguous
grammars, together with disambiguating rules that "throw away" undesirable
parse trees, leaving only one tree for each sentence.

CHAPTER 4. SYNTAX ANALYSIS

Figure 4.5: Two parse trees for id+id*id

4.2.6 Verifying the Language Generated by a Grammar

Although compiler designers rarely do so for a complete programming-language
grammar, it is useful to be able to reason that a given set of productions gener-
ates a particular language. Troublesome constructs can be studied by writing
a concise, abstract grammar and studying the language that it generates. We
shall construct such a grammar for conditional statements below.

A proof that a grammar G generates a language L has two parts: show that
every string generated by G is in L, and conversely that every string in L can
indeed be generated by G.

Example 4.12 : Consider the following grammar:

It may not be initially apparent, but this simple grammar generates all
strings of balanced parentheses, and only such strings. To see why, we shall
show first that every sentence derivable from S is balanced, and then that every
balanced string is derivable from S. To show that every sentence derivable from
S is balanced, we use an inductive proof on the number of steps n in a derivation.

BASIS: The basis is n = 1. The only string of terminals derivable from S in
one step is the empty string, which surely is balanced.

INDUCTION: Now assume that all derivations of fewer than n steps produce
balanced sentences, and consider a leftmost derivation of exactly n steps. Such
a derivation must be of the form

The derivations of x and y from S take fewer than n steps, so by the inductive
hypothesis x and y are balanced. Therefore, the string (x)y must be balanced.
That is, it has an equal number of left and right parentheses, and every prefix
has at least as many left parentheses as right.

4.2. CONTEXT-FREE GRAMMARS 205

Having thus shown that any string derivable from S is balanced, we must
next show that every balanced string is derivable from S. To do so, use induction
on the length of a string.

BASIS: If the string is of length 0, it must be E, which is balanced.

INDUCTION: First, observe that every balanced string has even length. As-
sume that every balanced string of length less than 2n is derivable from S,
and consider a balanced string w of length 2n, n 2 1. Surely w begins with a
left parenthesis. Let (x) be the shortest nonempty prefix of w having an equal
number of left and right parentheses. Then w can be written as w = (x) y where
both x and y are balanced. Since x and y are of length less than 2n, they are
derivable from S by the inductive hypothesis. Thus, we can find a derivation
of the form

proving that w = (x)y is also derivable from S.

4.2.7 Context-Free Grammars Versus Regular
Expressions

Before leaving this section on grammars and their properties, we establish that
grammars are a more powerful notation than regular expressions. Every con-
struct that can be described by a regular expression can be described by a gram-
mar, but not vice-versa. Alternatively, every regular language is a context-free
language, but not vice-versa.

For example, the regular expression (alb)*abb and the grammar

describe the same language, the set of strings of a's and b's ending in abb.
We can construct mechanically a grammar to recognize the same language

as a nondeterministic finite automaton (NFA). The grammar above was con-
structed from the NFA in Fig. 3.24 using the following construction:

1. For each state i of the NFA, create a nonterminal Ai.

2. If state i has a transition to state j on input a , add the production Ai -+
aAj. If state i goes to state j on input E , add the production Ai --+ A,.

3. If i is an accepting state, add Ai -+ e.

4. If i is the start state, make Ai be the start symbol of the grammar.

206 CHAPTER 4. SYNTAX ANALYSIS

On the other hand, the language L = {anbn I n > 1) with an equal number
of a's and b's is a prototypical example of a language that can be described
by a grammar but not by a regular expression. To see why, suppose L were
the language defined by some regular expression. We could construct a DFA D
with a finite number of states, say k , to accept L. Since D has only k states, for
an input beginning with more than k a's, D must enter some state twice, say
si, as in Fig. 4.6. Suppose that the path from si back to itself is labeled with
a sequence ajdi. Since aib<s in the language, there must be a path labeled bi
from si to an accepting state f . But, then there is also a path from the initial
state so through si to f labeled ajbi, as shown in Fig. 4.6. Thus, D also accepts
ajbi, which is not in the language, contradicting the assumption that L is the
language accepted by D.

path labeled aj-i
. . .

a ~ t h labeled a' path labeled b"
.

Figure 4.6: DFA D accepting both ai bi and a j bi.

Colloquially, we say that "finite automata cannot count ," meaning that
a finite automaton cannot accept a language like {anbn I n > 1) that would
require it to keep count of the number of a's before it sees the b's. Likewise, "a
grammar can count two items but not three," as we shall see when we consider
non-context-free language constructs in Section 4.3.5.

4.2.8 Exercises for Section 4.2

Exercise 4.2.1 : Consider the context-free grammar:

and the string aa + a*.

a) Give a leftmost derivation for the string.

b) Give a rightmost derivation for the string.

c) Give a parse tree for the string.

! d) Is the grammar ambiguous or unambiguous? Justify your answer.

! e) Describe the language generated by this grammar.

Exercise 4.2.2 : Repeat Exercise 4.2.1 for each of the following grammas and
strings:

4.2. CONTEXT-FREE GRAMMARS

b) S -+ + S S (* S S I a with string + * aaa.

! C) S -+ S (S) S (E with string (00).

! e) S -+ (L) I a and L - + L , S I S with string ((a,a),a,(a)).

!! f) S -+ a S b S I b S a S I E with string aabbab.

! g) The following grammar for boolean expressions:

bexpr -+ bexpr or bterm 1 bterm
bterm -+ bterm and bfactor 1 bfactor
bfactor --+ not bfactor 1 (bexpr) 1 true 1 false

Exercise 4.2.3 : Design grammars for the following languages:

a) The set of all strings of 0s and 1s such that every 0 is immediately followed
by at least one 1.

! b) The set of all strings of 0s and 1s that are palindromes; that is, the string
reads the same backward as forward.

! c) The set of all strings of 0s and 1s with an equal number of 0s and 1s.

!! d) The set of all strings of 0s and 1s with an unequal number of 0s and 1s.

! e) The set of all strings of 0s and 1s in which 011 does not appear as a
substring.

!! f) The set of all strings of 0s and 1s of the form xy, where x # y and x and
y are of the same length.

! Exercise 4.2.4 : There is an extended grammar notation in common use. In
this notation, square and curly braces in production bodies are metasymbols
(like -+ or 1) with the following meanings:

i) Square braces around a grammar symbol or symbols denotes that these
constructs are optional. Thus, production A -+ X [Y] Z has the same
effect as the two productions A -+ X Y Z and A -+ X 2.

ii) Curly braces around a grammar symbol or symbols says that these sym-
bols may be repeated any number of times, including zero times. Thus,
A -+ X {Y Z) has the same effect as the infinite sequence of productions
A - + X , A - + X Y Z , A - + X Y Z Y Z ,andsoon .

208 CHAPTER 4. SYNTAX ANALYSIS

Show that these two extensions do not add power to grammars; that is, any
language that can be generated by a grammar with these extensions can be
generated by a grammar without the extensioms.

Exercise 4.2.5 : Use the braces described in Exercise 4.2.4 to simplify the
following grammar for statement blocks and conditional statements:

stmt -i if expr then stmt else stmt
I if stmt then stmt
I begin stmtList end

stmtList -i stmt ; stmtLdst (stmt

! Exercise 4.2.6 : Extend the idea of Exercise 4.2.4 to allow any regular expres-
sion of grammar symbols in the body of a production. Show that this extension
does not allow grammars to define any new languages.

! Exercise 4.2.7 : A grammar symbol X (terminal or nonterminal) is useless if
there is no derivation of the form S $- wXy % wzy. That is, X can never
appear in the derivation of any sentence.

a) Give an algorithm to eliminate from a grammar all productions containing
useless symbols.

b) Apply your algorithm to the grammar:

Exercise 4.2.8: The grammar in Fig. 4.7 generates declarations for a sin-
gle numerical identifier; these declarations involve four different, independent
properties of numbers.

stmt -+ declare id optionList
optionList -+ optionList option I E

option -+ mode I scale 1 precision I base
mode -+ real 1 complex
scale + fixed I floating
precision + single I double
base + binary (decimal

Figure 4.7: A grammar for multi-attribute declarations

a) Generalize the grammar of Fig. 4.7 by allowing n options Ai, for some
fixed n and for i = 1 , 2 . . . , n, where Ai can be either ai or bi. Your
grammar should use only O(n) grammar symbols and have a total length
of productions that is O(n) .

4.3. WRITING A GRAMMAR 209

! b) The grammar of Fig. 4.7 and its generalization in part (a) allow declara-
tions that are contradictory and/or redundant, such as:

dec l a r e foo r e a l f i x e d r e a l f l o a t i n g

We could insist that the syntax of the language forbid such declarations;
that is, every declaration generated by the grammar has exactly one value
for each of the n options. If we do, then for any fixed n there is only a finite
number of legal declarations. The language of legal declarations thus has
a grammar (and also a regular expression), as any finite language does.
The obvious grammar, in which the start symbol has a production for
every legal declaration has n! productions and a total production length
of O(n x n!). You must do better: a total production length that is
0 (nzn) .

!! c) Show that any grammar for part (b) must have a total production length
of at least 2".

d) What does part (c) say about the feasibility of enforcing nonredundancy
and noncontradiction among options in declarations via the syntax of the
programming language?

4.3 Writing a Grammar

Grammars are capable of describing most, but not all, of the syntax of pro-
gramming languages. For instance, the requirement that identifiers be declared
before they are used, cannot be described by a context-free grammar. Therefore,
the sequences of tokens accepted by a parser form a superset of the program-
ming language; subsequent phases of the compiler must analyze the output of
the parser to ensure compliance with rules that are not checked by the parser.

This section begins with a discussion of how to divide work between a lexical
analyzer and a parser. We then consider several transformations that could be
applied to get a grammar more suitable for parsing. One technique can elim-
inate ambiguity in the grammar, and other techniques - left-recursion elimi-
nation and left factoring - are useful for rewriting grammars so they become
suitable for top-down parsing. We conclude this section by considering some
programming language constructs that cannot be described by any grammar.

4.3.1 Lexical Versus Syntactic Analysis

As we observed in Section 4.2.7, everything that can be described by a regular
expression can also be described by a grammar. We may therefore reasonably
ask: "Why use regular expressions to define the lexical syntax of a language?"
There are several reasons.

210 CHAPTER 4. SYNTAX ANALYSIS

1. Separating the syntactic structure of a language into lexical and non-
lexical parts provides a convenient way of modularizing the front end of
a compiler into two manageable-sized components.

2. The lexical rules of a language are frequently quite simple, and to describe
them we do not need a notation as powerful as grammars.

3. Regular expressions generally provide a more concise and easier-to-under-
stand notation for tokens than grammars.

4. More efficient lexical analyzers can be constructed automatically from
regular expressions than from arbitrary grammars.

There are no firm guidelines as to what to put into the lexical rules, as op-
posed to the syntactic rules. Regular expressions are most useful for describing
the structure of constructs such as identifiers, constants, keywords, and white
space. Grammars, on the other hand, are most useful for describing nested
structures such as balanced parentheses, matching begin-end's, corresponding
if-then-else's, and so on. These nested structures cannot be described by regular
expressions.

4.3.2 Eliminating Ambiguity

Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.
As an example, we shall eliminate the ambiguity from the following "dangling-
else" grammar:

stmt + if expr then stmt
(if expr then stmt else stmt (4.14)
I other

Here "other" stands for any other statement. According to this grammar, the
compound conditional statement

if El then S1 else if E2 then S2 else S3

/Ti\\
El ,L.Ll epT(\\\ 2% then stmt

S1

if n then stmt else stmt
LLL

E2 5'2 S3

Figure 4.8: Parse tree for a conditional statement

4.3. WRITING A GRAMMAR 211

has the parse tree shown in Fig. 4.8.' Grammar (4.14) is ambiguous since the
string

if El then if E2 then S1 else S2 (4.15)

has the two parse trees shown in Fig. 4.9.

if ,expr\ t~itmj~ll

El

if A then ,stmt\ else /stmt\

E2 S1 s2

if ,expr, then ,stmt,

Figure 4.9: Two parse trees for an ambiguous sentence

In all programming languages with conditional statements of this form, the
first parse tree is preferred. The general rule is, "Match each else with the
closest unmatched then." This disambiguating rule can theoretically be in-
corporated directly into a grammar, but in practice it is rarely built into the
productions.

Example 4.16 : We can rewrite the dangling-else grammar (4.14) as the fol-
lowing unambiguous grammar. The idea is that a statement appearing between
a then and an else must be "matched" ; that is, the interior statement must
not end with an unmatched or open then. A matched statement is either an
if-then-else statement containing no open statements or it is any other kind
of unconditional statement. Thus, we may use the grammar in Fig. 4.10. This
grammar generates the same strings as the dangling-else grammar (4.14), but
it allows only one parsing for string (4.15); namely, the one that associates each
else with the closest previous unmatched then. [7

 he subscripts on E and S are just to distinguish different occurrences of the same
nonterminal, and do not imply distinct nonterminals.

2 ~ e should note that C and its derivatives are included in this class. Even though the C
family of languages do not use the keyword then, its role is played by the closing parenthesis
for the condition that follows if.

CHAPTER 4. SYNTAX ANALYSIS

stmt + matched-stmt
(open-stmt

matched-stmt + if expr then matched-stmt else matched-stmt
1 other

open-stmt + if expr then stmt
1 if expr then matched-stmt else open-stmt

Figure 4.10: Unambiguous grammar for if-then-else statements

4.3.3 Elimination of Left Recursion

A grammar is left recursive if it has a nonterminal A such that there is a + derivation A * Aa for some string a . Top-down parsing methods cannot
handle left-recursive grammars, so a transformation is needed to eliminate left
recursion. In Section 2.4.5, we discussed immediate left recursion, where there
is a production of the form A --+ Aa. Here, we study the general case. In
Section 2.4.5, we showed how the left-recursive pair of productions A -+ Aa 1 ,fl
could be replaced by the non-left-recursive productions:

without changing the strings derivable from A. This rule by itself suffices for
many grammars.

Example 4.17 : The non-left-recursive expression grammar (4.2), repeated
here,

is obtained by eliminating immediate left recursion from the expression gram-
mar (4.1). The left-recursive pair of productions E -+ E + T I T are replaced
by E -+ T E' and E' -+ + T E' I c . The new productions for T and T' are
obtained similarly by eliminating immediate left recursion.

Immediate left recursion can be eliminated by the following technique, which
works for any number of A-productions. First, group the productions as

where no pi begins with an A. Then, replace the A-productions by

4.3. WRITING A GRAMMAR

The nonterminal A generates the same strings as before but is no longer left
recursive. This procedure eliminates all left recursion from the A and A' pro-
ductions (provided no ai is E), but it does not eliminate left recursion involving
derivations of two or more steps. For example, consider the grammar

The nonterminal S is left recursive because S Aa + Sda, but it is not
immediately left recursive.

Algorithm 4.19, below, systematically eliminates left recursion from a gram-
mar. It is guaranteed to work if the grammar has no cycles (derivations of the + form A + A) or 6-productions (productions of the form A -+ E). Cycles can be
eliminated systematically from a grammar, as can E-productions (see Exercises
4.4.6 and 4.4.7).

Algorithm 4.19 : Eliminating left recursion.

INPUT: Grammar G with no cycles or e-productions.

OUTPUT: An equivalent grammar with no left recursion.

METHOD: Apply the algorithm in Fig. 4.11 to G. Note that the resulting
non-left-recursive grammar may have E-productions.

1) arrange the nonterminals in some order A1, A2, . . . , A,.

2) for (each i from 1 to n) {
3) for (each j from 1 to i - 1) {
4) replace each production of the form Ai -+ Aj7 by the

productions Ai -+ 617 I 627 1 - . I dk7, where
Aj -+ dl 1 d2 1 . . . 1 dk are all current Aj-productions

5 > }
6) eliminate the immediate left recursion among the Ai-productions
7) 1

Figure 4.11: Algorithm to eliminate left recursion from a grammar

The procedure in Fig. 4.11 works as follows. In the first iteration for i =
1, the outer for-loop of lines (2) through (7) eliminates any immediate left
recursion among A1-productions. Any remaining A1 productions of the form
Al -+ Ala must therefore have 1 > 1. After the i - 1st iteration of the outer for-
loop, all nonterminals Ale, where k < i , are "cleaned"; that is, any production
Ak -+ Ala, must have 1 > k. As a result, on the ith iteration, the inner loop

214 CHAPTER 4. SYNTAX ANALYSIS

of lines (3) through (5) progressively raises the lower limit in any production
Ai -+ A,a, until we have m _> i. Then, eliminating immediate left recursion
for the Ai productions at line (6) forces m to be greater than i.

Example 4.20 : Let us apply Algorithm 4.19 to the grammar (4.18). Techni-
cally, the algorithm is not guaranteed to work, because of the €-production, but
in this case, the production A -+ c turns out to be harmless.

We order the nonterminals S, A. There is no immediate left recursion
among the S-productions, so nothing happens during the outer loop for i = 1.
For i = 2, we substitute for S in A -+ S d to obtain the following A-productions.

A - + A c I A a d 1 b d 1 E

Eliminating the immediate left recursion among these A-productions yields the
following grammar.

4.3.4 Left Factoring
a,

Left factoring is a grammar transformation that is useful for producing a gram-
mar suitable for predictive, or top-down, parsing. When the choice between
two alternative A-productions is not clear, we may be able to rewrite the pro-
ductions to defer the decision until enough of the input has been seen that we
can make the right choice.

For example, if we have the two productions

stmt -+ if expr then stmt else strnt
I if expr then stmt

on seeing the input if, we cannot immediately tell which production to choose
to expand stmt. In general, if A + apl I aP2 are two A-productions, and the
input begins with a nonempty string derived from a, we do not know whether
to expand A to aPl or a h . However, we may defer the decision by expanding
A to aA'. Then, after seeing the input derived from a, we expand A' to PI or
to P2. That is, left-factored, the original productions become

Algorithm 4.2 1 : Left factoring a grammar.

INPUT: Grammar G.

OUTPUT: An equivalent left-factored grammar.

4.3. WRITING A GRAMMAR 215

METHOD: For each nonterminal A, find the longest prefix a! common to two
or more of its alternatives. If a! # E - i.e., there is a nontrivial common
prefix - replace all of the A-productions A + up1 1 cupz 1 - - . / a!/?, I y, where
y represents all alternatives that do not begin with a, by

Here A' is a new nonterminal. Repeatedly apply this transformation until no
two alternatives for a nonterminal have a common prefix.

Example 4.22 : The following grammar abstracts the "dangling-else" prob-
lem:

Here, i, t , and e stand for if, then , and else; E and S stand for "conditional
expression" and "statement ." Left-factored, this grammar becomes:

Thus, we may expand S to iEtSS1 on input i , and wait until iE tS has been
seen to decide whether to expand St to eS or to e. Of course, these grammars
are both ambiguous, and on input e, it will not be clear which alternative for
St should be chosen. Example 4.33 discusses a way out of this dilemma.

4.3.5 Non-Context-Free Language Constructs

A few syntactic constructs found in typical programming languages cannot be
specified using grammars alone. Here, we consider two of these constructs,
using simple abstract languages to illustrate the difficulties.

Example 4.25 : The language in this example abstracts the problem of check-
ing that identifiers are declared before they are used in a program. The language
consists of strings of the form wcw, where the first w represents the declaration
of an identifier w, c represents an intervening program fragment, and the second
w represents the use of the identifier.

The abstract language is L1 = {wcw I w is in (alb)*). L1 consists of
all words composed of a repeated string of a's and b's separated by c, such
as aabcaab. While it is beyond the scope of this book to prove it, the non-
context-freedom of L1 directly implies the non-context-freedom of programming
languages like C and Java, which require declaration of identifiers before their
use and which allow identifiers of arbitrary length.

For this reason, a grammar for C or Java does not distinguish among identi-
fiers that are different character strings. Instead, all identifiers are represented

216 C H A P T E R 4. S Y N T A X ANALYSIS

by a token such as id in the grammar. In a compiler for such a language,
the semantic-analysis phase checks that identifiers are declared before they are
used.

Example 4.26 : The non-context-free language in this example abstracts the
problem of checking that the number of formal parameters in the declaration of a
function agrees with the number of actual parameters in a use of the function.
The language consists of strings of the form anbmcndm. (Recall an means a
written n times.) Here an and bm could represent the formal-parameter lists of
two functions declared to have n and rn arguments, respectively, while cn and
dm represent the actual-parameter lists in calls to these two functions.

The abstract language is Lz = {anbmcndm I n > 1 and m > I). That is, La
consists of strings in the language generated by the regular expression a*b*c*d"
such that the number of a's and c's are equal and the number of b's and d's are
equal. This language is not context free.

Again, the typical syntax of function declarations and uses does not concern
itself with counting the number of parameters. For example, a function call in
C-like language might be specified by

stmt + id (expr-list)
expr-list + expr-list , expr

I expr

with suitable productions for expr. Checking that the number of parameters in
a call is correct is usually done during the semantic-analysis phase.

4.3.6 Exercises for Section 4.3

Exercise 4.3.1 : The following is a grammar for regular expressions over sym-
bols a and b only, using + in place of 1 for union, to avoid conflict with the use
of vertical bar as a metasymbol in grammars:

rexpr -+ rexpr + rterm (rterm
rterm -+ rterm rfactor I rfactor
rfactor + rfactor * 1 rprirnary
rprimary + a 1 b

a) Left factor this grammar.

b) Does left factoring make the grammar suitable for top-down parsing?

c) In addition to left factoring, eliminate left recursion from the original
grammar.

d) Is the resulting grammar suitable for top-down parsing?

Exercise 4.3.2 : Repeat Exercise 4.3.1 on the following grammars:

4.4. TOP-DO WN PARSING

a) The grammar of Exercise 4.2.1.

b) The grammar of Exercise 4.2.2(a).

c) The grammar of Exercise 4.2.2(c).

d) The grammar of Exercise 4.2.2(e).

e) The grammar of Exercise 4.2.2(g).

! Exercise 4.3.3 : The following grammar is proposed to remove the "dangling-
else ambiguity" discussed in Section 4.3.2:

stmt + if expr then stmt
I matchedstmt

matchedstmt + if expr then matchedstmt else stmt
1 other

Show that this grammar is still ambiguous.

4.4 Top-Down Parsing

Top-down parsing can be viewed as the problem of constructing a parse tree for
the input string, starting from the root and creating the nodes of the parse tree
in preorder (depth-first, as discussed in Section 2.3.4). Equivalently, top-down
parsing can be viewed as finding a leftmost derivation for an input string.

Example 4.27 : The sequence of parse trees in Fig. 4.12 for the input id+id*id
is a top-down parse according to grammar (4.2), repeated here:

E + T E '
E' -+ + T E 1 (€

T + F T '
T' -+ * F T I I €
F + (E) (id

This sequence of trees corresponds to a leftmost derivation of the input.

At each step of a top-down parse, the key problem is that of determining
the production to be applied for a nonterminal, say A. Once an A-production
is chosen, the rest of the parsing process consists of "matching7' the terminal
symbols in the production body with the input string.

The section begins with a general form of top-down parsing, called recursive-
descent parsing, which may require backtracking to find the correct A-produc-
tion to be applied. Section 2.4.2 introduced predictive parsing, a special case of
recursive-descent parsing, where no backtracking is required. Predictive parsing
chooses the correct A-production by looking ahead at the input a fixed number
of symbols, typically we may look only at one (that is, the next input symbol).

218 CHAPTER 4. SYNTAX ANALYSIS

Figure 4.12: Top-down parse for id + id * id

For example, consider the top-down parse in Fig. 4.12, which constructs
a tree with two nodes labeled El. At the first E' node (in preorder), the
production E' -+ +TE' is chosen; at the second E' node, the production E' -+ t

is chosen. A predictive parser can choose between El-productions by looking
at the next input symbol.

The class of grammars for which we can construct predictive parsers looking
k symbols ahead in the input is sometimes called the LL(k) class. We discuss the
LL(1) class in Section 4.4.3, but introduce certain computations, called FIRST

and FOLLOW, in a preliminary Section 4.4.2. From the FIRST and FOLLOW
sets for a grammar, we shall construct "predictive parsing tables," which make
explicit the choice of production during top-down parsing. These sets are also
useful during bottom-up parsing,

In Section 4.4.4 we give a nonrecursive parsing algorithm that maintains
a stack explicitly, rather than implicitly via recursive calls. Finally, in Sec-
tion 4.4.5 we discuss error recovery during top-down parsing.

4.4. TOP-DOWN PARSING

4.4.1 Recursive-Descent Parsing

void A() {
1) Choose an A-production, A + XI X 2 . . . X k ;

2) for (i = l t o k) {
3 if (Xi is a nonterminal)
4) call procedure Xi () ;
5 else if (Xi equals the current input symbol a)
6) advance the input to the next symbol;

7) else /* an error has occurred */;
1

I

Figure 4.13: A typical procedure for a nonterminal in a top-down parser

A recursive-descent parsing program consists of a set of procedures, one for each
nonterminal. Execution begins with the procedure for the start symbol, which
halts and announces success if its procedure body scans the entire input string.
Pseudocode for a typical nonterminal appears in Fig. 4.13. Note that this
pseudocode is nondeterministic, since it begins by choosing the A-production
to apply in a manner that is not specified.

General recursive-descent may require backtracking; that is, it may require
repeated scans over the input. However, backtracking is rarely needed to parse
programming language constructs, so backtracking parsers are not seen fre-
quently. Even for situations like natural language parsing, backtracking is not
very efficient, and tabular methods such as the dynamic programming algo-
rithm of Exercise 4.4.9 or the method of Earley (see the bibliographic notes)
are preferred.

To allow backtracking, the code of Fig. 4.13 needs to be modified. First, we
cannot choose a unique A-production at line (I), so we must try each of several
productions in some order. Then, failure at line (7) is not ultimate failure, but
suggests only that we need to return to line (1) and try another A-production.
Only if there are no more A-productions to try do we declare that an input
error has been found. In order to try another A-production, we need to be able
to reset the input pointer to where it was when we first reached line (1). Thus,
a local variable is needed to store this input pointer for future use.

Example 4.29 : Consider the grammar

To construct a parse tree top-down for the input string w = cad, begin with a
tree consisting of a single node labeled S, and the input pointer pointing to c,
the first symbol of w. S has only one production, so we use it to expand S and

220 CHAPTER 4. SYNTAX ANALYSIS

obtain the tree of Fig. 4.14(a). The leftmost leaf, labeled c, matches the first
symbol of input w, so we advance the input pointer to a , the second symbol of
w, and consider the next leaf, labeled A.

Figure 4.14: Steps in a top-down parse

Now, we expand A using the first alternative A -+ a b to obtain the tree of
Fig. 4.14(b). We have a match for the second input symbol, a , so we advance
the input pointer to d, the third input symbol, and compare d against the next
leaf, labeled b. Since b does not match d, we report failure and go back to A to
see whether there is another alternative for A that has not been tried, but that
might produce a match.

In going back to A, we must reset the input pointer to position 2, the
position it had when we first came to A, which means that the procedure for A
must store the input pointer in a local variable.

The second alternative for A produces the tree of Fig. 4.14(c). The leaf
a matches the second symbol of w and the leaf d matches the third symbol.
Since we have produced a parse tree for w, we halt and announce successful
completion of parsing. El

A left-recursive grammar can cause a recursive-descent parser, even one
with backtracking, to go into an infinite loop. That is, when we try to expand
a nonterminal A, we may eventually find ourselves again trying to expand A
without having consumed any input.

4.4.2 FIRST and FOLLOW

The construction of both top-down and bottom-up parsers is aided by two
functions, FIRST and FOLLOW, associated with a grammar G. During top-
down parsing, FIRST and FOLLOW allow us to choose which production to
apply, based on the next input symbol. During panic-mode error recovery, sets
of tokens produced by FOLLOW can be used as synchronizing tokens.

Define FIRST(&), where a is any string of grammar symbols, to be the set
of terminals that begin strings derivedPom a. If a % 6 , then E is also in
FIRST@). For example, in Fig. 4.15, A + cy, so c is in FIRST(A).

For a preview of how FIRST can be used during predictive parsing, consider
two A-productions A + a / P, where FIRST(&) and FIRST@) are disjoint sets.
We can then choose between these A-productions by looking at the next input

4.4. TOP-DO WN PARSING

Figure 4.15: Terminal c is in FIRST(A) and a is in FOLLOW(A)

symbol a, since a can be in at most one of FIRST(~U) and FIRST(^), not both.
For instance, if a is in FIRST@) choose the production A -+ P. This idea will
be explored when LL(1) grammars are defined in Section 4.4.3.

Define FOLLOW(A), for nonterminal A, to be the set of terminals a that can
appear immediately to the right of A in some sentential form; t$t is, the set
of terminals a such that there exists a derivation of the form S + aAap, for
some a! and p, as in Fig. 4.15. Note that there may have been symbols between
A and a, at some time during the derivation, but if so, they derived r and
disappeared. In addition, if A can be the rightmost symbol in some sentential
form, then $ is in FOLLOW(A); recall that $ is a special "endmarker" symbol
that is assumed not to be a symbol of any grammar.

To compute FIRST(X) for all grammar symbols X, apply the following rules
until no more terminals or E: can be added to any FIRST set.

1. If X is a terminal, then FIRST(X) = {XI.

2. If X is a nonterminal and X + YlY2 . . - Yk is a production for some k 2 1,
then place a in FIRST(X) if for some i, a is in FIRST(Y,), and r is in all of
FIRST(Y~), . . . , FIRST(Y,-I); that is, Yl . - . x-1 &- r. If E is in FIRST(Y,)
for all j = 1,2, . . . , k , then add E: to FIRST(X). For example, everything
in FIRST(YI) is surely in FIRST(X). If does not derive 6, then we add
nothing more to FIRST(X), but if Yl &- r, then we add F1RST(Y2), and
SO on.

3. If X -+ r is a production, then add r to FIRST(X).

Now, we can compute FIRST for any string XlX2 , . . Xn as follows. Add to
FIRST(X~ X2 . . . Xn) all non-r symbols of FIRST(X~). Also add the non-r sym-
bols of FIRST(^^), if 6 is in FIRST(X~); the non-E symbols of FIRST(&), if r is
in FIRST(XI) and FIRST(^^); and so on. Finally, add r to F1RST(X1X2 . . Xn)
if, for all i, E is in FIRST(X~).

To compute FOLLOW(A) for all nonterminals A, apply the following rules
until nothing can be added to any FOLLOW set.

1. Place $ in FOLLOW(S), where S is the start symbol, and $ is the input
right endmarker.

222 CHAPTER 4. SYNTAX ANALYSIS

2. If there is a production A -+ aBP, then everything in FIRST@) except E

is in FOLLOW(B).

3. If there is a production A -+ a B , or a production A -+ aBP, where
FIRST(@) contains E, then everything in FOLLOW (A) is in FOLLOW (B) .

Example 4.30 : Consider again the non-left-recursive grammar (4.28). Then:

1. FIRST(F) = FIRST(T) = FIRST(E) = {(, id). To see why, note that the
two productions for F have bodies that start with these two terminal
symbols, id and the left parenthesis. T has only one production, and its
body starts with F. Since F does not derive E, FIRST(T) must be the
same as FIRST(F). The same argument covers FIRST(E).

2. FIRST(E') = {+, E). The reason is that one of the two productions for E'
has a body that begins with terminal +, and the other's body is E. When-
ever a nonterminal derives E, we place E in FIRST for that nonterminal.

3. FIRST(T') = {*, 6). The reasoning is analogous to that for FIRST(E').

4. FOLLOW@) = FOLLOW(E') = {), $1. Since E is the start symbol,
FOLLOW(E) must contain $. The production body (E) explains why the
right parenthesis is in FOLLOW(E). For El, note that this nonterminal
appears only at the ends of bodies of E-productions. Thus, FOLLOW(E')
must be the same as FOLLOW(E).

5. FOLLOW(T) = FOLLOW(T') = {+,), $1. Notice that T appears in bodies
only followed by E'. Thus, everything except E that is in FIRST(E') must
be in FOLLOW (T) ; that explains the symbol +. However, since FIRST(E')
contains E (i.e., E' & E), and E' is the entire string following T in the
bodies of the E-productions, everything in FOLLOW(E) must also be in
FOLLOW(T). That explains the symbols $ and the right parenthesis. As
for T', since it appears only at the ends of the T-productions, it must be
that FOLLOW(T') = FOLLOW(T).

6. FOLLOW(F) = {+, *,), $1. The reasoning is analogous to that for T in
point (5).

4.4.3 LL(1) Grammars

Predictive parsers, that is, recursive-descent parsers needing no backtracking,
can be constructed for a class of grammars called LL(1). The first "L" in LL(1)
stands for scanning the input from left to right, the second "L" for producing
a leftmost derivation, and the "1" for using one input symbol of lookahead at
each step to make parsing action decisions.

4.4. TOP-DOWN PARSING 223

Transition Diagrams for Predictive Parsers

Transition diagrams are useful for visualizing predictive parsers. For exam-
ple, the transition diagrams for nonterminals E and E' of grammar (4.28)
appear in Fig. 4.16(a). To construct the transition diagram from a gram-
mar, first eliminate left recursion and then left factor the grammar. Then,
for each nonterminal A,

1. Create an initial and final (return) state.

2. For each production A + XIXz - . Xk, create a path from the initial
to the final state, with edges labeled XI , X 2 , . . . , Xk. If A -+ t, the
path is an edge labeled t .

Transition diagrams for predictive parsers differ from those for lexical
analyzers. Parsers have one diagram for each nouterminal. The labels of
edges can be tokens or nonterminals. A transition on a token (terminal)
means that we take that transition if that token is the next input symbol.
A transition on a nonterminal A is a call of the procedure for A.

With an LL(1) grammar, the ambiguity of whether or not to take an
€-edge can be resolved by making €-transitions the default choice.

Transition diagrams can be simplified, provided the sequence of gram-
mar symbols along paths is preserved. We may also substitute the dia-
gram for a nonterminal A in place of an edge labeled A. The diagrams in
Fig. 4.16(a) and (b) are equivalent: if we trace paths from E to an accept-
ing state and substitute for E', then, in both sets of diagrams, the grammar
symbols along the paths make up strings of the form T + T + . . . + T. The
diagram in (b) can be obtained from (a) by transformations akin to those
in Section 2.5.4, where we used tail-recursion removal and substitution of
procedure bodies to optimize the procedure for a nonterminal.

The class of LL(1) grammars is rich enough to cover most programming
constructs, although care is needed in writing a suitable grammar for the source
language. For example, no left-recursive or ambiguous grammar can be LL(1).

A grammar G is LL(1) if and only if whenever A --+ cu I ,D are two distinct
productions of G, the following conditions hold:

1. For no terminal a do both a and ,O derive strings beginning with a.

2. At most one of cu and ,D can derive the empty string.

3. If ,O 3 t, then cu does not derive any string beginning with a terminal
in FOLLOW(A). Likewise, if & t, then P does not derive any string
beginning with a terminal in FOLLOW(A).

4.4. TOP-DOWNPARSING 225

If, after performing the above, there is no production at all in M[A, a], then
set M[A, a] to er ror (which we normally represent by an empty entry in the
table).

Example 4.32 : For the expression grammar (4.28), Algorithm 4.31 produces
the parsing table in Fig. 4.17. Blanks are error entries; nonblanks indicate a
production with which to expand a nonterminal.

Figure 4.17: Parsing table M for Example 4.32

NON -
TERMINAL

E

E'

T

T'

F

Consider production E -+ TE'. Since

this production is added to M[E, (1 and M[E, id]. Production El -+ +TE1 is
added to M[E', +] since FIRST(+T El) = {+}. Since FOLLOW (El) = {), $1,
production E' + E is added to MIE1,)] and MIE1, $1.

INPUT SYMBOL

Algorithm 4.31 can be applied to any grammar G to produce a parsing table
M. For every LL(1) grammar, each parsing-table entry uniquely identifies a
production or signals an error. For some grammars, however, M may have
some entries that are multiply defined. For example, if G is left-recursive or
ambiguous, then Ad will have at least one multiply defined entry. Although left-
recursion elimination and left factoring are easy to do, there are some grammars
for which no amount of alteration will produce an LL(1) grammar.

The language in the following example has no LL(1) grammar at all.

Example 4.33 : The following grammar, which abstracts the dangling-else
problem, is repeated here from Example 4.22:

The parsing table for this grammar appears in Fig. 4.18. The entry for MIS1, el
contains both S' --+ eS and S' -+ 6 .

The grammar is ambiguous and the ambiguity is manifested by a choice in
what production to use when an e (else) is seen. We can resolve this ambiguity

)

E l + €

T I + &

id
E +TE'

T + FTI

F -+ id

$

E1+e

TI-+€

*

T1-+*FT'

+

El -+ +TE1

T

(
E -+ TE'

T -+ FT'

F -+ (E)

226 CHAPTER 4. SYNTAX ANALYSIS

Figure 4.18: Parsing table M for Example 4.33

NON -
TERMINAL

S

S1

E

by choosing S' -+ eS. This choice corresponds to associating an else with the
closest previous then. Note that the choice S' -+ c would prevent e from ever
being put on the stack or removed from the input, and is surely wrong. 0

4.4.4 Nonrecursive Predictive Parsing

INPUT SYMBOL

A nonrecursive predictive parser can be built by maintaining a stack explicitly,
rather than implicitly via recursive calls. The parser mimics a leftmost deriva-
tion. If w is the input that has been matched so far, then the stack holds a
sequence of grammar symbols a such that

a

S + a

The table-driven parser in Fig. 4.19 has an input buffer, a stack containing a
sequence of grammar symbols, a parsing table constructed by Algorithm 4.31,
and an output stream. The input buffer contains the string to be parsed,
followed by the endmarker $. We reuse the symbol $ to mark the bottom of the
stack, which initially contains the start symbol of the grammar on top of $.

The parser is controlled by a program that considers X , the symbol on top
of the stack, and a, the current input symbol. If X is a nonterminal, the parser
chooses an X-production by consulting entry M[X, a] of the parsing table IM.
(Additional code could be executed here, for example, code to construct a node
in a parse tree.) Otherwise, it checks for a match between the terminal X and
current input symbol a.

The behavior of the parser can be described in terms of its configurations,
which give the stack contents and the remaining input. The next algorithm
describes how configurations are manipulated.

Algorithm 4.34 : Table-driven predictive parsing.

b

E+b

INPUT: A string w and a parsing table M for grammar G.

OUTPUT: If w is in L(G), a leftmost derivation of w; otherwise, an error
indication.

e

S' + €

S1 -+ eS

i
S --+ iEtSS1

t $

S' -+ €

4.4. TOP-DOWN PARSING

Stack

Input l a l + l b l $ l

Output
-
X + -
Y -

Figure 4.19: Model of a table-driven predictive parser

METHOD: Initially, the parser is in a configuration with w$ in the input buffer
and the start symbol S of G on top of the stack, above $. The program in
Fig. 4.20 uses the predictive parsing table M to produce a predictive parse for
the input.

Predictive
Parsing

Program

set zp to point to the first symbol of w;
set X to the top stack symbol;
while (X # $) { /* stack is not empty */

if (X is a) pop the stack and advance zp;
else if (X is a terminal) error();
else if (M [X , a] is an error entry) error();
else if (M[X,a] = X -+ Y1Y2 Yk) {

output the production X -+ YlY2 - . Yk;
pop the stack;
push Yk, Yk-1,. . . , Yl onto the stack, with Yl on top;

1
set X to the top stack symbol;

1

t

z -
$

Figure 4.20: Predictive parsing algorithm

-

Example 4.35 : Consider grammar (4.28); we have already seen its the parsing
table in Fig. 4.17. On input id + id * id, the nonrecursive predictive parser
of Algorithm 4.34 makes the sequence of moves in Fig. 4.21. These moves
correspond to a leftmost derivation (see Fig. 4.12 for the full derivation):

Parsing
Table

M

228 CHAPTER 4. SYNTAX ANALYSIS

output E -+ TE'
output T -+ FT'
output F -+ id
match id
output T' -+ E.

output E' + + TE'
match +
output T -+ FT'
output F -+ id
match id
output T' -+ * FT'
match *
output F + id
match id
output T' -+ E

output E' -+ E.

Figure 4.21: Moves made by a predictive parser on input id + id * id

Note that the sentential forms in this derivation correspond to the input that
has already been matched (in column MATCHED) followed by the stack contents.
The matched input is shown only to highlight the correspondence. For the same
reason, the top of the stack is to the left; when we consider bottom-up parsing,
it will be more natural to show the top of the stack to the right. The input
pointer points to the leftmost symbol of the string in the INPUT column.

4.4.5 Error Recovery in Predictive Parsing

This discussion of error recovery refers to the stack of a table-driven predictive
parser, since it makes explicit the terminals and nonterminals that the parser
hopes to match with the remainder of the input; the techniques can also be
used with recursive-descent parsing.

An error is detected during predictive parsing when the terminal on top of
the stack does not match the next input symbol or when nonterminal A is on
top of the stack, a is the next input symbol, and M [A , a] is error (i.e., the
parsing-table entry is empty).

Panic Mode

Panic-mode error recovery is based on the idea of skipping symbols on the
the input until a token in a selected set of synchronizing tokens appears. Its

4.4. TOP-DO W N PARSING 229

effectiveness depends on the choice of synchronizing set. The sets should be
chosen so that the parser recovers quickly from errors that are likely to occur
in practice. Some heuristics are as follows:

1. As a starting point, place all symbols in FOLLOW(A) into the synchro-
nizing set for nonterminal A. If we skip tokens until an element of
FOLLOW(A) is seen and pop A from the stack, it is likely that parsing
can continue.

It is not enough to use FOLLOW(A) as the synchronizing set for A. For
example, if semicolons terminate statements, as in C, then keywords that
begin statements may not appear in the FOLLOW set of the nontermi-
nal representing expressions. A missing semicolon after an assignment
may therefore result in the keyword beginning the next statement be-
ing skipped. Often, there is a hierarchical structure on constructs in a
language; for example, expressions appear within statements, which ap-
pear within blocks, and so on. We can add to the synchronizing set of a
lower-level construct the symbols that begin higher-level constructs. For
example, we might add keywords that begin statements to the synchro-
nizing sets for the nonterminals generating expressions.

3. If we add symbols in FIRST(A) to the synchronizing set for nonterminal
A, then it may be possible to resume parsing according to A if a symbol
in FIRST(A) appears in the input.

4. If a nonterminal can generate the empty string, then the production de-
riving E can be used as a default. Doing so may postpone some error
detection, but cannot cause an error to be missed. This approach reduces
the number of nonterminals that have to be considered during error re-
covery.

5. If a terminal on top of the stack cannot be matched, a simple idea is to
pop the terminal, issue a message saying that the terminal was inserted,
and continue parsing. In effect, this approach takes the synchronizing set
of a token to consist of all other tokens.

Example 4.36 : Using FIRST and FOLLOW symbols as synchronizing tokens
works reasonably well when expressions are parsed according to the usual gram-
mar (4.28). The parsing table for this grammar in Fig. 4.17 is repeated in
Fig. 4.22, with "synch" indicating synchronizing tokens obtained from the
FOLLOW set of the nonterminal in question. The FOLLOW sets for the non-
terminals are obtained from Example 4.30.

The table in Fig. 4.22 is to be used as follows. If the parser looks up entry
&![A, a] and finds that it is blank, then the input symbol a is skipped. If the
entry is "synch," then the nonterminal on top of the stack is popped in an
attempt to resume parsing. If a token on top of the stack does not match the
input symbol, then we pop the token from the stack, as mentioned above.

230 CHAPTER 4. SYNTAX ANALYSIS

Figure 4.22: Synchronizing tokens added to the parsing table of Fig. 4.17

NON -
TERMINAL

E

E'

T

T'

F

On the erroneous input) id * +id, the parser and error recovery mechanism
of Fig. 4.22 behave as in Fig. 4.23.

STACK INPUT REMARK
E $) id * + id $ error, skip)
E $ id * + id $ id is in FIRST(E)

T E ' $ id * +id $
FT'E' $ id * + id $

id TIE'$ id * + id $
TIE' $ * + i d $

* FT'E' $ * + i d $
FT'E' $ + id $ error, M [F, +] = synch

TIE' $ + id $ F has been popped
E' $ + id $

+ TE' $ + id $
TE' $ id $

FT'E' $ id $
id TIE' $ id $

TIE' $ $
E' $ $

$ $

INPUT SYMBOL

Figure 4.23: Parsing and error recovery moves made by a predictive parser

id

E -+ TE'

T + FT'

F + id

The above discussion of panic-mode recovery does not address the important
issue of error messages. The compiler designer must supply informative error
messages that not only describe the error, they must draw attention to where
the error was discovered.

+

E + +TE1

synch

T' + E

synch

*

T' --+ *FT'

synch

(
E + TE'

T + FT'

F + (E)

)
synch

E-+c

synch

T ' + e

synch

$

synch

E + c

synch

TI-+€

synch

4.4. TOP-DO WN PARSING

Phrase-level Recovery

Phrase-level error recovery is implemented by filling in the blank entries in
the predictive parsing table with pointers to error routines. These routines
may change, insert, or delete symbols on the input and issue appropriate error
messages. They may also pop from the stack. Alteration of stack symbols or the
pushing of new symbols onto the stack is questionable for several reasons. First,
the steps carried out by the parser might then not correspond to the derivation
of any word in the language at all. Second, we must ensure that there is no
possibility of an infinite loop. Checking that any recovery action eventually
results in an input symbol being consumed (or the stack being shortened if the
end of the input has been reached) is a good way to protect against such loops.

4.4.6 Exercises for Section 4.4

Exercise 4.4.1 : For each of the following grammars, devise predictive parsers
and show the parsing tables. You may left-factor and/or eliminate left-recursion
from your grammars first.

a) The grammar of Exercise 4.2.2(a).

b) The grammar of Exercise 4.2.2(b).

c) The grammar of Exercise 4.2.2(c).

d) The grammar of Exercise 4.2.2 (d) .

e) The grammar of Exercise 4.2.2(e).

f) The grammar of Exercise 4.2.2(g).

! ! Exercise 4.4.2 : Is it possible, by modifying the grammar in any way, to con-
struct a predictive parser for the language of Exercise 4.2.1 (postfix expressions
with operand a)?

Exercise 4.4.3 : Compute FIRST and FOLLOW for the grammar of Exercise
4.2.1.

Exercise 4.4.4: Compute FIRST and FOLLOW for each of the grammars of
Exercise 4.2.2.

Exercise 4.4.5 : The grammar S -+ a S a I a a generates all even-length
strings of a's. We can devise a recursive-descent parser with backtrack for this
grammar. If we choose to expand by production S -+ a a first, then we shall
only recognize the string aa. Thus, any reasonable recursive-descent parser will
try S -+ a S a first.

a) Show that this recursive-descent parser recognizes inputs aa, aaaa, and
aaaaaaaa, but not aaaaaa.

232 CHAPTER 4. SYNTAX ANALYSIS

!! b) What language does this recursive-descent parser recognize?

The following exercises are useful steps in the construction of a "Chomsky
Normal Form" grammar from arbitrary grammars, as defined in Exercise 4.4.8.

! Exercise 4.4.6: A grammar is €-free if no production body is E (called an
E-production).

a) Give an algorithm to convert any grammar into an €-free grammar that
generates the same language (with the possible exception of the empty
string - no E-free grammar can generate c) .

b) Apply your algorithm to the grammar S + aSbS I bSaS I E. Hint: First
find all the nonterminals that are nullable, meaning that they generate E,

perhaps by a long derivation.

! Exercise 4.4.7: A single production is a production whose body is a single
nonterminal, i.e., a production of the form A -+ A.

a) Give an algorithm to convert any grammar into an €-free grammar, with
no single productions, that generates the same language (with the possible
exception of the empty string) Hint: First eliminate E-productions, and
then find for which pairs of nonterminals A and B does A % B by a
sequence of single productions.

b) Apply your algorithm to the grammar (4.1) in Section 4.1.2.

c) Show that, as a consequence of part (a), we can convert a grammar into
an equivalent grammar that has no cycles (derivations of one or more
steps in which A % A for some nonterminal A).

!! Exercise 4.4.8 : A grammar is said to be in Chomsky Normal Form (CNF) if
every production is either of the form A -+ BC or of the form A -+ a, where
A, B, and C are nonterminals, and a is a terminal. Show how to convert
any grammar into a CNF grammar for the same language (with the possible
exception of the empty string - no CNF grammar can generate E).

! Exercise 4.4.9 : Every language that has a context-free grammar can be rec-
ognized in at most O(n3) time for strings of length n. A simple way to do so,
called the Cocke- Younger-Kasami (or CYK) algorithm is based on dynamic pro-
gramming. That is, given a string ala2 . - . a,, we construct an n-by-n table T

i+l " ' a j . such that Tij is the set of nonterminals that generate the substring a -a
If the underlying grammar is in CNF (see Exercise 4.4.8), then one table entry
can be filled in in O(n) time, provided we fill the entries in the proper order:
lowest value of j - i first. Write an algorithm that correctly fills in the entries
of the table, and show that your algorithm takes O(n3) time. Having filled in
the table, how do you determine whether ala2 . . . a, is in the language?

4.5. BOTTOM-UP PARSING 233

! Exercise 4.4.10: Show how, having filled in the table as in Exercise 4.4.9,
we can in O(n) time recover a parse tree for alaz - - - a,. Hint: modify the
table so it records, for each nonterminal A in each table entry Tij, some pair of
nonterminals in other table entries that justified putting A in Tij.

! Exercise 4.4.11 : Modify your algorithm of Exercise 4.4.9 so that it will find,
for any string, the smallest number of insert, delete, and mutate errors (each
error a single character) needed to turn the string into a string in the language
of the underlying grammar.

stmt +
I

I
stmt Tail --+

I
list +
list Tail +

--+

if e then stmt stmt Tail
while e do stmt
begin list end
S

else stmt
€

stmt list Tail
; list
€

Figure 4.24: A grammar for certain kinds of statements

! Exercise 4.4.12 : In Fig. 4.24 is a grammar for certain statements. You may
take e and s to be terminals standing for conditional expressions and "other
statements," respectively. If we resolve the conflict regarding expansion of
the optional "else" (nonterminal stmtTail) by preferring to consume an else
from the input whenever we see one, we can build a predictive parser for this
grammar. Using the idea of synchronizing symbols described in Section 4.4.5:

a) Build an error-correcting predictive parsing table for the grammar.

b) Show the behavior of your parser on the following inputs:

(i) if e then s ; if e then s end
(ii) while e do begin s ; if e then s ; end

4.5 Bottom-Up Parsing

A bottom-up parse corresponds to the construction of a parse tree for an input
string beginning at the leaves (the bottom) and working up towards the root
(the top). It is convenient to describe parsing as the process of building parse
trees, although a front end may in fact carry out a translation directly without
building an explicit tree. The sequence of tree snapshots in Fig. 4.25 illustrates

CHAPTER 4. SYNTAX ANALYSIS

Figure 4.25: A bottom-up parse for id * id

a bottom-up parse of the token stream id * id, with respect to the expression
grammar (4.1).

This section introduces a general style of bottom-up parsing known as shift-
reduce parsing. The largest class of grammars for which shift-reduce parsers can
be built, the LR grammars, will be discussed in Sections 4.6 and 4.7. Although
it is too much work to build an LR parser by hand, tools called automatic parser
generators make it easy to construct efficient LR parsers from suitable gram-
mars. The concepts in this section are helpful for writing suitable grammars
to make effective use of an LR parser generator. Algorithms for implementing
parser generators appear in Section 4.7.

4.5.1 Reductions

We can think of bottom-up parsing as the process of "reducing" a string w to
the start symbol of the grammar. At each reduction step, a specific substring
matching the body of a production is replaced by the nonterminal at the head
of that production.

The key decisions during bottom-up parsing are about when to reduce and
about what production to apply, as the parse proceeds.

Example 4.37 : The snapshots in Fig. 4.25 illustrate a sequence of reductions;
the grammar is the expression grammar (4.1). The reductions will be discussed
in terms of the sequence of strings

id * id, F * id, T * id, T * F, T, E

The strings in this sequence are formed from the roots of all the subtrees in the
snapshots. The sequence starts with the input string id*id. The first reduction
produces F * id by reducing the leftmost id to F , using the production F -+ id.
The second reduction produces T * id by reducing F to T.

Now, we have a choice between reducing the string T, which is the body
of E -+ T, and the string consisting of the second id, which is the body of
F -+ id. Rather than reduce T to E, the second id is reduced to T , resulting
in the string T * F . This string then reduces to T. The parse completes with
the reduction of T to the start symbol E.

4.5. BOTTOM- UP PARSING 235

By definition, a reduction is the reverse of a step in a derivation (recall that
in a derivation, a nonterminal in a sentential form is replaced by the body of
one of its productions). The goal of bottom-up parsing is therefore to construct
a derivation in reverse. The following derivation corresponds to the parse in
Fig. 4.25:

This derivation is in fact a rightmost derivation.

4.5.2 Handle Pruning

Bottom-up parsing during a left-to-right scan of the input constructs a right-
most derivation in reverse. Informally, a "handle" is a substring that matches
the body of a production, and whose reduction represents one step along the
reverse of a rightmost derivation.

For example, adding subscripts to the tokens id for clarity, the handles
during the parse of idl * id2 according to the expression grammar (4.1) are as
in Fig. 4.26. Although T is the body of the production E --+ T, the symbol T is
not a handle in the sentential form T * id2. If T were indeed replaced by E, we
would get the string E * id2, which cannot be derived from the start symbol E.
Thus, the leftmost substring that matches the body of some production need
not be a handle.

Figure 4.26: Handles during a parse of idl * id2

Formally, if S %- aAw * apw, as in Fig. 4.27, then production A --+ ,6
r m rm

in the position following a is a handle of apw. Alternatively, a handle of a
right-sentential form y is a production A -+ ,6 and a position of y where the
string p may be found, such that replacing ,6 at that position by A produces
the previous right-sentential form in a rightmost derivation of y.

Notice that the string w to the right of the handle must contain only terminal
symbols. For convenience, we refer to the body ,6 rather than A --+ ,6 as a handle.
Note we say "a handle" rather than "the handle," because the grammar could
be ambiguous, with more than one rightmost derivation of apw. If a grammar
is unambiguous, then every right-sentential form of the grammar has exactly
one handle.

A rightmost derivation in reverse can be obtained by "handle pruning."
That is, we start with a string of terminals w to be parsed. If w is a sentence

CHAPTER 4. SYNTAX ANALYSIS

Figure 4.27: A handle A -+ P in the parse tree for apw

of the grammar at hand, then let w = yn, where y, is the nth right-sentential
form of some as yet unknown rightmost derivation

To reconstruct this derivation in reverse order, we locate the handle Pn in
yn and replace Pn by the head of the relevant production A, -+ ,On to obtain
the previous right-sentential form ?,-I. Note that we do not yet know how
handles are to be found, but we shall see methods of doing so shortly.

We then repeat this process. That is, we locate the handle Pn-l in 7,-1 and
reduce this handle to obtain the right-sentential form ~ ~ - 2 . If by continuing this
process we produce a right-sentential form consisting only of the start symbol
S, then we halt and announce successful completion of parsing. The reverse of
the sequence of productions used in the reductions is a rightmost derivation for
the input string.

4.5.3 Shift-Reduce Parsing

Shift-reduce parsing is a form of bottom-up parsing in which a stack holds
grammar symbols and an input buffer holds the rest of the string to be parsed.
As we shall see, the handle always appears at the top of the stack just before
it is identified as the handle.

We use $ to mark the bottom of the stack and also the right end of the
input. Conventionally, when discussing bottom-up parsing, we show the top of
the stack on the right, rather than on the left as we did for top-down parsing.
Initially, the stack is empty, and the string w is on the input, as follows:

During a left-to-right scan of the input string, the parser shifts zero or more
input symbols onto the stack, until it is ready to reduce a string P of grammar
symbols on top of the stack. It then reduces ,O to the head of the appropriate
production. The parser repeats this cycle until it has detected an error or until
the stack contains the start symbol and the input is empty:

4,5. BOTTOM-UP PARSING

Upon entering this configuration, the parser halts and announces successful
completion of parsing. Figure 4.28 steps through the actions a shift-reduce
parser might take in parsing the input string idl *id2 according to the expression
grammar (4.1).

shift
reduce by F -+ id
reduce by T -+ F
shift
shift
reduce by F -+ id
reduce by T -+ T * F
reduce by E -+ T
accept

Figure 4.28: Configurations of a shift-reduce parser on input idl*id2

While the primary operations are shift and reduce, there are actually four
possible actions a shift-reduce parser can make: (1) shift, (2) reduce, (3) accept,
and (4) error.

1. Shift. Shift the next input symbol onto the top of the stack.

2. Reduce. The right end of the string to be reduced must be at the top of
the stack. Locate the left end of the string within the stack and decide
with what nonterminal to replace the string.

3. Accept. Announce successful completion of parsing.

4. Error. Discover a syntax error and call an error recovery routine.

The use of a stack in shift-reduce parsing is justified by an important fact:
the handle will always eventually appear on top of the stack, never inside. This
fact can be shown by considering the possible forms of two successive steps
in any rightmost derivation. Figure 4.29 illustrates the two possible cases. In
case (I) , A is replaced by PBg, and then the rightmost nonterminal B in the
body PBy is replaced by y. In case (2), A is again expanded first, but this time
the body is a string y of terminals only. The next rightmost nonterminal B will
be somewhere to the left of y.

In other words:

(1) S % a A z + aPByz =+ aPyyz
r*m r m r m

(2) S + a B x A z + aBxyz +- ayxyz
r m r m rm

CHAPTER 4. SYNTAX ANALYSIS

a P Y Y z
Case (1)

a y x y z
Case (2)

Figure 4.29: Cases for two successive steps of a rightmost derivation

Consider case (1) in reverse, where a shift-reduce parser has just reached the
configuration

The parser reduces the handle y to B to reach the configuration

The parser can now shift the string y onto the stack by a sequence of zero or
more shift moves to reach the configuration

with the handle PBy on top of the stack, and it gets reduced to A.
Now consider case (2). In configuration

the handle y is on top of the stack. After reducing the handle y to B, the parser
can shift the string xy to get the next handle y on top of the stack, ready to be
reduced to A:

In both cases, after making a reduction the parser had to shift zero or more
symbols to get the next handle onto the stack. It never had to go into the stack
to find the handle.

4.5.4 Conflicts During Shift-Reduce Parsing
There are context-free grammars for which shift-reduce parsing cannot be used.
Every shift-reduce parser for such a grammar can reach a configuration in which
the parser, knowing the entire stack contents and the next input symbol, cannot
decide whether to shift or to reduce (a shift/reduce conflict), or cannot decide

4.5. BOTTOM-UP PARSING 239

which of several reductions to make (a reduce/reduce conflict). We now give
some examples of syntactic constructs that give rise to such grammars. Techni-
cally, these grammars are not in the LR(k) class of grammars defined in Section
4.7; we refer to them as non-LR grammars. The k in LR(k) refers to the number
of symbols of lookahead on the input. Grammars used in compiling usually fall
in the LR(1) class, with one symbol of lookahead at most.

Example 4.38 : An ambiguous grammar can never be LR. For example, con-
sider the dangling-else grammar (4.14) of Section 4.3:

stmt + if expr then stmt

I if expr then stmt else stmt
I other

If we have a shift-reduce parser in configuration

STACK
. . if expr then stmt

INPUT
else . . . $

we cannot tell whether if expr then stmt is the handle, no matter what appears
below it on the stack. Here there is a shiftlreduce conflict. Depending on what
follows the else on the input, it might be correct to reduce if expr then stint
to stmt, or it might be correct to shift else and then to look for another stmt
to complete the alternative if expr then stmt else stmt.

Note that shift-reduce parsing can be adapted to parse certain ambigu-
ous grammars, such as the if-then-else grammar above. If we resolve the
shiftlreduce conflict on else in favor of shifting, the parser will behave as we
expect, associating each else with the previous unmatched then. We discuss
parsers for such ambiguous grammars in Section 4.8.

Another common setting for conflicts occurs when we know we have a han-
dle, but the stack contents and the next input symbol are insufficient to de-
termine which production should be used in a reduction. The next example
illustrates this situation.

Example 4.39: Suppose we have a lexical analyzer that returns the token
name id for all names, regardless of their type. Suppose also that our lan-
guage invokes procedures by giving their names, with parameters surrounded
by parentheses, and that arrays are referenced by the same syntax. Since the
translation of indices in array references and parameters in procedure calls
are different, we want to use different productions to generate lists of actual
parameters and indices. Our grammar might therefore have (among others)
productions such as those in Fig. 4.30.

A statement beginning with p (i , j) would appear as the token stream
id(id, id) to the parser. After shifting the first three tokens onto the stack,
a shift-reduce parser would be in configuration

CHAPTER 4. SYNTAX ANALYSIS

s t m t
s t m t

parameter-list
parameter-list

parameter
expr
expr

expr-list
expr-list

id (parameter-list)
expr := expr
parameter-list , parameter
parameter
id
id (expr-list)
id
expr-list , expr
expr

Figure 4.30: Productions involving procedure calls and array references

It is evident that the id on top of the stack must be reduced, but by which
production? The correct choice is production (5) if p is a procedure, but pro-
duction (7) if p is an array. The stack does not tell which; information in the
symbol table obtained from the declaration of p must be used.

One solution is to change the token id in production (1) to procid and to
use a more sophisticated lexical analyzer that returns the token name procid
when it recognizes a lexeme that is the name of a procedure. Doing so would
require the lexical analyzer to consult the symbol table before returning a token.

If we made this modification, then on processing p (i , j) the parser would
be either in the configuration

STACK
. . procid (id

or in the configuration above. In the former case, we choose reduction by
production (5) ; in the latter case by production (7). Notice how the symbol
third from the top of the stack determines the reduction to be made, even
though it is not involved in the reduction. Shift-reduce parsing can utilize
information far down in the stack to guide the parse.

4.5.5 Exercises for Section 4.5

Exercise 4.5.1: For the grammar S -+ 0 S 1 I 0 1 of Exercise 4.2.2(a),
indicate the handle in each of the folhwing right-sentential forms:

Exercise 4.5.2 : Repeat Exercise 4.5.1 for the grammar S -+ S S + I S S * I a
of Exercise 4.2.1 and the following right-sentential forms:

4.6. INTRODUCTION T O L R PARSING: SIMPLE L R

Exercise 4.5.3 : Give bottom-up parses for the following input strings and
grammars:

a) The input 000111 according to the grammar of Exercise 4.5.1.

b) The input aaa * a + + according to the grammar of Exercise 4.5.2.

4.6 Introduction to LR Parsing: Simple LR

The most prevalent type of bottom-up parser today is based on a concept called
LR(k) parsing; the "L" is for left-to-right scanning of the input, the "R" for
constructing a rightmost derivation in reverse, and the k for the number of
input symbols of lookahead that are used in making parsing decisions. The
cases k = 0 or k = 1 are of practical interest, and we shall only consider LR
parsers with k 5 1 here. When (k) is omitted, k is assumed to be 1.

This section introduces the basic concepts of LR parsing and the easiest
method for constructing shift-reduce parsers, called "simple LR" (or SLR, for
short). Some familiarity with the basic concepts is helpful even if the LR
parser itself is constructed using an automatic parser generator. We begin with
"items" and "parser states;" the diagnostic output from an LR parser generator
typically includes parser states, which can be used to isolate the sources of
parsing conflicts.

Section 4.7 introduces two, more complex methods - canonical-LR and
LALR - that are used in the majority of LR parsers.

4.6.1 Why LR Parsers?

LR parsers are table-driven, much like the nonrecursive LL parsers of Sec-
tion 4.4.4. A grammar for which we can construct a parsing table using one of
the methods in this section and the next is said to be an LR grammar. Intu-
itively, for a grammar to be LR it is sufficient that a left-to-right shift-reduce
parser be able to recognize handles of right-sentential forms when they appear
on top of the stack.

LR parsing is attractive for a variety of reasons:

LR parsers can be constructed to recognize virtually all programming-
language constructs for which context-free grammars can be written. Non-
LR context-free grammars exist, but these can generally be avoided for
typical programming-language constructs.

242 CHAPTER 4. SYNTAX ANALYSIS

The LR-parsing method is the most general nonbacktracking shift-reduce
parsing method known, yet it can be implemented as efficiently as other,
more primitive shift-reduce methods (see the bibliographic notes).

An LR parser can detect a syntactic error as soon as it is possible to do
so on a left-to-right scan of the input.

The class of grammars that can be parsed using LR methods is a proper
superset of the class of grammars that can be parsed with predictive or
LL methods. For a grammar to be LR(k), we must be able to recognize
the occurrence of the right side of a production in a right-sentential form,
with k input symbols of lookahead. This requirement is far less stringent
than that for LL(k) grammars where we must be able to recognize the
use of a production seeing only the first k symbols of what its right side
derives. Thus, it should not be surprising that LR grammars can describe
more languages than LL grammars.

The principal drawback of the LR method is that it is too much work to
construct an LR parser by hand for a typical programming-language grammar.
A specialized tool, an LR parser generator, is needed. Fortunately, many such
generators are available, and we shall discuss one of the most commonly used
ones, Yacc, in Section 4.9. Such a generator takes a context-free grammar and
automatically produces a parser for that grammar. If the grammar contains
ambiguities or other constructs that are difficult to parse in a left-to-right scan
of the input, then the parser generator locates these constructs and provides
detailed diagnostic messages.

4.6.2 Items and the LR(0) Automaton

How does a shift-reduce parser know when to shift and when to reduce? For
example, with stack contents $ T and next input symbol * in Fig. 4.28, how
does the parser know that T on the top of the stack is not a handle, so the
appropriate action is to shift and not to reduce T to E?

An LR parser makes shift-reduce decisions by maintaining states to keep
track of where we are in a parse. States represent sets of "items." An LR(0)
item (item for short) of a grammar G is a production of G with a dot at some
position of the body. Thus, production A -+ XYZ yields the four items

The production A -+ E. generates only one item, A -+ - .
Intuitively, an item indicates how much of a production we have seen at a

given point in the parsing process. For example, the item A -+ .XYZ indicates
that we hope to see a string derivable from X Y Z next on the input. Item

4.6. INTRODUCTION T O L R PARSING: SIMPLE L R 243

Representing Item Sets

A parser generator that produces a bottom-up parser may need to rep-
resent items and sets of items conveniently. Note that an item can be
represented by a pair of integers, the first of which is the number of one
of the productions of the underlying grammar, and the second of which is
the position of the dot. Sets of items can be represented by a list of these
pairs. However, as we shall see, the necessary sets of items often include
"closure" items, where the dot is at the beginning of the body. These can
always be reconstructed from the other items in the set, and we do not
have to include them in the list.

A -+ X-YZ indicates that we have just seen on the input a string derivable from
X and that we hope next to see a string derivable from Y 2. Item A -+ X Y Z.
indicates that we have seen the body XYZ and that it may be time to reduce
X Y Z to A.

One collection of sets of LR(0) items, called the canonical LR(0) collection,
provides the basis for constructing a deterministic finite automaton that is used '
to make parsing decisions. Such an automaton is called an LR(0) aut~maton.~
In particular, each state of the LR(0) automaton represents a set of items in
the canonical LR(0) collection. The automaton for the expression grammar
(4.1), shown in Fig. 4.31, will serve as the running example for discussing the
canonical LR(0) collection for a grammar.

To construct the canonical LR(0) collection for a grammar, we define an
augmented grammar and two functions, CLOSURE and GOTO. If G is a grammar
with start symbol S, then G', the augmented grammar for G, is G with a new
start symbol St and production S' -+ S. The purpose of this new starting
production is to indicate to the parser when it should stop parsing and announce
acceptance of the input. That is, acceptance occurs when and only when the
parser is about to reduce by St -+ S.

Closure of Item Sets

If I is a set of items for a grammar G, then CLOSURE(I) is the set of items
constructed from I by the two rules:

1. Initially, add every item in I to CLOSURE(I).

2. If A -+ a-BP is in CLOSURE(I) and B -+ y is a production, then add the
item B -+ .y to CLOSURE(I), if it is not already there. Apply this rule
until no more new items can be added to CLOSURE(I).

3~echnically, the automaton misses being deterministic according to the definition of Sec-
tion 3.6.4, because we do not have a dead state, corresponding to the empty set of items. As
a result, there are some state-input pairs for which no next state exists.

244 CHAPTER 4. SYNTAX ANALYSIS

Figure 4.31: LR(0) automaton for the expression grammar (4.1)

Intuitively, A + cr-BP in CLOSURE(I) indicates that, at some point in the
parsing process, we think we might next see a substring derivable from B P
as input. The substring derivable from BP will have a prefix derivable from
B by applying one of the B-productions. We therefore add items for all the
B-productions; that is, if B + y is a production, we also include B -+ .y in
CLOSURE(I).

Example 4.40 : Consider the augmented expression grammar:

E' + E
E -+ E + T (T
T + T * F 1 F
E -+ (E) I id

If I is the set of one item {[E' -+ .El}, then CLOSURE(I) contains the set
of items I. in Fig. 4.31.

4.6. INTRODUCTION T O L R PARSING: SIMPLE L R 245

To see how the closure is computed, E' -+ -E is put in CLOSURE(I) by
rule (1) . Since there is an E immediately to the right of a dot, we add the
E-productions with dots at the left ends: E -+ .E + T and E -+ ST. Now there
is a T immediately to the right of a dot in the latter item, so we add T -+ ST * F
and T -+ .F. Next, the F to the right of a dot forces us to add F + . (E) and
F -+ -id, but no other items need to be added. 0

The closure can be computed as in Fig. 4.32. A convenient way to imple-
ment the function closure is to keep a boolean array added, indexed by the
nonterminals of G, such that added[B] is set to true if and when we add the
item B -+ .y for each B-production B -+ y.

SetOfItems CLOSURE(I) {
J = I ;
repeat

for (each item A -+ a .BP in J)
for (each production B -+ y of G)

if (B -+ .y is not in J)
add B -+ .y to J;

until no more items are added to J on one round;
return J;

Figure 4.32: Computation of CLOSURE

Note that if one B-production is added to the closure of I with the dot at the
left end, then all B-productions will be similarly added to the closure. Hence,
it is not necessary in some circumstances actually to list the items B -+ - y
added to I by CLOSURE. A list of the nonterminals B whose productions were
so added will suffice. We divide all the sets of items of interest into two classes:

1. Kernel items: the initial item, S' -+ .S, and all items whose dots are not
at the left end.

2. Nonkernel items: all items with their dots at the left end, except for
S' -+ .S.

Moreover, each set of items of interest is formed by taking the closure of a set
of kernel items; the items added in the closure can never be kernel items, of
course. Thus, we can represent the sets of items we are really interested in
with very little storage if we throw away all nonkernel items, knowing that they
could be regenerated by the closure process. In Fig. 4.31, nonkernel items are
in the shaded part of the box for a state.

246 CHAPTER 4. SYNTAX ANALYSIS

The Function G O T 0

The second useful function is GOTO(I, X) where I is a set of items and X is a
grammar symbol. GOTO(I, X) is defined to be the closure of the set of all items
[A -+ ax.,8] such that [A --+ a . xP] is in I. Intuitively, the GOT0 function
is used to define the transitions in the LR(0) automaton for a grammar. The
states of the automaton correspond to sets of items, and GOTO(& X) specifies
the transition from the state for I under input X .

Example 4.41 : If I is the set of two items {[El + E.], [E -+ E. + TI), then
GOTO(I, +) contains the items

We computed GOTO(I, +) by examining I for items with + immediately to
the right of the dot. El -+ E- is not such an item, but E -+ E- + T is. We
moved the dot over the + to get E -+ E + S T and then took the closure of this
singleton set.

We are now ready for the algorithm to construct C, the canonical collection
of sets of LR(0) items for an augmented grammar GI - the algorithm is shown
in Fig. 4.33.

void iterns(G1) {
C = CLOSURE({[S' -+ .S]));
repeat

for (each set of items I in C)
for (each grammar symbol X)

if (GOTO(& X) is not empty and not in C)
add GOTO(I, X) to C;

until no new sets of items are added to C on a round;
1

Figure 4.33: Computation of the canonical collection of sets of LR(0) items

Example 4.42 : The canonical collection of sets of LR(0) items for grammar
(4.1) and the GOTO function are shown in Fig. 4.31. GOTO is encoded by the
transitions in the figure.

4.6. INTRODUCTION T O L R PARSING: SIMPLE L R 247

Use of the LR(0) Automaton

The central idea behind "Simple LR," or SLR, parsing is the construction from
the grammar of the LR(0) automaton. The states of this automaton are the
sets of items from the canonical LR(0) collection, and the transitions are given
by the GOTO function. The LR(0) automaton for the expression grammar (4.1)
appeared earlier in Fig. 4.31.

The start state of the LR(0) automaton is CLOSURE({[S' -+ .S]}), where S'
is the start symbol of the augmented grammar. All states are accepting states.
We say "state j" to refer to the state corresponding to the set of items I j .

How can LR(0) automata help with shift-reduce decisions? Shift-reduce
decisions can be made as follows. Suppose that the string y of grammar symbols
takes the LR(0) automaton from the start state 0 to some state j. Then, shift
on next input symbol a if state j has a transition on a. Otherwise, we choose
to reduce; the items in state j will tell us which production to use.

The LR-parsing algorithm to be introduced in Section 4.6.3 uses its stack to
keep track of states as well as grammar symbols; in fact, the grammar symbol
can be recovered from the state, so the stack holds states. The next example
gives a preview of how an LR(0) automaton and a stack of states can be used
to make shift-reduce parsing decisions.

Example 4.43 : Figure 4.34 illustrates the actions of a shift-reduce parser on
input id * id , using the LR(0) automaton in Fig. 4.31. We use a stack to hold
states; for clarity, the grammar symbols corresponding to the states on the
stack appear in column SYMBOLS. At line (I) , the stack holds the start state 0
of the automaton; the corresponding symbol is the bottom-of-stack marker $.

Figure 4.34: The parse of id * id

LINE

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

The next input symbol is id and state 0 has a transition on id to state 5.
We therefore shift. At line (2), state 5 (symbol id) has been pushed onto the
stack. There is no transition from state 5 on input *, so we reduce. From item
[F --+ id-] in state 5, the reduction is by production F -+ id.

STACK

0
0 5
0 3
0 2
0 2 7
0 2 7 5
0 2 7 1 0
0 2
0 1

SYMBOLS

$
$ id
$ F
$ T
$ T *
$ T * i d
$ T * F
$ T
$ E

INPUT

i d * i d $
* id $
* id $
* i d $

id $
$
$
$
$

ACTION

shift to 5
reduce by F -+ id
reduce by T -+ F
shift to 7
shift to 5
reduce by F --+ id
reduce by T --+ T * F
reduce by E -+ T
accept

CHAP?IER 4. SYNTAX ANALYSIS

With symbols, a reduction is implemented by popping the body of the pro-
duction from the stack (on line (2), the body is id) and pushing the head of
the production (in this case, F) . With states, we pop state 5 for symbol id,
which brings state 0 to the top and look for a transition on F, the head of the
production. In Fig. 4.31, state 0 has a transition on F to state 3, so we push
state 3, with corresponding symbol F; see line (3).

As another example, consider line (5), with state 7 (symbol *) on top of the
stack. This state has a transition to state 5 on input id, so we push state 5
(symbol id). State 5 has no transitions, so we reduce by F -+ id. When we
pop state 5 for the body id, state 7 comes to the top of the stack. Since state 7
has a transition on F to state 10, we push state 10 (symbol F).

4.6.3 The LR-Parsing Algorithm

A schematic of an LR parser is shown in Fig. 4.35. It consists of an input,
an output, a stack, a driver program, and a parsing table that has two pasts
(ACTION and GOTO). The driver program is the same for all LR parsers; only
the parsing table changes from one parser to another. The parsing program
reads characters from an input buffer one at a time. Where a shift-reduce parser
would shift a symbol, an LR parser shifts a state. Each state summarizes the
information contained in the stack below it.

Input t l

Stack Output sm

S m - 1

Figure 4.35: Model of an LR parser

The stack holds a sequence of states, sosl . . . s,, where s, is on top. In the
SLR method, the stack holds states from the LR(0) automaton; the canonical-
LR and LALR methods are similar. By construction, each state has a corre-
sponding grammar symbol. Recall that states correspond to sets of items, and
that there is a transition from state i to state j if GOTO(I~, X) = Ij. All tran-
sitions to state j must be for the same grammar symbol X . Thus, each state,
except the start state 0, has a unique grammar symbol associated with it.4

LR
Parsing
Program

4 ~ h e converse need not hold; that is, more than one state may have the same grammar

+

...

$

ACTION GOT0

4.6. INTRODUCTION T O LR PARSING: SIMPLE LR

Structure of the LR Parsing Table

The parsing table consists of two parts: a parsing-action function ACTION and
a goto function GOTO.

1. The ACTION function takes as arguments a state i and a terminal a (or
$, the input endmarker). The value of ACTION[^, a] can have one of four
forms:

(a) Shift j, where j is a state. The action taken by the parser effectively
shifts input a to the stack, but uses state j to represent a.

(b) Reduce A -+ P. The action of the parser effectively reduces P on the
top of the stack to head A.

(c) Accept. The parser accepts the input and finishes parsing.

(d) Error. The parser discovers an error in its input and takes some
corrective action. We shall have more to say about how such error-
recovery routines work in Sections 4.8.3 and 4.9.4.

2. We extend the GOTO function, defined on sets of items, to states: if
GOTO[I~, A] = Ij, then GOT0 also maps a state i and a nonterminal A to
state j .

LR-Parser Configurations

To describe the behavior of an LR parser, it helps to have a notation repre-
senting the complete state of the parser: its stack and the remaining input. A
configuration of an LR parser is a pair:

where the first component is the stack contents (top on the right), and the
second component is the remaining input. This configuration represents the
right-sentential form

in essentially the same way as a shift-reduce parser would; the only difference is
that instead of grammar symbols, the stack holds states from which grammar
symbols can be recovered. That is, Xi is the grammar symbol represented
by state si. Note that so, the start state of the parser, does not represent a
grammar symbol, and serves as a bottom-of-stack marker, as well as playing an
important role in the parse.

symbol. See for example states 1 and 8 in the LR(0) automaton in Fig. 4.31, which are both
entered by transitions on E, or states 2 and 9, which are both entered by transitions on T.

CHAPTER 4. SYNTAX ANALYSIS

Behavior of the LR Parser

The next move of the parser from the configuration above is determined by
reading ai, the current input symbol, and s,, the state on top of the stack,
and then consulting the entry ACTION[S, , ail in the parsing action table. The
configurations resulting after each of the four types of move are as follows

1. If ACTION[S,, ail = shift s , the parser executes a shift move; it shifts the
next state s onto the stack, entering the configuration

The symbol ai need not be held on the stack, since it can be recovered
from s, if needed (which in practice it never is). The current input symbol
is now Ui+l.

2. If ACTION[S,, ail = reduce A -+ P, then the parser executes a reduce
move, entering the configuration

where r is the length of P, and s = GOTO[S,-,, A]. Here the parser
first popped r state symbols off the stack, exposing state s,-,. The
parser then pushed s, the entry for GOTO[S,-,, A], onto the stack. The
current input symbol is not changed in a reduce move. For the LR parsers
we shall construct, Xm-T+l . . X,, the sequence of grammar symbols
corresponding to the states popped off the stack, will always match P,
the right side of the reducing production.

The output of an LR parser is generated after a reduce move by executing
the semantic action associated with the reducing production. For the time
being, we shall assume the output consists of just printing the reducing
production.

3. If ACTION[S,, ail = accept, parsing is completed.

4. If ACTION[S,, ail = error, the parser has discovered an error and calls an
error recovery routine.

The LR-parsing algorithm is summarized below. All LR parsers behave
in this fashion; the only difference between one LR parser and another is the
information in the ACTION and GOT0 fields of the parsing table.

Algorithm 4.44 : LR-parsing algorithm.

INPUT: An input string w and an LR-parsing table with functions ACTION and
GOT0 for a grammar G.

4.6. INTRODUCTION TO LR PARSING: SIMPLE LR 251

OUTPUT: If w is in L(G), the reduction steps of a bottom-up parse for w;
otherwise, an error indication.

METHOD: Initially, the parser has so on its stack, where so is the initial state,
and w$ in the input buffer. The parser then executes the program in Fig. 4.36.

let a be the first symbol of w$;
while(1) { /* repeat forever */

let s be the state on top of the stack;
if (ACTION[S, a] = shift t) {

push t onto the stack;
let a be the next input symbol;

} else if (ACTION[S, a] = reduce A -+ ,O) {
pop I,OI symbols off the stack;
let state t now be on top of the stack;
push GO TO[^, A] onto the stack;
output the production A -+ p;

) else if (ACTION[S, a] = accept) break; /* parsing is done */
else call error-recovery routine;

}

Figure 4.36: LR-parsing program

Example 4.45: Figure 4.37 shows the ACTION and GOT0 functions of an
LR-parsing table for the expression grammar (4.1), repeated here with the
productions numbered:

The codes for the actions are:

1. si means shift and stack state i ,

2. r j means reduce by the production numbered j,

3. acc means accept,

4. blank means error.

Note that the value of GOTO[S, a] for terminal a is found in the ACTION
field connected with the shift action on input a for state s. The GOTO field
gives GOTO[S, A] for nonterminals A. Although we have not yet explained how
the entries for Fig. 4.37 were selected, we shall deal with this issue shortly.

CHAPTER 4. SYNTAX ANALYSIS

Figure 4.37: Parsing table for expression grammar

STATE

0
1
2
3
4
5
6
7
8
9
10
11

On input id * id + id, the sequence of stack and input contents is shown
in Fig. 4.38. Also shown for clarity, are the sequences of grammar symbols
corresponding to the states held on the stack. For example, at line (1) the LR
parser Is in state 0, the initial state with no grammar symbol, and with id the
first input symbol. The action in row 0 and column id of the action field of
Fig. 4.37 is s5, meaning shift by pushing state 5. That is what has happened at
line (2): the state symbol 5 has been pushed onto the stack, and id has been
removed from the input.

Then, * becomes the current input symbol, and the action of state 5 on input
* is to reduce by F -+ id. One state symbol is popped off the stack. State 0
is then exposed. Since the goto of state 0 on F is 3, state 3 is pushed onto the
stack. We now have the configuration in line (3). Each of the remaining moves
is determined similarly.

4.6.4 Constructing SLR-Parsing Tables

ACTION

i d + * () $

s5 s4
s6 acc
r2 s7 r2 r2
r4 r4 r4 r4

s5 s4
r6 r6 r6 r6

s5 s4
s5 s4

s 6 s l l
r l s7 r l r l
r3 r3 r3 r3
r5 r5 r5 r5

The SLR method for constructing parsing tables is a good starting point for
studying LR parsing. We shall refer to the parsing table constructed by this
method as an SLR table, and to an LR parser using an SLR-parsing table as an
SLR parser. The other two methods augment the SLR method with lookahead
information.

The SLR method begins with LR(0) items and LR(0) automata, introduced
in Section 4.5. That is, given a grammar, G, we augment G to produce GI,
with a new start symbol St . From G', we construct C, the canonical collection
of sets of items for Gt together with the GOT0 function.

GOT0

E T F

1 2 3

8 2 3

9 3
10

4.6. INTRODUCTION T O LR PARSING: SIMPLE L R 253

--

shift
reduce by F -+ id
reduce by T -+ F
shift
shift
reduce by F -+ id
reduce by T -+ T * F
reduce by E --+ T
shift
shift
reduce by F -+ id
reduce by T -+ F
reduce by E -+ E + T
accept

Figure 4.38: Moves of an LR parser on id * id + id

The ACTION and GOT0 entries in the parsing table are then constructed
using the following algorithm. It requires us to know FOLLOW(A) for each
nonterminal A of a grammar (see Section 4.4).

Algorithm 4.46 : Constructing an SLR-parsing table.

INPUT: An augmented grammar GI.

OUTPUT: The SLR-parsing table functions ACTION and GOT0 for GI.

METHOD:

1. Construct C = {Io, 11, . . . ,I,), the collection of sets of LR(0) items for
GI.

2. State i is constructed from I, . The parsing actions for state i are deter-
mined as follows:

(a) If [A -+ a.a/3] is in I, and GOTO(&, a) = I j , then set ACTION[& a] to
"shift j." Here a must be a terminal.

(b) If [A -+ a*] is in I,, then set ACTION[^, a] to "reduce A --+ a" for all
a in FOLLOW(A); here A may not be Sf.

(c) If [Sf -+ S.] is in I,, then set ACTION[^, $1 to "accept ."

If any conflicting actions result from the above rules, we say the grammar
is not SLR(1). The algorithm fails to produce a parser in this case.

254 CHAPTER 4. SYNTAX ANALYSIS

3. The goto transitions for state i are constructed for all nonterminals A
using the rule: If GOTO(I,, A) = I,, then GO TO[^, A] = j .

4. All entries not defined by rules (2) and (3) are made "error."

5 . The initial state of the parser is the one constructed from the set of items
containing [St -+ as].

The parsing table consisting of the ACTION and GOTO functions determined
by Algorithm 4.46 is called the SLR(1) table for G. An LR parser using the
SLR(1) table for G is called the SLR(1) parser for G, and a grammar having an
SLR(1) parsing table is said to be SLR(1). We usually omit the "(I)" after the
"SLR," since we shall not deal here with parsers having more than one symbol
of lookahead.

Example 4.47 : Let us construct the SLR table for the augmented expression
grammar. The canonical collection of sets of LR(0) items for the grammar was
shown in Fig. 4.31. First consider the set of items Io:

The item F -+ .(E) gives rise to the entry ACTION[O, (1 = shift 4, and the
item F -+ -id to the entry ACTION[O, id] = shift 5. Other items in I. yield no
actions. Now consider Il :

The first item yields ACTION[^, $1 = accept, and the second yields ACTION[^, +]
= shift 6. Next consider 12:

Since FOLLOW(E) = {$, +,) 3, the first item makes

 ACTION[^, $1 = ACTION[^, +] = ACTION[^,)] = reduce E -t T

The second item makes ACTION[^, *] = shift 7. Continuing in this fashion we
obtain the ACTION and GOTO tables that were shown in Fig. 4.31. In that
figure, the numbers of productions in reduce actions are the same as the order
in which they appear in the original grammar (4.1). That is, E +- E + T is
number 1, E -+ T is 2, and so on.

4.6. INTRODUCTION T O L R PARSING: SIMPLE L R 255

Example 4.48 : Every SLR(1) grammar is unambiguous, but there are many
unambiguous grammars that are not SLR(1). Consider the grammar with pro-
ductions

Think of L and R as standing for 1-value and r-value, respectively, and * as an
operator indicating "contents of." The canonical collection of sets of LR(0)
items for grammar (4.49) is shown in Fig. 4.39.

Figure 4.39: Canonical LR(0) collection for grammar (4.49)

Consider the set of items I z . The first item in this set makes ACTION[& =]
be "shift 6." Since FOLLOW(R) contains = (to see why, consider the derivation
S + L = R =+ *R = R), the second item sets ACTION[^, =] to ?educe R -+ L."
Since there is both a shift and a reduce entry in ACTION[^, =], state 2 has a
shiftlreduce conflict on input symbol =.

Grammar (4.49) is not ambiguous. This shiftlreduce conflict arises from
the fact that the SLR parser construction method is not powerful enough to
remember enough left context to decide what action the parser should take on
input =, having seen a string reducible to L. The canonical and LALR methods,
to be discussed next, will succeed on a larger collection of grammars, including

5As in Section 2.8.3, an kvalue designates a location and an r-value is a value that can be
stored in a location.

256 CHAPTER 4. SYNTAX ANALYSIS

grammar (4.49). Note, however, that there are unambiguous grammars for
which every LR parser construction method will produce a parsing action table
with parsing action conflicts. Fortunately, such grammars can generally be
avoided in programming language applications.

4.6.5 Viable Prefixes

Why can LR(0) automata be used to make shift-reduce decisions? The LR(0)
automaton for a grammar characterizes the strings of grammar symbols that
can appear on the stack of a shift-reduce parser for the grammar. The stack
contents must be a prefix of a right-sentential form. If the stack holds a and
the rest of the input is f, then a sequence of reductions will take a x to S. In
terms of derivations, S + ax .

rm
Not all prefixes of right-sentential forms can appear on the stack, however,

since the parser must not shift past the handle. For example, suppose

Then, at various times during the parse, the stack will hold (, (E, and (E), but
it must not hold (E)*, since (E) is a handle, which the parser must reduce to
F before shifting *.

The prefixes of right sentential forms that can appear on the stack of a shift-
reduce parser are called viable prefixes. They are defined as follows: a viable
prefix is a prefix of a right-sentential form that does not continue past the right
end of the rightmost handle of that sentential form. By this definition, it is
always possible to add terminal symbols to the end of a viable prefix to obtain
a right-sentential form.

SLR parsing is based on the fact that LR(0) automata recognize viable
prefixes. We s ~ y item A -t is valid for a viable prefix aPl if there is a
derivation St + aAw + aP1P2w. In general, an item will be valid for many

rm rm
viable prefixes.

The fact that A -+ P1.P2 is valid for aP1 tells us a lot about whether to
shift or reduce when we find apl on the parsing stack. In particular, if ,& # E ,

then it suggests that we have not yet shifted the handle onto the stack, so shift
is our move. If ,& = e, then it looks as if A -+ P1 is the handle, and we should
reduce by this production. Of course, two valid items may tell us to do different
things for the same viable prefix. Some of these conflicts can be resolved by
looking at the next input symbol, and others can be resolved by the methods
of Section 4.8, but we should not suppose that all parsing action conflicts can
be resolved if the LR method is applied to an arbitrary grammar.

We can easily compute the set of valid items for each viable prefix that
can appear on the stack of an LR parser. In fact, it is a central theorem of
LR-parsing theory that the set of valid items for a viable prefix y is exactly
the set of items reached from the initial state along the path labeled y in the
LR(0) automaton for the grammar. In essence, the set of valid items embodies

4.6. INTRODUCTION T O L R PARSING: SIMPLE L R 257

Items as States of an NFA

A nondeterministic finite automaton N for recognizing viable prefixes can
be constructed by treating the items themselves as states. There is a
transition from A -+ a.XP to A -+ aX .P labeled X , and there is a
transition from A -+ a.BP to B -+ .y labeled c. Then CLOSURE(^) for
set of items (states of N) I is exactly the E-closure of a set of NFA states
defined in Section 3.7.1. Thus, GOTO(& X) gives the transition from I
on symbol X in the DFA constructed from N by the subset construction.
Viewed in this way, the procedure items(G1) in Fig. 4.33 is just the subset
construction itself applied to the NFA N with items as states.

all the useful information that can be gleaned from the stack. While we shall
not prove this theorem here, we shall give an example.

Example 4.50 : Let us consider the augmented expression grammar again,
whose sets of items and GOTO function are exhibited in Fig. 4.31. Clearly, the
string E + T* is a viable prefix of the grammar. The automaton of Fig. 4.31
will be in state 7 after having read E + T*. State 7 contains the items

which are precisely the items valid for E+T*. To see why, consider the following
three rightmost derivations

The first derivation shows the validity of T -+ T * -F, the second the validity
of F --+ .(E), and the third the validity of F -+ .id. It can be shown that there
are no other valid items for E + T*, although we shall not prove that fact here.

4.6.6 Exercises for Section 4.6

Exercise 4.6.1 : Describe all the viable prefixes for the following grammars:

a) The grammar S + 0 S 1 I 0 1 of Exercise 4.2.2(a).

258 CHAPTER 4. SYNTAX ANALYSIS

! b) The grammar S + S S + (S S * I a of Exercise 4.2.1.

! c) The grammar S -+ S (S) (6 of Exercise 4.2.2(c).

Exercise 4.6.2 : Construct the SLR sets of items for the (augmented) grammar
of Exercise 4.2.1. Compute the G O T 0 function for these sets of items. Show
the parsing table for this grammar. Is the grammar SLR?

Exercise 4.6.3 : Show the actions of your parsing table from Exercise 4.6.2 on
the input aa * a+.

Exercise 4.6.4 : For each of the (augmented) grammars of Exercise 4.2.2(a)-
(g) :

a) Construct the SLR sets of items and their GOTO function.

b) Indicate any action conflicts in your sets of items.

c) Construct the SLR-parsing table, if one exists.

Exercise 4.6.5 : Show that the following grammar:

is LL(1) but not SLR(1).

Exercise 4.6.6 : Show that the following grammar:

is SLR(1) but not LL(1).

! ! Exercise 4.6.7 : Consider the family of grammars G, defined by:

S += Ai bi f o r 1 L i F n
Ai -+ aj Ai I aj for 1 < i , j < n and i # j

Show that:

a) G, has 2n2 - n productions.

b) G, has 2, + n2 + n sets of LR(0) items.

What does this analysis say about how large LR parsers can get?

4.7. MORE POWERFUL L R PARSERS 259

! Exercise 4.6.8 : We suggested that individual items could be regarded as
states of a nondeterministic finite automaton, while sets of valid items are the
states of a deterministic finite automaton (see the box on "Items as States of
an NFA" in Section 4.6.5). For the grammar S + S S + I S S * I a of
Exercise 4.2.1:

a) Draw the transition diagram (NFA) for the valid items of this grammar
according to the rule given in the box cited above.

b) Apply the subset construction (Algorithm 3.20) to your NFA from part
(a). How does the resulting DFA compare to the set of LR(0) items for
the grammar?

!! c) Show that in all cases, the subset construction applied to the NFA that
comes from the valid items for a grammar produces the LR(0) sets of
it ems.

! Exercise 4.6.9 : The following is an ambiguous grammar:

Construct for this grammar its collection of sets of LR(0) items. If we try to
build an LR-parsing table for the grammar, there are certain conflicting actions.
What are they? Suppose we tried to use the parsing table by nondeterminis-
tically choosing a possible action whenever there is a conflict. Show all the
possible sequences of actions on input abab.

4.7 More Powerful LR Parsers

In this section, we shall extend the previous LR parsing techniques to use one
symbol of lookahead on the input. There are two different methods:

1. The "canonical-LR" or just "LR" method, which makes full use of the
lookahead symbol(s). This method uses a large set of items, called the
LR(1) items.

2. The "lookahead-LR" or "LALR" method, which is based on the LR(0)
sets of items, and has many fewer states than typical parsers based on the
LR(1) items. By carefully introducing lookaheads into the LR(0) items,
we can handle many more grammars with the LALR method than with
the SLR method, and build parsing tables that are no bigger than the
SLR tables. LALR is the method of choice in most situations.

After introducing both these methods, we conclude with a discussion of how to
compact LR parsing tables for environments with limited memory.

260 CHAPTER 4. SYNTAX ANALYSIS

4.7.1 Canonical LR(1) Items

We shall now present the most general technique for constructing an LR parsing
table from a grammar. Recall that in the SLR method, state i calls for reduction
by A -+ a if the set of items Ii contains item [A --+ as] and a is in FOLLOW(A).
In some situations, however, when state i appears on top of the stack, the
viable prefix pa on the stack is such that PA cannot be followed by a in any
right-sentential form. Thus, the reduction by A -+ a should be invalid on input
a.

Example 4.51 : Let us reconsider Example 4.48, where in state 2 we had item
R -+ L., which could correspond to A -+ a above, and a could be the = sign,
which is in FOLLOW(R). Thus, the SLR parser calls for reduction by R -+ L
in state 2 with = as the next input (the shift action is also called for, because
of item S -+ L.=R in state 2). However, there is no right-sentential form of the
grammar in Example 4.48 that begins R = Thus state 2, which is the
state corresponding to viable prefix L only, should not really call for reduction
of that L to R.

It is possible to carry more information in the state that will allow us to
rule out some of these invalid reductions by A -+ a . By splitting states when
necessary, we can arrange to have each state of an LR parser indicate exactly
which input symbols can follow a handle a for which there is a possible reduction
to A.

The extra information is incorporated into the state by redefining items to
include a terminal symbol as a second component. The general form of an item
becomes [A -+ a p, a], where A -+ a/? is a production and a is a terminal or
the right endmarker $. We call such an object an LR(1) i tem. The 1 refers
to the length of the second component, called the lookahead of the item.6 The
lookahead has no effect in an item of the form [A -+ a$, a], where ,8 is not c ,
but an item of the form [A -+ a*, a] calls for a reduction by A -+ a only if the
next input symbol is a. Thus, we are compelled to reduce by A -+ a only on
those input symbols a for which [A -+ as, a] is an LR(1) item in the state on
top of the stack. The set of such a's will always be a subset of FOLLOW(A),
but it could be a proper subset, as in Example 4.51.

Formally, we say LR(1) item [A -+ an@, a] is valid for a viable prefix y if
there is a derivation S 3 SAW =+ Gapw, where

r m r m

1. y = Sa, and

2. Either a is the first symbol of w, or w is E and a is $.

Example 4.52 : Let us consider the grammar

'Lookaheads that are strings of length greater than one are possible, of course, but we
shall not consider such lookaheads here.

4.7. MORE POWERFUL L R PARSERS

There is a rightmost derivation S 2 aaBab + aaaBab. We see that item [B -+
r m r m

a.B, a] is valid for a viable prefix y = aaa by letting S = aa, A = B , w = ab,
a = a, and p = B in the above definition. There is also a rightmost derivation
S 3 B a B j BaaB. From this derivation we see that item [B -+ a - B , $1 is

r m r m
valid for viable prefix Baa.

4.7.2 Constructing LR(1) Sets of Items

The method for building the collection of sets of valid LR(1) items is essentially
the same as the one for building the canonical collection of sets of LR(0) items.
We need only to modify the two procedures CLOSURE and GOTO.

SetOfftems CLOSURE(I) {
repeat

for (each item [A -+ a.BP, a] in I)
for (each production B -+ y in G')

for (each terminal b in FIRST(,&))
add [B -+ .y, b] to set I ;

until no more items are added to I;
return I;

1

SetOfftems GOTO(& X) {
initialize J to be the empty set;
for (each item [A -t a.X,O, a] in I)

add item [A -+ ax./?, a] to set J ;
return CLOSURE(J);

}

void items(Gt) {
initialize C to CLOSURE({[S' -+ .S, $11);
repeat

for (each set of items I in C)
for (each grammar symbol X)

if (GOTO(I, X) is not empty and not in C)
add GOTO(& X) to C ;

until no new sets of items are added to C;
1

Figure 4.40: Sets-of-LR(1)-items construction for grammar G'

262 CHAPTER 4. SYNTAX ANALYSIS

To appreciate the new definition of the CLOSURE operation, in particular,
why b must be in FIRST(^^), consider an item of the form [A -+ a-BP, a] in the
set of items valid for some viable prefix y . Then there is a rightmost derivation
S % bAax + GcrBpax, where y = da. Suppose pax derives terminal string

r m r m
by. Then for each production of the form B -+ 11 for some v, we have derivation
S $ y B b y + yqby. Thus, [B -+ .q, b] is valid for y . Note that b can be the

rm rm
first terminal derived from P, or it is possible that P derives c in the derivation
pax %- by, and b can therefore be a. To summarize both possibilities we say

rrn
that b can be any terminal in F I R S T (~ ~ X) , where FIRST is the function from
Section 4.4. Note that x cannot contain the first terminal of by, so FIRST(PUX)
= FIRST(/?U). We now give the LR(1) sets of items construction.

Figure 4.41: The GOT0 graph for grammar (4.55)

Algorithm 4.53 : Construction of the sets of LR(1) items.

INPUT: An augmented grammar G'.

OUTPUT: The sets of LR(1) items that are the set of items valid for one or
more viable prefixes of G'.

4.7. MORE POWERFUL LR PARSERS 263

METHOD: The procedures CLOSURE and GOT0 and the main routine items
for constructing the sets of items were shown in Fig. 4.40.

Example 4.54 : Consider the following augmented grammar.

We begin by computing the closure of {[St -+ -S, $1). To close, we match
the item [St -+ -S, $1 with the item [A -+ a-BP, a] in the procedure CLOSURE.
That is, A = St, a = e, B = S, P = e, and a = $. Function CLOSURE tells us
to add [B -+ .y, b] for each production B -+ y and terminal b in FIRST(P~). In
terms of the present grammar, B -+ y must be S -+ CC, and since ,8 is c and
a is $, b may only be $. Thus we add [S -+ .CC, $1.

We continue to compute the closure by adding all items [C -+ .y, b] for b
in FIRST(C$). That is, matching [S -+ .CC, $1 against [A -+ a.B,O, a], we have
A = S, a = 6 , B = C, p = C, and a = $. Since C does not derive the empty
string, FIRST(C$) = FIRST(C). Since FIRST@) contains terminals c and d, we
add items [C -+ -cC, c], [C -+ .cC, dl, [C -t -d, c] and [C -+ -d, dl. None of the
new items has a nonterminal immediately to the right of the dot, so we have
completed our first set of LR(1) items. The initial set of items is

I,: S + . S , $
S -+ .CC, $
C -+ .cC, c/d
C -+ .d, c/d

The brackets have been omitted for notational convenience, and we use the
notation [C -+ .cC, c /d as a shorthand for the two items [C -+ .cC, c] and
[C -+ .cC, 4 .

Now we compute GOTO(I,, X) for the various values of X . For X = S we
must close the item [St -+ S., $1. No additional closure is possible, since the
dot is at the right end. Thus we have the next set of items

For X = C we close [S -+ C.C, $1. We add the C-productions with second
component $ and then can add no more, yielding

Next, let X = c. We must close {[C -+ c.C, c/d}. We add the C-productions
with second component cld, yielding

CHAPTER 4. SYNTAX ANALYSIS

Finally, let X = d, and we wind up with the set of items

We have finished considering GOTO on Io. We get no new sets from 11, but I2
has goto's on C, c, and d. For GOTO(I~, C) we get

15 : S - i CC',$

no closure being needed. To compute GO TO(^^, c) we take the closure of
{[C + c-C, $11, to obtain

I, : c-i c-C, $
c -+ .cC, $
C + .d, $

Note that I6 differs from I3 only in second components. We shall see that it
is common for several sets of LR(1) items for a grammar to have the same
first components and differ in their second components. When we construct
the collection of sets of LR(0) items for the same grammar, each set of LR(0)
items will coincide with the set of first components of one or more sets of LR(1)
items. We shall have more to say about this phenomenon when we discuss
LALR parsing.

Continuing with the GOT0 function for 12, GO TO(^^, d) is seen to be

Turning now to 13, the GOTO'S of I3 on c and d are I3 and 14, respectively, and
GOTO (I3, C) is

I4 and I5 have no GOTO'S, since all items have their dots at the right end. The
GOTO'S of I6 on c and d are I6 and IT, respectively, and G O T O (~ , C) is

The remaining sets of items yield no GOTO'S, so we are done. Figure 4.41
shows the ten sets of items with their goto's.

4.7, MORE POWERFUL LR PARSERS 265

4.7.3 Canonical LR(1) Parsing Tables
We now give the rules for constructing the LR(1) ACTION and GOT0 functions
from the sets of LR(1) items. These functions are represented by a table, as
before. The only difference is in the values of the entries.

Algorithm 4.56 : Construction of canonical-LR parsing tables.

INPUT: An augmented grammar GI.

OUTPUT: The canonical-LR parsing table functions ACTION and GOT0 for G'.

METHOD:

1. Construct C' = {Io, Il , . . , I,), the collection of sets of LR(1) items for
G'.

2. State i of the parser is constructed from Ti. The parsing action for state
i is determined as follows.

(a) If [A -+ a-a@, b] is in I, and GOTO(I,,U) = I,, then set ACTION[^, a]
to "shift j ." Here a must be a terminal.

(b) If [A -+ a*, a] is in Ii, A # S', then set ACTION[^, a] to "reduce
A -+ a."

(c) If [St -+ S-, $1 is in I,, then set ACTION[^, $1 to "accept."

If any conflicting actions result from the above rules, we say the grammar
is not LR(1). The algorithm fails to produce a parser in this case.

3. The goto transitions for state i are constructed for all nonterminals A
using the rule: If GOTO(&, A) = Ij, then GO TO[^, A] = j .

4. All entries not defined by rules (2) and (3) are made "error."

5. The initial state of the parser is the one constructed from the set of items
containing [S' -+ .S, $1.

The table formed from the parsing action and goto functions produced by
Algorithm 4.44 is called the canonical LR(1) parsing table. An LR parser using
this table is called a canonical-LR(1) parser. If the parsing action function
has no multiply defined entries, then the given grammar is called an LR(1)
grammar. As before, we omit the "(1)" if it is understood.

Example 4.57 : The canonical parsing table for grammar (4.55) is shown in
Fig. 4.42. Productions 1, 2, and 3 are S + CC, C -+ cC, and C -+ d,
respectively.

Every SLR(1) grammar is an LR(1) grammar, but for an SLR(1) grammar
the canonical LR parser may have more states than the SLR parser for the
same grammar. The grammar of the previous examples is SLR and has an SLR
parser with seven states, compared with the ten of Fig. 4.42.

CHAPTER 4. SYNTAX ANALYSIS

Figure 4.42: Canonical parsing table for grammar (4.55)

STATE

0
1
2
3
4
5
6
7
8
9

4.7.4 Constructing LALR Parsing Tables

We now introduce our last parser construction method, the LALR (Eoolcahead-
LR) technique. This method is often used in practice, because the tables ob-
tained by it are considerably smaller than the canonical LR tables, yet most
common syntactic constructs of programming languages can be expressed con-
veniently by an LALR grammar. The same is almost true for SLR grammars,
but there are a few constructs that cannot be conveniently handled by SLR
techniques (see Example 4.48, for example).

For a comparison of parser size, the SLR and LALR tables for a grammar
always have the same number of states, and this number is typically several
hundred states for a language like C. The canonical LR table would typically
have several thousand states for the same-size language. Thus, it is much easier
and more economical to construct SLR and LALR tables than the canonical
LR tables.

By way of introduction, let us again consider grammar (4.55), whose sets of
LR(1) items were shown in Fig. 4.41. Take a pair of similar looking states, such
as I4 and 17. Each of these states has only items with first component C -+ d..
In 14, the lookaheads are c or d; in 17, $ is the only lookahead.

To see the difference between the roles of I4 and I7 in the parser, note that
the grammar generates the regular language c*dc*d. When reading an input
cc . . cdcc . cd, the parser shifts the first group of c's and their following d
onto the stack, entering state 4 after reading the d. The parser then calls for a
reduction by C -+ d, provided the next input symbol is c or d. The requirement
that c or d follow makes sense, since these are the symbols that could begin
strings in c*d. If $ follows the first d, we have an input like ccd, which is not
in the language, and state 4 correctly declares an error if $ is the next input.

The parser enters state 7 after reading the second d. Then, the parser must

ACTION

c d $

s3 s4
acc

s6 s7
s3 s4
r3 r3

r l
s6 s7

r3
r2 r2

r2

GOT0

S C
1 2

5
8

9

4.7. MORE POWERFUL LR PARSERS 267

see $ on the input, or it started with a string not of the form c*dc*d. It thus
makes sense that state 7 should reduce by C -+ d on input $ and declare error
on inputs c or d.

Let us now replace I4 and I7 by 147, the union of I4 and 17, consisting of
the set of three items represented by [C -+ d., c/d/$]. The goto's on d to I4 or
I7 from lo , 12, 13, and I6 now enter 147. The action of state 47 is to reduce on
any input. The revised parser behaves essentially like the original, although it
might reduce d to C in circumstances where the original would declare error,
for example, on input like ccd or cdcdc. The error will eventually be caught; in
fact, it will be caught before any more input symbols are shifted.

More generally, we can look for sets of LR(1) items having the same core,
that is, set of first components, and we may merge these sets with common
cores into one set of items. For example, in Fig. 4.41, I4 and I7 form such a
pair, with core {C -+ d.). Similarly, I3 and I6 form another pair, with core
{C -+ c.C, C -+ .cC, C -+ .d). There is one more pair, Is and 19, with common
core {C -+ cC-). Note that, in general, a core is a set of LR(0) items for the
grammar at hand, and that an LR(1) grammar may produce more than two
sets of items with the same core.

Since the core of GOTO(& X) depends only on the core of I, the goto's of
merged sets can themselves be merged. Thus, there is no problem revising the
goto function as we merge sets of items. The action functions are modified to
reflect the non-error actions of all sets of items in the merger.

Suppose we have an LR(1) grammar, that is, one whose sets of LR(1) items
produce no parsing-action conflicts. If we replace all states having the same core
with their union, it is possible that the resulting union will have a conflict, but
it is unlikely for the following reason: Suppose in the union there is a conflict
on lookahead a because there is an item [A -+ a-, a] calling for a reduction by
A -+ a, and there is another item [B -+ P.ay, b] calling for a shift. Then some
set of items from which the union was formed has item [A -+ a*, a], and since
the cores of all these states are the same, it must have an item [B -+ @say, c]
for some c. But then this state has the same shiftjreduce conflict on a, and
the grammar was not LR(1) as we assumed. Thus, the merging of states with
common cores can never produce a shiftjreduce conflict that was not present
in one of the original states, because shift actions depend only on the core, not
the lookahead.

It is possible, however, that a merger will produce a reducejreduce conflict,
as the following example shows.

Example 4.58 : Consider the grammar

which generates the four strings acd, ace, bed, and bee. The reader can check
that the grammar is LR(1) by constructing the sets of items. Upon doing so,

268 CHAPTER 4. SYNTAX ANALYSIS

we find the set of items { [A -+ c., 4, [B -+ c., el} valid for viable prefix ac and
{ [A -+ c-, el, [B -+ cq, 4) valid for bc. Neither of these sets has a conflict, and
their cores are the same. However, their union, which is

generates a reducelreduce conflict, since reductions by both A -+ c and B -+ c
are called for on inputs d and e.

We are now prepared to give the first of two LALR table-construction al-
gorithms. The general idea is to construct the sets of LR(1) items, and if no
conflicts arise, merge sets with common cores. We then construct the parsing
table from the collection of merged sets of items. The method we are about to
describe serves primarily as a definition of LALR(1) grammars. Constructing
the entire collection of LR(1) sets of items requires too much space and time to
be useful in practice.

Algorithm 4.59 : An easy, but space-consuming LALR table construction.

INPUT: An augmented grammar G'.

OUTPUT: The LALR parsing-table functions ACTION and GOT0 for G'.

METHOD:

1. Construct C = (Io, 11, . . . , I,), the collection of sets of LR(1) items.

2. For each core present among the set of LR(1) items, find all sets having
that core, and replace these sets by their union.

3. Let C' = {Jo, J1,. . . , J,) be the resulting sets of LR(1) items. The
parsing actions for state i are constructed from Ji in the same manner as
in Algorithm 4.56. If there is a parsing action conflict, the algorithm fails
to produce a parser, and the grammar is said not to be LALR(1).

4. The GOTO table is constructed as follows. If J is the union of one or
more sets of LR(1) items, that is, J = Il n I2 n n Ik , then the
cores of GOTO(I~, X) , GOTO(I~ , X) , . . . , GOTO(&, X) are the same, since
11, 12, . . . , Ik all have the same core. Let K be the union of all sets of
items having the same core as GOTO(I~, X). Then GOTO(J, X) = K.

The table produced by Algorithm 4.59 is called the LALR parsing table for
G. If there are no parsing action conflicts, then the given grammar is said to
be an LALR(1) grammar. The collection of sets of items constructed in step
(3) is called the LALR(1) collection.

4.7. MORE POWERFUL LR PARSERS 269

Example 4.60 : Again consider grammar (4.55) whose GOTO graph was shown
in Fig. 4.41. As we mentioned, there are three pairs of sets of items that can
be merged. I3 and I6 are replaced by their union:

I4 and I7 are replaced by their union:

and I8 and I9 are replaced by their union:

The LALR action and goto functions for the condensed sets of items are shown
in Fig. 4.43.

STATE

Figure 4.43: LALR parsing table for the grammar of Example 4.54

0
1
2

36
47
5

89

To see how the GOTO'S are computed, consider G O T O (I ~ ~ , C). In the original
set of LR(1) items, G0T0(13, C) = 18, and I8 is now part of Isg, so we make
G O T O (I ~ ~ , C) be 189. We could have arrived at the same conclusion if we
considered Is, the other part of 13,. That is, G0T0(16, C) = Ig , and I9 is
now part of 189. For another example, consider GOTO(I~, c), an entry that is
exercised after the shift action of I2 on input c. In the original sets of LR(1)
items, G O T O (~ ~ , c) = 16. Since I6 is now part of 136, G0T0(12, C) becomes 13s.
Thus, the entry in Fig. 4.43 for state 2 and input c is made s36, meaning shift
and push state 36 onto the stack.

ACTION

c d

When presented with a string from the language c* dc* d , both the LR parser
of Fig. 4.42 and the LALR parser of Fig. 4.43 make exactly the same sequence
of shifts and reductions, although the names of the states on the stack may
differ. For instance, if the LR parser puts I3 or I6 on the stack, the LALR

GOT0

$ S C

s36 s47
acc

s36 s47
s36 s47
r3 r3 r3

r l
r2 r2 r2

1 2

5
89

270 CHAPTER 4. SYNTAX ANALYSIS

parser will put IS6 on the stack. This relationship holds in general for an LALR
grammar. The LR and LALR parsers will mimic one another on correct inputs.

When presented with erroneous input, the LALR parser may proceed to do
some reductions after the LR parser has declared an error. However, the LALR
parser will never shift another symbol after the LR parser declares an error.
Far example, on input ccd followed by $, the LR parser of Fig. 4.42 will put

on the stack, and in state 4 will discover an error, because $ is the next input
symbol and state 4 has action error on $. In contrast, the LALR parser of Fig.
4.43 will make the corresponding moves, putting

on the stack. But state 47 on input $ has action reduce C -+ d. The LALR
parser will thus change its stack to

Now the action of state 89 on input $ is reduce C -+ cC. The stack becomes

whereupon a similar reduction is called for, obtaining stack

Finally, state 2 has action error on input $, so the error is now discovered.

4.7.5 Efficient Construction of LALR Parsing Tables

There are several modifications we can make to Algorithm 4.59 to avoid con-
structing the full collection of sets of LR(1) items in the process of creating an
LALR(1) parsing table.

First, we can represent any set of LR(0) or LR(1) items I by its kernel,
that is, by those items that are' either the initial item - [Sf -+ .S] or
[St -+ -S, $1 - or that have the dot somewhere other than at the beginning
of the production body.

We can construct the LALR(1)-item kernels from the LR(0)-item kernels
by a process of propagation and spontaneous generation of lookaheads,
that we shall describe shortly.

If we have the LALR(1) kernels, we can generate the LALR(1) parsing
table by closing each kernel, using the function CLOSURE of Fig. 4.40, and
then computing table entries by Algorithm 4.56, as if the LALR(1) sets
of items were canonical LR(1) sets of items.

4.7. MORE POWERFUL LR PARSERS 271

Example 4.61 : We shall use as an example of the efficient LALR(1) table-
construction method the non-SLR grammar from Example 4.48, which we re-
produce below in its augmented form:

The complete sets of LR(0) items for this grammar were shown in Fig. 4.39.
The kernels of these items are shown in Fig. 4.44.

Figure 4.44: Kernels of the sets of LR(0) items for grammar (4.49)

Now we must attach the proper lookaheads ta the LR(0) items in the kernels,
to create the kernels of the sets of LALR(1) items. There are two ways a
lookahead b can get attached to an LR(0) item B -+ 7.6 in some set of LALR(1)
items J:

1. There is a set of items I, with a kernel item A -+ a.P,a, and J =
GOTO(& X) , and the construction of

GOTO (CLOSURE({[A -+ asp, a])), X)

as given in Fig. 4.40, contains [B -+ 74, b], regardless of a. Such a looka-
head b is said to be generated spontaneously for B -+ 7.6.

2. As a special case, lookahead $ is generated spontaneously for the item
S' -+ .S in the initial set of items.

3. All is as in (I) , but a = b, and GOTO (CLOSURE({[A -+ asp, b])), X) , as
given in Fig. 4.40, contains [B -+ 7.6, b] only because A -+ Q.P has b as
one of its associated lookaheads. In such a case, we say that lookaheads
propagate from A -+ a.P in the kernel of I to B -+ 7.6 in the kernel of
J . Note that propagation does not depend on the particular lookahead
symbol; either all lookaheads propagate from one item to another, or none
do.

272 CHAPTER 4. SYNTAX ANALYSIS

We need to determine the spontaneously generated lookaheads for each set
of LR(0) items, and also to determine which items propagate lookaheads from
which. The test is actually quite simple. Let # be a symbol not in the grammar
at hand. Let A -+ amp be a kernel LR(0) item in set I . Compute, for each X ,
J = GOTO (CLOSURE({[A -+ a*@, #I}), X) . For each kernel item in J, we
examine its set of lookaheads. If # is a lookahead, then lookaheads propagate
to that item from A -+ amp. Any other lookahead is spontaneously generated.
These ideas are made precise in the following algorithm, which also makes use
of the fact that the only kernel items in J must have X immediately to the left
of the dot; that is, they must be of the form B -+ yX.6.

Algorithm 4.62 : Determining lookaheads.

INPUT: The kernel K of a set of LR(0) items I and a grammar symbol X .

OUTPUT: The lookaheads spontaneously generated by items in I for kernel
items in GOTO(& X) and the items in I from which lookaheads are propagated
to kernel items in GOTO(I, X).

METHOD: The algorithm is given in Fig. 4.45.

for (each item A -+ a-p in K) {
J := CLOSURE({[A --+ asp,#]));
if ([B -+ ySX6, a] is in J, and a is not #)

conclude that lookahead a is generated spontaneously for item
B --+ yX.6 in GOTO(I, X) ;

if ([B -+ ymX6, #] is in J)
conclude that lookaheads propagate from A -+ amp in I to

B -+ yX.6 in GOTO(& X);

1

Figure 4.45: Discovering propagated and spontaneous lookaheads

We are now ready to attach lookaheads to the kernels of the sets of LR(0)
items to form the sets of LALR(1) items. First, we know that $ is a looka-
head for S' --+ .S in the initial set of LR(0) items. Algorithm 4.62 gives us all
the lookaheads generated spontaneously. After listing all those lookaheads, we
must allow them to propagate until no further propagation is possible. There
are many different approaches, all of which in some sense keep track of "new"
lookaheads that have propagated into an item but which have not yet propa-
gated out. The next algorithm describes one technique to propagate lookaheads
to all items.

Algorithm 4.63 : Efficient computation of the kernels of the LALR(1) collec-
tion of sets of items.

INPUT: An augmented grammar G'.

4.7. MORE POWERFUL LR PARSERS

OUTPUT: The kernels of the LALR(1) collection of sets of items for GI.

METHOD:

1. Construct the kernels of the sets of LR(0) items for G. If space is not at
a premium, the simplest way is to construct the LR(0) sets of items, as in
Section 4.6.2, and then remove the nonkernel items. If space is severely
constrained, we may wish instead to store only the kernel items for each
set, and compute GOT0 for a set of items I by first computing the closure
of I.

2. Apply Algorithm 4.62 to the kernel of each set of LR(0) items and gram-
mar symbol X to determine which lookaheads are spontaneously gener-
ated for kernel items in GOTO(& X) , and from which items in I lookaheads
are propagated to kernel items in GOTO(I, X).

3. Initialize a table that gives, for each kernel item in each set of items, the
associated lookaheads. Initially, each item has associated with it only
those lookaheads that we determined in step (2) were generated sponta-
neously.

4. Make repeated passes over the kernel items in all sets. When we visit an
item i , we look up the kernel items to which i propagates its lookaheads,
using information tabulated in step (2). The current set of lookaheads
for i is added to those already associated with each of the items to which
i propagates its lookaheads. We continue making passes over the kernel
items until no more new lookaheads are propagated.

Example 4.64: Let us construct the kernels of the LALR(1) items for the
grammar of Example 4.61. The kernels of the LR(0) items were shown in
Fig. 4.44. When we apply Algorithm 4.62 to the kernel of set of items Io, we
first compute CLOSURE({[S' -+ .S, #I)) , which is

Among the items in the closure, we see two where the lookahead = has been
generated spontaneously. The first of these is L + . * R. This item, with * to
the right of the dot, gives rise to [L --+ *.R, =]. That is, = is a spontaneously
generated lookahead for L -+ *.R, which is in set of items Iq. Similarly, [L -+
-id, =] tells us that = is a spontaneously generated lookahead for L -+ id. in
1 5 .

As # is a lookahead for all six items in the closure, we determine that the
item St -+ .S in I. propagates lookaheads to the following six items:

CHAPTER 4. SYNTAX ANALYSIS

St -+ S . in Il L -+ *-R in I4
S -+ L. = R in I2 L -+ id- in I5
S -+ R. in I3 R -i L. in I2

L -+ id.
R -+ L.

19: S - + L = R .

FROM
Io: S ' -+ 'S

12: S - + L . = R

Figure 4.46: Propagation of lookaheads

T o
I : S t + S .
12: S + L - = R
1 2 : R + L .
13: S + R .
14: L -+ * -R
15: L -+ id.
16: S - + L = . R

In Fig. 4.47, we show steps (3) and (4) of Algorithm 4.63. The column
labeled INIT shows the spontaneously generated lookaheads for each kernel item.
These are only the two occurrences of = discussed earlier, and the spontaneous
lookahead $ for the initial item S' -+ .S.

On the first pass, the lookahead $ propagates from St -+ S in I. to the
six items listed in Fig. 4.46. The lookahead = propagates from L -+ *.R in I4
to items L -+ * R. in I7 and R -+ L. in Is. It also propagates to itself and to
L -+ id in 15, but these lookaheads are already present. In the second and third
passes, the only new lookahead propagated is $, discovered for the successors of
I2 and I4 on pass 2 and for the successor of I6 on pass 3. No new lookaheads are
propagated on pass 4 , so the final set of lookaheads is shown in the rightmost
column of Fig. 4.47.

Note that the shiftlreduce conflict found in Example 4.48 using the SLR
method has disappeared with the LALR technique. The reason is that only
lookahead $ is associated with R -+ L. in 12, so there is no conflict with the
parsing action of shift on = generated by item S -+ L.=R in 12.

4.7. MORE POWERFUL LR PARSERS

Figure 4.47: Computation of lookaheads

SET ITEM

Io: S ' + . S

I : S ' + S .

I,: S + L . = R
R + L.

13: S + R .

14: L + *.R

15: L + id.

I : S + L = . R

17: L + *R.

I*: R + L.

19: S + L = Re

4.7.6 Compaction of LR Parsing Tables

A typical programming language grammar with 50 to 100 terminals and 100
productions may have an LALR parsing table with several hundred states. The
action function may easily have 20,000 entries, each requiring at least 8 bits
to encode. On small devices, a more efficient encoding than a two-dimensional
array may be important. We shall mention briefly a few techniques that have
been used to compress the ACTION and GOT0 fields of an LR parsing table.

One useful technique for compacting the action field is to recognize that
usually many rows of the action table are identical. For example, in Fig. 4.42,
states 0 and 3 have identical action entries, and so do 2 and 6. We can therefore
save considerable space, at little cost in time, if we create a pointer for each
state into a one-dimensional array. Pointers for states with the same actions
point to the same location. To access information from this array, we assign
each terminal a number from zero to one less than the number of terminals,
and we use this integer as an offset from the pointer value for each state. In
a given state, the parsing action for the ith terminal will be found i locations
past the pointer value for that state.

Further space efficiency can be achieved at the expense of a somewhat slower
parser by creating a list for the actions of each state. The list consists of
(terminal-symbol, action) pairs. The most frequent action for a state can be

LOOKAHEADS
PASS 3

$

$

$
$

$

=/$

=/$

$

=/$

=/$

$

PASS 2

$

$

$
$

$

=/$

=/$

$

=/$

=/$

INIT

$

- -

- -

PASS 1

$

$

$
$

$

=/$

=/$

- -

- -

276 CHAPTER 4. SYNTAX ANALYSIS

placed at the end of the list, and in place of a terminal we may use the notation
"any," meaning that if the current input symbol has not been found so far on
the list, we should do that action no matter what the input is. Moreover, error
entries can safely be replaced by reduce actions, for further uniformity along a
row. The errors will be detected later, before a shift move.

Example 4.65 : Consider the parsing table of Fig. 4.37. First, note that the
actions for states 0, 4, 6, and 7 agree. We can represent them all by the list

SYMBOL ACTION
id s5
(s4
any error

State 1 has a similar list:

+ s6
$ acc
any error

In state 2, we can replace the error entries by r2, so reduction by production 2
will occur on any input but *. Thus the list for state 2 is

State 3 has only error and r4 entries. We can replace the former by the
latter, so the list for state 3 consists of only the pair (any, r4). States 5, 10,
and 11 can be treated similarly. The list for state 8 is

+ s6
1 s l l
any error

and for state 9

* s7
) s l l
any r l

We can also encode the GOTO table by a list, but here it appears more
efficient to make a list of pairs for each nonterminal A. Each pair on the list
for A is of the form (currentstate, nextstate), indicating

4.7. MORE POWERFUL L R PARSERS 277

This technique is useful because there tend to be rather few states in any one
column of the GOTO table. The reason is that the G O T 0 on nonterminal A
can only be a state derivable from a set of items in which some items have A
immediately to the left of a dot. No set has items with X and Y immediately
to the left of a dot if X # Y . Thus, each state appears in at most one G O T 0
column.

For more space reduction, we note that the error entries in the goto table are
never consulted. We can therefore replace each error entry by the most common
non-error entry in its column. This entry becomes the default; it is represented
in the list for each column by one pair with any in place of currentstate.

Example 4.66 : Consider Fig. 4.37 again. The column for F has entry 10 for
state 7, and all other entries are either 3 or error. We may replace error by 3
and create for column F the list

Similarly, a suitable list for column T is

For column E we may choose either 1 or 8 to be the default; two entries are
necessary in either case. For example, we might create for column E the list

This space savings in these small examples may be misleading, because the
total number of entries in the lists created in this example and the previous one
together with the pointers from states to action lists and from nonterminals
to next-state lists, result in unimpressive space savings over the matrix imple-
mentation of Fig. 4.37. For practical grammars, the space needed for the list
representation is typically less than ten percent of that needed for the matrix
representation. The table-compression methods for finite automata that were
discussed in Section 3.9.8 can also be used to represent LR parsing tables.

4.7.7 Exercises for Section 4.7

Exercise 4.7.1 : Construct the

a) canonical LR, and

b) LALR

278 CHAPTER 4. SYNTAX ANALYSIS

sets of items for the grammar S -+ S S + I S S * I a of Exercise 4.2.1.

Exercise 4.7.2 : Repeat Exercise 4.7.1 for each of the (augmented) grammars
of Exercise 4.2.2(a)-(g).

! Exercise 4.7.3 : For the grammar of Exercise 4.7.1, use Algorithm 4.63 to
compute the collection of LALR sets of items from the kernels of the LR(0) sets
of items.

! Exercise 4.7.4 : Show that the following grammar

is LALR(1) but not SLR(1).

! Exercise 4.7.5 : Show that the following grammar

is LR(1) but not LALR(1).

4.8 Using Ambiguous Grammars

It is a fact that every ambiguous grammar fails to be LR and thus is not in
any of the classes of grammars discussed in the previous two sections. How-
ever, certain types of ambiguous grammars are quite useful in the specification
and implementation of languages. For language constructs like expressions, an
ambiguous grammar provides a shorter, more natural specification than any
equivalent unambiguous grammar. Another use of ambiguous grammars is in
isolating commonly occurring syntactic constructs for special-case optimiza-
tion. With an ambiguous grammar, we can specify the special-case constructs
by carefully adding new productions to the grammar.

Although the grammars we use are ambiguous, in all cases we specify dis-
ambiguating rules that allow only one parse tree for each sentence. In this way,
the overall language specification becomes unambiguous, and sometimes it be-
comes possible to design an LR parser that follows the same ambiguity-resolving
choices. We stress that ambiguous constructs should be used sparingly and in
a strictly controlled fashion; otherwise, there can be no guarantee as to what
language is recognized by a parser.

4.8. USING AMBIGUOUS GRAMMARS

4.8.1 Precedence and Associativity to Resolve Conflicts

Consider the ambiguous grammar (4.3) for expressions with operators + and
*, repeated here for convenience:

E - + E + E I E * E I (E) l i d

This grammar is ambiguous because it does not specify the associativity or
precedence of the operators + and *. The unambiguous grammar (4.1), which
includes productions E -+ E + T and T -+ T * F, generates the same language,
but gives + lower precedence than *, and makes both operators left associative.
There are two reasons why we might prefer to use the ambiguous grammar.
First, as we shall see, we can easily change the associativity and precedence
of the operators + and * without disturbing the productions of (4.3) or the
number of states in the resulting parser. Second, the parser for the unam-
biguous grammar will spend a substantial fraction of its time reducing by the
productions E -+ T and T -+ F, whose sole function is to enforce associativity
and precedence. The parser for the ambiguous grammar (4.3) will not waste
time reducing by these single productions (productions whose body consists of
a single nonterminal) .

The sets of LR(0) items for the ambiguous expression grammar (4.3) aug-
mented by E' -+ E are shown in Fig. 4.48. Since grammar (4.3) is ambiguous,
there will be parsing-action conflicts when we try to produce an LR parsing
table from the sets of items. The states corresponding to sets of items I7 and
I8 generate these conflicts. Suppose we use the SLR approach to constructing
the parsing action table. The conflict generated by I7 between reduction by
E -+ E + E and shift on + or * cannot be resolved, because + and * are each
in FOLLOW(E). Thus both actions would be called for on inputs + and *. A
similar conflict is generated by Is, between reduction by E -+ E * E and shift
on inputs + and *. In fact, each of our LR parsing table-construction methods
will generate these conflicts.

However, these problems can be resolved using the precedence and associa-
tivity information for + and *. Consider the input id + id * id, which causes a
parser based on Fig. 4.48 to enter state 7 after processing id + id; in particular
the parser reaches a configuration

For convenience, the symbols corresponding to the states 1, 4, and 7 are also
shown under PREFIX.

If * takes precedence over +, we know the parser should shift * onto the
stack, preparing to reduce the * and its surrounding id symbols to an expression.
This choice was made by the SLR parser of Fig. 4.37, based on an unambiguous
grammar for the same language. On the other hand, if + takes precedence over
*, we know the parser should reduce E + E to E. Thus the relative precedence

CHAPTER 4. SYNTAX ANALYSIS

I,,: E' -+ .E
E - + . E + E
E + - E * E
E + . (E)
E -+ .id

13: E -+ id.

I,: E -+ (E.)
E + E . + E
E + E . * E

Figure 4.48: Sets of LR(0) items for an augmented expression grammar

of + followed by * uniquely determines how the parsing action conflict between
reducing E -+ E + E and shifting on * in state 7 should be resolved.

If the input had been id + id + id instead, the parser would still reach a
configuration in which it had stack 0 1 4 7 after processing input id + id. On
input + there is again a shift/reduce conflict in state 7. Now, however, the
associativity of the + operator determines how this conflict should be resolved.
If + is left associative, the correct action is to reduce by E -+ E + E. That is,
the id symbols sbrrounding the first + must be grouped first. Again this choice
coincides with what the SLR parser for the unambiguous grammar would do.

In summary, assuming + is left associative, the action of state 7 on input
+ should be to reduce by E -+ E + E , and assuming that * takes precedence
over +, the action of state 7 on input * should be to shift. Similarly, assuming
that * is left associative and takes precedence over +, we can argue that state
8, which can appear on top of the stack only when E * E are the top three
grammar symbols, should have the action reduce E + E * E on both + and *
inputs. In the case of input +, the reason is that * takes precedence over +,
while in the case of input *, the rationale is that * is left associative.

4.8. USING AMBIGUOUS GRAMMARS 28 1

Proceeding in this way, we obtain the LR parsing table shown in Fig. 4.49.
Productions 1 through 4 are E -+ E + E, E --+ E * E, -+ (E) , and E -+
id, respectively. It is interesting that a similar parsing action table would be
produced by eliminating the reductions by the single productions E -+ T and
T -+ F from the SLR table for the unambiguous expression grammar (4.1)
shown in Fig. 4.37. Ambiguous grammars like the one for expressions can be
handled in a similar way in the context of LALR and canonical LR parsing.

Figure 4.49: Parsing table for grammar (4.3)

4.8.2 The "Dangling-Else" Ambiguity

GOT0

E
1

6

7
8

STATE

0
1
2
3
4
5
6
7
8
9

Consider again the following grammar for conditional statements:

ACTION
- .

i d + * () $
s3 s2

s4 s5 acc
s3 s2

r4 r4 r4 r4
s3 s 2
s3 s 2

s4 s5 s9
r l s5 r l r l
r2 r2 r2 r2
r3 r3 r3 r3

stmt -+ if expr t h e n stmt else stmt
I if expr t h e n strnt
I other

As we noted in Section 4.3.2, this grammar is ambiguous because it does not
resolve the dangling-else ambiguity. To simplify the discussion, let us consider
an abstraction of this grammar, where i stands for if expr then , e stands for
else, and a stands for "all other productions.'' We can then write the grammar,
with augmenting production S' -+ S, as

The sets of LR(0) items for grammar (4.67) are shown in Fig. 4.50. The ambi-
guity in (4.67) gives rise to a shiftjreduce conflict in la. There, S -+ iS.eS calls
for a shift of e and, since FOLLOW(S) = {e, $1, item S --+ i s . calls for reduction
by S -+ is on input e.

Translating back to the if-then-else terminology, given

CHAPTER 4. SYNTAX ANALYSIS

Figure 4.50: LR(0) states for augmented grammar (4.67)

if expr t h e n stmt

on the stack and else as the first input symbol, should we shift else onto the
stack (i.e., shift e) or reduce if expr t h e n stmt (i.e, reduce by S --+ i s) ? The
answer is that we should shift else, because it is "associated" with the previous
then. In the terminology of grammar (4.67), the e on the input, standing for
else, can only form part of the body beginning with the i S now on the top of
the stack. If what follows e on the input cannot be parsed as an S, completing
body iSeS, then it can be shown that there is no other parse possible.

We conclude that the shiftlreduce conflict in I4 should be resolved in favor
of shift on input e. The SLR parsing table constructed from the sets of items
of Fig. 4.48, using this resolution of the parsing-action conflict in I4 on input
e, is shown in Fig. 4.51. Productions 1 through 3 are S -+ iSeS, S -+ i s , and
S -+ a , respectively.

Figure 4.51: LR parsing table for the "dangling-else" grammar

GOT0

S
1

4

6

STATE

0
1
2
3
4
5
6

ACTION

i e a $
s 2 s3

acc
s 2 s3

r3 r3
s 5 r2

s2 s3
r l r l

4.8. USING AMBIGUOUS GRAMMARS 283

For example, on input iiaea, the parser makes the moves shown in Fig. 4.52,
corresponding to the correct resolution of the "dangling-else." At line (5), state
4 selects the shift action on input e, whereas at line (9), state 4 calls for reduction
by S -+ iS on input $.

2

i i
i i a
i i S
i i S e
i i S e a
i i S e S
i S
S

ACTION
shift
shift
shift
shift
reduce by S -+ a
shift
reduce by S -+ a
reduce by S -+ iSeS
reduce by S -+ iS
accept

Figure 4.52: Parsing actions on input iiaea

By way of comparison, if we are unable to use an ambiguous grammar to
specify conditional statements, then we would have to use a bulkier grammar
along the lines of Example 4.16.

4.8.3 Error Recovery in LR Parsing

An LR parser will detect an error when it consults the parsing action table and
finds an error entry. Errors are never detected by consulting the goto table. An
LR parser will announce an error as soon as there is no valid continuation for
the portion of the input thus far scanned. A canonical LR parser will not make
even a single reduction before announcing an error. SLR and LALR parsers
may make several reductions before announcing an error, but they will never
shift an erroneous input symbol onto the stack.

In LR parsing, we can implement panic-mode error recovery as follows. We
scan down the stack until a state s with a goto on a particular nonterminal
A is found. Zero or more input symbols are then discarded until a symbol
a is found that can legitimately follow A. The parser then stacks the state
GOTO(S, A) and resumes normal parsing. There might be more than one choice
for the nonterminal A. Normally these would be nonterminals representing
major program pieces, such as an expression, statement, or block. For example,
if A is the nonterminal stmt, a might be semicolon or), which marks the end
of a statement sequence.

This method of recovery attempts to eliminate the phrase containing the
syntactic error. The parser determines that a string derivable from A contains
an error. Part of that string has already been processed, and the result of this

284 CHAPTER 4. SYNTAX ANALYSIS

processing is a sequence of states on top of the stack. The remainder of the
string is still in the input, and the parser attempts to skip over the remainder
of this string by looking for a symbol on the input that can legitimately follow
A. By removing states from the stack, skipping over the input, and pushing
GOTO(S, A) on the stack, the parser pretends that it has found an instance of
A and resumes normal parsing.

Phrase-level recovery is implemented by examining each error entry in the
LR parsing table and deciding on the basis of language usage the most likely
programmer error that would give rise to that error. An appropriate recovery
procedure can then be constructed; presumably the top of the stack and/or first
input symbols would be modified in a way deemed appropriate for each error
entry.

In designing specific error-handling routines for an LR parser, we can fill in
each blank entry in the action field with a pointer to an error routine that will
take the appropriate action selected by the compiler designer. The actions may
include insertion or deletion of symbols from the stack or the input or both,
or alteration and transposition of input symbols. We must make our choices
so that the LR parser will not get into an infinite loop. A safe strategy will
assure that at least one input symbol will be removed or shifted eventually, or
that the stack will eventually shrink if the end of the input has been reached.
Popping a stack state that covers a nonterminal should be avoided, because
this modification eliminates from the stack a construct that has already been
successfully parsed.

Example 4.68 : Consider again the expression grammar

Figure 4.53 shows the LR parsing table from Fig. 4.49 for this grammar,
modified for error detection and recovery. We have changed each state that
calls for a particular reduction on some input symbols by replacing error entries
in that state by the reduction. This change has the effect of postponing the
error detection until one or more reductions are made, but the error will still
be caught before any shift move takes place. The remaining blank entries from
Fig. 4.49 have been replaced by calls to error routines.

The error routines are as follows.

el: This routine is called from states 0, 2, 4 and 5, all of which expect the
beginning of an operand, either an id or a left parenthesis. Instead, +, *,
or the end of the input was found.

push state 3 (the goto of states 0, 2, 4 and 5 on id);
issue diagnostic "missing operand."

e2: Called from states 0, 1, 2, 4 and 5 on finding a right parenthesis.

remove the right parenthesis from the input;
issue diagnostic "unbalanced right parenthesis."

4.8. USING AMBIGUOUS GRAMMARS

Figure 4.53: LR parsing table with error routines

e3: Called from states 1 or 6 when expecting an operator, and an id or right
parenthesis is found.

G O T 0

E
1

6

7
8

STATE

0
1
2
3
4
5
6
7
8
9

push state 4 (corresponding to symbol +) onto the stack;
issue diagnostic "missing operator."

ACTION

i d + * $

s3 e l e l s2 e2 e l
e3 s4 s5 e3 e2 acc
s3 e l e l s2 e2 e l
r4 r4 r4 r4 r4 r4
s3 e l e l s2 e2 e l
s3 e l e l s2 e2 e l
e3 s4 s5 e3 s9 e4
r l r l s5 r l r l r l
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3

e4: Called from state 6 when the end of the input is found.

push state 9 (for a right parenthesis) onto the stack;
issue diagnostic "missing right parenthesis."

On the erroneous input id +), the sequence of configurations entered by the
parser is shown in Fig. 4.54.

4.8.4 Exercises for Section 4.8

! Exercise 4.8.1 : The following is an ambiguous grammar for expressions with
n binary, infix operators, at n different levels of precedence:

a) As a function of n, what are the SLR sets of items?

b) How would you resolve the conflicts in the SLR items so that all oper-
ators are left associative, and el takes precedence over 62, which takes
precedence over 03, and so on?

c) Show the SLR parsing table that results from your decisions in part (b).

286 CHAPTER 4. SYNTAX ANALYSIS

Figure 4.54: Parsing and error recovery moves made by an LR parser

STACK
0
0 3
0 1
0 1 4

0 1 4

0 1 4 3
0 1 4 7
0 1

d) Repeat parts (a) and (c) for the unambiguous grammar, which defines
the same set of expressions, shown in Fig. 4.55.

e) How do the counts of the number of sets of items and the sizes of the tables
for the two (ambiguous and unambiguous) grammars compare? What
does that comparison tell you about the use of ambiguous expression
grammars?

SYMBOLS

id
E
E +

E +

E + i d
E +
E +

Figure 4.55: Unambiguous grammar for n operators

! Exercise 4.8.2 : In Fig. 4.56 is a grammar for certain statements, similar to
that discussed in Exercise 4.4.12. Again, e and s are terminals standing for
conditional expressions and "other statements," respectively.

INPUT
i d +) $

+ I $
+I$

) $

$

$
$
$

a) Build an LR parsing table for this grammar, resolving conflicts in the
usual way for the dangling-else problem.

ACTION

"unbalanced right parenthesis"
e2 removes right parenthesis
"missing operand"
e l pushes state 3 onto stack

b) Implement error correction by filling in the blank entries in the parsing
table with extra reduce-actions or suitable error-recovery routines.

c) Show the behavior of your parser on the following inputs:

(i) if e t hen s ; if e t h e n s end
(ii) while e d o begin s ; if e t h e n s ; end

4.9. PARSER GENERATORS

stmt + if e then stmt

I if e then stmt else stmt
(while e do stmt
(begin list end
I

list + list ; stmt
I stmt

Figure 4.56: A grammar for certain kinds of statements

4.9 Parser Generators

This section shows how a parser generator can be used to facilitate the construc-
tion of the front end of a compiler. We shall use the LALR parser generator
Yacc as the basis of our discussion, since it implements many of the concepts
discussed in the previous two sections and it is widely available. Yacc stands for
"yet another compiler-compiler," reflecting the popularity of parser generators
in the early 1970s when the first version of Yacc was created by S. C. Johnson.
Yacc is available as a command on the UNIX system, and has been used to help
implement many production compilers.

4.9.1 The Parser Generator Yacc

A translator can be constructed using Yacc in the manner illustrated in Fig.
4.57. First, a file, say t rans la te . y, containing a Yacc specification of the
translator is prepared. The UNIX system command

yacc t ransla te . y

transforms the file t r ans la te . y into a C program called y . tab. c using the
LALR method outlined in Algorithm 4.63. The program y.tab. c is a repre-
sentation of an LALR parser written in C, along with other C routines that the
user may have prepared. The LALR parsing table is compacted as described
in Section 4.7. By compiling y . tab. c along with the l y library that contains
the LR parsing program using the command

we obtain the desired object program a . out that performs the translation spec-
ified by the original Yacc program.7 If other procedures are needed, they can
be compiled or loaded with y . tab . c, just as with any C program.

A Yacc source program has three parts:

7 ~ h e name ly is system dependent.

CHAPTER 4. SYNTAX ANALYSIS

n - ~ Y a c c ~ t y.tab.c specificatio
compiler translate. y

input a. out output

y.tab.c

Figure 4.57: Creating an input/output translator with Yacc

declarations
%%

u

compiler

translation rules

a. out

supporting C routines

Example 4.69 : To: illustrate how to prepare a Yacc source program, let us
construct a simple desk calculator that reads an arithmetic expression, evaluates
it, and then prints its numeric value. We shall build the desk calculator starting
with the with the following grammar for arithmetic expressions:

E + E + T I T
T -, T * F I F
F + (E) I digit

The token digit is a single digit between 0 and 9. A Yacc desk calculator
program derived from this grammar is shown in Fig. 4.58.

The Declarations Part

There are two sections in the declarations part of a Yacc program; both are
optional. In the first section, we put ordinary C declarations, delimited by %C
and %). Here we piace declarations of any temporaries used by the translation
rules or procedures of the second and third sections. In Fig. 4.58, this section
contains only the include-st at ement

that causes the C preprocessor to include the standard header file cctype . h>
that contains the predicate isdigit.

Also in the declarations part are declarations of grammar tokens. In Fig.
4.58, the statement

%token DIGIT

4.9. PARSER GENERATORS

%token DIGIT

%%
l i n e : expr) \ n) (p r i n t f ("%d\ntt , $1) ;)

9

expr : expr) +) term ($$ = $1 + $3; 3
1 term
9

term : term) *) f a c t o r { $$ = $1 * $3;)
I f a c t o r
9

f a c t o r : ' 0 expr))) ($$ = $2; 3
I DIGIT

%%
y y l e x 0 (

i n t c ;
c = g e t char () ;
i f (i s d i g i t (c)) (

yylva l = c - ' 0) ;
r e t u r n DIGIT;

J
r e t u r n c ;

3

Figure 4.58: Yacc specification of a simple desk calculator

declares DIGIT to be a token. Tokens declared in this section can then be
used in the second and third parts of the Yacc specification. If Lex is used
to create the lexical analyzer that passes token to the Yacc parser, then these
token declarations are also made available to the analyzer generated by Lex, as
discussed in Section 3.5.2.

The Translation Rules Part

In the part of the Yacc specification after the first %% pair, we put the translation
rules. Each rule consists of a grammar production and the associated semantic
action. A set of productions that we have been writing:

(head) -+ (body), I (body)z I . - . I (body),

would be written in Yacc as

CHAPTER 4. SYNTAX ANALYSIS

(head) : body)^ C (semantic a c t i ~ n) ~)

I (body)z C (semantic a ~ t i o n) ~)

I (body), C (semanticaction), 3

In a Yacc production, unquoted strings of letters and digits hot declared to
be tokens are taken to be nonterminals. A quoted single character, e.g. ' c ' ,
is taken to be the terminal symbol c, as wkll as the integer code for the token
represented by that character (i.e., Lex would return the character code for) c '
to the parser, as an integer). Alternative bodies can be separated by a vertical
bar, and a semicolon follows each head with its alternatives and their semantic
actions. The first head is taken to be the start symbol.

A Yacc semantic action is a sequence of C statements. In a semantic action,
the symbol $$ refers to the attribute value associated with the nonterminal of
the head, while $i refers to the value associated with the ith grammar symbol
(terminal or nonterminal) of the body. The semantic action is performed when-
ever we reduce by the associated production, so normally the semantic action
computes a value for $$ in terms of the $i's. In the Yacc specification, we have
written the two E-productions

and their associated semantic actions as:

expr : expr '+) term I $$ = $1 + $3; 3
1 term
s

Note that the nonterminal term in the first production is the third grammar
symbol of the body, while + is the second. The semantic action associated with
the first production adds the value of the expr and the term of the body and
assigns the result as the value for the nonterminal expr of the head. We have
omitted the semantic action for the second production altogether, since copying
the value is the default action for productions with a single grammar symbol
in the body. In general, ($$ = $1;) is the default semantic action.

Notice that we have added a new starting production

line : expr '\n' (printf ("%d\nfl, $1) ; 3

to the Yacc specification. This production says that an input to the desk
calculator is to be an expression followed by a newline character. The semantic
action associated with this production prints the decimal value of the expression
followed by a newline character.

4.9. PARSER GENERATORS

The Supporting C-Routines Part

The third part of a Yacc specification consists of supporting C-routines. A
lexical analyzer by the name yylex () must be provided. Using Lex to produce
yylex() is a common choice; see Section 4.9.3. Other procedures such as error
recovery routines may be added as necessary.

The lexical analyzer yylex() produces tokens consisting of a token name
and its associated attribute value. If a token name such as DIGIT is returned,
the token name must be declared in the first section of the Yacc specification.
The attribute value associated with a token is communicated to the parser
through a Y acc-defined variable yylval.

The lexical analyzer in Fig. 4.58 is very crude. It reads input characters
one at a time using the C-function get char () . If the character is a digit, the
value of the digit is stored in the variable yylval, and the token name DIGIT
is returned. Otherwise, the character itself is returned as the token name.

4.9.2 Using Yacc with Ambiguous Grammars

Let us now modify the Yacc specification so that the resulting desk calculator
becomes more useful. First, we shall allow the desk calculator to evaluate a
sequence of expressions, one to a line. We shall also allow blank lines between
expressions. We do so by changing the first rule to

l i n e s : l i n e s expr) \n) (pr in t f (I1%g\n", $2) ; 3
I l i n e s) \ n 7
I / * empty */
9

In Yacc, an empty alternative, as the third line is, denotes e.
Second, we shall enlarge the class of expressions to include numbers instead

of single digits and to include the arithmetic operators +, -, (both binary and
unary), *, and /. The easiest way to specify this class of expressions is to use
the ambiguous grammar

E + E + E I E - E I E * E I E / E 1 - E 1 number

The resulting Yacc specification is shown in Fig. 4.59.
Since the grammar in the Yacc specification in Fig. 4.59 is ambiguous, the

LALR algorithm will generate parsing-action conflicts. Yacc reports the num-
ber of parsing-action conflicts that are generated. A description of the sets of
items and the parsing-action conflicts can be obtained by invoking Yacc with a
-v option. This option generates an additional file y . output that contains the
kernels of the sets of items found for the grammar, a description of the parsing
action conflicts generated by the LALR algorithm, and a readable represen-
tation of the LR parsing table showing how the parsing action conflicts were
resolved. Whenever Yacc reports that it has found parsing-action conflicts, it

CHAPTER 4. SYNTAX ANALYSIS

%<
#include <ctype.h>
#include <s td io .h>
#define YYSTYPE double /* double type f o r Yacc s tack */
%3
%token NUMBER

% l e f t)+ ' '-'
% l e f t ' * ' ' /)
%right UMINUS
%%

l i n e s : l i n e s expr ' \n) < pr in t f ("%g\n8' , $2) ; 3
I l i n e s '\n'
I /* empty */
9

expr : expr '+' expr < $$ = $1 + $3; 1
1 e x p r ' - ' e x p r < $ $ = $ I - $ 3 ;)
I e x p r ' *) e x p r < $ $ = $ 1 * $ 3 ; >
I e x p r ' /) e x p r < $ $ = $ 1 / $ 3 ;)
1) () expr '1) < $$ = $2; 3
I ' - 9 expr %prec UMINUS < $$ = - $2; 3
I NUMBER
9

%%
y y l e x 0 <

i n t c ;
while ((c = g e t c h a r 0 == ' ' 1;
if ((C ==) . P) (I (i s d i g i t (c))) <

ungetc(c, s td in) ;
scanf (" % l f N , &yylval) ;
r e tu rn NUMBER;

3
r e tu rn c ;

Figure 4.59: Yacc specification for a more advanced desk calculator.

4.9. PARSER GENERAT 293

is wise to create and consult the file y . output to see why the parsing-action
conflicts were generated and to see whether they were resolved correctly.

Unless otherwise instructed Y acc will resolve all parsing action conflicts
using the following two rules:

1. A reduce/reduce conflict is resolved by choosing the conflicting production
listed first in the Yacc specification.

2. A shift/reduce conflict is resolved in favor of shift. This rule resolves the
shift/reduce conflict arising from the dangling-else ambiguity correctly.

Since these default rules may not always be what the compiler writer wants,
Yacc provides a general mechanism for resolving shiftlreduce conflicts. In the
declarations portion, we can assign precedences and associativities to terminals.
The declaration

makes + and - be of the same precedence and be left associative. We can declare
an operator to be right associative by writing

and we can force an operator to be a nonassociative binary operator (i.e., two
occurrences of the operator cannot be combined at all) by writing

The tokens are given precedences in the order in which they appear in the
declarations part, lowest first. Tokens in the same declaration have the same
precedence. Thus, the declaration

%right UMINUS

in Fig. 4.59 gives the token UMINUS a precedence level higher than that of the
five preceding terminals.

Yacc resolves shiftlreduce conflicts by attaching a precedence and associa-
tivity to each production involved in a conflict, as well as to each terminal
involved in a conflict. If it must choose between shifting input symbol a and re-
ducing by production A -+ a, Yacc reduces if the precedence of the production
is greater than that of a, or if the precedences are the same and the associativity
of the production is l e f t . Otherwise, shift is the chosen action.

Normally, the precedence of a production is taken to be the same as that of
its rightmost terminal. This is the sensible decision in most cases. For example,
given productions

294 CHAPTER 4. SYNTAX ANALYSIS

we would prefer to reduce by E -+ E+E with lookahead +, because the + in
the body has the same precedence as the lookahead, but is left associative.
With lookahead *, we would prefer to shift, because the lookahead has higher
precedence than the + in the production.

In those situations where the rightmost terminal does not supply the proper
precedence to a production, we can force a precedence by appending to a pro-
duct ion the tag

Xprec (terminal)

The precedence and associativity of the production will then be the same as that
of the terminal, which presumably is defined in the declaration section. Yacc
does not report shiftlreduce conflicts that are resolved using this precedence
and associativity mechanism.

This "terminal" can be a placeholder, like UMINUS in Fig. 4.59; this termi-
nal is not returned by the lexical analyzer, but is declared solely to define a
precedence for a production. In Fig. 4.59, the declaration

%right UMINUS

assigns to the token UMINUS a precedence that is higher than that of * and /.
In the translation rules part, the tag:

Xprec UMINUS

at the end of the production

expr : ' - ' expr

makes the unary-minus operator in this production have a higher precedence
than any other operator.

4.9.3 Creating Yacc Lexical Analyzers with Lex

Lex was designed to produce lexical analyzers that could be used with Yacc. The
Lex library 11 will provide a driver program named yylex 0, the name required
by Yacc for its lexical analyzer. If Lex is used to produce the lexical analyzer,
we replace the routine yylex() in the third part of the Yacc specification by
the statement

and we have each Lex action return a terminal known to Yacc. By using
the #include "1ex.yy. ctl statement, the program yylex has access to Yacc's
names for tokens, since the Lex output file is compiled as part of the Yacc
output file y . tab . c.

Under the UNIX system, if the Lex specification is in the file first .l and
the Yacc specification in second. y, we can say

4.9. PARSER GENERATORS

lex first.1
yacc sec0nd.y
cc y.tab.c -1y -11

to obtain the desired translator.
The Lex specification in Fig. 4.60 can be used in place of the lexical analyzer

in Fig. 4.59. The last pattern, meaning "any character," must be written \n l .
since the dot in Lex matches any character except newline.

number [0-91 +\e. ? 1 [o-91 *\e. [o-91 +
%%
[1 (/* skip blanks */)
(number) (sscanf (yytext , "%lfl', &yylval) ;

return NUMBER;)
\n I . { return yytext C01 ;)

Figure 4.60: Lex specification for yylex() in Fig. 4.59

4.9.4 Error Recovery in Yacc

In Yacc, error recovery uses a form of error productions. First, the user de-
cides what "major" nonterminals will have error recovery associated with them.
Typical choices are some subset of the nonterminals generating expressions,
statements, blocks, and functions. The user then adds to the grammar error
productions of the form A --+ error a, where A is a major nonterminal and
a is a string of grammar symbols, perhaps the empty string; error is a Yacc
reserved word. Yacc will generate a parser from such a specification, treating
the error productions as ordinary productions.

However, wherl the parser generated by Yacc encounters an error, it treats
the states whose sets of items contain error productions in a special way. On
encountering an error, Yacc pops symbols from its stack until it finds the top-
most state on its stack whose underlying set of items includes an item of the
form A --+ . error a. The parser then "shifts" a fictitious token error onto the
stack, as though it saw the token error on its input.

When a is e, a reduction to A occurs immediately and the semantic action
associated with the production A -+ . error (which might be a user-specified
error-recovery routine) is invoked. The parser then discards input symbols until
it finds an input symbol on which normal parsing can proceed.

If a is not empty, Yacc skips ahead on the input looking for a substring
that can be reduced to a. If a consists entirely of terminals, then it looks for
this string of terminals on the input, and "reduces" them by shifting them onto
the stack. At this point, the parser will have error a on top of its stack. The
parser will then reduce error cu to A, and resume normal parsing.

For example, an error production of the form

CHAPTER 4. SYNTAX ANALYSIS

%C
#include <ctype.h>
#include <s td io .h>
#define YYSTYPE double /* double type f o r Yacc s t ack */
%3
%token NUMBER

% l e f t)+)) -)

% l e f t) *) ' /)
%righ t UMINUS
%%

l i n e s : l i n e s expr) \ n) C p r i n t f ("%g\n t t , $2) ; 1
I l i n e s) \ n)
I /* empty */
1 e r r o r ' \n) { yyerror (" reen te r previous l i n e : It) ;

yyerrok; 3
9

expr : e x p r) +) e x p r C $ $ = $ 1 + $ 3 ;)
I expr '-' expr C $$ = $1 - $3; 3
I expr) *) expr I $$ = $1 * $3; I
I e x p r) /) e x p r C $ $ = $ 1 / $ 3 ;)
1) () expr C $$ = $2; 3
1 9 -) expr %prec UMINUS C $$ = - $2;

I NUMBER

Figure 4.61: Desk calculator with error recovery

stmt --+ error ;

would specify to the parser that it should skip just beyond the next semicolon
on seeing an error, and assume that a statement had been found. The semantic
routine for this error production would not need to manipulate the input, but
could generate a diagnostic message and set a flag to inhibit generation of object
code, for example.

Example 4.70 : Figure 4.61 shows the Yacc desk calculator of Fig. 4.59 with
the error production

l i n e s : e r r o r ' \n)

This error production causes the desk calculator to suspend normal parsing
when a syntax error is found on an input line. On encountering the error,

4.10. SUMMARY OF CHAPTER 4 297

the parser in the desk calculator starts popping symbols from its stack until it
encounters a state that has a shift action on the token error. State 0 is such a
state (in this example, it's the only such state), since its items include

lines += - error ' \ n J

Also, state 0 is always on the bottom of the stack. The parser shifts the token
error onto the stack, and then proceeds to skip ahead in the input until it has
found a newline character. At this point the parser shifts the newline onto the
stack, reduces error ' \ n J to lines, and emits the diagnostic message "reenter
previous line:". The special Yacc routine yyerrok resets the parser to its normal
mode of operation.

4.9.5 Exercises for Section 4.9

! Exercise 4.9.1 : Write a Yacc program that takes boolean expressions as input
[as given by the grammar of Exercise 4.2.2(g)] and produces the truth value of
the expressions.

! Exercise 4.9.2 : Write a Yacc program that takes lists (as defined by the
grammar of Exercise 4.2.2(e), but with any single character as an element, not
just a) and produces as output a linear representation of the same list; i.e., a
single list of the elements, in the same order that they appear in the input.

! Exercise 4.9.3 : Write a Yacc program that tells whether its input is a palin-
drome (sequence of characters that read the same forward and backward).

!! Exercise 4.9.4 : Write a Yacc program that takes regular expressions (as de-
fined by the grammar of Exercise 4.2.2(d), but with any single character as an
argument, not just a) and produces as output a transition table for a nonde-
terministic finite automaton recognizing the same language.

4.10 Summary of Chapter 4

+ Parsers. A parser takes as input tokens from the lexical analyzer and
treats the token names as terminal symbols of a context-free grammar.
The parser then constructs a parse tree for its input sequence of tokens;
the parse tree may be constructed figuratively (by going through the cor-
responding derivation steps) or literally.

+ Context-Free Grammars. A grammar specifies a set of terminal symbols
(inputs), another set of nonterminals (symbols representing syntactic con-
structs), and a set of productions, each of which gives a way in which
strings represented by one nonterminal can be constructed from terminal
symbols and strings represented by certain other nonterminals. A pro-
duction consists of a head (the nonterminal to be replaced) and a body
(the replacing string of grammar symbols).

CHAPTER 4. SYNTAX ANALYSIS

+ Derivations. The process of starting with the start-nonterminal of a gram-
mar and successively replacing it by the body of one of its productions is
called a derivation. If the leftmost (or rightmost) nonterminal is always
replaced, then the derivation is called leftmost (respectively, rightmost).

+ Parse Trees. A parse tree is a picture of a derivation, in which there is
a node for each nonterminal that appears in the derivation. The children
of a node are the symbols by which that nonterminal is replaced in the
derivation. There is a one-to-one correspondence between parse trees, left-
most derivations, and rightmost derivations of the same terminal string.

+ Ambiguity. A grammar for which some terminal string has two or more
different parse trees, or equivalently two or more leftmost derivations or
two or more rightmost derivations, is said to be ambiguous. In most cases
of practical interest, it is possible to redesign an ambiguous grammar so
it becomes an unambiguous grammar for the same language. However,
ambiguous grammars with certain tricks applied sometimes lead to more
efficient parsers.

+ Top-Down and Bottom- Up Parsing. Parsers are generally distinguished
by whether they work top-down (start with the grammar's start symbol
and construct the parse tree from the top) or bottom-up (start with the
terminal symbols that form the leaves of the parse tree and build the
tree from the bottom). Top-down parsers include recursive-descent and
LL parsers, while the most common forms of bottom-up parsers are LR
parsers.

+ Design of Grammars. Grammars suitable for top-down parsing often are
harder to design than those used by bottom-up parsers. It is necessary
to eliminate left-recursion, a situation where one nonterminal derives a
string that begins with the same nonterminal. We also must left-factor -
group productions for the same nonterminal that have a common prefix
in the body.

+ Recursive-Descent Parsers. These parsers use a procedure for each non-
terminal. The procedure looks at its input and decides which production
to apply for its nonterminal. Terminals in the body of the production are
matched to the input at the appropriate time, while nonterminals in the
body result in calls to their procedure. Backtracking, in the case when
the wrong production was chosen, is a possibility.

+ LL(1) Parsers. A grammar such that it is possible to choose the correct
production with which to expand a given nonterminal, looking only at
the next input symbol, is called LL(1). These grammars allow us to
construct a predictive parsing table that gives, for each nonterminal and
each lookahead symbol, the correct choice of production. Error correction
can be facilitated by placing error routines in some or all of the table
entries that have no legitimate production.

4.20. SUMMARY OF CHAPTER 4 299

+ Shift-Reduce Parsing. Bottom-up parsers generally operate by choosing,
on the basis of the next input symbol (lookahead symbol) and the contents
of the stack, whether to shift the next input onto the stack, or to reduce
some symbols at the top of the stack. A reduce step takes a production
body at the top of the stack and replaces it by the head of the production.

+ Viable Prefixes. In shift-reduce parsing, the stack contents are always a
viable prefix - that is, a prefix of some right-sentential form that ends
no further right than the end of the handle of that right-sentential form.
The handle is the substring that was introduced in the last step of the
right most derivation of that sentential form.

+ Valid Items. An item is a production with a dot somewhere in the body.
An item is valid for a viable prefix if the production of that item is used
to generate the handle, and the viable prefix includes all those symbols
to the left of the dot, but not those below.

+ LR Parsers. Each of the several kinds of LR parsers operate by first
constructing the sets of valid items (called LR states) for all possible
viable prefixes, and keeping track of the state for each prefix on the stack.
The set of valid items guide the shift-reduce parsing decision. We prefer
to reduce if there is a valid item with the dot at the right end of the body,
and we prefer to shift the lookahead symbol onto the stack if that symbol
appears immediately to the right of the dot in some valid item.

+ Simple LR Parsers. In an SLR parser, we perform a reduction implied by
a valid item with a dot at the right end, provided the lookahead symbol
can follow the head of that production in some sentential form. The
grammar is SLR, and this method can be applied, if there are no parsing-
action conflicts; that is, for no set of items, and for no lookahead symbol,
are there two productions to reduce by, nor is there the option to reduce
or to shift.

+ Canonical-LR Parsers. This more complex form of LR parser uses items
that are augmented by the set of lookahead symbols that can follow the use
of the underlying production. Reductions are only chosen when there is a
valid item with the dot at the right end, and the current lookahead symbol
is one of those allowed for this item. A canonical-LR parser can avoid some
of the parsing-action conflicts that are present in SLR parsers, but often
has many more states than the SLR parser for the same grammar.

+ Lookahead-LR Parsers. LALR parsers offer many of the advantages of
SLR and Canonical-LR parsers, by combining the states that have the
same kernels (sets of items, ignoring the associated lookahead sets). Thus,
the number of states is the same as that of the SLR parser, but some
parsing-action conflicts present in the SLR parser may be removed in
the LALR parser. LALR parsers have become the method of choice in
practice.

300 CHAPTER 4. SYNTAX ANALYSIS

+ Bottom- Up Parsing of Ambiguous Grammars. In many important situa-
tions, such as parsing arithmetic expressions, we can use an ambiguous
grammar, and exploit side information such as the precedence of operators
to resolve conflicts between shifting and reducing, or between reduction by
two different productions. Thus, LR parsing techniques extend to many
ambiguous grammars.

+ Y acc. The parser-generator Y acc takes a (possibly) ambiguous grammar
and conflict-resolution information and constructs the LALR states. It
then produces a function that uses these states to perform a bottom-up
parse and call an associated function each time a reduction is performed.

4.11 References for Chapter 4

The context-free grammar formalism originated with Chomsky [5], as part of
a study on natural language. The idea also was used in the syntax description
of two early languages: Fortran by Backus [2] and Algol 60 by Naur [26]. The
scholar Panini devised an equivalent syntactic notation to specify the rules of
Sanskrit grammar between 400 B.C. and 200 B.C. [19].

The phenomenon of ambiguity was observed first by Cantor [4] and Floyd
[13]. Chomsky Normal Form (Exercise 4.4.8) is from [6]. The theory of context-
free grammars is summarized in [17].

Recursive-descent parsing was the method of choice for early compilers,
such as [16], and compiler-writing systems, such as META [28] and TMG [25].
LL grammars were introduced by Lewis and Stearns [24]. Exercise 4.4.5, the
linear-time simulation of recursive-descent , is from [3].

One of the earliest parsing techniques, due to Floyd [14], involved the prece-
dence of operators. The idea was generalized to parts of the language that do
not involve operators by Wirth and Weber [29]. These techniques are rarely
used today, but can be seen as leading in a chain of improvements to LR parsing.

LR parsers were introduced by Knuth [22], and the canonical-LR parsing
tables originated there. This approach was not considered practical, because the
parsing tables were larger than the main memories of typical computers of the
day, until Korenjak [23] gave a method for producing reasonably sized parsing
tables for typical programming languages. DeRemer developed the LALR [8]
and SLR [9] methods that are in use today. The construction of LR parsing
tables for ambiguous grammars came from [I] and [12].

Johnson's Yacc very quickly demonstrated the practicality of generating
parsers with an LALR parser generator for production compilers. The manual
for the Yacc parser generator is found in [20]. The open-source version, Bison,
is described in [lo]. A similar LALR-based parser generator called CUP [18]
supports actions written in Java. Top-down parser generators incude Antlr
[27], a recursive-descent parser generator that accepts actions in C++, Java, or
C#, and LLGen [15], which is an LL(1)-based generator.

Dain [7] gives a bibliography on syntax-error handling.

4.11. REFERENCES FOR CHAPTER 4 301

The general-purpose dynamic-programming parsing algorithm described in
Exercise 4.4.9 was invented independently by J . Cocke (unpublished) by Young-
er [30] and Kasami [21]; hence the "CYK algorithm." There is a more complex,
general-purpose algorithm due to Earley [I I] that tabulates LR-items for each
substring of the given input; this algorithm, while also O(n3) in general, is only
O(n2) on unambiguous grammars.

1. Aho, A. V., S. C. Johnson, and J. D. Ullman, "Deterministic parsing of
ambiguous grammars," Comm. A CM 18:8 (Aug., 1975), pp. 441-452.

2. Backus, J.W, "The syntax and semantics of the proposed international
algebraic language of the Zurich-ACM-GAMM Conference," Proc. Intl.
Conf. Information Processing, UNESCO, Paris, (1959) pp. 125-132.

3. Birman, A. and J . D. Ullman, "Parsing algorithms with backtrack," In-
formation and Control 23:l (1973), pp. 1-34.

4. Cantor, D. C., "On the ambiguity problem of Backus systems," J. ACM
9:4 (1962), pp. 477-479.

5. Chomsky, N., "Three models for the description of language," IRE Trans.
on Information Theory IT-2:3 (1956), pp. 113-124.

6. Chomsky, N., "On certain formal properties of grammars," Information
and Control 2:2 (1959), pp. 137-167.

7. Dain, J., "Bibliography on Syntax Error Handling in Language Transla-
tion Systems," 1991. Available from the comp . compilers newsgroup; see
http://compilers.iecc.com/comparch/article/91-O4-O5O.

8. DeRemer, F., "Practical Translators for LR(k) Languages," Ph.D. thesis,
MIT, Cambridge, MA, 1969.

9. DeRemer, F., "Simple LR(k) grammars," Cornrn. ACM 14:7 (July, 1971),
pp. 453-460.

10. Donnelly, C. and R. Stallman, "Bison: The YACC-compatible Parser
Generator," http: //www . gnu. org/software/bison/manual/ .

11. Earley, J., "An efficient context-free parsing algorithm," Comm. A CM
13:2 (Feb., 1970), pp. 94-102.

12. Earley, J., "Ambiguity and precedence in syntax description," Acta In-
formatica 4:2 (1975), pp. 183-192.

13. Floyd, R. W., "On ambiguity in phrase-structure languages,'' Comm.
ACM 5:10 (Oct., 1962), pp. 526-534.

14. Floyd, R. W., "Syntactic analysis and operator precedence," J. ACM 10:3
(1963), pp. 316-333.

302 CHAPTER 4. SYNTAX ANALYSIS

15. Grune, D and C. J. H. Jacobs, "A programmer-friendly LL(1) parser
generator," Software Practice and Experience 18:l (Jan., 1988), pp. 29-
38. See also http : //www . cs . vu. nl/"ceriel/LLgen. html .

16. Hoare, C. A. R., "Report on the Elliott Algol translator," Computer J.
5:2 (1962), pp. 127-129.

17. Hopcroft, J. E., R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation, Addison-Wesley, Boston MA, 2001.

18. Hudson, S. E. et al., "CUP LALR Parser Generator in Java," Available
athttp://www2.cs.tum.edu/projects/cup/.

19. Ingerman, P. Z . , "Panini-Backus form suggested," Comm. ACM 10:3
(March 1967), p. 137.

20. Johnson, S. C., "Yacc - Yet Another Compiler Compiler," Computing
Science Technical Report 32, Bell Laboratories, Murray Hill, NJ, 1975.
Available at http : //dinosaur. compilertools. net/yacc/ .

21. Kasami, T., "An efficient recognition and syntax analysis algorithm for
context-free languages," AFCRL-65-758, Air Force Cambridge Research
Laboratory, Bedford, MA, 1965.

22. Knuth, D. E., "On the translation of languages from left to right," Infor-
mation and Control 8:6 (1965), pp. 607-639.

23. Korenjak, A. J., "A practical method for constructing LR(k) processors,"
Comm. ACM 12:lI (Nov., 1969), pp. 613-623.

24. Lewis, P. M. I1 and R. E. Stearns, "syntax-directed transduction," J.
ACM 15:3 (1968), pp. 465-488.

25. McClure, R. M., "TMG - a syntax-directed compiler," proc. 20th ACM
Natl. Conf. (1965), pp. 262-274.

26. Naur, P. et al., "Report on the algorithmic language ALGOL 60," Comm.
ACM 3:5 (May, 1960), pp. 299-314. See also Comm. ACM 6:l (Jan.,
1963), pp. 1-17.

27. Parr, T., "ANTLR," http: //www . antlr . org/ .
28. Schorre, D. V., "Meta-11: a syntax-oriented compiler writing language,"

Proc. 19th ACM Natl. Conf. (1964) pp. D1.3-1-D1.3-11.

29. Wirth, N. and H. Weber, "Euler: a generalization of Algol and its formal
definition: Part I," Comm. ACM 9:l (Jan., 1966), pp. 13-23.

30. Younger, D .H., "Recognition and parsing of context-free languages in time
n3," Information and Control 10:2 (1967), pp. 189-208.

Chapter 5

Syntax-Directed
Translation

This chapter develops the theme of Section 2.3: the translation of languages
guided by context-free grammars. The translation techniques in this chapter
will be applied in Chapter 6 to type checking and intermediate-code generation.
The techniques are also useful for implementing little languages for specialized
tasks; this chapter includes an example from typesetting.

We associate information with a language construct by attaching attributes
to the grammar symbol(s) representing the construct, as discussed in Sec-
tion 2.3.2. A syntax-directed definition specifies the values of attributes by
associating semantic rules with the grammar productions. For example, an
infix-to-postfix translator might have a production and rule

This production has two nonterminals, E and T; the subscript in El distin-
guishes the occurrence of E in the production body from the occurrence of E
as the head. Both E and T have a string-valued attribute code. The semantic
rule specifies that the string E. code is formed by concatenating El . code, T. code,
and the character ' + I . While the rule makes it explicit that the translation of
E is built up from the translations of E l , T, and I + ' , it may be inefficient to
implement the translation directly by manipulating strings.

From Section 2.3.5, a syntax-directed translation scheme embeds program
fragments called semantic actions within production bodies, as in

E -+ El +T { print ' + I }

By convention, semantic actions are enclosed within curly braces. (If curly
braces occur as grammar symbols, we enclose them within single quotes, as in

304 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

I { ' and I } ' .) The position of a semantic action in a production body determines
the order in which the action is executed. In production (5.2), the action
occurs at the end, after all the grammar symbols; in general, semantic actions
may occur at any position in a production body.

Between the two notations, syntax-directed definitions can be more readable,
and hence more useful for specifications. However, translation schemes can be
more efficient, and hence more useful for implementations.

The most general approach to syntax-directed translation is to construct a
parse tree or a syntax tree, and then to compute the values of attributes at the
nodes of the tree by visiting the nodes of the tree. In many cases, translation
can be done during parsing, without building an explicit tree. We shall therefore
study a class of syntax-directed translations called "L-attributed translations"
(L for left-to-right), which encompass virtually all translations that can be
performed during parsing. We also study a smaller class, called "S-attributed
translations" (S for synthesized), which can be performed easily in connection
with a bottom-up parse.

5.1 Syntax-Directed Definitions

A s yntax-directed definition (SDD) is a context-free grammar together with,
attributes and rules. Attributes are associated with grammar symbols and rules
are associated with productions. If X is a symbol and a is one of its attributes,
then we write X.a to denote the value of a at a particular parse-tree node
labeled X. If we implement the nodes of the parse tree by records or objects,
then the attributes of X can be implemented by data fields in the records that
represent the nodes for X. Attributes may be of any kind: numbers, types, table
references, or strings, for instance. The strings may even be long sequences of
code, say code in the intermediate language used by a compiler.

5.1.1 Inherited and Synthesized Attributes

We shall deal with two kinds of attributes for nonterminals:

1. A synthesized attribute for a nonterminal A at a parse-tree node N is
defined by a semantic rule associated with the production at N. Note
that the production must have A as its head. A synthesized attribute at
node N is defined only in terms of attribute values at the children of N
and at N itself.

2. An inherited attribute for a nonterminal B at a parse-tree node N is
defined by a semantic rule associated with the production at the parent
of N. Note that the production must have B as a symbol in its body. An
inherited attribute at node N is defined only in terms of attribute values
at N's parent, N itself, and N's siblings.

5.1. SYNTAX-DIRECTED DEFINITIONS 305

An Alternative Definition of Inherited Attributes

No additional translations are enabled if we allow an inherited attribute
B.c at a node N to be defined in terms of attribute values at the children
of N , as well as at N itself, at its parent, and at its siblings. Such rules can
be "simulated" by creating additional attributes of B , say B.cl , B.c2,
These are synthesized attributes that copy the needed attributes of the
children of the node labeled B. We then compute B.c as an inherited
attribute, using the attributes B.cl, B.cz,. . . in place of attributes at the
children. Such attributes are rarely needed in practice.

While we do not allow an inherited attribute at node N to be defined in terms of
attribute values at the children of node N , we do allow a synthesized attribute
at node N to be defined in terms of inherited attribute values at node N itself.

Terminals can have synthesized attributes, but not inherited attributes. At-
tributes for terminals have lexical values that are supplied by the lexical ana-
lyzer; there are no semantic rules in the SDD itself for computing the value of
an attribute for a terminal.

Example 5.1 : The SDD in Fig. 5.1 is based on our familiar grammar for
arithmetic expressions with operators + and *. It evaluates expressions termi-
nated by an endmarker n. In the SDD, each of the nonterminals has a single
synthesized attribute, called val. We also suppose that the terminal digit has
a synthesized attribute lexval, which is an integer value returned by the lexical
analyzer.

Figure 5.1: Syntax-directed definition of a simple desk calculator

PRODUCTION

1) L + E n

2) E + E l + T

3) E + T

4) T + T l * F

5) T + F

6) F + (E)
7) F + digit

The rule for production 1, L -+ E n , sets L.val to E.va1, which we shall see
is the numerical value of the entire expression.

Production 2, E -+ El + T, also has one rule, which computes the val
attribute for the head E as the sum of the values at El and T . At any parse-

SEMANTIC RULES

L.val = E.val

E.val=E1.val+T.val

E.val = T.val

T.val=Tl.vaExF.val

T.val = F.val

F.val = E.val

F. val = digit .lexval

306 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

tree node N labeled E, the value of val for E is the sum of the values of val at
the children of node N labeled E and T.

Production 3, E + T, has a single rule that defines the value of val for E
to be the same as the value of val at the child for T. Production 4 is similar to
the second production; its rule multiplies the values at the children instead of
adding them. The rules for productions 5 and 6 copy values at a child, like that
for the third production. Production 7 gives F.val the value of a digit, that is,
the numerical value of the token digit that the lexical analyzer returned.

An SDD that involves only synthesized attributes is called S-attributed; the
SDD in Fig. 5.1 has this property. In an S-attributed SDD, each rule computes
an attribute for the nonterminal at the head of a production from attributes
taken from the body of the production.

For simplicity, the examples in this section have semantic rules without
side effects. In practice, it is convenient to allow SDD's to have limited side
effects, such as printing the result computed by a desk calculator or interacting
with a symbol table. Once the order of evaluation of attributes is discussed
in Section 5.2, we shall allow semantic rules to compute arbitrary functions,
possibly involving side effects.

An S-attributed SDD can be implemented naturally in conjunction with an
LR parser. In fact, the SDD in Fig. 5.1 mirrors the Yacc program of Fig. 4.58,
which illustrates translation during LR parsing. The difference is that, in the
rule for production 1, the Yacc program prints the value E.val as a side effect,
instead of defining the attribute L.va1.

An SDD without side effects is sometimes called an attribute grammar. The
rules in an attribute grammar define the value of an attribute purely in terms
of the values of other attributes and constants.

5.1.2 Evaluating an SDD at the Nodes of a Parse Tree

To visualize the translation specified by an SDD, it helps to work with parse
trees, even though a translator need not actually build a parse tree. Imagine
therefore that the rules of an SDD are applied by first constructing a parse tree
and then using the rules to evaluate all of the attributes at each of the nodes
of the parse tree. A parse tree, showing the value(s) of its attribute(s) is called
an annotated parse tree.

How do we construct an annotated parse tree? In what order do we evaluate
attributes? Before we can evaluate an attribute at a node of a parse tree, we
must evaluate all the attributes upon which its value depends. For example,
if all attributes are synthesized, as in Example 5.1, then we must evaluate the
ual attributes at all of the children of a node before we can evaluate the val
attribute at the node itself.

With synthesized attributes, we can evaluate attributes in any bottom-up
order, such as that of a postorder traversal of the parse tree; the evaluation of
S-attributed definitions is discussed in Section 5.2.3.

5.1. SYNTAX-DIRECTED DEFINITIONS 307

For SDD's with both inherited and synthesized attributes, there is no guar-
antee that there is even one order in which to evaluate attributes at nodes.
For instance, consider nonterminals A and B, with synthesized and inherited
attributes A.s and B.i, respectively, along with the production and rules

These rules are circular; it is impossible to evaluate either A.s at a node N or B.i
at the child of N without first evaluating the other. The circular dependency
of A.s and B.i at some pair of nodes in a parse tree is suggested by Fig. 5.2.

Figure 5.2: The circular dependency of A.s and B.i on one another

It is computationally difficult to determine whether or not there exist any
circularities in any of the parse trees that a given SDD could have to translate.'
Fortunately, there are useful subclasses of SDD's that are sufficient to guarantee
that an order of evaluation exists, as we shall see in Section 5.2.

Example 5.2 : Figure 5.3 shows an annotated parse tree for the input string
3 * 5 + 4 n, constructed using the grammar and rules of Fig. 5.1. The values
of lexval are presumed supplied by the lexical analyzer. Each of the nodes for
the nonterminals has attribute val computed in a bottom-up order, and we see
the resulting values associated with each node. For instance, at the node with
a child labeled *, after computing T.val= 3 and F.val = 5 at its first and third
children, we apply the rule that says T.val is the product of these two values,
or 15.

Inherited attributes are useful when the structure of a parse tree does not
"match" the abstract syntax of the source code. The next example shows how
inherited attributes can be used to overcome such a mismatch due to a grammar
designed for parsing rat her than translation.

'without going into details, while the problem is decidable, it cannot be solved by a
polynomial-time algorithm, even if F = N'P, since it has exponential time complexity.

CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

I I
2aj=\ F.val = 4

I
T.va1 = 3 F.val= 5 digit.lexval= 4

I I
F.val = 3 digi t . lexval = 5

I
digi t . lexval = 3

Figure 5.3: Annotated parse tree for 3 * 5 + 4 n

Example 5.3 : The SDD in Fig. 5.4 computes terms like 3 * 5 and 3 * 5 * 7.
The top-down parse of input 3 * 5 begins with the production T + F T'. Here,
F generates the digit 3, but the operator * is generated by TI. Thus, the left
operand 3 appears in a different subtree of the parse tree from *. An inherited
attribute will therefore be used to pass the operand to the operator.

The grammar in this example is an excerpt from a non-left-recursive version
of the familiar expression grammar; we used such a grammar as a running
example to illustrate top-down parsing in Section 4.4.

1) T + F T 1 TI. inh = F.val
T.val = T1.syn

4) F -+ digit I F.val = digit .lexval

Figure 5.4: An SDD based on a grammar suitable for top-down parsing

Each of the nonterminals T and F has a synthesized attribute val; the
terminal digit has a synthesized attribute lexval. The nonterminal T' has two
attributes: an inherited attribute inh and a synthesized attribute syn.

5.1. SYNTAX-DIRECTED DEFINITIONS 309

The semantic rules are based on the idea that the left operand of the operator
* is inherited. More precisely, the head T' of the production TI -+ * F Ti
inherits the left operand of * in the production body. Given a term x * y * z ,
the root of the subtree for * y * z inherits x. Then, the root of the subtree for
* x inherits the value of x * y, and so on, if there are more factors in the term.
Once all the factors have been accumulated, the result is passed back up the
tree using synthesized attributes.

To see how the semantic rules are used, consider the annotated parse tree
for 3 * 5 in Fig. 5.5. The leftmost leaf in the parse tree, labeled digit, has
attribute value lexval = 3, where the 3 is supplied by the lexical analyzer. Its
parent is for production 4, F -+ digit. The only semantic rule associated with
this production defines F. val = digit. lexval, which equals 3.

digit. lexval = 3 F.val = 5
Ti.syn = 15

digit. lexval = 5 E

Figure 5.5: Annotated parse tree for 3 * 5

At the second child of the root, the inherited attribute T1.inh is defined by
the semantic rule T1.inh = F.val associated with production 1. Thus, the left
operand, 3, for the * operator is passed from left to right across the children of
the root.

The production at the node for TI is TI -+ * FT;. (We retain the subscript
1 in the annotated parse tree to distinguish between the two nodes for TI.) The
inherited attribute Ti. inh is defined by the semantic rule Ti. inh = TI. inh x F. val
associated with production 2.

With T1.inh = 3 and F.val = 5, we get T;.inh = 15. At the lower node
for Ti, the production is TI -+ E . The semantic rule T1.syn = T1.inh defines
Ti .syn = 15. The syn attributes at the nodes for T' pass the value 15 up the
tree to the node for T , where T.val = 15.

5.1.3 Exercises for Section 5.1

Exercise 5.1.1 : For the SDD of Fig. 5.1, give annotated parse trees for the
following expressions:

CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

Exercise 5.1.2: Extend the SDD of Fig. 5.4 to handle expressions as in
Fig. 5.1.

Exercise 5.1.3 : Repeat Exercise 5.1.1, using your SDD from Exercise 5.1.2.

5.2 Evaluation Orders for SDD's

"Dependency graphs" are a useful tool for determining an evaluation order for
the attribute instances in a given parse tree. While an annotated parse tree
shows the values of attributes, a dependency graph helps us determine how
those values can be computed.

In this section, in addition to dependency graphs, we define two impor-
tant classes of SDD's: the "S-attributed" and the more general "L-attributed"
SDD's. The translations specified by these two classes fit well with the parsing
methods we have studied, and most translations encountered in practice can be
written to conform to the requirements of at least one of these classes.

5.2.1 Dependency Graphs

A dependency graph depicts the flow of information among the attribute in-
stances in a particular parse tree; an edge from one attribute instance to an-
other means that the value of the first is needed to compute the second. Edges
express constraints implied by the semantic rules. In more detail:

For each parse-tree node, say a node labeled by grammar symbol X, the
dependency graph has a node for each attribute associated with X .

Suppose that a semantic rule associated with a production p defines the
value of synthesized attribute A.b in terms of the value of X.c (the rule
may define A.b in terms of other attributes in addition to X.c) . Then,
the dependency graph has an edge from X.c to A.b. More precisely, at
every node N labeled A where production p is applied, create an edge to
attribute b at N , from the attribute c at the child of N corresponding to
this instance of the symbol X in the body of the production.2

Suppose that a semantic rule associated with a production p defines the
value of inherited attribute B.c in terms of the value of X.a. Then, the
dependency graph has an edge from X.a to B.c. For each node N labeled
B that corresponds to an occurrence of this B in the body of production
p, create an edge to attribute c at N from the attribute a at the node Ad

2 ~ i n c e a node N can have several children labeled X, we again assume that subscripts
distinguish among uses of the same symbol at different places in the production.

5.2. EVALUATION ORDERS FOR SDD'S 311

that corresponds to this occurrence of X. Note that M could be either
the parent or a sibling of N.

Example 5.4 : Consider the following production and rule:

At every node N labeled E, with children corresponding to the body of this
production, the synthesized attribute ual at N is computed using the values of
ual at the two children, labeled E and T. Thus, a portion of the dependency
graph for every parse tree in which this production is used looks like Fig. 5.6.
As a convention, we shall show the parse tree edges as dotted lines, while the
edges of the dependency graph are solid.

E val

Figure 5.6: E. val is synthesized from El. val and E2. val

Example 5.5 : An example of a complete dependency graph appears in Fig.
5.7. The nodes of the dependency graph, represented by the numbers 1 through
9, correspond to the attributes in the annotated parse tree in Fig. 5.5.

T 9 val

, , . , . .

digit 1 lexval *

digit 2 lexval (5

Figure 5.7: Dependency graph for the annotated parse tree of Fig. 5.5

Nodes 1 and 2 represent the attribute lexval associated with the two leaves
labeled digit. Nodes 3 and 4 represent the attribute ual associated with the
two nodes labeled F. The edges to node 3 from 1 and to node 4 from 2 result

312 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

from the semantic rule that defines F.ual in terms of digit.lexua1. In fact, F.ual
equals digit.lexual, but the edge represents dependence, not equality.

Nodes 5 and 6 represent the inherited attribute T1.inh associated with each
of the occurrences of nonterminal TI. The edge to 5 from 3 is due to the rule
T1.inh = F.ual, which defines T1.inh at the right child of the root from F.ua1
at the left child. We see edges to 6 from node 5 for T1.inh and from node 4
for F.val, because these values are multiplied to evaluate the attribute inh at
node 6.

Nodes 7 and 8 represent the synthesized attribute syn associated with the
occurrences of TI. The edge to node 7 from 6 is due to the semantic rule
T1.syn = T1.inh associated with production 3 in Fig. 5.4. The edge to node 8
from 7 is due to a semantic rule associated with production 2.

Finally, node 9 represents the attribute T.ual. The edge to 9 from 8 is due
to the semantic rule, T. ual = T1.syn, associated with production 1.

5.2.2 Ordering the Evaluation of Attributes

The dependency graph characterizes the possible orders in which we can evalu-
ate the attributes at the various nodes of a parse tree. If the dependency graph
has an edge from node M to node N , then the attribute corresponding to M
must be evaluated before the attribute of N. Thus, the only allowable orders
of evaluation are those sequences of nodes Nl, N2, . . . , Nk such that if there is
an edge of the dependency graph from Ni to Nj; then i < j . Such an ordering
embeds a directed graph into a linear order, and is called a topological sort of
the graph.

If there is any cycle in the graph, then there are no topological sorts; that is,
there is no way to evaluate the SDD on this parse tree. If there are no cycles,
however, then there is always at least one topological sort. To see why, since
there are no cycles, we cad surely find a node with no edge entering. For if there
were no such node, we could proceed from predecessor to predecessor until we
came back to some node we had already seen, yielding a cycle. Make this node
the first in the topological order, remove it from the dependency graph, and
repeat the process on the remaining nodes.

Example 5.6 : The dependency graph of Fig. 5.7 has no cycles. One topologi-
cal sort is the order in which the nodes have already been numbered: 1,2, . . . ,9.
Notice that every edge of the graph goes from a node to a higher-numbered node,
so this order is surely a topological sort. There are other topological sorts as
well, suchas 1,3,5,2,4,6,7,8,9.

5.2.3 S-Attributed Definitions

As mentioned earlier, given an SDD, it is very hard to tell whether there exist
any parse trees whose dependency graphs have cycles. In practice, translations
can be implemented using classes of SDD's that guarantee an evaluation order,

5.2. EVALUATION ORDERS FOR SDD'S 313

since they do not permit dependency graphs with cycles. Moreover, the two
classes introduced in this section can be implemented efficiently in connection
with top-down or bot tom-up parsing.

The first class is defined as follows:

a An SDD is S-attributed if every attribute is synthesized.

Example 5.7 : The SDD of Fig. 5.1 is an example of an S-attributed definition.
Each attribute, L.val, E.va1, T.val, and F.val is synthesized. C7

When an SDD is S-attributed, we can evaluate its attributes in ahy bottom-
up order of the nodes of the parse tree. It is often especially simple to evaluate
the attributes by performing a postorder traversal of the parse tree and evalu-
ating the attributes at a node N when the traversal leaves N for the last time.
That is, we apply the function postorder, defined below, to the root of the parse
tree (see also the box "Preorder and Postorder Traversals" in Section 2.3.4):

postorder (N) {
for (each child C of N , from the left) postorder(C);
evaluate the attributes associated with node N;

1
S-attributed definitions can be implemented during bottom-up parsing, since

a bottom-up parse corresponds to a postorder traversal. Specifically, postorder
corresponds exactly to the order in which an LR parser reduces a production
body to its head. This fact will be used in Section 5.4.2 to evaluate synthesized
attributes and store them on the stack during LR parsing, without creating the
tree nodes explicitly.

5.2.4 L-Attributed Definitions

The second class of SDD's is called L-attributed definitions. The idea behind
this class is that, between the attributes associated with a production body,
dependency-graph edges can go from left to right, but not from right to left
(hence "L-attributed"). More precisely, each attribute must be either

1. Synthesized, or

2. Inherited, but with the rules limited as follows. Suppose that there is
a production A -+ X1X2 - - Xn, and that there is an inherited attribute
Xi.a computed by a rule associated with this production. Then the rule
may use only:

(a) Inherited attributes associated with the head A.

(b) Either inherited or synthesized attributes associated with the occur-
rences of symbols X1, X2 , . . . , Xipl located to the left of Xi.

314 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

(c) Inherited or synthesized attributes associated with this occurrence
of Xi itself, but only in such a way that there are no cycles in a
dependency graph formed by the attributes of this Xi.

Example 5.8 : The SDD in Fig. 5.4 is L-attributed. To see why, consider the
semantic rules for inherited attributes, which are repeated here for convenience:

The first of these rules defines the inherited attribute Tf.inh using only F.ual,
and F appears to the left of TI in the production body, as required. The second
rule defines Ti.inh using the inherited attribute T1.inh associated with the head,
and F.va1, where F appears to the left of T,' in the production body.

In each of these cases, the rules use information "from above or from the
left ," as required by the class. The remaining attributes are synthesized. Hence,
the SDD is L-attributed.

Example 5.9 : Any SDD containing the following production and rules cannot
be L-attributed:

The first rule, A.s = B.b, is a legitimate rule in either an S-attributed or L-
attributed SDD. It defines a synthesized attribute A.s in terms of an attribute
at a child (that is, a symbol within the production body).

The second rule defines an inherited attribute B.i, so the entire SDD cannot
be S-attributed. Further, although the rule is legal, the SDD cannot be L-
attributed, because the attribute C.c is used to help define B.i, and C is to
the right of B in the production body. While attributes at siblings in a parse
tree may be used in L-attributed SDD's, they must be to the left of the symbol
whose attribute is being defined.

5.2.5 Semantic Rules with Controlled Side Effects

In practice, translations involve side effects: a desk calculator might print a
result; a code generator might enter the type of an identifier into a symbol table.
With SDD's, we strike a balance between attribute grammars and translation
schemes. Attribute grammars have no side effects and allow any evaluation
order consistent with the dependency graph. Translation schemes impose left-
to-right evaluation and allow semantic actions to contain any program fragment;
translation schemes are discussed in Section 5.4.

We shall control side effects in SDD's in ope of the following ways:

5.2. EVALUATION ORDERS FOR SDD'S 315

Permit incidental side effects that do not constrain attribute evaluation.
In other words, permit side effects when attribute evaluation based on any
topological sort of the dependency graph produces a "correct" translation,
where "correcti7 depends on the application.

Constrain the allowable evaluation orders, so that the same translation is
produced for any allowable order. The constraints can be thought of as
implicit edges added to the dependency graph.

As an example of an incidental side effect, let us modify the desk calculator
of Example 5.1 to print a result. Instead of the rule L.val= E.val, which saves
the result in the synthesized attribute L. val, consider:

PRODUCTION SEMANTIC RULE
1) L + E n print(E. val)

Semantic rules that are executed for their side effects, such as print(E.val), will
be treated as the definitions of dummy synthesized attributes associated with
the head of the production. The modified SDD produces the same translation
under any topological sort, since the print statement is executed at the end,
after the result is computed into E.val.

Example 5.10 : The SDD in Fig. 5.8 takes a simple declaration D consisting
of a basic type T followed by a list L of identifiers. T can be int or float. For
each identifier on the list, the type is entered into the symbol-table entry for the
identifier. We assume that entering the type for one identifier does not affect
the symbol-table entry for any other identifier. Thus, entries can be updated
in any order. This SDD does not check whether an identifier is declared more
than once; it can be modified to do so.

Figure 5.8: Syntax-directed definition for simple type declarations

1) D + T L

2) T -+ int

3) T -+ float
4) L + L 1 , i d

5) L + id

Nonterminal D represents a declaration, which, from production 1, consists
of a type T followed by a list L of identifiers. T has one attribute, T.type, which
is the type in the declaration D. Nonterminal L also has one attribute, which
we call inh to emphasize that it is an inherited attribute. The purpose of L.inh

L.inh = T.type

T. type = integer

T.type = float
Ll.inh=L.inh
addType(id. entry, L.inh)

add Type(id. entry, L. inh)

316 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

is to pass the declared type down the list of identifiers, so that it can be added
to the appropriate symbol-table entries.

Productions 2 and 3 each evaluate the synthesized attribute T.type, giving
it the appropriate value, integer or float. This type is passed to the attribute
L.inh in the rule for production 1. Production 4 passes L.inh down the parse
tree. That is, the value Ll . inh is computed at a parse-tree node by copying the
value of L.inh from the parent of that node; the parent corresponds to the head
of the production.

Productions 4 and 5 also have a rule in which a function addType is called
with two arguments:

1. id.entry, a lexical value that points to a symbol-table object, and

2. L.inh, the type being assigned to every identifier on the list.

We suppose that function addType properly installs the type L.inh as the type
of the represented identifier.

A dependency graph for the input string float i d l , i d a , id3 appears in
Fig. 5.9. Numbers 1 through 10 represent the nodes of the dependency graph.
Nodes 1, 2, and 3 represent the attribute entry associated with each of the
leaves labeled id. Nodes 6, 8, and 10 are the dummy attributes that represent
the application of the function addType to a type and one of these entry values.

T 4 ' type 5 L 6 entry

real 9 id3 ' 3 entry

inh 7 ' L 8 entry

9 id2 2 entry
inh 9 L 10 entry

idl 1 entry

Figure 5.9: Dependency graph for a declaration float idl , idz , id3

Node 4 represents the attribute T. type, and is actually where attribute eval-
uation begins. This type is then passed to nodes 5, 7, and 9 representing L.inh
associated with each of the occurrences of the nonterminal L.

5.2, EVALUATION ORDERS FOR SDD'S 317

5.2.6 Exercises for Section 5.2

Exercise 5.2.1 : What are all the topological sorts for the dependency graph
of Fig. 5.7?

Exercise 5.2.2 : For the SDD of Fig. 5.8, give annotated parse trees for the
following expressions:

a) i n t a , b , c.

b) float w , x , y, z.

Exercise 5.2.3 : Suppose that we have a production A -+ BCD. Each of
the four nonterminals A, B, C , and D have two attributes: s is a synthesized
attribute, and i is an inherited attribute. For each of the sets of rules below,
tell whether (i) the rules are consistent with an S-attributed definition (ii) the
rules are consistent with an L-attributed definition, and (iii) whether the rules
are consistent with any evaluation order at all?

b) A.s = B.i + C.s and D.i = A.i + B.s.

! d) A.s = D.i, B.i = A.s + C.s, C.i = B.s, and D.i = B.i + C.i.

! Exercise 5.2.4: This grammar generates binary numbers with a "decimal"
point:

Design an L-attributed SDD to compute S.val, the decimal-number value of
an input string. For example, the translation of string I01 .lo1 should be the
decimal number 5.625. Hint: use an inherited attribute L.side that tells which
side of the decimal point a bit is on.

!! Exercise 5.2.5 : Design an S-attributed SDD for the grammar and translation
described in Exercise 5.2.4.

!! Exercise 5.2.6 : Implement Algorithm 3.23, which converts a regular expres-
sion into a nondeterministic finite automaton, by an L-attributed SDD on a
top-down parsable grammar. Assume that there is a token char representing
any character, and that char.lexva1 is the character it represents. You may also
assume the existence of a function new () that returns a new state, that is, a
state never before returned by this function. Use any convenient notation to
specify the transitions of the NFA.

318 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

5.3 Applications of Synt ax-Direct ed Translation

The syntax-directed translation techniques in this chapter will be applied in
Chapter 6 to type checking and intermediate-code generation. Here, we consider
selected examples to illustrate some representative SDD's.

The main application in this section is the construction of syntax trees. Since
some compilers use syntax trees as an intermediate representation, a common
form of SDD turns its input string into a tree. To complete the translation to
intermediate code, the compiler may then walk the syntax tree, using another
set of rules that are in effect an SDD on the syntax tree rather than the parse
tree. (Chapter 6 also discusses approaches to intermediate-code generation that
apply an SDD without ever constructing a tree explicitly.)

We consider two SDD's for constructing syntax trees for expressions. The
first, an S-attributed definition, is suitable for use during bottom-up parsing.
The second, L-attributed, is suitable for use during top-down parsing.

The final example of this section is an L-attributed definition that deals
with basic and array types.

5.3.1 Construction of Syntax Trees

As discussed in Section 2.8.2, each node in a syntax tree represents a construct;
the children of the node represent the meaningful components of the construct.
A syntax-tree node representing an expression El + Ez has label + and two
children representing the subexpressions El and E2.

We shall implement the nodes of a syntax tree by objects with a suitable
number of fields. Each object will have an op field that is the label of the node.
The objects will have additional fields as follows:

If the node is a leaf, an additional field holds the lexical value for the leaf.
A constructor function Leaf (op, val) creates a leaf object. Alternatively, if
nodes are viewed as records, then Leaf returns a pointer to a new record
for a leaf.

If the node is an interior node, there are as many additional fields as the
node has children in the syntax tree. A constructor function Node takes
two or more arguments: Node(op, cl, ca, . . . , ck) creates an object with
first field op and k additional fields for the k children cl, . . . , ck.

Example 5.1 1 : The S-attributed definition in Fig. 5.10 constructs syntax
trees for a simple expression grammar involving only the binary operators +
and -. As usual, these operators are at the same precedence level and are
jointly left associative. All nonterminals have one synthesized attribute node,
which represents a node of the syntax tree.

Every time the first production E -+ El + T is used, its rule creates a node
with '+I for op and two children, El.node and T.node, for the subexpressions.
The second production has a similar rule.

5.3. APPLICATIONS OF SYNTAX-DIRECTED TRANSLATION 319

6) T --+ nurn I T. node = new Leaf (num, num. val)

PRODUCTION

1) E --+ El + T

2) E -+ El - T

3) E + T

4) T - + (E)
5) T + id

Figure 5.10: Constructing syntax trees for simple expressions

SEMANTIC RULES

E.node = new Node('+', El .node, T.node)

E.node = new Node('-', El .node, T.node)

E.node = T.node

T.node = E.node

T.node = new Leaf (id, id. entry)

For production 3, E -+ T , no node is created, since E.node is the same as
T.node. Similarly, no node is created for production 4, T --+ (E). The value
of T.node is the same as E.node, since parentheses are used only for grouping;
they influence the structure of the parse tree and the syntax tree, but once their
job is done, there is no further need to retain them in the syntax tree.

The last two T-productions have a single terminal on the right. We use the
constructor Leaf to create a suitable node, which becomes the value of T.node.

Figure 5.11 shows the construction of a syntax tree for the input a - 4 + c.
The nodes of the syntax tree are shown as records, with the op field first.
Syntax-tree edges are now shown as solid lines. The underlying parse tree,
which need not actually be constructed, is shown with dotted edges. The third
type of line, shown dashed, represents the values of E.node and T.node; each
line points to the appropriate synt ax-tree node.

At the bottom we see leaves for a, 4 and c, constructed by Leaf. We suppose
that the lexical value id.entry points into the symbol table, and the lexical
value num.val is the numerical value of a constant. These leaves, or pointers
to them, become the value of T.node at the three parse-tree nodes labeled T ,
according to rules 5 and 6. Note that by rule 3, the pointer to the leaf for a is
also the value of E. node for the leftmost E in the parse tree.

Rule 2 causes us to create a node with op equal to the minus sign and
pointers to the first two leaves. Then, rule 1 produces the root node of the
syntax tree by combining the node for - with the third leaf.

If the rules are evaluated during a postorder traversal of the parse tree, or
with reductions during a bottom-up parse, then the sequence of steps shown in
Fig. 5.12 ends with ps pointing to the root of the constructed syntax tree.

With a grammar designed for top-down parsing, the same syntax trees are
constructed, using the same sequence of steps, even though the structure of the
parse trees differs significantly from that of syntax trees.

Example 5.12 : The L-attributed definition in Fig. 5.13 performs the same
translation as the S-attributed definition in Fig. 5.10. The attributes for the
grammar symbols E, T, id, and nurn are as discussed in Example 5.11.

CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

E. node
. \ ' . .
* \

, \

E,. nod; + \\ ' T. node
... 1 : \ ' \

:' I . \ : \
1 , \ , \

E.node ; - Tl node \
l

id \ \

/' : I 1 \ 1 .

I 1 . I \
1 . node num 1 I 1 1

1 ' : I I
1

I

I ' . I I

id
I

1 1
I I
I
1 1
1 1
I
\ \
\ \
\ \
\ \
\ '

id j I numl 4
I
t

to entry for a

Figure 5.11: Syntax tree for a - 4 + c

I) pl = new Leaf(id, entry-a);
2) pa = new Leaf (num, 4);
3) p3 = new Node('-', pl, pz);
4) p4 = new Leaf(id, entry-c);
5) pg = new Node('+', p3,p4);

Figure 5.12: Steps in the construction of the syntax tree for a - 4 + c

The rules for building syntax trees in this example are similar to the rules
for the desk calculator in Example 5.3. In the desk-calculator example, a term
x * y was evaluated by passing x as an inherited attribute, since x and * y
appeared in different portions of the parse tree. Here, the idea is to build a
syntax tree for x + y by passing x as an inherited attribute, since x and + y
appear in different subtrees. Nonterminal E' is the counterpart of nonterminal
T' in Example 5.3. Compare the dependency graph for a - 4 + c in Fig. 5.14
with that for 3 a 5 in Fig. 5.7.

Nonterminal E' has an inherited attribute inh and a synthesized attribute
s yn. Attribute El. inh represents the partial syntax tree constructed so far.
Specifically, it represents the root of the tree for the prefix of the input string
that is to the left of the subtree for El. At node 5 in the dependency graph in
Fig. 5.14, E1.inh denotes the root of the partial syntax tree for the identifier a;
that is, the leaf for a. At node 6, E1.inh denotes the root for the partial syntax

5.3. APPLICATIONS OF SYNTAX-DIRECTED TRANSLATION 32 1

2) E' -+ + T El

E1.syn = E1.inh

T.node = E.node

T.node = new Leaf (id, id. entry)

El. inh = new Node('+', El. inh, T. node)
Er.syn = Ei.syn

3) E' -+ - T Ei

7) T -+ n u m I T.node = new Leaf(num, num.ual)

El .inh = new Node('-', E1.inh, T.node)
E1.syn = Ei.syn

Figure 5.13: Constructing syntax trees during top-down parsing

id 7 entry E

Figure 5.14: Dependency graph for a - 4 + c, with the SDD of Fig. 5.13

tree for the input a - 4. At node 9, E1.inh denotes the syntax tree for a - 4 + c.
Since there is no more input, at node 9, E1.inh points to the root of the

entire syntax tree. The syn attributes pass this value back up the parse tree
until it becomes the value of E.node. Specifically, the attribute value at node 10
is defined by the rule E1.syn = E'.inh associated with the production El -+ E .

The attribute value at node 11 is defined by the rule El. syn = E; . s yn associated
with production 2 in Fig. 5.13. Similar rules define the attribu!e values at
nodes 12 and 13.

5.3.2 The Structure of a Type

Inherited attributes are useful when the structure of the parse tree differs from
the abstract syntax of the input; attributes can then be used to carry informa-

322 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

tion from one part of the parse tree to another. The next example shows how
a mismatch in structure can be due to the design of the language, and not due
to constraints imposed by the parsing method.

Example 5.13: In C, the type int [2][3] can be read as, "array of 2 arrays
of 3 integers." The corresponding type expression array(2, array(3, integer)) is
represented by the tree in Fig. 5.15. The operator array takes two parameters,
a number and a type. If types are represented by trees, then this operator
returns a tree node labeled array with two children for a number and a type.

Figure 5.15: Type expression for int [2] [3]

With the SDD in Fig. 5.16, nonterminal T generates either a basic type or
an array type. Nonterminal B generates one of the basic types int and float.
T generates a basic type when T derives B C and C derives E . Otherwise, C
generates array components consisting of a sequence of integers, each integer
surrounded by brackets.

Figure 5.16: T generates either a basic type or an array type

PRODUCTION

T += B C

B += int

B += float
C + [num] C1

C + E

The nonterminals B and T have a synthesized attribute t representing a
type. The nonterminal C has two attributes: an inherited attribute b and a
synthesized attribute t. The inherited b attributes pass a basic type down the
tree, and the synthesized t attributes accumulate the result.

An annotated parse tree for the input string int [2] [3] is shown in Fig. 5.17.
The corresponding type expression in Fig. 5.15 is constructed by passing the
type integer from B, down the chain of C's through the inherited attributes b.
The array type is synthesized up the chain of C's through the attributes t.

In more detail, at the root for T -+ B C, nonterminal C inherits the type
from B, using the inherited attribute C.b. At the rightmost node for C, the

SEMANTIC RULES

T.t = C.t
C.b = B.t

B.t = integer

B.t = float
C.t = array (num.val, Cl .t)

C1.b = C.b
C.t = C.b

5.3. APPLICATIONS OF SYNTAX-DIRE CTED TRANSLATION 323

production is C -+ t, so C.t equals C.b. The semantic rules for the production
C -+ [num] Cl form C.t by applying the operator array to the operands
num.va1 and Cl .t.

T.t = ar ray(2 , a r ray (3 , in teger))

/ "" C.b = in teger
B.t = in teger C.t = ar ray(2 , a r ray (3 , in teger))

int 1 1 2 1 "---C.b C.t = = ar ray(3 , in teger in teger)

\c.b = in teger
[3 I C.t = in teger

int C.t = ar ray(3 , in teger)

/// \

Figure 5.17: Syntax-directed translation of array types

5.3.3 Exercises for Section 5.3

Exercise 5.3.1 : Below is a grammar for expressions involving operator + and
integer or floating-point operands. Floating-point numbers are distinguished
by having a decimal point.

E + E + T I T
T -+ num . num 1 num

a) Give an SDD to determine the type of each term T and expression E.

b) Extend your SDD of (a) to translate expressions into postfix notation.
Use the unary operator intToFloat to turn an integer into an equivalent
float.

! Exercise 5.3.2 : Give an SDD to translate infix expressions with + and * into
equivalent expressions without redundant parentheses. For example, since both
operators associate from the left, and * takes precedence over +, ((a*(b+c))*(d))
translates into a * (b + c) * d.

! Exercise 5.3.3 : Give an SDD to differentiate expressions such as x * (3 * x +
x * x) involving the operators + and *, the variable x, and constants. Assume
that no simplification occurs, so that, for example, 3 * x will be translated into
3 * 1 + 0 * x .

324 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

5.4 Syntax-Directed Translation Schemes

Syntax-directed translation schemes are a complementary notation to syntax-
directed definitions. All of the applications of syntax-directed definitions in
Section 5.3 can be implemented using syntax-directed translation schemes.

From Section 2.3.5, a syntax-directed translation scheme (SDT) is a context-
free grammar with program fragments embedded within production bodies. The
program fragments are called semantic actions and can appear at any position
within a production body. By convention, we place curly braces around actions;
if braces are needed as grammar symbols, then we quote them.

Any SDT can be implemented by first building a parse tree and then per-
forming the actions in a left-to-right depth-first order; that is, during a preorder
traversal. An example appears in Section 5.4.3.

Typically, SDT's are implemented during parsing, without building a parse
tree. In this section, we focus on the use of SDT's to implement two important
classes of SDD7s:

1. The underlying grammar is LR-parsable, and the SDD is S-attributed.

2. The underlying grammar is LL-parsable, and the SDD is L-attributed.

We shall see how, in both these cases, the semantic rules in an SDD can be
converted into an SDT with actions that are executed at the right time. During
parsing, an action in a production body is executed as soon as all the grammar
symbols to the left of the action have been matched.

SDT's that can be implemented during parsing can be characterized by in-
troducing distinct marker nonterminals in place of each embedded action; each
marker M has only one production, A4 -+ c . If the grammar with marker non-
terminals can be parsed by a given method, then the SDT can be implemented
during parsing.

5.4.1 Postfix Translation Schemes

By far the simplest SDD implementation occurs when we can parse the grammar
bottom-up and the SDD is S-attributed. In that case, we can construct an SDT
in which each action is placed at the end of the production and is executed along
with the reduction of the body to the head of that production. SDT's with all
actions at the right ends of the production bodies are called postfix SDT's.

Example 5.14 : The postfix SDT in Fig. 5.18 implements the desk calculator
SDD of Fig. 5.1, with one change: the action for the first production prints
a value. The remaining actions are exact counterparts of the semantic rules.
Since the underlying grammar is LR, and the SDD is S-attributed, these actions
can be correctly performed along with the reduction steps of the parser.

5.4. SYNTAX-DIRECTED TRANSLATION SCHEMES

L -+ E n {print(E.val);)
E -+ E 1 + T {E.val= El.val+ T.vak}
E T { E.val= T.val; }
T -+ TI * F { T.val = TI .val x F.val;)
T F { T.val = F.val; }
F -+ (E) {F.val=E.val ;)
F + digit { F.val = digit.lexva1;)

Figure 5.18: Postfix SDT implementing the desk calculator

5.4.2 Parser-Stack Implementation of Postfix SDT's

Postfix SDT's can be implemented during LR parsing by executing the actions
when reductions occur. The attribute(s) of each grammar symbol can be put
on the stack in a place where they can be found during the reduction. The
best plan is to place the attributes along with the grammar symbols (or the LR
states that represent these symbols) in records on the stack itself.

In Fig. 5.19, the parser stack contains records with a field for a grammar
symbol (or parser state) and, below it, a field for an attribute. The three
grammar symbols X YZ are on top of the stack; perhaps they are about to be
reduced according to a production like A -+ X YZ. Here, we show X.x as the
one attribute of X, and so on. In general, we can allow for more attributes,
either by making the records large enough or by putting pointers to records on
the stack. With small attributes, it may be simpler to make the records large
enough, even if some fields go unused some of the time. However, if one or more
attributes are of unbounded size - say, they are character strings - then it
would be better to put a pointer to the attribute's value in the stack record
and store the actual value in some larger, shared storage area that is not part
of the stack.

Statelgrammar symbol

Synthesized attribute(s)

Figure 5.19: Parser stack with a field for synthesized attributes

If the attributes are all synthesized, and the actions occur at the ends of the
productions, then we can compute the attributes for the head when we reduce
the body to the head. If we reduce by a production such as A -+ X YZ, then
we have all the attributes of X , Y, and Z available, at known positions on the
stack, as in Fig. 5.19. After the action, A and its attributes are at the top of
the stack, in the position of the record for X .

Example 5.15 : Let us rewrite the actions of the desk-calculator SDT of Ex-

326 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

ample 5.14 so that they manipulate the parser stack explicitly. Such stack
manipulation is usually done automatically by the parser.

ACTIONS
{ print (stack [top - 11. val);

top = top - 1;)

{ stack [top - 21. val = stack [top - 21 .val + stack [top] .vat
top = top - 2;)

{ stack [top - 21. val = stack [top - 21. val x stack [top] .val;
top = top - 2; }

{ stack [top - 2].vaE = stack [top - l] .val;
top = top - 2; }

F -+ digit

Figure 5.20: Implementing the desk calculator on a bottom-up parsing stack

Suppose that the stack is kept in an array of records called stack, with top
a cursor to the top of the stack. Thus, stack[top] refers to the top record on the
stack, stack[top - I] to the record below that, and so on. Also, we assume that
each record has a field called val, which holds the attribute of whatever grammar
symbol is represented in that record. Thus, we may refer to the attribute E.va1
that appears at the third position on the stack as stack[top - 21 .Val. The entire
SDT is shown in Fig. 5.20.

For instance, in the second production, E + E l + T , we go two positions
below the top to get the value of El, and we find the value of T at the top. The
resulting sum is placed where the head E will appear after the reduction, that
is, two positions below the current top. The reason is that after the reduction,
the three topmost stack symbols are replaced by one. After computing E.val,
we pop two symbols off the top of the stack, so the record where we placed
E.val will now be at the top of the stack.

In the third production, E -+ T, no action is necessary, because the length
of the stack does not change, and the value of T.va1 at the stack top will simply
become the value of E.val. The same observation applies to the productions
T -+ F and F -+ digit. Production F + (E) is slightly different. Although
the value does not change, two positions are removed from the stack during the
reduction, so the value has to move to the position after the reduction.

Note that we have omitted the steps that manipulate the first field of the
stack records - the field that gives the LR state or otherwise represents the
grammar symbol. If we are performing an LR parse, the parsing table tells us
what the new state is every time we reduce; see Algorithm 4.44. Thus, we may

5.4. SYNTAX-DIRECTED TRANSLATION SCHEMES

simply place that state in the record for the new top of stack.

5.4.3 SDT's With Actions Inside Productions

An action may be placed at any position within the body of a production.
It is performed immediately after all symbols to its left are processed. Thus,
if we have a production B -+ X {a} Y, the action a is done after we have
recognized X (if X is a terminal) or all the terminals derived from X (if X is
a nonterminal) . More precisely,

e If the parse is bottom-up, then we perform action a as soon as this oc-
currence of X appears on the top of the parsing stack.

e If the parse is top-down, we perform a just before we attempt to expand
this occurrence of Y (if Y a nonterminal) or check for Y on the input (if
Y is a terminal).

SDT's that can be implemented during parsing include postfix SDT's and
a class of SDT's considered in Section 5.5 that implements L-attributed defini-
tions. Not all SDT's can be implemented during parsing, as we shall see in the
next example.

Example 5.16 t As an extreme example of a problematic SDT, suppose that
we turn our desk-calculator running example into an SDT that prints the prefix
form of an expression, rather than evaluating the expression. The productions
and actions are shown in Fig. 5.21.

1) L -+ E n
2) E -+ { print('+'); } El + T
3) E T
4) T -+ { print('*'); } TI * F
5) T F

6) F -+ (E l
7) F + digit { print (digit .lexval); }

Figure 5.2 1: Problematic SDT for infix-to-prefix translation during parsing

Unfortunately, it is impossible to implement this SDT during either top-
down or bottom-up parsing, because the parser would have to perform critical
actions, like printing instances of * or +, long before it knows whether these
symbols will appear in its input.

Using marker nonterminals Mz and M4 for the actions in productions 2
and 4, respectively, on input 3, a shift-reduce parser (see Section 4.5.3) has
conflicts between reducing by Mz -+ E , reducing by Ma -+ t, and shifting the
digit.

328 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

Any SDT can be implemented as follows:

1. Ignoring the actions, parse the input and produce a parse tree as a result.

2. Then, examine each interior node N, say one for production A -+ a . Add
additional children to N for the actions in a, so the children of N from
left to right have exactly the symbols and actions of a.

3. Perform a preorder traversal (see Section 2.3.4) of the tree, and as soon
as a node labeled by an action is visited, perform that action.

For instance, Fig. 5.22 shows the parse tree for expression 3 * 5 + 4 with ac-
tions inserted. If we visit the nodes in preorder, we get the prefix form of the
expression: + * 3 5 4.

digit

digit { piint(3); }

Figure 5.22: Parse tree with actions embedded

5.4.4 Eliminating Left Recursion From SDT's

Since no grammar with left recursion can be parsed deterministically top-down,
we examined left-recursion elimination in Section 4.3.3. When the grammar is
part of an SDT, we also need to worry about how the actions are handled.

First, consider the simple case, in which the only thing we care about is
the order in which the actions in an SDT are performed. For example, if each
action simply prints a string, we care only about the order in which the strings
are printed. In this case, the following principle can guide us:

When transforming the grammar, treat the actions as if they were termi-
nal symbols.

5.4. SYNTAX-DIRECTED TRANSLATION SCHEMES 329

This principle is based on the idea that the grammar transformation preserves
the order of the terminals in the generated string. The actions are therefore
executed in the same order in any left-to-right parse, top-down or bottom-up.

The "trick" for eliminating left recursion is to take two productions

that generate strings consisting of a ,d and any number of a's, and replace them
by productions that generate the same strings using a new nonterminal R (for
"remainder") of the first production:

If @ does not begin with A, then A no longer has a left-recursive production. In
regular-definition terms, with both sets of productions, A is defined by @(a)*.
See Section 4.3.3 for the handling of situations where A has more recursive or
nonrecursive productions.

Example 5.17 : Consider the following E-productions from an SDT for trans-
lating infix expressions into postfix notation:

E + E 1 + T { print ('+I) ;)
E T

If we apply the standard transformation to E, the remainder of the left-recursive
production is

and p, the body of the other production is T. If we introduce R for the remain-
der of E , we get the set of productions:

When the actions of an SDD compute attributes rather than merely printing
output, we must be more careful about how we eliminate left recursion from a
grammar. However, if the SDD is S-attributed, then we can always construct
an SDT by placing attribute-computing actions at appropriate positions in the
new productions.

We shall give a general schema for the case of a single recursive production,
a single nonrecursive production, and a single attribute of the left-recursive
nonterminal; the generalization to many productions of each type is not hard,
but is notationally cumbersome. Suppose that the two productions are

CHAPTER 5. SYNTAX-DIRE CTED TRANSLATION

Here, A.a is the synthesized attribute of left-recursive nonterminal A, and X
and Y are single grammar symbols with synthesized attributes X.x and Y.y,
respectively. These could represent a string of several grammar symbols, each
with its own attribute(s), since the schema has an arbitrary function g comput-
ing A.a in the recursive production and an arbitrary function f computing A.a
in the second production. In each case, f and g take as arguments whatever
attributes they are allowed to access if the SDD is S-attributed.

We want to turn the underlying grammar into

Figure 5.23 suggests what the SDT on the new grammar must do. In (a)
we see the effect of the postfix SDT on the original grammar. We apply f once,
corresponding to the use of production A -+ X , and then apply g as many times
as we use the production A -+ AY. Since R generates a "remainder" of Y's,
its translation depends on the string to its left, a string of the form XYY . . Y.
Each use of the production R -+ YR results in an application of g. For R, we
use an inherited at tribute R.i to accumulate the result of successively applying
g, starting with the value of A.a.

Figure 5.23: Eliminating left recursion from a postfix SDT

In addition, R has a synthesized attribute R.s, not shown in Fig. 5.23.
This attribute is first computed when R ends its generation of Y symbols, as
signaled by the use of production R -+ E . R.s is then copied up the tree, so
it can become the value of A.a for the entire expression XYY - . Y. The case
where A generates XYY is shown in Fig. 5.23, and we see that the value of A.a
at the root of (a) has two uses of g. So does R.i at the bottom of tree (b), and
it is this value of R.s that gets copied up that tree.

To accomplish this translation, we use the following SDT:

5.4. SYNTAX-DIRECTED TRAIL'SLATION SCHEMES

Notice that the inherited attribute R.i is evaluated immediately before a use
of R in the body, while the synthesized attributes A.a and R.s are evaluated
at the ends of the productions. Thus, whatever values are needed to compute
these attributes will be available from what has been computed to the left.

5.4.5 SDT's for L-Attributed Definitions

In Section 5.4.1, we converted S-attributed SDD's into postfix SDT's, with
actions at the right ends of productions. As long as the underlying grammar is
LR, postfix SDT's can be parsed and translated bottom-up.

Now, we consider the more general case of an L-attributed SDD. We shall
assume that the underlying grammar can be parsed top-down, for if not it is
frequently impossible to perform the translation in connection with either an
LL or an LR parser. With any grammar, the technique below can be imple-
mented by attaching actions to a parse tree and executing them during preorder
traversal of the tree.

The rules for turning an L-attributed SDD into an SDT are as follows:

1. Embed the action that computes the inherited attributes for a nonterminal
A immediately before that occurrence of A in the body of the production.
If several inherited attributes for A depend on one another in an acyclic
fashion, order the evaluation of attributes so that those needed first are
computed first.

2. Place the actions that compute a synthesized attribute for the head of a
production at the end of the body of that production.

We shall illustrate these principles with two extended examples. The first
involves typesetting. It illustrates how the techniques of compiling can be used
in language processing for applications other than what we normally think of
as programming languages. The second example is about the generation of
intermediate code for a typical programming-language construct: a form of
while-statement .

Example 5.18 : This example is motivated by languages for typesetting math-
ematical formulas. Eqn is an early example of such a language; ideas from Eqn
are still found in the TJ$K typesetting system, which was used to produce this
book.

We shall concentrate on only the capability to define subscripts, subscripts
of subscripts, and so on, ignoring superscripts, built-up fractions, and all other
mathematical features. In the Eqn language, one writes a sub i sub j to set
the expression aij. A simple grammar for boxes (elements of text bounded by
a rectangle) is

CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

B -+ B1 B2 (B1 sub B2 ((B1) (text

Corresponding to these four productions, a box can be either

1. Two boxes, juxtaposed, with the first, B1, to the left of the other, B2.

2. A box and a subscript box. The second box appears in a smaller size,
lower, and to the right of the first box.

3. A parenthesized box, for grouping of boxes and subscripts. Eqn and T)$
both use curly braces for grouping, but we shall use ordinary, round paren-
theses to avoid confusion with the braces that surround actions in SDT's.

4. A text string, that is, any string of characters.

This grammar is ambiguous, but we can still use it to parse bottom-up if we
make subscripting and juxtaposition right associative, with sub taking prece-
dence over juxtaposition.

Expressions will be typeset by constructing larger boxes out of smaller ones.
In Fig. 5.24, the boxes for El and .height are about to be juxtaposed to form
the box for El .height. The left box for El is itself constructed from the box
for E and the subscript 1. The subscript 1 is handled by shrinking its box by
about 30%, lowering it, and placing it after the box for E. Although we shall
treat .height as a text string, the rectangles within its box show how it can be
constructed from boxes for the individual letters.

1- I

t height
height

de.p. th. ...*.,.-.-- - .: aePih

J
Figure 5.24: Constructing larger boxes from smaller ones

In this example, we concentrate on the vertical geometry of boxes only. The
horizontal geometry - the widths of boxes - is also interesting, especially when
different characters have different widths. It may not be readily apparent, but
each of the distinct characters in Fig. 5.24 has a different width.

The values associated with the vertical geometry of boxes are as follows:

a) The point size is used to set text within a box. We shall assume that
characters not in subscripts are set in 10 point type, the size of type in
this book. Further, we assume that if a box has point size p, then its
subscript box has the smaller point size 0 . 7 ~ . Inherited attribute B.ps
will represent the point size of block B. This attribute must be inherited,
because the context determines by how much a given box needs to be
shrunk, due to the number of levels of subscripting.

5.4. SYNTAX-DIRECTED TRANSLATION SCHEMES 333

b) Each box has a baseline, which is a vertical position that corresponds to
the bottoms of lines of text, not counting any letters, like "g" that extend
below the normal baseline. In Fig. 5.24, the dotted line represents the
baseline for the boxes E, .height, and the entire expression. The baseline
for the box containing the subscript 1 is adjusted to lower the subscript.

c) A box has a height, which is the distance from the top of the box to the
baseline. Synthesized attribute B. ht gives the height of box B.

d) A box has a depth, which is the distance from the baseline to the bottom
of the box. Synthesized attribute B. dp gives the depth of box B.

The SDD in Fig. 5.25 gives rules for computing point sizes, heights, and
depths. Production 1 is used to assign B.ps the initial value 10.

Bl .ps = B.ps
B2 .ps = B.ps
B . ht = max(Bl. ht, B2. ht)
B.dp = max(Bl.dp, B2 .d~)

3) B + B1 sub B2

Figure 5.25: SDD for typesetting boxes

Bl .ps = B.ps
B2.ps = 0.7 x B.ps
B.ht = max(Bl . ht, B2. ht - 0.25 x B.ps)
B.dp = max(B1.dp, B2.dp + 0.25 x B.ps)

5) B + t e x t

Production 2 handles juxtaposition. Point sizes are copied down the parse
tree; that is, two sub-boxes of a box inherit the same point size from the larger
box. Heights and depths are computed up the tree by taking the maximum.
That is, the height of the larger box is the maximum of the heights of its two
components, and similarly for the depth.

Production 3 handles subscripting and is the most subtle. In this greatly
simplified example, we assume that the point size of a subscripted box is 70%
of the point size of its parent. Reality is much more complex, since subscripts
cannot shrink indefinitely; in practice, after a few levels, the sizes of subscripts

B.ht = getHt (B.ps, text.lexval)
B. dp = getDp (B.ps, tex t .lexval)

334 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

shrink hardly at all. Further, we assume that the baseline of a subscript box
drops by 25% of the parent's point size; again, reality is more complex.

Production 4 copies attributes appropriately when parentheses are used. Fi-
nally, production 5 handles the leaves that represent text boxes. In this matter
too, the true situation is complicated, so we merely show two unspecified func-
tions getHt and getDp that examine tables created with each font to determine
the maximum height and maximum depth of any characters in the text string.
The string itself is presumed to be provided as the attribute lexual of terminal
text.

Our last task is to turn this SDD into an SDT, following the rules for an L-
attributed SDD, which Fig. 5.25 is. The appropriate SDT is shown in Fig. 5.26.
For readability, since production bodies become long, we split them across lines
and line up the actions. Production bodies therefore consist of the contents of
all lines up to the head of the next production.

3) B +
B1 sub
B2

5) B -+ text { B. ht = getHt (B .ps, text . lexual) ;
B. dp = getDp (B.ps, text .lexual);)

Figure 5.26: SDT for typesetting boxes

Our next example concentrates on a simple while-statement and the gener-
ation of intermediate code for this type of statement. Intermediate code will
be treated as a string-valued attribute. Later, we shall explore techniques that
involve the writing of pieces of a string-valued attribute as we parse, thus avoid-
ing the copying of long strings to build even longer strings. The technique was
introduced in Example 5.17, where we generated the postfix form of an infix

5.4. SYNTAX-DIRECTED TRANSLATION SCHEMES 335

expression "on-the-fly," rather than computing it as an attribute. However, in
our first formulation, we create a string-valued at tribute by concatenation.

Example 5.19 : For this example, we only need one production:

S --+ while (C) S1

Here, S is the nonterminal that generates all kinds of statements, presumably
including if-statements, assignment statements, and others. In this example, C
stands for a conditional expression - a boolean expression that evaluates to
true or false.

In this flow-of-control example, the only things we ever generate are labels.
All the other intermediate-code instructions are assumed to be generated by
parts of the SDT that are not shown. Specifically, we generate explicit instruc-
tions of the form label L, where L is an identifier, to indicate that L is the
label of the instruction that follows. We assume that the intermediate code is
like that introduced in Section 2.8.4.

The meaning of our while-statement is that the conditional C is evaluated.
If it is true, control goes to the beginning of the code for S1. If false, then control
goes to the code that follows the while-statement 's code. The code for S1 must
be designed to jump to the beginning of the code for the while-statement when
finished; the jump to the beginning of the code that evaluates C is not shown
in Fig. 5.27.

We use the following attributes to generate the proper intermediate code:

1. The inherited attribute S.next labels the beginning of the code that must
be executed after S is finished.

2. The synthesized attribute S. code is the sequehce of intermediate-code
steps that implements a statement S and ends with a jump to S.next.

3. The inherited attribute C. true labels the beginning of the code that must
be executed if C is true.

4. The inherited attribute C.false labels the beginning of the code that must
be executed if C is false.

5. The synthesized attribute C.code is the sequence of intermediate-code
steps that implements the condition C and jumps either to C.true or to
C.false, depending on whether C is true or false.

The SDD that computes these attributes for the while-statement is shown
in Fig. 5.27. A number of points merit explanation:

The function new generates new labels.

The variables L1 and L2 hold labels that we need in the code. L1 is the
beginning of the code for the while-statement, and we need to arrange

336 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

S -+ while (C) S1 L1 = new();
L2 = new();
S1.next = L1;
C.false = S.next;
C.true = L2;
S.code = label (1 L1 11 C.code (1 label 1) L2)I Sl.code

Figure 5.27: SDD for while-statements

that Sl jumps there after it finishes. That is why we set &.next to L1.
L2 is the beginning of the code for S1, and it becomes the value of C. true,
because we branch there when C is true.

Notice that C.false is set to S.next, because when the condition is false,
we execute whatever code must follow the code for S.

We use)I as the symbol for concatenation of intermediate-code fragments.
The value of S.code thus begins with the label L1, then the code for
condition C, another label L2, and the code for S1.

This SDD is L-attributed. When we convert it into an SDT, the only re-
maining issue is how to handle the labels L1 and L2, which are variables, and
not attributes. If we treat actions as dummy nonterminals, then such variables
can be treated as the synthesized attributes of dummy nonterminals. Since L1
and L2 do not depend on any other attributes, they can be assigned to the
first action in the production. The resulting SDT with embedded actions that
implements this L-attributed definition is shown in Fig. 5.28. C1

S -+ while ({ L1 = new(); L2 = new(); C.false = S.next; C.true = L2; }
c > { Sl.next = LI;)
s1 { S.code = label 1) L1 11 C.code)I label)I L2 11 Sl .code; }

Figure 5.28: SDT for while-statements

5.4.6 Exercises for Section 5.4

Exercise 5.4.1 : We mentioned in Section 5.4.2 that it is possible to deduce,
from the LR state on the parsing stack, what grammar symbol is represented
by the state. How would we discover this information?

Exercise 5.4.2 : Rewrite the following SDT:

5.5. IMPLEMENTING L-ATTRIB UTED SDD'S 337

so that the underlying grammar becomes non-left-recursive. Here, a , b, c, and
d are actions, and 0 and 1 are terminals.

! Exercise 5.4.3 : The following SDT computes the value of a string of 0's and
1's interpreted as a positive, binary integer.

Rewrite this SDT so the underlying grammar is not left recursive, and yet the
same value of B.ual is computed for the entire input string.

! Exercise 5.4.4 : Write L-attributed SDD's analogous to that of Example 5.19
for the following productions, each of which represents a familiar flow-of-control
construct, as in the programming language C. You may need to generate a three-
address statement to jump to a particular label L, in which case you should
generate goto L.

a) S -+ if (C) S1 else Sz

b) S + do S1 while (C)

Note that any statement in the list can have a jump from its middle to
the next statement, so it is not sufficient simply to generate code for each
statement in order.

Exercise 5.4.5 : Convert each of your SDD's from Exercise 5.4.4 to an SDT
in the manner of Example 5.19.

Exercise 5.4.6 : Modify the SDD of Fig. 5.25 to include a synthesized attribute
B.Ee, the length of a box. The length of the concatenation of two boxes is the
sum of the lengths of each. Then add your new rules to the proper positions in
the SDT of Fig. 5.26

Exercise 5.4.7 : Modify the SDD of Fig. 5.25 to include superscripts denoted
by operator sup between boxes. If box B2 is a superscript of box B1, then
position the baseline of B2 0.6 times the point size of B1 above the baseline of
B1. Add the new production and rules to the SDT of Fig. 5.26.

5.5 Implementing L-Attributed SDD's
Since many translation applications can be addressed using L-attributed defi-
nitions, we shall consider their implementation in more detail in this section.
The following methods do translation by traversing a parse tree:

338 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

1. Build the parse tree and annotate. This method works for any noncircular
SDD whatsoever. We introduced annotated parse trees in Section 5.1.2.

2. Build the parse tree, add actions, and execute the actions in preorder.
This approach works for any L-attributed definition. We discussed how
to turn an L-attributed SDD into an SDT in Section 5.4.5; in particular,
we discussed how to embed actions into productions based on the semantic
rules of such an SDD.

In this section, we discuss the following methods for translation during parsing:

3. Use a recursive-descent parser with one function for each nonterminal.
The function for nonterminal A receives the inherited attributes of A as
arguments and returns the synthesized attributes of A.

4. Generate code on the fly, using a recursive-descent parser.

5. Implement an SDT in conjunction with an LL-parser. The attributes are
kept on the parsing stack, and the rules fetch the needed attributes from
known locations on the stack.

6. Implement an SDT in conjunction with an LR-parser. This method may
be surprising, since the SDT for an L-attributed SDD typically has ac-
tions in the middle of productions, and we cannot be sure during an LR
parse that we are even in that production until its entire body has been
constructed. We shall see, however, that if the underlying grammar is LL,
we can always handle both the parsing and translation bottom-up.

5.5.1 Translation During Recursive-Descent Parsing

A recursive-descent parser has a function A for each nonterminal A, as discussed
in Section 4.4.1. We can extend the parser into a translator as follows:

a) The arguments of function A are the inherited attributes of nonterminal
A.

b) The return-value of function A is the collection of synthesized attributes
of nonterminal A.

In the body of function A, we need to both parse and handle attributes:

1. Decide upon the production used to expand A.

2. Check that each terminal appears on the input when it is required. We
shall assume that no backtracking is needed, but the extension to recur-
sive-descent parsing with backtracking can be done by restoring the input
position upon failure, as discussed in Section 4.4.1.

5.5. IMPLEMENTING L-ATTRIB UTED SDD 'S 339

3. Preserve, in local variables, the values of all attributes needed to compute
inherited attributes for nonterminals in the body or synthesized attributes
for the head nonterminal.

4. Call functions corresponding to nonterminals in the body of the selected
production, providing them with the proper arguments. Since the un-
derlying SDD is L-attributed, we have already computed these attributes
and stored them in local variables.

Example 5.20 : Let us consider the SDD and SDT of Example 5.19 for while-
statements. A pseudocode rendition of the relevant parts of the function S
appears in Fig. 5.29.

s t r ing S(labe1 next) {
s t r ing Scode, Ccode; /* local variables holding code fragments */
label L1, L2; /* the local labels */
if (current input == token while) {

advance input;
check I(' is next on the input, and advance;
L1 = new();
L2 = new();
Ccode = C(next, L2);
check ')I is next on the input, and advance;
Scode = S(L1);
return("labe1") I L l (1 Ccode I(" label" (1 L2 I(Scode);

I
else /* other statement types */

1

Figure 5.29: Implementing while-statements with a recursive-descent parser

We show S as storing and returning long strings. In practice, it would be
far more efficient for functions like S and C to return pointers to records that
represent these strings. Then, the return-statement in function S would not
physically concatenate the components shown, but rather would construct a
record, or perhaps tree of records, expressing the concatenation of the strings
represented by Scode and Ccode, the labels L l and L2, and the two occurrences
of the literal string " labe l" .

Example 5.21 : Now, let us take up the SDT of Fig. 5.26 for typesetting
boxes. First, we address parsing, since the underlying grammar in Fig. 5.26
is ambiguous. The following transformed grammar makes juxtaposition and
subscripting right associative, with s u b taking precedence over juxtaposition:

CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

S B
B 4 T B 1 I T
T -+ F sub TI I F
F -+ (B) 1 tex t

The two new nonterminals, T and F, are motivated by terms and factors in
expressions. Here, a "factor," generated by F, is either a parenthesized box
or a text string. A "term," generated by T , is a "factor" with a sequence of
subscripts, and a box generated by B is a sequence of juxtaposed "terms."

The attributes of B carry over to T and F, since the new nonterminals also
denote boxes; they were introduced simply to aid parsing. Thus, both T and
F have an inherited attribute ps and synthesized attributes ht and dp, with
semantic actions that can be adapted from the SDT in Fig. 5.26.

The grammar is not yet ready for top-down parsing, since the productions
for B and T have common prefixes. Consider T, for instance. A top-down
parser cannot choose between the two productions for T by looking one symbol
ahead in the input. Fortunately, we can use a form of left-factoring, discussed
in Section 4.3.4, to make the grammar ready. With SDT's, the notion of com-
mon prefix applies to actions as well. Both productions for T begin with the
nonterminal F inheriting attribute ps from T.

The pseudocode in Fig. 5.30 for T(ps) folds in the code for F(ps). After
left-factoring is applied to T -+ F sub TI 1 F, there is only one call to F; the
pseudocode shows the result of substituting the code for F in place of this call.

The function T will be called as T(lO.O) by the function for B, which we
do not show. It returns a pair consisting of the height and depth of the box
generated by nonterminal T; in practice, it would return a record containing
the height and depth.

Function T begins by checking for a left parenthesis, in which case it must
have the production F -+ (B) to work with. It saves whatever the B inside the
parentheses returns, but if that B is not followed by a right parenthesis, then
there is a syntax error, which must be handled in a manner not shown.

Otherwise, if the current input is tex t , then the function T uses getHt and
getDp to determine the height and depth of this text.

T then decides whether the next box is a subscript and adjusts the point
size, if so. We use the actions associated with the production B -+ B sub B
in Fig. 5.26 for the height and depth of the larger box. Otherwise, we simply
return what F would have returned: (hl , dl).

5.5.2 On-The-Fly Code Generation

The construction of long strings of code that are attribute values, as in Ex-
ample 5.20, is undesirable for several reasons, including the time it could take
to copy or move long strings. In common cases such as our running code-
generation example, we can instead incrementally generate pieces of the code
into an array or output file by executing actions in an SDT. The elements we
need to make this technique work are:

5.5. IMPLEMENTING L-ATTRIB UTED SDD 'S

(float, float) T(float ps) {
float h l , h2, d l , d2; /* locals to hold heights and depths */
/* start code for F(ps) */
if (current input == '(I) {

advance input ;
(h l , d l) = B(ps) ;
if (current input != I) ') syntax error: expected I)';
advance input;

1
else if (current input == t ex t) {

let lexical value text.lexva1 be t;
advance input;
h l = getHt(ps, t);
d l = getDp(ps, t) ;

1
else syntax error: expected t ex t or ' (I ;

/* end code for F(ps) */
if (current input == s u b) {

advance input;
(h2, d2) = T(0.7 * ps);
r e tu rn (max(h1, h2 - 0.25 * ps), max(d1, d2 + 0.25 * p s)) ;

1
r e t u r n (h l , dl);

1

Figure 5.30: Recursive-descent typesetting of boxes

1. There is, for one or more nonterminals, a main attribute. For conve-
nience, we shall assume that the main attributes are all string valued. In
Example 5.20, the attributes S.code and C.code are main attributes; the
other attributes are not.

2. The main attributes are synthesized.

3. The rules that evaluate the main attribute(s) ensure that

(a) The main attribute is the concatenation of main attributes of non-
terminals appearing in the body of the production involved, perhaps
with other elements that are not main attributes, such as the string
label or the values of labels L1 and L2.

(b) The main attributes of nonterminals appear in the rule in the same
order as the nonterminals themselves appear in the production body.

As a consequence of the above conditions, the main attribute can be constructed
by emitting the non-main-attribute elements of the concatenation. We can rely

342 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

The Type of Main Attributes

Our simplifying assumption that main attributes are of string type is really
too restrictive. The true requirement is that the type of all the main
attributes must have values that can be constructed by concatenation of
elements. For instance, a list of objects of any type would be appropriate,
as long as we represent these lists in a way that allows elements to be
efficiently appended to the end of the list. Thus, if the purpose of the
main attribute is to represent a sequence of intermediate-code statements,
we could produce the intermediate code by writing statements to the end
of an array of objects. Of course the requirements stated in Section 5.5.2
still apply to lists; for example, main attributes must be assembled from
other main attributes by concatenation in order.

on the recursive calls to the functions for the nonterminals in a production body
to emit the value of their main attribute incrementally.

Example 5.22 : We can modify the function of Fig. 5.29 to emit elements of
the main translation S.code instead of saving them for concatenation into a
return value of S.code. The revised function S appears in Fig. 5.31.

void S(labe1 next) {
label L l , L2; /* the local labels */
if (current input == token while) {

advance input ;
check I(' is next on the input, and advance;
L 1 = new();
L2 = new();
prznt("label", Ll) ;
C(next, L2);
check I)' is next on the input, and advance;
print("labell', L2);
S(L1);

1
else /* other statement types */

1

Figure 5.3 1 : On-t he-fly recursive-descent code generation for while-st atements

In Fig. 5.31, S and C now have no return value, since their only synthesized
attributes are produced by printing. Further, the position of the print state-
ments is significant. The order in which output is printed is: first l abe l L1,
then the code for C (which is the same as the value of Ccode in Fig. 5.29), then

5.5. IMPLEMENTING L-ATTRIB UTED SDD 'S

l a b e l L2, and finally the code from the recursive call to S (which is the same
as Scode in Fig. 5.29). Thus, the code printed by this call to S is exactly the
same as the value of Scode that is returned in Fig. 5.29).

Incidentally, we can make the same change to the underlying SDT: turn the
construction of a main attribute into actions that emit the elements of that
attribute. In Fig. 5.32 we see the SDT of Fig. 5.28 revised to generate code on
the fly.

S + while ({ L1 = new(); L2 = new(); C.false = S.next;
C.true = L2; print("label", Ll);)

c) { &.next = L1; print("labelU, L2); }
s1

Figure 5.32: SDT for on-the-fly code generation for while statements

5.5.3 L-Attributed SDD's and LL Parsing

Suppose that an L-attributed SDD is based on an LL-grammar and that we have
converted it to an SDT with actions embedded in the productions, as described
in Section 5.4.5. We can then perform the translation during LL parsing by
extending the parser stack to hold actions and certain data items needed for
attribute evaluation. Typically, the data items are copies of attributes.

In addition to records representing terminals and nonterminals, the parser
stack will hold action-records representing actions to be executed and synth-
esize-records to hold the synthesized attributes for nonterminals. We use the
following two principles to manage attributes on the stack:

The inherited attributes of a nonterminal A are placed in the stack record
that represents that nonterminal. The code to evaluate these attributes
will usually be represented by an action-record immediately above the
stack record for A; in fact, the conversion of L-attributed SDD's to SDT's
ensures that the action-record will be immediately above A.

The synthesized attributes for a nonterminal A are placed in a separate
synthesize-record that is immediately below the record for A on the stack.

This strategy places records of several types on the parsing stack, trusting that
these variant record types can be managed properly as subclasses of a "stack-
record" class. In practice, we might combine several records into one, but the
ideas are perhaps best explained by separating data used for different purposes
into different records.

Action-records contain pointers to code to be executed. Actions may also
appear in synthesize-records; these actions typically place copies of the synthe-
sized attribute(s) in other records further down the stack, where the value of

344 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

that attribute will be needed after the synthesize-record and its attributes are
popped off the stack.

Let us take a brief look at LL parsing to see the need to make temporary
copies of attributes. From Section 4.4.4, a table-driven LL parser mimics a
leftmost derivation. If w is the input that has been matched*so far, then the
stack holds a sequence of grammar symbols a such that S + wa, where S

lm
is the start symbol. When the parser expands by a production A -+ B C, it
replaces A on top of the stack by B C.

Suppose nonterminal C has an inherited attribute C.i. With A -+ B C, the
inherited attribute C.i may depend not only on the inherited attributes of A, but
on all the attributes of B. Thus, we may need to process B completely before
C.i can be evaluated. We therefore save temporary copies of all the attributes
needed to evaluate C.i in the action-record that evaluates C.i. Otherwise, when
the parser replaces A on top of the stack by B C, the inherited attributes of A
will have disappeared, along with its stack record.

Since the underlying SDD is L-attributed, we can be sure that the values
of the inherited attributes of A are available when A rises to the top of the
stack. The values will therefore be available in time to be copied into the
action-record that evaluates the inherited attributes of C. Furthermore, space
for the synthesized attributes of A is not a problem, since the space is in the
synthesize-record for A, which remains on the stack, below B and C , when the
parser expands by A -+ B C.

As B is processed, we can perform actions (through a record just above B on
the stack) that copy its inherited attributes for use by C, as needed, and after B
is processed, the synthesize-record for B can copy its synthesized attributes for
use by C, if needed. Likewise, synthesized attributes of A may need temporaries
to help compute their value, and these can be copied to the synthesize-record
for A as B and then C are processed. The principle that makes all this copying
of attributes work is:

All copying takes place among the records that are created during one
expansion of one nonterminal. Thus, each of these records knows how far
below it on the stack each other record is, and can write values into the
records below safely.

The next example illustrates the implement ation of inherited attributes dur-
ing LL parsing by diligently copying attribute values. Shortcuts or optimiza-
tions are possible, particularly with copy rules, which simply copy the value of
one attribute into another. Shortcuts are deferred until Example 5.24,. which
also illustrates synthesize-records.

Example 5.23 : This example implements the the SDT of Fig. 5.32, which
generates code on the fly for the while-production. This SDT does not have
synthesized attributes, except for dummy attributes that represent labels.

Figure 5.33(a) shows the situation as we are about to use the while-produc-
tion to expand S , presumably because the lookahead symbol on the input is

5.5. IMPLEMENTING L-ATTRIBUTED SDD'S

while. The record at the top of stack is for S, and it contains only the inherited
attribute S.next, which we suppose has the value x. Since we are now parsing
top-down, we show the stack top at the left, according to our usual convention.

1*rnv,r1
snext = x false = ?

L 1 = new() ;
L2 = new();
stack[top - l].false = snext;
stack[top - l] . t rue = L2;
stack[top - 3].all = L1;
stack[top - 3].al2 = L2;
prznt (" label l ' , L l) ;

stack[top - l] .next = a l l ;
prznt (" label" , a / 2) ; 1

Figure 5.33: Expansion of S according to the while-statement production

Figure 5.33(b) shows the situation immediately after we have expanded S.
There are action-records in front of the nonterminals C and S1, corresponding
to the actions in the underlying SDT of Fig. 5.32. The record for C has room
for inherited attributes true and false, while the record for S1 has room for
attribute next, as all S-records must. We show values for these fields as ?,
because we do not yet know their values.

The parser next recognizes while and (on the input and pops their records
off the stack. Now, the first action is at the top, and it must be executed. This
action-record has a field snext, which holds a copy of the inherited attribute
S.next. When S is popped from the stack, the value of S.next is copied into
the field snext for use during the evaluation of the inherited attributes for C.
The code for the first action generates new values for L1 and 22, which we
shall suppose are y and x, respectively. The next step is to make x the value of
C.true. The assignment staclc[top - l].true = L2 is written knowing it is only
executed when this action-record is at the top of stack, so top - 1 refers to the
record below it - the record for C.

The first action-record then copies L l into field all in the second action,
where it will be used to evaluate &.next. It also copies L2 into a field called
a12 of the second action; this value is needed for that action-record to print its
output properly. Finally, the first action-record prints label y to the output.

The situation after completing the first action and popping its record off

CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

Figure 5.34: After the action above C is performed

the stack is shown in Fig. 5.34. The values of inherited attributes in the record
for C have been filled in properly, as have the temporaries a l l and a12 in the
second action record. At this point, C is expanded, and we presume that the
code to implement its test containing jumps to labels x and x, as appropriate,
is generated. When the C-record is popped from the stack, the record for)
becomes top and causes the parser to check for) on its input.

With the action above S1 at the top of the stack, its code sets Sl .next and
emits label x. When that is done, the record for S1 becomes the top of stack,
and as it is expanded, we presume it correctly generates code that implements
whatever kind of statement it is and then jump to label y.

Example 5.24: Now, let us consider the same while-statement, but with a
translation that produces the output S. code as a synthesized attribute, rather
than by on-the-fly generation. In order to follow the explanation, it is useful to
bear in mind the following invariant or inductive hypothesis, which we assume
is followed for every nonterminal:

Every nonterminal that has code associated with it leaves that code, as a
string, in the synthesize-record just below it on the stack.

Assuming this statement is true, we shall handle the while-production so it
maintains this statement as an invariant.

Figure 5.35(a) shows the situation just before S is expanded using the pro-
duction for while-statements. At the top of the stack we see the record for S; it
has a field for its inherited attribute S. next, as in Example 5.23. Immediately
below that record is the synthesize-record for this occurrence of S. The latter
has a field for S.code, as all synthesize-records for S must have. We also show
it with some other fields for local storage and actions, since the SDT for the
while production in Fig. 5.28 is surely part of a larger SDT.

Our expansion of S is based on the SDT of Fig. 5.28, and it is shown in
Fig. 5.35(b). As a shortcut, during the expansion, we assume that the inherited
attribute S.next is assigned directly to C.false, rather than being placed in the
first action and then copied into the record for C.

Let us examine what each record does when it becomes the top of stack.
First, the while record causes the token while to be matched with the input,

5.5. In/lPLEMENTING L-ATTRIB UTED SDD'S

next = x

S. code

I data I

actions

top

Synthesize
S. code

code = ?

Ccode = ?

I stack[top - 31. Ccode = code; 1 12 = ? actions
L2 = new() ;
stack[top - 1] .true = L2;

"label" 11 11 1) Ccode

Figure 5.35: Expansion of S with synthesized attribute constructed on the stack

which it must, or else we would not have expanded S in this way. After while
and (are popped off the stack, the code for the action-record is executed. It
generates values for L1 and L2, and we take the shortcut of copying them
directly to the inherited attributes that need them: &.next and C.true. The
last two steps of the action cause L1 and L2 to be copied into the record called
"Synthesize 5'1. code."

The synthesize-record for S1 does double duty: not only will it hold the syn-
thesized attribute Sl . code, but it will also serve as an action-record to complete
the evaluation of the attributes for the entire production S -+ while (C) S1.
In particular, when it gets to the top, it will compute the synthesized attribute
S.code and place its value in the synthesize-record for the head S .

When C becomes the top of the stack, it has both its inherited attributes
computed. By the inductive hypothesis stated above, we suppose it correctly
generates code to execute its condition and jump to the proper label. We also
assume that the actions performed during the expansion of C correctly place
this code in the record below, as the value of synthesized attribute C. code.

After C is popped, the synthesize-record for C.code becomes the top. Its
code is needed in the synthesize-record for Sl.code, because that is where we
concatenate all the code elements to form S.code. The synthesize-record for
C.code therefore has an action to copy C.code into the synthesize-record for
Sl. code. After doing so, the record for token) reaches the top of stack, and
causes a check for) on the input. Assuming that test succeeds, the record for
S1 becomes the top of stack. By our inductive hypothesis, this nonterminal is

348 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

Can We Handle L-Attributed SDDSs on LR
Grammars?

In Section 5.4.1, we saw that every S-attributed SDD on an LR grammar
can be implemented during a bottom-up parse. From Section 5.5.3 every
L-attributed SDD on an LL grammar can be parsed top-down. Since LL
grammars are a proper subset of the LR grammars, and the S-attributed
SDD's are a proper subset of the L-attributed SDD's, can we handle every
LR grammar and L-attributed SDD bottom-up?

We cannot, as the following intuitive argument shows. Suppose we
have a production A -+ B C in an LR-grammar, and there is an inherited
attribute B.i that depends on inherited attributes of A. When we reduce
to B, we still have not seen the input that C generates, so we cannot
be sure that we have a body of production A -+ B C. Thus, we cannot
compute B.i yet, since we are unsure whether to use the rule associated
with this production.

Perhaps we could wait until we have reduced to C , and know that we
must reduce B C to A. However, even then, we do not know the inherited
attributes of A, because even after reduction, we may not be sure of the
production body that contains this A. We could reason that this decision,
too, should be deferred, and therefore further defer the computation of B.i.
If we keep reasoning this way, we soon realize that we cannot make any
decisions until the entire input is parsed. Essentially, we have reached the
strategy of "build the parse tree first and then perform the translation."

expanded, and the net effect is that its code is correctly constructed and placed
in the field for code in the synthesize-record for S1.

Now, all the data fields of the synthesize-record for S1 have been filled in, so
when it becomes the top of stack, the action in that record can be executed. The
action causes the labels and code from C.code and &.code to be concatenated
in the proper order. The resulting string is placed in the record below; that is,
in the synthesize-record for S . We have now correctly computed S.code, and
when the synthesize-record for S becomes the top, that code is available for
placement in another record further down the stack, where it will eventually
be assembled into a larger string of code implementing a program element of
which this S is a part.

5.5.4 Bottom-Up Parsing of L-Attributed SDDSs
We can do bottom-up every translation that we can do top-down. More pre-
cisely, given an L-attributed SDD on an LL grammar, we can adapt the gram-
mar to compute the same SDD on the new grammar during an LR parse. The
"trick" has three parts:

5.5. IMPLEMENTING L-ATTRIB UTED SDD 'S 349

1. Start with the SDT constructed as in Section 5.4.5, which places embed-
ded actions before each nonterminal to compute its inherited attributes
and an action at the end of the production to compute synthesized at-
tributes.

2. Introduce into the grammar a marker nonterminal in place of each em-
bedded action. Each such place gets a distinct marker, and there is one
production for any marker M , namely M -+ E .

3. Modify the action a if marker nonterminal M replaces it in some produc-
tion A -+ a {a) p, and associate with M + t an action a' that

(a) Copies, as inherited attributes of M , any attributes of A or symbols
of a that action a needs.

(b) Computes attributes in the same way as a , but makes those at-
tributes be synthesized attributes of M .

This change appears illegal, since typically the action associated with
production M -+ E will have to access attributes belonging to grammar
symbols that do not appear in this production. However, we shall imple-
ment the actions on the LR parsing stack, so the necessary attributes will
always be available a known number of positions down the stack.

Example 5.25 : Suppose that there is a production A -+ B C in an LL gram-
mar, and the inherited attribute B.i is computed from inherited attribute A.i
by some formula B.i = f (A.i). That is, the fragment of an SDT we care about
is

We introduce marker M with inherited attribute M.i and synthesized attribute
M.s. The former will be a copy of A.i and the latter will be B.i. The SDT will
be written

Notice that the rule for M does not have A.i available to it, but in fact we
shall arrange that every inherited attribute for a nonterminal such as A appears
on the stack immediately below where the reduction to A will later take place.
Thus, when we reduce t to M , we shall find A.i immediately below it, from
where it may be read. Also, the value of M.s, which is left on the stack along
with M , is really B.i and properly is found right below where the reduction to
B will later occur.

Example 5.26 : Let us turn the SDT of Fig. 5.28 into an SDT that can operate
with an LR parse of the revised grammar. We introduce a marker M before C
and a marker N before S1, so the underlying grammar becomes

350 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

Why Markers Work

Markers are nonterminals that derive only c and that appear only once
among all the bodies of all productions. We shall not give a formal proof
that, when a grammar is LL, marker nonterminals can be added at any
position in the body, and the resulting grammar will still be LR. The
intuition, however, is as follows. If a grammar is LL, then we can determine
that a string w on the input is derived from nonterminal A, in a derivation
that starts with production A + a, by seeing only the first symbol of w
(or the following symbol if w = e). Thus, if we parse w bottom-up, then
the fact that a prefix of w must be reduced to a and then to S is known as
soon as the beginning of w appears on the input. In particular, if we insert
markers anywhere in a, the LR states will incorporate the fact that this
marker has to be there, and will reduce E: to the marker at the appropriate
point on the input.

S + while (M C) N S1
M + €
N + €

Before we discuss the actions that are associated with markers M and N , let
us outline the "inductive hypothesis" about where attributes are stored.

1. Below the entire body of the while-production - that is, below while
on the stack - will be the inherited attribute S.next. We may not know
the nonterminal or parser state associated with this stack record, but we
can be sure that it will have a field, in a fixed position of the record, that
holds S.next before we begin to recognize what is derived from this S.

2. Inherited attributes C.true and C.false will be just below the stack record
for C. Since the grammar is presumed to be LL, the appearance of while
on the input assures us that the while-production is the only one that can
be recognized, so we can be sure that M will appear immediately below
C on the stack, and M's record will hold the inherited attributes of C.

3. Similarly, the inherited attribute Sl .next must appear immediately below
S1 on the stack, so we may place that attribute in the record for N .

4. The synthesized attribute C.code will appear in the record for C. As
always when we have a long string as an attribute value, we expect that
in practice a pointer to (an object representing) the string will appear in
the record, while the string itself is outside the stack.

5 . Similarly, the synthesized attribute Sl .code will appear in the record for
s1.

5.5. IMPLEMENTING L-ATTRIBUTED SDD'S 351

Let us follow the parsing process for a while-statement. Suppose that a
record holding S.next appears on the top of the stack, and the next input is
the terminal while. We shift this terminal onto the stack. It is then certain
that the production being recognized is the while-production, so the LR parser
can shift "(" and determine that its next step must be to reduce E. to M. The
stack at this time is shown in Fig. 5.36. We also show in that figure the action
that is associated with the reduction to M. We create values for L1 and L2,
which live in fields of the M-record. Also in that record are fields for C.true and
C.faEse. These attributes must be in the second and third fields of the record,
for consistency with other stack records that might appear below C in other
contexts and also must provide these attributes for C. The action completes
by assigning values to C.true and C.false, one from the L2 just generated, and
the other by reaching down the stack to where we know S. next is found.

top
4

S. next wmm Code executed during
reduction of E to M

Ll = new() ;
L2 = new() ;

L2 C.true = L2;
C.fa1se = stack[top - 3l.next;

Figure 5.36: LR parsing stack after reduction of E: to M

We presume that the next inputs are properly reduced to C. The synthesized
attribute C.code is therefore placed in the record for C. This change to the stack
is shown in Fig. 5.37, which also incorporates the next several records that are
later placed above C on the stack.

C. true / I C. code I l ~ l . n e x t I Isl.code I
C. false zj

Figure 5.37: Stack just before reduction of the while-production body to S

Continuing with the recognition of the while-st at ement , the parser should
next find ")" on the input, which it pushes onto the stack in a record of its
own. At that point, the parser, which knows it is working on a while-statement
because the grammar is LL, will reduce E. to N. The single piece of data asso-
ciated with N is the inherited attribute Sl .next. Note that this attribute needs

352 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

to be in the record for N because that will be just below the record for S1. The
code that is executed to compute the value of S l .next is

This action reaches three records below N , which is at the top of stack when
the code is executed, and retrieves the value of L1.

Next, the parser reduces some prefix of the remaining input to S , which
we have consistently referred to as S 1 to distinguish it from the S at the head
of the production. The value of Sl.code is computed and appears in the stack
record for S1. This step takes us to the condition that is illustrated in Fig. 5.37.

At this point, the parser will reduce everything from while to Sl to S. The
code that is executed during this reduction is:

tempcode = label 11 stack[top - 4].L1 11 stack[top - 3].code (1
label 1) stack[top - 4].L2 11 stack[top].code;

top = top - 5;
stack[top] . code = tempcode;

That is, we construct the value of S.code in a variable tempcode. That code is
the usual, consisting of the two labels L1 and L2, the code for C and the code
for S1. The stack is popped, so S appears where while was. The value of the
code for S is placed in the code field of that record, where it can be interpreted
as the synthesized attribute S . code. Note that we do not show, in any of this
discussion, the manipulation of LR states, which must also appear on the stack
in the field that we have populated with grammar symbols.

5.5.5 Exercises for Section 5.5

Exercise 5.5.1 : Implement each of your SDD's of Exercise 5.4.4 as a recursive-
descent parser in the style of Section 5.5.1.

Exercise 5.5.2 : Implement each of your SDD's of Exercise 5.4.4 as a recursive-
descent parser in the style of Section 5.5.2.

Exercise 5.5.3 : Implement each of your SDD's of Exercise 5.4.4 with an LL
parser in the style of Section 5.5.3, with code generated "on the fly."

Exercise 5.5.4: Implement each of your SDD's of Exercise 5.4.4 with an LL
parser in the style of Section 5.5.3, but with code (or pointers to the code)
stored on the stack.

Exercise 5.5.5 : Implement each of your SDD's of Exercise 5.4.4 with an LR
parser in the style of Section 5.5.4.

Exercise 5.5.6 : Implement your SDD of Exercise 5.2.4 in the style of Sec-
tion 5.5.1. Would an implementation in the style of Section 5.5.2 be any differ-
ent?

5.6. SUMMARY OF CHAPTER 5

5.6 Summary of Chapter 5

+ Inherited and Synthesized Attributes: Syntax-directed definitions may use
two kinds of attributes. A synthesized attribute at a parse-tree node is
computed from attributes at its children. An inherited attribute at a node
is computed from attributes at its parent and/or siblings.

+ Dependency Graphs: Given a parse tree and an SDD, we draw edges
among the attribute instances associated with each parse-tree node to
denote that the value of the attribute at the head of $he edge is computed
in terms of the value of the attribute at the tail of the edge.

+ Cyclic Definitions: In problematic SDD's, we find that there are some
parse trees for which it is impossible to find an order in which we can
compute all the attributes at all nodes. These parse trees have cycles in
their associated dependency graphs. It is intractable to decide whether
an SDD has such circular dependency graphs.

+ S-Attributed Definitions: In an S-attributed SDD, all attributes are syn-
thesized.

+ L-Attributed Definitions: In an L-attributed SDD, attributes may be in-
herited or synthesized. However, inherited attributes at a parse-tree node
may depend only on inherited attributes of its parent and on (any) at-
tributes of siblings to its left.

+ Syntax Trees: Each node in a syntax tree represents a construct; the chil-
dren of the node represent the meaningful components of the construct.

+ Implementing S-Attributed SDD's: An S-attributed definition can be im-
plemented by an SDT in which all actions are at the end of the production
(a "postfix" SDT). The actions compute the synthesized attributes of the
production head in terms of synthesized attributes of the symbols in the
body. If the underlying grammar is LR, then this SDT can be imple-
mented on the LR parser stack.

+ Eliminating Left Recursion From SDT's: If an SDT has only side-effects
(no attributes are computed), then the standard left-recursion-elimination
algorithm for grammars allows us to carry the actions along as if they
were terminals. When attributes are computed, we can still eliminate left
recursion if the SDT is a postfix SDT.

+ Implementing L-attributed SDD's by Recursive-Descent Parsing: If we
have an L-attributed definition on a top-down parsable grammar, we can
build a recursive-descent parser with no backtracking to implement the
translation. Inherited at tributes become arguments of the functions for
their nonterminals, and synthesized attributes are returned by that func-
tion.

354 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

+ Implementing L-Attributed SDD's on an LL Grammar: Every L-attribut-
ed definition with an underlying LL grammar can be implemented along
with the parse. Records to hold the synthesized attributes for a non-
terminal are placed below that nonterminal on the stack, while inherited
attributes for a nonterminal are stored with that nonterminal on the stack.
Action records are also placed on the stack to compute attributes at the
appropriate time.

+ Implementing L-Attributed SDD's on an LL Grammar, Bottom-Up: An
L-attributed definition with an underlying LL grammar can be converted
to a translation on an LR grammar and the translation performed in con-
nection with a bottom-up parse. The grammar transformation introduces
"marker" nonterminals that appear on the bottom-up parser's stack and
hold inherited attributes of the nonterminal above it on the stack. Syn-
thesized attributes are kept with their nonterminal on the stack.

5.7 References for Chapter 5

Syntax-directed definitions are a form of inductive definition in which the induc-
tion is on the syntactic structure. As such they have long been used informally
in mathematics. Their application to programming languages came with the
use of a grammar to structure the Algol 60 report.

The idea of a parser that calls for semantic actions can be found in Samelson
and Bauer [8] and Brooker and Morris [I]. Irons [2] constructed one of the
first syntax-directed compilers, using synthesized attributes. The class of L-
attributed definitions comes from [6].

Inherited attributes, dependency graphs, and a test for circularity of SDD's
(that is, whether or not there is some parse tree with no order in which the at-
tributes can be computed) are from Knuth [5]. Jazayeri, Ogden, and Rounds [3]
showed that testing circularity requires exponential time, as a function of the
size of the SDD.

Parser generators such as Yacc [4] (see also the bibliographic notes in Chap-
ter 4) support attribute evaluation during parsing.

The survey by Paakki [7] is a starting point for accessing the extensive
literature on syntax-directed definitions and translations.

I . Brooker, R. A. and D. Morris, "A general translation program for phrase
structure languages," J. ACM 9:l (1962), pp. 1-10.

2. Irons, E. T., "A syntax directed compiler for Algol 60," Comm. ACM 4:l
(1961), pp. 51-55.

3. Jazayeri, M., W. F. Odgen, and W. C. Rounds, "The intrinsic expo-
nential complexity of the circularity problem for attribute grammars,''
Comm. ACM 18:12 (1975), pp. 697-706.

5.7. REFERENCES FOR CHAPTER 5 355

4. Johnson, S. C., "Yacc - Yet Another Compiler Compiler," Computing
Science Technical Report 32, Bell Laboratories, Murray Hill, NJ, 1975.
Available at http: //dinosaur. compilertools. net/yacc/ .

5. Knuth, D.E., "Semantics of context-free languages," Mathematical Sys-
tems Theory 2:2 (1968), pp. 127-145. See also Mathematical Systems
Theory 5:l (1971), pp. 95-96.

6. Lewis, P. M. 11, D. J. Rosenkrantz, and R. E. Stearns, "Attributed trans-
lations," J. Computer and System Sciences 9:3 (1974), pp. 279-307.

7. Paakki, J., "Attribute grammar paradigms - a high-level methodology in
language implementation," Computing Surveys 27:2 (1995) pp. 196-255.

8. Samelson, K. and F. L. Bauer, "Sequential formula translation," Comm.
ACM 3:2 (1960), pp. 76-83.

Chapter 6

Intermediate-Code
Generat ion

In the analysis-synthesis model of a compiler, the front end analyzes a source
program and creates an intermediate representation, from which the back end
generates target code. Ideally, details of the source language are confined to the
front end, and details of the target machine to the back end. With a suitably
defined intermediate representation, a compiler for language i and machine j
can then be built by combining the front end for language i with the back
end for machine j . This approach to creating suite of compilers can save a
considerable amount of effort: rn x n compilers can be built by writing just rn
front ends and n back ends.

This chapter deals with intermediate representations, static type checking,
and intermediate code generation. For simplicity, we assume that a com-
piler front end is organized as in Fig. 6.1, where parsing, static checking, and
intermediate-code generation are done sequentially; sometimes they can be com-
bined and folded into parsing. We shall use the syntax-directed formalisms of
Chapters 2 and 5 to specify checking and translation. Many of the translation
schemes can be implemented during either bottom-up or top-down parsing, us-
ing the techniques of Chapter 5. All schemes can be implemented by creating
a syntax tree and then walking the tree.

front end --+-back end ---

--,

Figure 6.1: Logical structure of a compiler front end

Static checking includes type checking, which ensures that operators are ap-
plied to compatible operands. It also includes any syntactic checks that remain

Parser
Static

Checker

Intermediate
Code

~~~~~~t~~ 

intermediate 
code 

Code 
Generator 



358 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

after parsing. For example, static checking assures that a break-statement in 
C is enclosed within a while-, for-, or switch-statement; an error is reported if 
such an enclosing statement does not exist. 

The approach in this chapter can be used for a wide range of intermediate 
representations, including syntax trees and three-address code, both of which 
were introduced in Section 2.8. The term "three-address code7' comes from 
instructions of the general form x = y op x with three addresses: two for the 
operands y and x and one for the result x. 

In the process of translating a program in a given source language into code 
for a given target machine, a compiler may construct a sequence of intermediate 
representations, as in Fig. 6.2. High-level representations are close to the source 
language and low-level representations are close to the target machine. Syntax 
trees are high level; they depict the natural hierarchical structure of the source 
program and are well suited to tasks like static type checking. 

High Level Low Level 
Source Tar get 

-+ Intermediate -+ . . - Intermediate-+ 
Program 

Represent at ion Represent ation Code 

Figure 6.2: A compiler might use a sequence of intermediate representations 

A low-level representation is suitable for machine-dependent tasks like reg- 
ister allocation and instruction selection. Three-address code can range from 
high- to low-level, depending on the choice of operators. For expressions, the 
differences between syntax trees and three-address code are superficial, as we 
shall see in Section 6.2.3. For looping statements, for example, a syntax tree 
represents the components of a statement, whereas three-address code contains 
labels and jump instructions to represent the flow of control, as in machine 
language. 

The choice or design of an intermediate representation varies from compiler 
to compiler. An intermediate representation may either be an actual language 
or it may consist of internal data structures that are shared by phases of the 
compiler. C is a programming language, yet it is often used as an intermediate 
form because it is flexible, it compiles into efficient machine code, and its com- 
pilers are widely available. The original C++ compiler consisted of a front end 
that generated C, treating a C compiler as a back end. 

6.1 Variants of Syntax Trees 

Nodes in a syntax tree represent constructs in the source program; the children 
of a node represent the meaningful components of a construct. A directed 
acyclic graph (hereafter called a DAG) for an expression identifies the common 
subexpressions (subexpressions that occur more than once) of the expression. 
As we shall see in this section, DAG7s can be constructed by using the same 
techniques that construct syntax trees. 



6.1. VARIANTS OF SYNTAX TREES 

6.1.1 Directed Acyclic Graphs for Expressions 

Like the syntax tree for an expression, a DAG has leaves corresponding to 
atomic operands and interior codes corresponding to operators. The difference 
is that a node N in a DAG has more than one parent if N represents a com- 
mon subexpression; in a syntax tree, the tree for the common subexpression 
would be replicated as many times as the subexpression appears in the original 
expression. Thus, a DAG not only represents expressions more succinctly, it 
gives the compiler important clues regarding the generation of efficient code to 
evaluate the expressions. 

Example 6.1 : Figure 6.3 shows the DAG for the expression 

The leaf for a has two parents, because a appears twice in the expression. 
More interestingly, the two occurrences of the common subexpression b-c are 
represented by one node, the node labeled -. That node has two parents, 
representing its two uses in the subexpressions a*(b-c) and (b-c)*d. Even 
though b and c appear twice in the complete expression, their nodes each have 
one parent, since both uses are in the common subexpression b-c. 

Figure 6.3: Dag for the expression a + a * (b - c)  + (b - c)  * d 

The SDD of Fig. 6.4 can construct either syntax trees or DAG's. It was 
used to construct syntax trees in Example 5.11, where functions Leaf and Node 
created a fresh node each time they were called. It will construct a DAG if, 
before creating a new node, these functions first check whether an identical node 
already exists. If a previously created identical node exists, the existing node 
is returned. For instance, before constructing a new node, Node(op, ZeJt, right) 
we check whether there is already a node with label op, and children left and 
right, in that order. If so, Node returns the existing node; otherwise, it creates 
a new node. 

Example 6.2: The sequence of steps shown in Fig. 6.5 constructs the DAG 
in Fig. 6.3, provided Node and Leaf return an existing node, if possible, as 



360 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

5) T + id  I T.node = new Leaf (id, id. entry) 

PRODUCTION 

1) E -i El + T 

2) E -i El - T 

3) E + T  

4) T - i ( E )  

6) T -+ n u m  I T. node = new Leaf (num, num. val) 

SEMANTIC RULES 

E.node = new Node('+', El .node, T.node) 

E.node = new Node('-', El .node, T.node) 

E.node = T.node 

T.node = E.node 

Figure 6.4: Syntax-directed definition to produce syntax trees or DAG's 

pl = Leaf (id, entry-a) 
p2 = Leaf (id, entry-a) = pl 
p3 = Leaf (id, entry- b) 
p4 = Leaf(id, entry-c) 
P5 = Node('-', p3, p4) 
p6 = Node('*', pl p5) 
p7 = Node(' f ' PI, ~ 6 )  

pg = Leaf (id, entry-b) = p3 
pg = Leaf (id, entry-c) = p4 
Pl0 = Node('-', p3, p4) = p5 
pll = Leaf (id, entry-d) 
P12 = Node('*', ~ 5 1 ~ 1 1 )  

P13 = Node('+',p7,pl2) 

Figure 6.5: Steps for constructing the DAG of Fig. 6.3 

discussed above. We assume that entry-a points to the symbol-table entry for 
a, and similarly for the other identifiers. 

When the call to Leaf (id, entry-a) is repeated at step 2, the node created 
by the previous call is returned, so p2 = pl. Similarly, the nodes returned at 
steps 8 and 9 are the same as those returned at  steps 3 and 4 (i.e., pg = p3 
and pg = p4). Hence the node returned at step 10 must be the same at that 
returned at step 5; i.e., plo = pg . 

6.1.2 The Value-Number Method for Constructing DAG's 

Often, the nodes of a syntax tree or DAG are stored in an array of records, as 
suggested by Fig. 6.6. Each row of the array represents one record, and therefore 
one node. In each record, the first field is an operation code, indicating the label 
of the node. In Fig. 6.6(b), leaves have one additional field, which holds the 
lexical value (either a symbol-table pointer or a constant, in this case), and 



6.1. VARIANTS OF SYNTAX TREES 361 

interior nodes have two additional fields indicating the left and right children. 

to entry 
for i 

(a) DAG (b) Array. 

Figure 6.6: Nodes of a DAG for i = i + 10 allocated in an array 

In this array, we refer to nodes by giving the integer index of the record 
for that node within the array. This integer historically has been called the 
value number for the node or for the expression represented by the node. For 
instance, in Fig. 6.6, the node labeled + has value number 3, and its left and 
right children have value numbers 1 and 2, respectively. In practice, we could 
use pointers to records or references to objects instead of integer indexes, but 
we shall still refer to the reference to a node as its "value number." If stored 
in an appropriate data structure, value numbers help us construct expression 
DAG's efficiently; the next algorithm shows how. 

Suppose that nodes are stored in an array, as in Fig. 6.6, and each node is 
referred to by its value number. Let the signature of an interior node be the 
triple (op, 1, r), where op is the label, 1 its left child's value number, and r its 
right child's value number. A unary operator may be assumed to have r = 0. 

Algorithm 6.3: The value-number method for constructing the nodes of a 
DAG. 

INPUT: Label op, node 1, and node r .  

OUTPUT: The value number of a node in the array with signature (op, 1, r ) .  

METHOD: Search the array for a node M with label op, left child I ,  and right 
child r. If there is such a node, return the value number of M .  If not, create in 
the array a new node N with label op, left child 1, and right child r, and return 
its value number. 

While Algorithm 6.3 yields the desired output, searching the entire array 
every time we are asked to locate one node is expensive, especially if the array 
holds expressions from an entire program. A more efficient approach is to use a 
hash table, in which the nodes are put into "buckets," each of which typically 
will have only a few nodes. The hash table is one of several data structures 
that support dictionaries efficiently.' A dictionary is an abstract data type that 

'see Aho, A. V., J. E. Hopcroft, and J. D. Ullman, Data Structures and Algorithms, 
Addison-Wesley, 1983, for a discussion of data structures supporting dictionaries. 



362 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

allows us to insert and delete elements of a set, and to determine whether a 
given element is currently in the set. A good data structure for dictionaries, 
such as a hash table, performs each of these operations in time that is constant 
or close to constant, independent of the size of the set. 

To construct a hash table for the nodes of a DAG, we need a hash function 
h that computes the index of the bucket for a signature (op, 1, r), in a way that 
distributes the signatures across buckets, so that it is unlikely that any one 
bucket will get much more than a fair share of the nodes. The bucket index 
h(op, 1, r )  is computed deterministically from op, 1, and r ,  so that we may repeat 
the calculation and always get to the same bucket index for node (op, 1, r).  

The buckets can be implemented as linked lists, as in Fig. 6.7. An array, 
indexed by hash value, holds the bucket headers, each of which points to the 
first cell of a list. Within the linked list for a bucket, each cell holds the value 
number of one of the nodes that hash to that bucket. That is, node (op, 1,r) 
can be found on the list whose header is at index h(op, I ,  r )  of the array. 

List elements 
representing nodes 

by hash value I 1 
Array of bucket 
headers indexed 

Figure 6.7: Data structure for searching buckets 

Thus, given the input node op, 1, and r, we compute the bucket index 
h( op, 1, r )  and search the list of cells in this bucket for the given input node. 
Typically, there are enough buckets so that no list has more than a few cells. 
We may need to look at all the cells within a bucket, however, and for each 
value number v found in a cell, we must check whether the signature (op, 1, r )  
of the input node matches the node with value number u in the list of cells (as 
in Fig. 6.7). If we find a match, we return v. If we find no match, we know 
no such node can exist in any other bucket, so we create a new cell, add it to 
the list of cells for bucket index h( op, 1, r )  , and return the value number in that 
new cell. 

2 5 

6.1.3 Exercises for Section 6.1 

3 

Exercise 6.1.1 : Construct the DAG for the expression 

((x + y) - ((x + y )  * (x -Y) ) )  + (("+Y) * (" -y) )  



6.2. THREE-ADDRESS CODE 363 

Exercise 6.1.2: Construct the DAG and identify the value numbers for the 
subexpressions of the following expressions, assuming + associates from the left. 

a) a +  b+ ( a +  b).  

6.2 Three-Address Code 

In three-address code, there is at most one operator on the right side of an 
instruction; that is, no built-up arithmetic expressions are permitted. Thus a 
source-language expression like x+y*z might be translated into the sequence of 
t hree-address instructions 

where tl and tz are compiler-generated temporary names. This unraveling of 
multi-operator arithmetic expressions and of nested flow-of-control statements 
makes three-address code desirable for target-code generation and optimization, 
as discussed in Chapters 8 and 9. The use of names for the intermediate values 
computed by a program allows three-address code to be rearranged easily. 

Example 6.4 : Three-address code is a linearized representation of a syntax 
tree or a DAG in which explicit names correspond to the interior nodes of the 
graph. The DAG in Fig. 6.3 is repeated in Fig. 6.8, together with a correspond- 
ing three-address code sequence. 

(a) DAG (b) Three-address code 

Figure 6.8: A DAG and its corresponding three-address code 



CHAPTER 6. INTERMEDIATE-CODE GENERATION 

6.2.1 Addresses and Instructions 

Three-address code is built from two concepts: addresses and instructions. In 
object-oriented terms, these concepts correspond to classes, and the various 
kinds of addresses and instructions correspond to appropriate subclasses. Al- 
ternatively, three-address code can be implemented using records with fields 
for the addresses; records called quadruples and triples are discussed briefly in 
Section 6.2.2. 

An address can be one of the following: 

A name. For convenience, we allow source-program names to appear as 
addresses in three-address code. In an implementation, a source name 
is replaced by a pointer to its symbol-table entry, where all information 
about the name is kept. 

A constant. In practice, a compiler must deal with many different types 
of constants and variables. Type conversions within expressions are con- 
sidered in Section 6.5.2. 

A compiler-generated temporary. It is useful, especially in optimizing com- 
pilers, to create a distinct name each time a temporary is needed. These 
temporaries can be combined, if possible, when registers are allocated to 
variables. 

We now consider the common three-address instructions used in the rest of 
this book. Symbolic labels will be used by instructions that alter the flow of 
control. A symbolic label represents the index of a three-address instruction in 
the sequence of instructions. Actual indexes can be substituted for the labels, 
either by making a separate pass or by "backpatching," discussed in Section 6.7. 
Here is a list of the common three-address instruction forms: 

1. Assignment instructions of the form x = y op z, where op is a binary 
arithmetic or logical operation, and x, y, and z are addresses. 

2. Assignments of the form x = op y, where op is a unary operation. Essen- 
tial unary operations include unary minus, logical negation, shift opera- 
tors, and conversion operators that, for example, convert an integer to a 
floating-point number. 

3. Copy instructions of the form x = y, where x is assigned the value of y. 

4. An unconditional jump go to  L. The three-address instruction with label 
L is the next to be executed. 

5. Conditional jumps of the form i f  x go to  L and i fFalse  x goto  L. These 
instructions execute the instruction with label L next if x is true and 
false, respectively. Otherwise, the following t hree-address instruction in 
sequence is executed next, as usual. 



6.2. THREE-ADDRESS CODE 365 

6. Conditional jumps such as i f  x relop y goto  L, which apply a relational 
operator (<, ==, >=, etc.) to x and y, and execute the instruction with 
label L next if x stands in relation relop to y. If not, the three-address 
instruction following i f  x relop y goto  L is executed next, in sequence. 

7. Procedure calls and returns are implemented using the following instruc- 
tions: param x for parameters; c a l l p ,  n and y = c a l l p ,  n for procedure 
and function calls, respectively; and r e tu rn  y, where y, representing a 
returned value, is optional. Their typical use is as the sequence of three- 
address instructions 

param x, 
c a l l  p ,  n 

generated as part of a call of the procedure p(xl ,x2, .  . . ,x,). The in- 
teger n ,  indicating the number of actual parameters in "ca l l  p ,  n," is 
not redundant because calls can be nested. That is, some of the first 
param statements could be parameters of a call that comes after p returns 
its value; that value becomes another parameter of the later call. The 
implementation of procedure calls is outlined in Section 6.9. 

8. Indexed copy instructions of the form x = y Cil and x Cil = y. The instruc- 
tion x = y Cil sets x to the value in the location i memory units beyond 
location y . The instruction x Cil = y sets the contents of the location i 
units beyond x to the value of y. 

9. Address and pointer assignments of the form x = & y, x = * y, and * x = y. 
The instruction x = & y sets the r-value of x to be the location (I-value) 
of y.2 Presumably y is a name, perhaps a temporary, that denotes an 
expression with an bvalue such as A [il [jl , and x is a pointer name or 
temporary. In the instruction x = * y, presumably y is a pointer or a 
temporary whose r-value is a location. The r-value of x is made equal 
to the contents of that location. Finally, * x = y sets the r-value of the 
object pointed to by x to the r-value of y. 

Example 6.5 : Consider the statement 

do i = i+l; while (aci]  < v)  ; 

Two possible translations of this statement are shown in Fig. 6.9. The transla- 
tion in Fig. 6.9 uses a symbolic label L, attached to the first instruction. The 

2 ~ r o m  Section 2.8.3, 1- and r-values are appropriate on the left and right sides of assign- 
ments, respectively. 



366 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

translation in (b) shows position numbers for the instructions, starting arbitrar- 
ily at position 100. In both translations, the last instruction is a conditional 
jump to the first instruction. The multiplication i * 8 is appropriate for an 
array of elements that each take 8 units of space. 

(a) Symbolic labels. (b) Position numbers. 

Figure 6.9: Two ways of assigning labels to three-address statements 

The choice of allowable operators is an important issue in the design of an 
intermediate form. The operator set clearly must be rich enough to implement 
the operations in the source language. Operators that are close to machine 
instructions make it easier to implement the intermediate form on a target 
machine. However, if the front end must generate long sequences of instructions 
for some source-language operations, then the optimizer and code generator 
may have to work harder to rediscover the structure and generate good code 
for these operations. 

6.2.2 Quadruples 

The description of three-address instructions specifies the components of each 
type of instruction, but it does not specify the representation of these instruc- 
tions in a data structure. In a compiler, these instructions can be implemented 
as objects or as records with fields for the operator and the operands. Three 
such representations are called "quadruples," LLtriples," and "indirect triples." 

A quadruple (or just "quad') has four fields, which we call op, arg,, arg2, 
and result. The op field contains an internal code for the operator. For instance, 
the three-address instruction x = y + x  is represented by placing + in op, y in 
arg,, 2 in argz, and x in result. The following are some exceptions to this rule: 

I. Instructions with unary operators like x = minusy or x = y do not use 
arg,. Note that for a copy statement like x = y, op is =, while for most 
other operations, the assignment operator is implied. 

2. Operators like param use neither arg2 nor result. 

3. Conditional and unconditional jumps put the target label in result. 

Example 6.6 : Three-address code for the assignment a = b * - c + b * - c ; 
appears in Fig. 6.10(a). The special operator minus is used to distinguish the 



6.2. THREE-ADDRESS CODE 367 

unary minus operator, as in - c, from the binary minus operator, as in b - c. 
Note that the unary-minus "three-address" statement has only two addresses, 
as does the copy statement a = ts. 

The quadruples in Fig. 6.10(b) implement the three-address code in (a). 

tl = minus c 

t2 = b * tl 
t3 = minus c 
tq = b * t3 
t5 = t2 + t4 
a = t5 

arg, argz result 

* I 1 I t2 

minus l c I 1 t3 I 

(a) Three-address code (b) Quadruples 

Figure 6.10: Three-address code and its quadruple representation 

For readability, we use actual identifiers like a, b, and c in the fields arg,, 
arg, , and result in Fig. 6.10(b), instead of pointers to their symbol-table entries. 
Temporary names can either by entered into the symbol table like programmer- 
defined names, or they can be implemented as objects of a class Temp with its 
own methods. 

6.2.3 Triples 

A triple has only three fields, which we call op, arg,, and arg2. Note that 
the result field in Fig. 6.10(b) is used primarily for temporary names. Using 
triples, we refer to the result of an operation x op y by its position, rather 
than by an explicit temporary name. Thus, instead of the temporary tl in 
Fig. 6.10 (b) , a triple representation would refer to position (0). Parenthesized 
numbers represent pointers into the triple structure itself. In Section 6.1.2, 
positions or pointers to positions were called value numbers. 

Triples are equivalent to signatures in Algorithm 6.3. Hence, the DAG and 
triple representations of expressions are equivalent. The equivalence ends with 
expressions, since syntax-tree variants and three-address code represent control 
flow quite differently. 

Example 6.7 : The syntax tree and triples in Fig. 6.11 correspond to the 
three-address code and quadruples in Fig. 6.10. In the triple representation in 
Fig. 6.11(b), the copy statement a = ts is encoded in the triple representation 
by placing a in the arg, field and (4) in the arg, field. 

A ternary operation like x Cil = y requires two entries in the triple structure; 
for example, we can put x and i in one triple and y in the next. Similarly, 
x = y Cil can implemented by treating it as if it were the two instructions 



368 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Why Do We Need Copy Instructions? 

A simple algorithm for translating expressions generates copy instructions 
for assignments, as in Fig. 6.10(a), where we copy ts into a rather than 
assigning tz + t4 to a directly. Each subexpression typically gets its own, 
new temporary to hold its result, and only when the assignment operator = 
is processed do we learn where to put the value of the complete expression. 
A code-optimization pass, perhaps using the DAG of Section 6.1.1 as an 
intermediate form, can discover that tg can be replaced by a. 

/ 1 ' \. 
b minus b minus 

C C 

(a) Syntax tree 

I . . . I 
(b) Triples 

Figure 6.11: Representations of a + a * ( b  - c)  + ( b  - c )  * d 

t = y[i l  and x = t ,  where t is a compiler-generated temporary. Note that the 
temporary t does not actually appear in a triple, since temporary values are 
referred to by their position in the triple structure. 

A benefit of quadruples over triples can be seen in an optimizing compiler, 
where instructions are often moved around. With quadruples, if we move an 
instruction that computes a temporary t,  then the instructions that use t require 
no change. With triples, the result of an operation is referred to by its position, 
so moving an instruction may require us to change all references to that result. 
This problem does not occur with indirect triples, which we consider next. 

Indirect triples consist of a listing of pointers to triples, rather than a listing 
of triples themselves. For example, let us use an array instruction to list pointers 
to triples in the desired order. Then, the triples in Fig. 6.11(b) might be 
represented as in Fig. 6.12. 

With indirect triples, an optimizing compiler can move an instruction by 
reordering the instruction list, without affecting the triples themselves. When 
implemented in Java, an array of instruction objects is analogous to an indi- 
rect triple representation, since Java treats the array elements as references to 
objects. 



6.2. THREE-ADDRESS CODE 

instruction 
35 0 

36 1 

3 7 2 
38 3 
39 4 

40 5 

op arg1 arg2 

minus 1 c I 

Figure 6.12: Indirect triples representation of three-address code 

6.2.4 Static Single- Assignment Form 

Statjc single-assignment form (SSA) is an intermediate representation that fa- 
cilitates certain code optimizations. Two distinctive aspects distinguish SSA 
from three-address code. The first is that all assignments in SSA are to vari- 
ables with distinct names; hence the term sta t ic  single-assigrnent. Figure 6.13 
shows the same intermediate program in three-address code and in static single- 
assignment form. Note that subscripts distinguish each definition of variables 
p and q in the SSA representation. 

(a) Three-address code. (b) Static single-assignment form. 

Figure 6.13: Intermediate program in three-address code and SSA 

The same variable may be defined in two different control-flow paths in a 
program. For example, the source program 

i f  ( f l a g  ) x = -1; e lse  x = 1 ;  
y = x * a ;  

has two control-flow paths in which the variable x gets defined. If we use 
different names for x in the true part and the false part of the conditional 
statement, then which name should we use in the assignment y = x * a?  Here 
is where the second distinctive aspect of SSA comes into play. SSA uses a 
notational convention called the 4-function to combine the two definitions of x: 

i f  ( f l a g  ) xl = -1; e lse  xa = 1; 

x3 = 4(x1,x2); 



370 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Here, $(xl, x2) has the value xl if the control flow passes through the true 
part of the conditional and the value x2 if the control flow passes through the 
false part. That is to say, the $-function returns the value of its argument that 
corresponds to the control-flow path that was taken to get to the assignment- 
statement containing the $-function. 

6.2.5 Exercises for Section 6.2 

Exercise 6.2.1 : Translate the arithmetic expression a + -(b + c) into: 

a) A syntax tree. 

b) Quadruples. 

c) Triples. 

d) Indirect triples. 

Exercise 6.2.2 : Repeat Exercise 6.2.1 for the following assignment state- 
ments: 

ii. a[i] = b*c - b*d. 

iii. x = f (y+l)  + 2. 

iu. x = *p + &y. 

! Exercise 6.2.3: Show how to transform a three-address code sequence into 
one in which each defined variable gets a unique variable name. 

6.3 Types and Declarations 

The applications of types can be grouped under checking and translation: 

Type checking uses logical rules to reason about the behavior of a program 
at run time. Specifically, it ensures that the types of the operands match 
the type expected by an operator. For example, the && operator in Java 
expects its two operands to be booleans; the result is also of type boolean. 

Translation Applications. From the type of a name, a compiler can de- 
termine the storage that will be needed for that name at run time. Type 
information is also needed to calculate the address denoted by an array 
reference, to insert explicit type conversions, and to choose the right ver- 
sion of an arithmetic operator, among other things. 



6.3. TYPES AND DECLARATIONS 371 

In this section, we examine types and storage layout for names declared 
within a procedure or a class. The actual storage for a procedure call or an 
object is allocated at run time, when the procedure is called or the object is 
created. As we examine local declarations at compile time, we can, however, 
lay out relative addresses, where the relative address of a name or a component 
of a data structure is an offset from the start of a data area. 

6.3.1 Type Expressions 

Types have structure, which we shall represent using type expressions: a type 
expression is either a basic type or is formed by applying an operator called a 
type constructor to a type expression. The sets of basic types and constructors 
depend on the language to be checked. 

Example 6.8 : The array type i n t  [21 C31 can be read as "array of 2 arrays 
of 3 integers each" and written as a type expression array(2, array(3, integer)). 
This type is represented by the tree in Fig. 6.14. The operator array takes two 
parameters, a number and a type. 

array 

2 
/ \ 

array 

/ \ 
3 integer 

Figure 6.14: Type expression for i n t  [2] [3] 

We shall use the following definition of type expressions: 

A basic type is a type expression. Typical basic types for a language 
include boolean, char, integer, float, and void; the latter denotes "the 
absence of a value." 

A type name is a type expression. 

A type expression can be formed by applying the array type constructor 
to a number and a type expression. 

A record is a data structure with named fields. A type expression can 
be formed by applying the record type constructor to the field names and 
their types. Record types will be implemented in Section 6.3.6 by applying 
the constructor record to a symbol table containing entries for the fields. 

A type expression can be formed by using the type constructor 3 for func- 
tion types. We write s 3 t for "function from type s to type t." Function 
types will be useful when type checking is discussed in Section 6.5. 



372 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Type Names and Recursive Types 

Once a class is defined, its name can be used as a type name in C++ or 
Java; for example, consider Node in the program fragment 

public  c l a s s  Node ( . . . ) 
. . . 
publ ic  Node n ;  

Names can be used to define recursive types, which are needed for 
data structures such as linked lists. The pseudocode for a list element 

c l a s s  Cel l  ( int in fo ;  Cell  next; 1 

defines the recursive type Cel l  as a class that contains a field info  and 
a field next of type Cell.  Similar recursive types can be defined in C 
using records and pointers. The techniques in this chapter carry over to 
recursive types. 

If s and t are type expressions, then their Cartesian product s x t is a 
type expression. Products are introduced for completeness; they can be 
used to represent a list or tuple of types (e.g., for function parameters). 
We assume that x associates to the left and that it has higher precedence 
than -+. 
Type expressions may contain variables whose values are type expressions. 
Compiler-generated type variables will be used in Section 6.5.4. 

A convenient way to represent a type expression is to use a graph. The 
value-number method of Section 6.1.2, can be adapted to construct a dag for a 
type expression, with interior nodes for type constructors and leaves for basic 
types, type names, and type variables; for example, see the tree in Fig. 6.14.3 

6.3.2 Type Equivalence 

When are two type expressions equivalent? Many type-checking rules have the 
form, "if two type expressions are equal then return a certain type else error." 
Potential ambiguities arise when names are given to type expressions and the 
names are then used in subsequent type expressions. The key issue is whether 
a name in a type expression stands for itself or whether it is an abbreviation 
for another type expression. 

3Since type names denote type expressions, they can set up implicit cycles; see the box 
on "Type Names and Recursive Types." If edges to type names are redirected to the type 
expressions denoted by the names, then the resulting graph can have cycles due to recursive 
types. 



6.3. TYPES AND DECLARATIONS 373 

When type expressions are represented by graphs, two types are structurally 
equivalent if and only if one of the following conditions is true: 

They are the same basic type. 

They are formed by applying the same constructor to structurally equiv- 
alent types. 

One is a type name that denotes the other 

If type names are treated as standing for themselves, then the first two condi- 
tions in the above definition lead to name equivalence of type expressions. 

Name-equivalent expressions are assigned the same value number, if we use 
Algorithm 6.3. Structural equivalence can be tested using the unification algo- 
rithm in Section 6.5.5. 

6.3.3 Declarations 

We shall study types and declarations using a simplified grammar that declares 
just one name at a time; declarations with lists of names can be handled as 
discussed in Example 5.10. The grammar is 

D + T i d ; D  I c 
T -+ B C 1 record '(I D '3' 
B + int ( float 
C 3 E: ( C n u m I C  

The fragment of the above grammar that deals with basic and array types 
was used to illustrate inherited attributes in Section 5.3.2. The difference in 
this section is that we consider storage layout as well as types. 

Nonterminal D generates a sequence of declarations. Nonterminal T gen- 
erates basic, array, or record types. Nonterminal B generates one of the basic 
types int and float. Nonterminal C, for "component," generates strings of 
zero or more integers, each integer surrounded by brackets. An array type con- 
sists of a basic type specified by B, followed by array components specified by 
nonterminal C. A record type (the second production for T) is a sequence of 
declarations for the fields of the record, all surrounded by curly braces. 

6.3.4 Storage Layout for Local Names 

From the type of a name, we can determine the amount of storage that will be 
needed for the name at run time. At compile time, we can use these amounts to 
assign each name a relative address. The type and relative address are saved in 
the symbol-table entry for the name. Data of varying length, such as strings, or 
data whose size cannot be determined until run time, such as dynamic arrays, 
is handled by reserving a known fixed amount of storage for a pointer to the 
data. Run-time storage management is discussed in Chapter 7. 



374 CHAPTER 6. INTERMEDIATE- CODE GENERATION 

Address Alignment 

The storage layout for data objects is strongly influenced by the address- 
ing constraints of the target machine. For example, instructions to add 
integers may expect integers to be aligned, that is, placed at certain posi- 
tions in memory such as an address divisible by 4. Although an array of 
ten characters needs only enough bytes to hold ten characters, a compiler 
may therefore allocate 12 bytes - the next multiple of 4 - leaving 2 bytes 
unused. Space left unused due to alignment considerations is referred to as 
padding. When space is at a premium, a compiler may pack data so that 
no padding is left; additional instructions may then need to be executed 
at run time to position packed data so that it can be operated on as if it 
were properly aligned. 

Suppose that storage comes in blocks of contiguous bytes, where a byte is 
the smallest unit of addressable memory. Typically, a byte is eight bits, and 
some number of bytes form a machine word. Multibyte objects are stored in 
consecutive bytes and given the address of the first byte. 

The width of a type is the number of storage units needed for objects of that 
type. A basic type, such as a character, integer, or float, requires an integral 
number of bytes. For easy access, storage for aggregates such as arrays and 
classes is allocated in one contiguous block of bytes.4 

The translation scheme (SDT) in Fig. 6.15 computes types and their widths 
for basic and array types; record types will be discussed in Section 6.3.6. The 
SDT uses synthesized attributes type and width for each nonterminal and two 
variables t and w to pass type and width information from a B node in a parse 
tree to the node for the production C -+ 6. In a syntax-directed definition, t 
and w would be inherited attributes for C. 

The body of the T-production consists of nonterminal B, an action, and 
nonterminal C,  which appears on the next line. The action between B and C 
sets t to B.type and w to B. width. If B -+ int then B. type is set to integer and 
B. width is set to 4, the width of an integer. Similarly, if B -+ float then B. type 
is float and B. width is 8 ,  the width of a float. 

The productions for C determine whether T generates a basic type or an 
array type. If C -+ e ,  then t becomes C.type and w becomes C.width. 

Otherwise, C specifies an array component. The action for C -+ [ num 1 Cl 
forms C.type by applying the type constructor array to the operands n u m . v a l u e  
and Cl .type. For instance, the result of applying array might be a tree structure 
such as Fig. 6.14. 
- - 

4~torage  allocation for pointers in C and C++ is simpler if all pointers have the same 
width. The reason is that the storage for a pointer may need to be allocated before we learn 
the type of the objects it can point to. 



6.3. TYPES AND DECLARATIONS 

B -+ int { B. type = integer; B. width = 4; ) 

B -+ float { B. type = float; B. width = 8;  ) 

C -+ [ num 1 C1 { array(num.value,  Cl . type); 
C. width = n u m . v a l u e  x Cl .width; } 

Figure 6.15: Computing types and their widths 

The width of an array is obtained by multiplying the width of an element by 
the number of elements in the array. If addresses of consecutive integers differ by 
4, then address calculations for an array of integers will include multiplications 
by 4. Such multiplications provide opportunities for optimization, so it is helpful 
for the front end to make them explicit. In this chapter, we ignore other machine 
dependencies such as the alignment of data objects on word boundaries. 

E x a m p l e  6.9 : The parse tree for the type i n t  [21 C31 is shown by dotted lines 
in Fig. 6.16. The solid lines show how the type and width are passed from B ,  
down the chain of C's through variables t and w, and then back up the chain 
as synthesized attributes type and width. The variables t and w are assigned 
the values of B.type and B. width, respectively, before the subtree with the C 
nodes is examined. The values of t and w are used at the node for C + e to 
start the evaluation of the synthesized attributes up the chain of C nodes. 

type = array(2, array(3, integer)) 
. -  . width = 24 

-= integer' 
\ 

type = array(2, array(3, integer))  
N ' t y p e  = integer = 4 

' 

width = 24 
: width = 4 

int [ 2 1 ' .  type = array(3, integer) 
width = 12 

[ 3 I" type = integer 
width = 4 

€ 

Figure 6.16: Syntax-directed translation of array types 



376 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

6.3.5 Sequences of Declarations 

Languages such as C and Java allow all the declarations in a single procedure 
to be processed as a group. The declarations may be distributed within a Java 
procedure, but they can still be processed when the procedure is analyzed. 
Therefore, we can use a variable, say ofset, to keep track of the next available 
relative address. 

The translation scheme of Fig. 6.17 deals with a sequence of declarations 
of the form T id, where T generates a type as in Fig. 6.15. Before the first 
declaration is considered, o8set is set to 0. As each new name x is seen, x is 
entered into the symbol table with its relative address set to the current value 
of oflset, which is then incremented by the width of the type of x. 

P -+ { oflset = 0; ) 
D 

D -+ T id  ; { top.put(id.lexerne, T.type, oflset); 

ofset = oflset + T. width; 1 
Dl 

D + €  

Figure 6.17: Computing the relative addresses of declared names 

The semantic action within the production D -+ T id  ; Dl creates a symbol- 
table entry by executing top.put(id. lexeme, T. type, ofset). Here top denotes 
the current symbol table. The method top.put creates a symbol-table entry for 
id.lexerne, with type T.type and relative address ogset in its data area. 

The initialization of ofset in Fig. 6.17 is more evident if the first production 
appears on one line as: 

Nonterminals generating E ,  called marker nonterminals, can be used to rewrite 
productions so that all actions appear at the ends of right sides; see Sec- 
tion 5.5.4. Using a marker nonterminal M ,  (6.1) can be restated as: 

6.3.6 Fields in Records and Classes 

The translation of declarations in Fig. 6.17 carries over to fields in records and 
classes. Record types can be added to the grammar in Fig. 6.15 by adding the 
following production 

T -+ record '(I D '>I 



6.3. TYPES AND DECLARATIONS 377 

The fields in this record type are specified by the sequence of declarations 
generated by D. The approach of Fig. 6.17 can be used to  determine the types 
and relative addresses of fields, provided we are careful about two things: 

The field names within a record must be distinct; that is, a name may 
appear at most once in the declarations generated by D. 

The offset or relative address for a field name is relative t o  the data area 
for that record. 

Example 6.10: The use of a name x for a field within a record does not 
conflict with other uses of the name outside the record. Thus, the three uses of 
x  in the following declarations are distinct and do not conflict with each other: 

f l o a t  x ;  
record  ( f l o a t  x ;  f l o a t  y ;  ) p ;  
record  ( i n t  t a g ;  f l o a t  x;  f l o a t  y ;  ) q; 

A subsequent assignment x = p . x + q. x ; sets variable x to  the sum of the fields 
named x in the records p  and q. Note that the relative address of x in p differs 
from the relative address of x  in q. 

For convenience, record types will encode both the types and relative ad- 
dresses of their fields, using a symbol table for the record type. A record type 
has the form record(t), where record is the type constructor, and t is a symbol- 
table object that holds information about the fields of this record type. 

The translation scheme in Fig. 6.18 consists of a single production to  be 
added to the productions for T in Fig. 6.15. This production has two semantic 
actions. The embedded action before D saves the existing symbol table, denoted 
by top and sets top to  a fresh symbol table. It also saves the current ofset, and 
sets oflset to  0. The declarations generated by D will result in types and relative 
addresses being put in the fresh symbol table. The action after D creates a 
record type using top, before restoring the saved symbol table and offset. 

T + record 'C' { Env.push(top); top = new Env(); 
Stack.push(ofset); oflset = 0; } 

D '3' { T.type = record(top); T.width = oaset; 
top = Env.pop(); ofset = Stack.pop(); ) 

Figure 6.18: Handling of field names in records 

For concreteness, the actions in Fig. 6.18 give pseudocode for a specific im- 
plementation. Let class Env implement symbol tables. The call Env.push(top) 
pushes the current symbol table denoted by top onto a stack. Variable top is 
then set t o  a new symbol table. Similarly, o$set is pushed onto a stack called 
Stack. Variable ofset is then set to 0. 



378 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

After the declarations in D have been translated, the symbol table top holds 
the types and relative addresses of the fields in this record. Further, ogset gives 
the storage needed for all the fields. The second action sets T. type to record(top) 
and T. width to offset. Variables top and ogset are then restored to their pushed 
values to complete the translation of this record type. 

This discussion of storage for record types carries over to classes, since no 
storage is reserved for methods. See Exercise 6.3.2. 

6.3.7 Exercises for Section 6.3 

Exercise 6.3.1 : Determine the types and relative addresses for the identifiers 
in the following sequence of declarations: 

f l o a t  x; 
record  ( f l o a t  x; f l o a t  y ;  ) p;  
record  ( i n t  t a g ;  f l o a t  x ;  f l o a t  y ;  ) q; 

! Exercise 6.3.2 : Extend the handling of field names in Fig. 6.18 to classes and 
single-inheritance class hierarchies. 

a) Give an implementation of class Enu that allows linked symbol tables, so 
that a subclass can either redefine a field name or refer directly to a field 
name in a superclass. 

b) Give a translation scheme that allocates a contiguous data area for the 
fields in a class, including inherited fields. Inherited fields must maintain 
the relative addresses they were assigned in the layout for the superclass. 

6.4 Translation of Expressions 

The rest of this chapter explores issues that arise during the translation of ex- 
pressions and statements. We begin in this section with the translation of ex- 
pressions into three-address code. An expression with more than one operator, 
like a + b * c ,  will translate into instructions with at most one operator per in- 
struction. An array reference A[i] [ j ]  will expand into a sequence of three-address 
instructions that calculate an address for the reference. We shall consider type 
checking of expressions in Section 6.5 and the use of boolean expressions to 
direct the flow of control through a program in Section 6.6. 

6.4.1 Operations Within Expressions 

The syntax-directed definition in Fig. 6.19 builds up the three-address code for 
an assignment statement S using attribute code for S and attributes addr and 
code for an expression E. Attributes S.code and E.code denote the three-address 
code for S and E, respectively. Attribute E.addr denotes the address that will 



6.4. TRANSLATION OF EXPRESSIONS 379 

PRODUCTION 

S + i d = E ;  

E.addr = new Temp () 
E.code = El .code 1 )  

gen(E. addr '=' 'minus' El. addr) 

SEMANTIC RULES 

S.code=E.codeII 
gen(top.get(id. lexeme) '=' E. addr) 

E -+ El + E2 E. addr = new Temp () 
E.code = El.code 1 1  E2.code 1 1  

gen(E. addr '=I El .  addr '+I E2. addr) 

Figure 6.19: Three-address code for expressions 

1 ( El 

hold the value of E .  Recall from Section 6.2.1 that an address can be a name, 
a constant, or a compiler-generated temporary. 

Consider the last production, E -+ id, in the syntax-directed definition in 
Fig. 6.19. When an expression is a single identifier, say x, then x itself holds the 
value of the expression. The semantic rules for this production define E.addr 
to point to the symbol-table entry for this instance of id. Let top denote the 
current symbol table. Function top.get retrieves the entry when it is applied to 
the string representation id.lexeme of this instance of id. E. code is set to the 
empty string. 

When E + ( El ) , the translation of E is the same as that of the subex- 
pression El .  Hence, E .  addr equals El .  addr, and E .  code equals El .  code. 

The operators + and unary - in Fig. 6.19 are representative of the operators 
in a typical language. The semantic rules for E + El + E2, generate code to 
compute the value of E from the values of El and E2. Values are computed 
into newly generated temporary names. If El is computed into El.addr and 
Ez into Ez. addr, then El + E2 translates into t = El .  addr + E2. addr, where t is 
a new temporary name. E.addr is set to t. A sequence of distinct temporary 
names tl , t z  , . . . is created by successively executing new Temp(). 

For convenience, we use the notation gen(x ' = I  y '+' z )  to represent the 
three-address instruction x = y + z. Expressions appearing in place of variables 
like x, y, and z are evaluated when passed to gen, and quoted strings like ' = I  

are taken literally.5 Other three-address instructions will be built up similarly 

E.addr = El .  addr 
E.  code = El. code 

5 ~ n  syntax-directed definitions, gen builds an instruction and returns it. In translation 
schemes, gen builds an instruction and incrementally emits it by putting it into the stream 



380 CHAPTER 6. INTERMEDIATE- CODE GENERATION 

by applying gen to a combination of expressions and strings. 
When we translate the production E -+ El + E2, the semantic rules in 

Fig. 6.19 build up E. code by concatenating El .  code, E2. code, and an instruc- 
tion that adds the values of El and E2.  The instruction puts the result of the 
addition into a new temporary name for E, denoted by E.addr. 

The translation of E -+ -E l  is similar. The rules create a new temporary 
for E and generate an instruction to perform the unary minus operation. 

Finally, the production S -+ id  = E ;  generates instructions that assign the 
value of expression E to the identifier id. The semantic rule for this production 
uses function top.get to determine the address of the identifier represented by 
id, as in the rules for E -+ id. S.code consists of the instructions to compute 
the value of E into an address given by E.addr, followed by an assignment to 
the address top.get(id.lexeme) for this instance of id. 

Example 6.11 : The syntax-directed definition in Fig. 6.19 translates the as- 
signment statement a = b + - c ; into the three-address code sequence 

tl = minus c 
t 2  = b + tl 
a = t 2  

6.4.2 Incremental Translation 

Code attributes can be long strings, so they are usually generated incremen- 
tally, as discussed in Section 5.5.2. Thus, instead of building up E.code as in 
Fig. 6.19, we can arrange to generate only the new three-address instructions, 
as in the translation scheme of Fig. 6.20. In the incremental approach, gen not 
only constructs a three-address instruction, it appends the instruction to the 
sequence of instructions generated so far. The sequence may either be retained 
in memory for further processing, or it may be output incrementally. 

The translation scheme in Fig. 6.20 generates the same code as the syntax- 
directed definition in Fig. 6.19. With the incremental approach, the code at- 
tribute is not used, since there is a single sequence of instructions that is created 
by successive calls to gen. For example, the semantic rule for E + El + E2 in 
Fig. 6.20 simply calls gen to generate an add instruction; the instructions to 
compute El into El. addr and E2 into E2. addr have already been generated. 

The approach of Fig. 6.20 can also be used to build a syntax tree. The new 
semantic action for E -+ El + E2 creates a node by using a constructor, as in 

E -+ El + E2 { E.addr = new Node('+', El .addr, E2.addr); ) 

Here, attribute addr represents the address of a node rather than a variable or 
const ant. 

of generated instructions. 



6.4. TRANSLATION OF EXPRESSIONS 

E -t E l + E 2  { E . a d d r = n e w  Temp(); 
gen(E.addr ' = I  El .addr '+I E2. addr); } 

( -El  { E. addr = new Temp 0; 
gen(E. addr '=I 'minus' El .  addr) ; ] 

Figure 6.20: Generating three-address code for expressions incrementally 

6.4.3 Addressing Array Elements 

Array elements can be accessed quickly if they are stored in a block of consecu- 
tive locations. In C and Java, array elements are numbered O , 1 ,  . . . , n - 1, for 
an array with n elements. If the width of each array element is w, then the ith 
element of array A begins in location 

base + i x w (6.2) 

where base is the relative address of the storage allocated for the array. That 
is, base is the relative address of A[O]. 

The formula (6.2) generalizes to two or more dimensions. In two dimensions, 
we write A[iz][i2] in C and Java for element i2 in row i l .  Let wl be the width 
of a row and let w2 be the width of an element in a row. The relative address 
of A[il] [iz] can then be calculated by the formula 

base + il x wl + i2 x wa (6.3) 

In I% dimensions, the formula is 

base + i l  x wl + i2 x w2 + - + ik  x wk (6.4) 

where wj, for 1 5 j _< k ,  is the generalization of wl and wz in (6.3). 
Alternatively, the relative address of an array reference can be calculated 

in terms of the numbers of elements n j  along dimension $ of the array and the 
width w = wk of a single element of the array. In two dimensions (i.e., k = 2 
and w = w2), the location for A[il] [i2] is given by 

base + (il x n2 + iq)  x w (6.5) 

In k dimensions, the following formula calculates the same address as (6.4) : 



382 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

More generally, array elements need not be numbered starting at 0. In a 
one-dimensional array, the array elements are numbered low, low + 1, . . . , high 
and base is the relative address of A[low]. Formula (6.2) for the address of A[i] 
is replaced by: 

base + (i - low) x w (6.7) 

The expressions (6.2) and (6.7) can be both be rewritten as i x w + c, where 
the subexpression c = base - low x w can be precalculated at compile time. 
Note that c = base when low is 0. We assume that c is saved in the symbol 
table entry for A, so the relative address of A[i] is obtained by simply adding 
i x w to c. 

Compile-time precalculation can also be applied to address calculations for 
elements of multidimensional arrays; see Exercise 6.4.5. However, there is one 
situation where we cannot use compile-time precalculation: when the array's 
size is dynamic. If we do not know the values of low and high (or their gen- 
eralizations in many dimensions) at compile time, then we cannot compute 
constants such as c. Then, formulas like (6.7) must be evaluated as they are 
written, when the program executes. 

The above address calculations are based on row-major layout for arrays, 
which is used in C and Java. A two-dimensional array is normally stored in 
one of two forms, either row-major (row-by-row) or column-major (column-by- 
column). Figure 6.21 shows the layout of a 2 x 3 array A in (a) row-major form 
and (b) column-major form. Column-major form is used in the Fortran family 
of languages. 

4 1 1  11 

First ?El  row 4 1 1  21 

s eco i  row El 
C 1 First y h m n  

(a) Row Major (b) Column Major 

4 1 1  31 

Figure 6.21: Layouts for a two-dimensional array. 

Third 4 column 

We can generalize row- or column-major form to many dimensions. The 
generalization of row-major form is to store the elements in such a way that, 
as we scan down a block of storage, the rightmost subscripts appear to vary 
fastest, like the numbers on an odometer. Column-major form generalizes to 
the opposite arrangement, with the leftmost subscripts varying fastest. 

4 2 1  31 



6.4. TRANSLATION OF EXPRESSIONS 

6.4.4 Translation of Array References 

The chief problem in generating code for array references is to relate the address- 
calculation formulas in Section 6.4.3 to a grammar for array references. Let 
nonterminal L generate an array name followed by a sequence of index expres- 
sions: 

As in C and Java, assume that the lowest-numbered array element is 0. 
Let us calculate addresses based on widths, using the formula (6.4), rather 
than on numbers of elements, as in (6.6). The translation scheme in Fig. 6.22 
generates three-address code for expressions with array references. It consists of 
the productions and semantic actions from Fig. 6.20, together with productions 
involving nonterminal L . 

I L = E ; { gen(L. addr. base '[' L. addr '1' I=' E.  addr); } 

E i; E l + E 2  {E .addr=newTemp() ;  
gen(E. addr ' = I  El. addr ' + I  E2. addr) ; } 

I L  { E.addr = new Temp 0; 
gen(E.addr ' = I  L.array. base 'P L.addr I ] ' ) ;  } 

L -+ id [ E I { L.array = top.get(id.lexeme); 
L.type = L.array.type. elem; 
L. addr = new Temp 0; 
gen(L.addr ' = I  E.addr I*' L.type.width); } 

/ L1 [ E 1 { L.array = Ll .array; 
L.type = Ll .type.elem; 
t = new Temp () ; 
L. addr = new Temp (); 
gen(t I=' E.addr ' * I  L.type.width); } 
gen(L. addr '= I  Ll.  addr I+' t ) ;  } 

Figure 6.22: Semantic actions for array references 

Nonterminal L has three synthesized attributes: 

I .  L.addr denotes a temporary that is used while computing the offset for 
the array reference by summing the terms ij x wj in (6.4). 



384 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

2. L.array is a pointer to the symbol-table entry for the array name. The 
base address of the array, say, L. array. base is used to determine the actual 
1-value of an array reference after all the index expressions are analyzed. 

3. L. type is the type of the subarray generated by L. For any type t,  we 
assume that its width is given by t.width. We use types as attributes, 
rather than widths, since types are needed anyway for type checking. For 
any array type t ,  suppose that t.elem gives the element type. 

The production S -+ id = E ;  represents an assignment to a nonarray vari- 
able, which is handled as usual. The semantic action for S --+ L = E; generates 
an indexed copy instruction to assign the value denoted by expression E to the 
location denoted by the array reference L. Recall that attribute L. array gives 
the symbol-table entry for the array. The array's base address - the address 
of its 0th element - is given by L. array. base. Attribute L. addr denotes the 
temporary that holds the offset for the array reference generated by L. The 
location for the array reference is therefore L. array. base[L. addr] . The generated 
instruction copies the r-value from address E.addr into the location for L. 

Productions E -+ El +E2 and E --+ id are the same as before. The se- 
mantic action for the new production E -+ L generates code to copy the 
value from the location denoted by L into a new temporary. This location is 
L. array. base[L. addr], as discussed above for the production S -+ L = E ; . Again, 
attribute L. array gives the array name, and L. array. base gives its base address. 
Attribute L.addr denotes the temporary that holds the offset. The code for the 
array reference places the r-value at the location designated by the base and 
offset into a new temporary denoted by E.addr. 

Example 6.12 : Let a denote a 2 x 3 array of integers, and let c, i, and 
j all denote integers. Then, the type of a is array(2, array(3, integer)). Its 
width w is 24, assuming that the width of an integer is 4. The type of a[i] is 
array(3, integer), of width wl = 12. The type of a[il [jl is integer. 

An annotated parse tree for the expression c + a [il [ j I is shown in Fig. 6.23. 
The expression is translated into the sequence of three-address instructions in 
Fig. 6.24. As usual, we have used the name of each identifier to refer to its 
symbol-table entry. 

6.4.5 Exercises for Section 6.4 

Exercise 6.4.1 : Add to the translation of Fig. 6.19 rules for the following 
productions: 

b) E -+ + El (unary plus). 

Exercise 6.4.2 : Repeat Exercise 6.4.1 for the incremental translation of Fig. 
6.20. 



6.4. TRANSLATION OF EXPRESSIONS 

E. addr = t5 

E. addr = t4 

I 
L.array = a 

L.type = integer 
L.addr = ts 

L.array = a 
/ 

L.type = array(3, integer) [ E.addr = j 1 
L.addr = tl 

/ /  \ \  
I 
j 

I: E.addr = i 
a. type 

1 

= array(2, array(3, integer)) I 
i 

Figure 6.23: Annotated parse tree for c + a[i] [j] 

Figure 6.24: Three-address code for expression c + aCi] [j] 

Exercise 6.4.3 : Use the translation of Fig. 6.22 to translate the following 
assignments: 

! Exercise 6.4.4 : Revise the translation of Fig. 6.22 for array references of the 
Fortran style, that is, id[E1, E2, . . . , En] for an n-dimensional array. 

Exercise 6.4.5 : Generalize formula (6.7) to multidimensional arrays, and in- 
dicate what values can be stored in the symbol table and used to compute 
offsets. Consider the following cases: 

a) An array A of two dimensions, in row-major form. The first dimension 
has indexes running from l I  to hl ,  and the second dimension has indexes 
from 12 to ha. The width of a single array element is w. 



386 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Symbolic Type Widths 

The intermediate code should be relatively independent of the target ma- 
chine, so the optimizer does not have to change much if the code generator 
is replaced by one for a different machine. However, as we have described 
the calculation of type widths, an assumption regarding how basic types 
is built into the translation scheme. For instance, Example 6.12 assumes 
that each element of an integer array takes four bytes. Some intermediate 
codes, e.g., P-code for Pascal, leave it to the code generator to fill in the 
size of array elements, so the intermediate code is independent of the size 
of a machine word. We could have done the same in our translation scheme 
if we replaced 4 (as the width of an integer) by a symbolic constant. 

b) The same as (a), but with the array stored in column-major form. 

! c) An array A of k dimensions, stored in row-major form, with elements of 
size w. The j th dimension has indexes running from l j  to hj. 

! d) The same as (c) but with the array stored in column-major form. 

Exercise 6.4.6 : An integer array A[i, j] has index i ranging from 1 to 10 and 
index j ranging from 1 to 20. Integers take 4 bytes each. Suppose array A is 
stored starting at byte 0. Find the location of: 

Exercise 6.4.7: Repeat Exercise 6.4.6 if A is stored in column-major order. 

Exercise 6.4.8 : A real array A[i, j ,  k] has index i ranging from 1 to 4, index 
j ranging from 0 to 4, and index k ranging from 5 to 10. Reals take 8 bytes 
each. Suppose array A is stored starting at byte 0. Find the location of: 

Exercise 6.4.9 : Repeat Exercise 6.4.8 if A is stored in column-major order. 

6.5 Type Checking 

To do type checking a compiler needs to assign a type expression to each com- 
ponent of the source program. The compiler must then determine that these 
type expressions conform to a collection of logical rules that is called the type 
s y s t e m  for the source language. 

Type checking has the potential for catching errors in programs. In principle, 
any check can be done dynamically, if the target code carries the type of an 



6.5. TYPE CHECKING 387 

element along with the value of the element. A sound type system eliminates the 
need for dynamic checking for type errors, because it allows us to determine 
statically that these errors cannot occur when the target program runs. An 
implementation of a language is strongly tyfled if a compiler guarantees that the 
programs it accepts will run without type errors. 

Besides their use for compiling, ideas from type checking have been used 
to improve the security of systems that allow software modules to be imported 
and executed. Java programs compile into machine-independent bytecodes that 
include detailed type information about the operations in the bytecodes. Im- 
ported code is checked before it is allowed to execute, to guard against both 
inadvertent errors and malicious misbehavior. 

6.5.1 Rules for Type Checking 

Type checking can take on two forms: synthesis and inference. Type synthesis 
builds up the type of an expression from the types of its subexpressions. It 
requires names to be declared before they are used. The type of El + E2 is 
defined in terms of the types of El and E2. A typical rule for type synthesis 
has the form 

if f has type s -+ t and x has type s, 
then expression f (x) has type t (6.8) 

Here, f and x denote expressions, and s -+ t denotes a function from s to t. 
This rule for functions with one argument carries over to functions with several 
arguments. The rule (6.8) can be adapted for El + E2 by viewing it as a function 
application add(E1 , E2) .6 

Type inference determines the type of a language construct from the way it 
is used. Looking ahead to the examples in Section 6.5.4, let null be a function 
that tests whether a list is empty. Then, from the usage null(x), we can tell 
that x must be a list. The type of the elements of x is not known; all we know 
is that x must be a list of elements of some type that is presently unknown. 

Variables representing type expressions allow us to talk about unknown 
types. We shall use Greek letters a,  P,  . - - for type variables in type expressions. 

A typical rule for type inference has the form 

if f (x) is an expression, 
then for some a and ,B, f has type a -+ P and x has type a (6.9) 

Type inference is needed for languages like ML, which check types, but do not 
require names to be declared. 

6 ~ e  shall use the term "synthesis" even if some context information is used to determine 
types. With overloaded functions, where the same name is given to more than one function, 
the context of El $ E2 may also need to be considered in some languages. 



388 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

In this section, we consider type checking of expressions. The rules for 
checking statements are similar to those for expressions. For example, we treat 
the conditional statement "if (E) S;" as if it were the application of a function 
if to E and S. Let the special type void denote the absence of a value. Then 
function if expects to be applied to a boolean and a void; the result of the 
application is a void. 

6.5.2 Type Conversions 

Consider expressions like x + i ,  where x is of type float and i is of type inte- 
ger. Since the representation of integers and floating-point numbers is different 
within a computer and different machine instructions are used for operations 
on integers and floats, the compiler may need to convert one of the operands of 
+ to ensure that both operands are of the same type when the addition occurs. 

Suppose that integers are converted to floats when necessary, using a unary 
operator ( f l o a t ) .  For example, the integer 2 is converted to a float in the code 
for the expression 2 * 3 .14: 

tl = ( f l o a t )  2 
t 2  = t l  * 3.14 

We can extend such examples to consider integer and float versions of the 
operators; for example, i n t *  for integer operands and f l o a t *  for floats. 

Type synthesis will be illustrated by extending the scheme in Section 6.4.2 
for translating expressions. We introduce another attribute E.type, whose value 
is either integer or float. The rule associated with E ,,-+ El + E2 builds on the 
pseudocode 

if ( El.type = integer and E2.type = integer ) E.type = integer; 
else if ( El .type = float and E2. type = integer ) - . 

As the number of types subject to conversion increases, the number of cases 
increases rapidly. Therefore with large numbers of types, careful organization 
of the semantic actions becomes important. 

Type conversion rules vary from language to language. The rules for Java 
in Fig. 6.25 distinguish between widening conversions, which are intended to 
preserve information, and narrowing conversions, which can lose information. 
The widening rules are given by the hierarchy in Fig. 6.25(a): any type lower 
in the hierarchy can be widened to a higher type. Thus, a char can be widened 
to an int or to a float, but a char cannot be widened to a short. The narrowing 
rules are illustrated by the graph in Fig. 6.25(b): a type s can be narrowed to a 
type t if there is a path from s to t .  Note that char, short, and byte are pairwise 
convertible to each other. 

Conversion from one type to another is said to be implicit if it is done 
automatically by the compiler. Implicit type conversions, also called coercions, 



6.5. TYPE CHECKING 

double 

I 
float 

I 
long 

I 

iznt \ 
short char 

I 
byte 

double 

4 
float 

1 
long 

1 

char - short - byte 

u 

(a) Widening conversions (b) Narrowing conversions 

Figure 6.25: Conversions between primitive types in Java 

are limited in many languages to widening conversions. Conversion is said to  
be explicit if the programmer must write something to  cause the conversion. 
Explicit conversions are also called casts. 

The semantic action for checking E -+ El + E2 uses two functions: 

1. max(tl, t2) takes two types tl  and tz and returns the maximum (or least 
upper bound) of the two types in the widening hierarchy. It declares an 
error if either t l  or ta is not in the hierarchy; e.g., if either type is an array 
or a pointer type. 

2. widen(a, t, w) generates type conversions if needed to  widen an address 
a of type t into a value of type w. I t  returns a itself if t and w are the 
same type. Otherwise, it generates an instruction t o  do the conversion 
and place the result in a temporary t ,  which is returned as the result. 
Pseudocode for widen, assuming that the only types are .integer and float, 
appears in Fig. 6.26. 

Addr widen(Addr a ,  Type t ,  Type w) 
if ( t = w ) r e t u r n  a; 
else if ( t = integer and w = float ) { 

temp = n e w  Temp(); 
gen(ternp '=' '(float)' a) ;  
r e t u r n  temp; 

I- 
else e r ror ;  

1 

Figure 6.26: Pseudocode for function widen 



390 CHAPTER 6. INTERMEDIATE- CODE GENERATION 

The semantic action for E -+ El + E2 in Fig. 6.27 illustrates how type 
conversions can be added to the scheme in Fig. 6.20 for translating expressions. 
In the semantic action, temporary variable a1 is either El.addr, if the type of 
El does not need to be converted to the type of E, or a new temporary variable 
returned by widen if this conversion is necessary. Similarly, a2 is either E2.addr 
or a new temporary holding the type-converted value of E2.  Neither conversion 
is needed if both types are integer or both are float. In general, however, we 
could find that the only way to add values of two different types is to convert 
them both to a third type. 

E -+ E l + E 2  {E.type = max(El.type,E2.type); 
a1 = widen(El . addr, El .type, E.type); 
a2 = widen(E2. addr, E2 .type, E .  type); 
E.addr = new Temp 0; 
gen(E. addr '=I a1 '+I a2); ) 

Figure 6.27: Introducing type conversions into expression evaluation 

6.5.3 Overloading of Functions and Operators 

An overloaded symbol has different meanings depending on its context. Over- 
loading is resolved when a unique meaning is determined for each occurrence 
of a name. In this section, we restrict attention to overloading that can be 
resolved by looking only at the arguments of a function, as in Java. 

Example 6.13 : The + operator in Java denotes either string concatenation 
or addition, depending on the types of its operands. User-defined functions can 
be overloaded as well, as in 

void err() ( 3 
void err(String s )  ( - . -  3 

Note that we can choose between these two versions of a function err by looking 
at their arguments. 

The following is a type-synthesis rule for overloaded functions: 

i f f  can have type si + ti ,  for 1 5 i 5 n,  where s i  # s j  for i # j 
and x has type s k ,  for some 1 5 k 5 n (6.10) 
then expression f (x) has type tk 

The value-number method of Section 6.1.2 can be applied to type expres- 
sions to resolve overloading based on argument types, efficiently. In a DAG 
representing a type expression, we assign an integer index, called a value num- 
ber, to each node. Using Algorithm 6.3, we construct a signature for a node, 



6.5. TYPE CHECKING 391 

consisting of its label and the value numbers of its children, in order from left to 
right. The signature for a function consists of the function name and the types 
of its arguments. The assumption that we can resolve overloading based on 
the types of arguments is equivalent to saying that we can resolve overloading 
based on signatures. 

It is not always possible to resolve overloading by looking only at the argu- 
ments of a function. In Ada, instead of a single type, a subexpression standing 
alone may have a set of possible types for which the context must provide suffi- 
cient information to narrow the choice down to a single type (see Exercise 6.5.2). 

6.5.4 Type Inference and Polymorphic Functions 

Type inference is useful for a language like ML, which is strongly typed, but 
does not require names to be declared before they are used. Type inference 
ensures that names are used consistently. 

The term "polymorphic" refers to any code fragment that can be executed 
with arguments of different types. In this section, we consider parametric poly- 
morphism, where the polymorphism is characterized by parameters or type 
variables. The running example is the ML program in Fig. 6.28, which defines 
a function length. The type of length can be described as, "for any type a, 
length maps a list of elements of type a to an integer." 

fun length(x) = 
if null(x) then 0 else length(tl(x)) + 1; 

Figure 6.28: ML program for the length of a list 

Example 6.14 : In Fig. 6.28, the keyword fun introduces a function definition; 
functions can be recursive. The program fragment defines function length with 
one parameter x. The body of the function consists of a conditional expression. 
The predefined function null tests whether a list is empty, and the predefined 
function tl (short for "tail") returns the remainder of a list after the first element 
is removed. 

The function length determines the length or number of elements of a list 
x. All elements of a list must have the same type, but length can be applied to 
lists whose elements are of any one type. In the following expression, length is 
applied to two different types of lists (list elements are enclosed within "[" and 

): 

The list of strings has length 3 and the list of integers has length 4, so expres- 
sion (6.11) evaluates to 7. 



392 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Using the symbol V (read as "for any type") and the type constructor list, 
the type of length can be written as 

Va. list(a) + integer (6.12) 

The V symbol is the universal quantifier, and the type variable to which it 
is applied is said to be bound by it. Bound variables can be renamed at will, 
provided all occurrences of the variable are renamed. Thus, the type expression 

VP. list(P) -+ integer 

is equivalent to (6.12). A type expression with a V symbol in it will be referred 
to informally as a "polymorphic type." 

Each time a polymorphic function is applied, its bound type variables can 
denote a different type. During type checking, at each use of a polymorphic 
type we replace the bound variables by fresh variables and remove the universal 
quantifiers. 

The next example informally infers a type for length, implicitly using type 
inference rules like (6.9), which is repeated here: 

if f (x) is an expression, 
t hen  for some a and p, f has type a -+ P a n d  x has type a 

Example 6.15 : The abstract syntax tree in Fig. 6.29 represents the definition 
of length in Fig. 6.28. The root of the tree, labeled fun, represents the function 
definition. The remaining nonleaf nodes can be viewed as function applications. 
The node labeled + represents the application of the operator + to a pair of 
children. Similarly, the node labeled if represents the application of an operator 
if to a triple formed by its children (for type checking, it does not matter that 
either the then  or the else part will be evaluated, but not both). 

fun 

\ 
length 

" /;\ 
apply 0 + 
/ \ / \ 

nul l  x apply 1 
/ \ 

length apply 
/ \ 

Figure 6.29: Abstract syntax tree for the function definition in Fig. 6.28 

F'rom the body of function length, we can infer its type. Consider the children 
of the node labeled if, from left to right. Since null expects to be applied to 
lists, x must be a list. Let us use variable a as a placeholder for the type of the 
list elements; that is, x has type "list of a." 



6.5. TYPE CHECE(ING 393 

Substitutions, Instances, and Unification 

If t is a type expression and S is a substitution (a mapping from type vari- 
ables to  type expressions), then we write S(t)  for the result of consistently 
replacing all occurrences of each type variable a in t by S(a) .  S(t) is 
called an instance of t. For example, list(integer) is an instance of list(a), 
since it is the result of substituting integer for a in list(a) . Note, however, 
that integer -+ float is not an instance of a -+ a, since a substitution must 
replace all occurrences of a by the same type expression. 

Substitution S is a uniifier of type expressions tl and t2 if S( t l )  = 
S(t2). S is the most general unifier of t l  and t2 if for any other unifier of 
t l  and t2, say St, it is the case that for any t ,  S1(t) is an instance of S(t) .  
In words, St imposes more constraints on t than S does. 

If null(x) is true, then length(x) is 0. Thus, the type of length must be 
"function from list of a to integer." This inferred type is consistent with the 
usage of length in the else part, length(tl(x)) + 1. 

Since variables can appear in type expressions, we have to  re-examine the 
notion of equivalence of types. Suppose El of type s -+ st  is applied t o  E2 of 
type t. Instead of simply determining the equality of s and t ,  we must "unify" 
them. Informally, we determine whether s and t can be made structurally 
equivalent by replacing the type variables in s and t by type expressions. 

A substitution is a mapping from type variables to  type expressions. We 
write S(t)  for the result of applying the substitution S to the variables in type 
expression t ;  see the box on "Substitutions, Instances, and Unification." Two 
type expressions tl and t2 unify if there exists some substitution S such that 
S( t l )  = S(t2).  In practice, we are interested in the most general unifier, which 
is a substitution that imposes the fewest constraints on the variables in the 
expressions. See Section 6.5.5 for a unification algorithm. 

Algorithm 6.16 : Type inference for polymorphic functions. 

INPUT: A program consisting of a sequence of function definitions followed by 
an expression to  be evaluated. An expression is made up of function applications 
and names, where names can have predefined polymorphic types. 

OUTPUT: Inferred types for the names in the program. 

METHOD: For simplicity, we shall deal with unary functions only. The type of a 
function f (xl, x2) with two parameters can be represented by a type expression 
sl  x s 2  -+ t ,  where s l  and s2 are the types of xl and x2, respectively, and t is the 
type of the result f (xl,  22). An expression f (a, b) can be checked by matching 
the type of a with s l  and the type of b with s2. 



394 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Check the function definitions and the expression in the input sequence. Use 
the inferred type of a function if it is subsequently used in an expression. 

For a function definition fun  idl (id2) = E, create fresh type variables a 
and ,8. Associate the type a -+ ,8 with the function idl ,  and the type a 
with the parameter id2. Then, infer a type for expression E. Suppose 
a denotes type s and ,8 denotes type t after type inference for E. The 
inferred type of function idl is s -+ t. Bind any type variables that remain 
unconstrained in s -+ t by 'if quantifiers. 

For a function application El (E2), infer types for El and E2. Since El is 
used as a function, its type must have the form s -+ st.  (Technically, the 
type of El must unify with ,8 -+ y, where ,8 and y are new type variables). 
Let t be the inferred type of El. Unify s and t. If unification fails, the 
expression has a type error. Otherwise, the inferred type of El (E2) is st. 

For each occurrence of a polymorphic function, replace the bound vari- 
ables in its type by distinct fresh variables and remove the 'if quantifiers. 
The resulting type expression is the inferred type of this occurrence. 

For a name that is encountered for the first time, introduce a fresh variable 
for its type. 

Example 6.17: In Fig. 6.30, we infer a type for function length. The root of 
the syntax tree in Fig. 6.29 is for a function definition, so we introduce variables 
,8 and y, associate the type ,8 -+ y with function length, and the type ,8 with x; 
see lines 1-2 of Fig. 6.30. 

At the right child of the root, we view if as a polymorphic function that is 
applied to  a triple, consisting of a boolean and two expressions that represent 
the then and else parts. Its type is Va. boolean x a x a -+ a .  

Each application of a polymorphic function can be to  a different type, so we 
make up a fresh variable ai (where i is from "if") and remove the 'd; see line 3 
of Fig. 6.30. The type of the left child of if must unify with boolean, and the 
types of its other two children must unify with ai. 

The predefined function null has type Va. list(a) -+ boolean. We use a fresh 
type variable an (where n is for "null") in place of the bound variable a; see 
line 4. From the application of null to  x, we infer that the type ,8 of x must 
match list(a,); see line 5 .  

At the first child of if, the type boolean for null(x) matches the type expected 
by if. At the second child, the type ai unifies with integer; see line 6. 

Now, consider the subexpression length(tl(x)) + 1. We make up a fresh 
variable at (where t is for "tail") for the bound variable a in the type of tl; see 
line 8. From the application tl(x), we infer list(at) = ,O = list(an); see line 9. 

Since length(tl(x)) is an operand of +, its type y must unify with integer; 
see line 10. It follows that the type of length is list(a,) -+ integer. After the 



6.5. TYPE CHECKING 395 

x : p  
if : boolean x ai x ai -+ ai 

null : list(an) -+ boolean 
null($) : boolean 

0 : integer 
+ : integer x integer -+ integer 
tl : list(at) -+ Eist(at) 

tl(x) : list(at) 
length(tl(x)) : y 

1 : integer 

list(&,) = p 
ai = integer 

UNIFY LINE 

1) 

list(at) = list(an) 

I y = integer 

EXPRESSION : TYPE 

length : ,8 -+ y 

Figure 6.30: Inferring a type for the function length of Fig. 6.28 

12) 
13) 

function definition is checked, the type variable a,  remains in the type of length. 
Since no assumptions were made about a,, any type can be substituted for it 
when the function is used. We therefore make it a bound variable and write 

length(tl(x)) + 1 : integer 
if( - - ) : integer 

Van. list(an) -+ integer 

for the type of length. 

6.5.5 An Algorithm for Unification 

Informally, unification is the problem of determining whether two expressions 
s and t can be made identical by substituting expressions for the variables in 
s and t .  Testing equality of expressions is a special case of unification; if s 
and t have constants but no variables, then s and t unify if and only if they 
are identical. The unification algorithm in this section extends to graphs with 
cycles, so it can be used to test structural equivalence of circular types.7 

We shall implement a graph-theoretic formulation of unification, where types 
are represented by graphs. Type variables are represented by leaves and type 
constructors are represented by interior nodes. Nodes are grouped into equiv- 
alence classes; if two nodes are in the same equivalence class, then the type 
expressions they represent must unify. Thus, all interior nodes in the same 
class must be for the same type constructor, and their corresponding children 
must be equivalent. 

Example 6.18 : Consider the two type expressions 

7 ~ n  some applications, it is an error to unify a variable with an expression containing that 
variable. Algorithm 6.19 permits such substitutions. 



CHAPTER 6. INTERMEDIATE-CODE GENERATION 

The following substitution S is the most general unifier for these expressions 

This substitution maps the two type expressions to the following expression 

The two expressions are represented by the two nodes labeled -+: 1 in Fig. 6.31. 
The integers at the nodes indicate the equivalence classes that the nodes belong 
to after the nodes numbered 1 are unified. 

+: 1 

/ \ 
x : 2  list : 8 

list : 6 
/ \ 

+: / 7 .. ,--list: 6 

/ \ 
a1 : 4 a2 : 5 a3 : 4 a4 : 5 

Figure 6.3 1 : Equivalence classes after unification 

Algorithm 6.19: Unification of a pair of nodes in a type graph. 

INPUT: A graph representing a type and a pair of nodes m and n to be unified. 

OUTPUT: Boolean value true if the expressions represented by the nodes m 
and n unify; false, otherwise. 

METHOD: A node is implemented by a record with fields for a binary operator 
and pointers to the left and right children. The sets of equivalent nodes are 
maintained using the set field. One node in each equivalence class is chosen to be 
the unique representative of the equivalence class by making its set field contain 
a null pointer. The set fields of the remaining nodes in the equivalence class will 
point (possibly indirectly through other nodes in the set) to the representative. 
Initially, each node n is in an equivalence class by itself, with n as its own 
representative node. 

The unification algorithm, shown in Fig. 6.32, uses the following two oper- 
ations on nodes: 



6.5.  TYPE CHECKING 

boolean unzfy(Node m, Node n) { 
s = find(m); t = find(n); 
if ( s = t ) return true; 
else if ( nodes s and t represent the same basic type ) return true; 
else if (s is an op-node with children sl  and sz and 

t is an op-node with children tl and t2) { 
union(s , t) ; 
return unify(sl, t l )  and unif?l(sz, t2); 

1 
else if s or t represents a variable { 

union(s, t) ; 
return true; 

1 
else return false; 

Figure 6.32: Unification algorithm. 

find(n) returns the representative node of the equivalence class currently 
containing node n. 

union(m, n) merges the equivalence classes containing nodes m and n. If 
one of the representatives for the equivalence classes of m and n is a non- 
variable node, union makes that nonvariable node be the representative 
for the merged equivalence class; otherwise, union makes one or the other 
of the original representatives be the new representative. This asymme- 
try in the specification of union is important because a variable cannot 
be used as the representative for an equivalence class for an expression 
containing a type constructor or basic type. Otherwise, two inequivalent 
expressions may be unified through that variable. 

The union operation on sets is implemented by simply changing the set field 
of the representative of one equivalence class so that it points to the represen- 
tative of the other. To find the equivalence class that a node belongs to, we 
follow the set pointers of nodes until the representative (the node with a null 
pointer in the set field) is reached. 

Note that the algorithm in Fig. 6.32 uses s = find(m) and t = find(n) rather 
than m and n ,  respectively. The representative nodes s and t are equal if m 
and n are in the same equivalence class. If s and t represent the same basic 
type, the call unzfy(m, n)  returns true. If s and t are both interior nodes for a 
binary type constructor, we merge their equivalence classes on speculation and 
recursively check that their respective children are equivalent. By merging first, 
we decrease the number of equivalence classes before recursively checking the 
children, so the algorithm terminates. 



398 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

The substitution of an expression for a variable is implemented by adding 
the leaf for the variable to the equivalence class containing the node for that 
expression. Suppose either rn or n  is a leaf for a variable. Suppose also that 
this leaf has been put into an equivalence class with a node representing an 
expression with a type constructor or a basic type. Then find will return 
a representative that reflects that type constructor or basic type, so that a 
variable cannot be unified with two different expressions. 

Example 6.20 : Suppose that the two expressions in Example 6.18 are repre- 
sented by the initial graph in Fig. 6.33, where each node is in its own equiv- 
alence class. When Algorithm 6.19 is applied to compute unify(l,9), it notes 
that nodes 1 and 9 both represent the same operator. It therefore merges 1 and 
9 into the same equivalence class and calls unify(2,lO) and unify(8,14). The 
result of computing unify(l, 9) is the graph previously shown in Fig. 6.31. 

+: 1 +: 9 

/ \ 
x : 2  list : 8 x  : 10 as : 14 

/ \ 

list : 6 
/ \ 

: , , - + - - + i s t :  13 

/ \ 
a1 : 4  a2 : 5 a3 : 7 a4 : 12 

Figure 6.33: Initial graph with each node in its own equivalence class 

If Algorithm 6.19 returns true, we can construct a substitution S that acts 
as the unifier, as follows. For each variable a, find(a) gives the node n  that 
is the representative of the equivalence class of a .  The expression represented 
by n  is S(u).  For example, in Fig. 6.31, we see that the representative for 
a s  is node 4, which represents 01. The representative for a s  is node 8, which 
represents list(az). The resulting substitution S is as in Example 6.18. 

6.5.6 Exercises for Section 6.5 

Exercise 6.5.1 : Assuming that function widen in Fig. 6.26 can handle any 
of the types in the hierarchy of Fig. 6.25(a), translate the expressions below. 
Assume that c and d are characters, s and t are short integers, i  and j are 
integers, and x is a float. 

c) x = ( S  + C) * (t + d). 



6.6. CONTROL FLOW 399 

Exercise 6.5.2 : As in Ada, suppose that each expression must have a unique 
type, but that from a subexpression, by itself, all we can deduce is a set of pos- 
sible types. That is, the application of function El to argument Ez , represented 
by E i El ( E2 ), has the associated rule 

E.type = { t / for some s in E2. type, s i t is in El .type } 

Describe an SDD that determines a unique type for each subexpression by 
using an attribute type to synthesize a set of possible types bottom-up, and, 
once the unique type of the overall expression is determined, proceeds top-down 
to determine attribute unique for the type of each subexpression. 

6.6 Control Flow 

The translation of statements such as if-else-st atements and while-statements 
is tied to the translation of boolean expressions. In programming languages, 
boolean expressions are often used to 

1. Alter the flow of control. Boolean expressions are used as conditional 
expressions in statements that alter the flow of control. The value of such 
boolean expressions is implicit in a position reached in a program. For 
example, in if (E) S ,  the expression E must be true if statement S is 
reached. 

2. Compute logical values. A boolean expression can represent true or false 
as values. Such boolean expressions can be evaluated in analogy to arith- 
metic expressions using three-address instructions with logical operators. 

The intended use of boolean expressions is determined by its syntactic con- 
text. For example, an expression following the keyword if is used to alter the 
flow of control, while an expression on the right side of an assignment is used 
to denote a logical value. Such syntactic contexts can be specified in a number 
of ways: we may use two different nonterminals, use inherited attributes, or 
set a flag during parsing. Alternatively we may build a syntax tree and invoke 
different procedures for the two different uses of boolean expressions. 

This section concentrates on the use of boolean expressions to alter the flow 
of control. For clarity, we introduce a new nonterminal B for this purpose. 
In Section 6.6.6, we consider how a compiler can allow boolean expressions to 
represent logical values. 

6.6.1 Boolean Expressions 

Boolean expressions are composed of the boolean operators (which we denote 
&&, I I ,  and !, using the C convention for the operators AND, OR, and NOT, 
respectively) applied to elements that are boolean variables or relational ex- 
pressions. Relational expressions are of the form El re1 E2, where El and 



400 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

E2 are arithmetic expressions. In this section, we consider boolean expressions 
generated by the following grammar: 

B -+ B I I B  ( B & & B  ( ! B  I ( B )  1 E r e l E  1 t r u e  1 false 

We use the attribute rel.op to indicate which of the six comparison operators 
<, <=, =, ! =, >, or >= is represented by rel. As is customary, we assume 
that I I and && are left-associative, and that I I has lowest precedence, then 
&&, then !. 

Given the expression B1 I I B2, if we determine that B1 is true, then we 
can conclude that the entire expression is true without having to evaluate B2. 
Similarly, given B1&&B2, if B1 is false, then the entire expression is false. 

The semantic definition of the programming language determines whether 
all parts of a boolean expression must be evaluated. If the language definition 
permits (or requires) portions of a boolean expression to go unevaluated, then 
the compiler can optimize the evaluation of boolean expressions by computing 
only enough of an expression to determine its value. Thus, in an expression 
such as B1 I I B2, neither B1 nor B2 is necessarily evaluated fully. If either B1 
or B2 is an expression with side effects (e.g., it contains a function that changes 
a global variable), then an unexpected answer may be obtained. 

6.6.2 Short-Circuit Code 

In short-circuit (or jumping) code, the boolean operators &&, I I ,  and ! trans- 
late into jumps. The operators themselves do not appear in the code; instead, 
the value of a boolean expression is represented by a position in the code se- 
quence. 

Example 6.2 1 : The statement 

might be translated into the code of Fig. 6.34. In this translation, the boolean 
expression is true if control reaches label L2. If the expression is false, control 
goes immediately to L1, skipping L2 and the assignment x = 0. 

Figure 6.34: Jumping code 



6.6. CONTROL FLOW 40 1 

6.6.3 Flow-of-Control Statements 

We now consider the translation of boolean expressions into three-address code 
in the context of statements such as those generated by the following grammar: 

S 4 i f ( B ) S 1  
S 4 if ( B ) S1 else S2 
S + while ( B ) S1 

In these productions, nonterminal B represents a boolean expression and non- 
terminal S represents a statement. 

This grammar generalizes the running example of while expressions that we 
introduced in Example 5.19. As in that example, both B and S have a synthe- 
sized attribute code, which gives the translation into three-address instructions. 
For simplicity, we build up the translations B. code and S. code as strings, us- 
ing syntax-directed definitions. The semantic rules defining the code attributes 
could be implemented instead by building up syntax trees and then emitting 
code during a tree traversal, or by any of the approaches outlined in Section 5.5. 

The translation of if (B) S1 consists of B. code followed by Sl. code, as illus- 
trated in Fig. 6.35(a). Within B.  code are jumps based on the value of B. If B 
is true, control flows to the first instruction of S1 .code, and if B is false, control 
flows to the instruction immediately following Sl .code. 

B. true : 
Sl . code 

B. true : 

. / I  B.false . 
B.false : 

(a) if 

begin : 

\ d B .  true 

(b) if-else 

B. true : 
Sl . code -1 

goto begin 
B. false : (c) while 

Figure 6.35: Code for if-, if-else-, and while-statements 

The labels for the jumps in B.code and S.code are managed using inherited 
attributes. With a boolean expression B, we associate two labels: B.true, the 



402 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

label to which control flows if B is true, and B.false, the label to which control 
flows if B is false. With a statement S ,  we associate an inherited attribute 
S.next denoting a label for the instruction immediately after the code for S. 
In some cases, the instruction immediately following S.code is a jump to some 
label L. A jump to a jump to L from within S.code is avoided using S.next. 

The syntax-directed definition in Fig. 6.36-6.37 produces t hree-address code 
for boolean expressions in the context of if-, if-else-, and while-st atements. 

S -+ if ( B ) S1 else S2 

S + assign 

S + while ( B ) S1 

S. code = assign. code 

B.true = newlabel() 
B.false = Sl.next = S.next 
S. code = B. code ( 1  label(B.true) / ( Sl.  code 

B.true = newlabel() 
B.false = newlabel() 
Sl .next = S2. next = S.next 
S. code = B.code 

I / label(B.true) I I Sl . code 
I  I  gen('gotol S. next) 
I I label(B. false) 1 I S2. code 

begin = newlabel() 
B.true = newlabel() 
B.false = S.next 
&.next = begin 
S.code = label(begin) ( 1  B.code 

I I / label(B.true) 1 I Sl. code 
I I I gen('got o1 begin) 

Figure 6.36: Syntax-directed definition for flow-of-control statements. 

We assume that newlabelo creates a new label each time it is called, and that 
label(L) attaches label L to the next three-address instruction to be generated.8 

'1f implemented literally, the semantic rules will generate lots of labels and may attach 
more than one labe1 to a three-address instruction. The backpatching approach of Section 6.7 



6.6. CONTROL FLOW 403 

A program consists of a statement generated by P -+ S.  The semantic rules 
associated with this production initialize S.next to a new label. P.code consists 
of S.code followed by the new label S.next. Token assign in the production 
S -+ assign is a placeholder for assignment statements. The translation of 
assignments is as discussed in Section 6.4; for this discussion of control flow, 
S. code is simply assign. code. 

In translating S -+ if (B) S1, the semantic rules in Fig. 6.36 create a new 
label B.true and attach it to the first three-address instruction generated for 
the statement S1, as illustrated in Fig. 6.35(a). Thus, jumps to B.true within 
the code for B will go to the code for S1. Further, by setting B.false to S.next, 
we ensure that control will skip the code for S1 if B evaluates to false. 

In translating the if-else-statement S -+ if (B) S1 else S2, the code for the 
boolean expression B has jumps out of it to the first instruction of the code for 
S1 if B is true, and to the first instruction of the code for S2 if B is false, as 
illustrated in Fig. 6.35(b). Further, control flows from both Sl and S2 to the 
three-address instruction immediately following the code for S - its label is 
given by the inherited attribut,e S.next. An explicit g o t  o  S.next appears after 
the code for S1 to skip over the code for S2. No goto is needed after S2, since 
S2. next is the same as S. next. 

The code for S -+ while (B) S1 is formed from B. code and Sl .code as shown 
in Fig. 6.35(c). We use a local variable begin to hold a new label attached to 
the first instruction for this while-statement, which is also the first instruction 
for B. We use a variable rather than an attribute, because begin is local to 
the semantic rules for this production. The inherited label S.next marks the 
instruction that control must flow to if B is false; hence, B.  false is set to be 
S.next. A new label B.  true is attached to the first instruction for S1; the code 
for B generates a jump to this label if B is true. After the code for S1 we place 
the instruction g o t o  begin, which causes a jump back to the beginning of the 
code for the boolean expression. Note that S1 .next is set to this label begin, so 
jumps from within Sl .  code can go directly to begin. 

The code for S + S1 S2 consists of the code for S1 followed by the code for 
S2. The semantic rules manage the labels; the first instruction after the code 
for S1 is the beginning of the code for S2 ; and the instruction after the code for 
Sz is also the instruction after the code for S .  

We discuss the translation of flow-of-control statements further in Section 
6.7. There we shall see an alternative method, called "backpatching," which 
emits code for statements in one pass. 

6.6.4 Control-Flow Translation of Boolean Expressions 

The semantic rules for boolean expressions in Fig. 6.37 complement the semantic 
rules for statements in Fig. 6.36. As in the code layout of Fig. 6.35, a boolean 
expression B is translated into three-address instructions that evaluate B using 

creates labels only when they are needed. Alternatively, unnecessary labels can be eliminated 
during a subsequent optimization phase. 



404 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

conditional and unconditional jumps to one of two labels: B.true if B is true, 
and B.fa1se if B is false. 

Bl .false = new label() 
B2. true = B. true 
B2 .false = B. false 
B.code = Bl .code I  I  label(B1 .false) ( 1  B2 .code 

Bl .true = B.false 
Bl .false = B. true 
B.code = Bl.code 

B --+ true 

B -+ El re1 E2 

B. code = gen('gotol B. true) 

B. code = El. code ( 1  E2. code 
( 1  gen('if1 El. addr rel. op &. addr 'goto' B. true) 
I  I  gen('got o' B.false) 

B --+ false I B.code = gen('gotol B.false) 

Figure 6.37: Generating three-address code for booleans 

The fourth production in Fig. 6.37, B -+ El re1 E2, is translated directly 
into a comparison three-address instruction with jumps to the appropriate 
places. For instance, B of the form a < b translates into: 

The remaining productions for B are translated as follows: 

1. Suppose B is of the form B1 I I Bz. If B1 is true, then we immediately 
know that B itself is true, so Bl.true is the same as B.true. If B1 is false, 
then B2 must be evaluated, so we make Bl.false be the label of the first 
instruction in the code for Bz. The true and false exits of B2 are the same 
as the true and false exits of B,  respectively. 



6.6. CONTROL FLOW 

2. The translation of Bl && B2 is similar. 

3. No code is needed for an expression B of the form ! B1: just interchange 
the true and false exits of B to get the true and false exits of B1. 

4. The constants true and false translate into jumps to B.true and B.false, 
respectively. 

Example 6.22 : Consider again the following statement from Example 6.21: 

Using the syntax-directed definitions in Figs. 6.36 and 6.37 we would obtain 
the code in Fig. 6.38. 

Figure 6.38: Control-flow translation of a simple if-st atement 

The statement (6.13) constitutes a program generated by P -+ S from 
Fig. 6.36. The semantic rules for the production generate a new label L1 for 
the instruction after the code for S. Statement S has the form if (B) S1, where 
S1 is x = O;, so the rules in Fig. 6.36 generate a new label L2 and attach it to 
the first (and only, in this case) instruction in Sl.code, which is x = 0. 

Since I I has lower precedence than &&, the boolean expression in (6.13) 
has the form B1 I I B2, where B1 is z < 100. Following the rules in Fig. 6.37, 
Bl .true is La, the label of the assignment x = 0 ; . Bl .false is a new label LS , 
attached to the first instruction in the code for B2. 

Note that the code generated is not optimal, in that the translation has 
three more instructions (goto's) than the code in Example 6.21. The instruction 
g o t o  L3 is redundant, since L3 is the label of the very next instruction. The 
two goto L1 instructions can be eliminated by using i f  False instead of i f  
instructions, as in Example 6.21. 

6.6.5 Avoiding Redundant Gotos 

In Example 6.22, the comparison x > 200 translates into the code fragment: 



CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Instead, consider the instruction: 

This i f  F a l s e  instruction takes advantage of the natural flow from one instruc- 
tion to the next in sequence, so control simply "falls through" to label L4 if 
x > 200 is false, thereby avoiding a jump. 

In the code layouts for if- and while-statements in Fig. 6.35, the code for 
statement S1 immediately follows the code for the boolean expression B.  By 
using a special label fall (i.e., "don't generate any jump"), we can adapt the 
semantic rules in Fig. 6.36 and 6.37 to allow control to fall through from the 
code for B to the code for S1. The new rules for S -+ if (B) S1 in Fig. 6.36 set 
B.true to fall: 

B.true = fall 
B.fa1se = Sl .next = S.next 
S.code = B.code I ( Sl .code 

Similarly, the rules for if-else- and while-statements also set B. true to fall. 
We now adapt the semantic rules for boolean expressions to allow control to 

fall through whenever possible. The new rules for B -+ re1 & in Fig. 6.39 
generate two instructions, as in Fig. 6.37, if both B.true and B.false are explicit 
labels; that is, neither equals fall. Otherwise, if B.true is an explicit label, then 
B.fa1se must be fall, so they generate an i f  instruction that lets control fall 
through if the condition is false. Conversely, if B.false is an explicit label, then 
they generate an i f  F a l s e  instruction. In the remaining case, both B.  true and 
B,false are fall, so no jump in generated.' 

In the new rules for B -+ B1 I 1 B2 in Fig. 6.40, note that the meaning of 
label fall for B is different from its meaning for B1. Suppose B.true is fall; i.e, 
control falls through B ,  if B evaluates to true. Although B evaluates to true if 
B1 does, Bl.true must ensure that control jumps over the code for B2 to get to 
the next instruction after B. 

On the other hand, if B1 evaluates to false, the truth-value of B is de- 
termined by the value of B2, so the rules in Fig. 6.40 ensure that Bl.false 
corresponds to control falling through from B1 to the code for B2. 

The semantic rules are for B -+ B1 && B2 are similar to those in Fig. 6.40. 
We leave them as an exercise. 

Example 6.23 : With the new rules using the special label fall, the program 
(6.13) from Example 6.21 

' ~ n  C and Java, expressions may contain assignments within them, so code must be gen- 
erated for the subexpressions El and E2, even if both B.true and B.false are fall. If desired, 
dead code can be eliminated during an optimization phase. 



6.6. CONTROL FLOW 

test = El .addr rel. op E 2  .addr 

s = if B. true  # fall and B .  false # fall then 
g e n ( ' i f l  test  ' g o t  o' B. true)  I ( gen('got o' B.false) 

else if B. true  # fall then g e n ( ' i f 1  test 'goto '  B . t rue)  
else if B.false # fall then gen( ' i f  ~ a l s e '  test  'goto '  B.false) 
else ' ' 

B.code = El .code ( 1  E2. code I ( s 

Figure 6.39: Semantic rules for B -+ El re1 E2 

Bl . t rue  = if B. true  # fall then B.true else newlabel() 
Bl .false = fall 
B2. true = B.true 
B2.false = B.false 

B.code = if B. true  # fall then B1 .code 1 1  B 2 .  code 
else Bl . code 1  I B2. code I I label(Bl . true)  

Figure 6.40: Semantic rules for B -+ B1 I I B2 

translates into the code of Fig. 6.41. 

Figure 6.41: If-statement translated using the fall-through technique 

As in Example 6.22, the rules for P -+ S create label L1. The difference from 
Example 6.22 is that the inherited attribute B.true is fall when the semantic 
rules for B -+ B1 I I B2 are applied (B. false is L1). The rules in Fig. 6.40 
create a new label L2 to allow a jump over the code for B2 if B1 evaluates to 
true. Thus, Bl . true is Lz and Bl .false is fall, since B2 must be evaluated if B1 
is false. 

The production B -+ El re1 E2 that generates x < 100 is therefore reached 
with B. true  = L2 and B. false = fall. With these inherited labels, the rules in 
Fig. 6.39 therefore generate a single instruction i f  x < 100 g o t o  L2. 



408 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

6.6.6 Boolean Values and Jumping Code 

The focus in this section has been on the use of boolean expressions t? alter 
the flow of control in statements. A boolean expression may also be evaluated 
for its value, as in assignment statements such as x = true; or x = acb;. 

A clean way of handling both roles of boolean expressions is to first build a 
syntax tree for expressions, using either of the following approaches: 

1. Use two passes. Construct a complete syntax tree for the input, and then 
walk the tree in depth-first order, computing the translations specified by 
the semantic rules. 

2. Use one pass for statements, but two passes for expressions. With this 
approach, we would translate E in while (E) S1 before S1 is examined. 
The translation of E, however, would be done by building its syntax tree 
and then walking the tree. 

The following grammar has a single nonterminal E for expressions: 

S -+ id  = E ;  I i f ( E ) S  1 w h i l e ( E ) S  I S S  
E + EI IE  ( E & & E  ( E r e l E  ( E + E  ( ( E )  ( i d 1  t r u e l f a l s e  

Nonterminal E governs the flow of control in S -+ while (E) Sl. The same 
nonterminal E denotes a value in S + id  = E ; and E -+ E + E .  

We can handle these two roles of expressions by using separate code-genera- 
tion functions. Suppose that  attribute E.n denotes the syntax-tree node for an 
expression E and that nodes are objects. Let method jump generate jumping 
code at an expression node, and let method rualue generate code to compute 
the value of the node into a temporary. 

When E appears in S + while (E) S1, method jump is called at node 
E.n. The implementation of jump is based on the rules for boolean expressions 
in Fig. 6.37. Specifically, jumping code is generated by calling E.n.jump(t, f ) ,  
where t is a new label for the first instruction of Sl.code and f is the label 
S. next. 

When E appears in S -+ id = E ;, method rualue is called at node E n .  If E 
has the form El + E2, the method call E.n. rualue() generates code as discussed 
in Section 6.4. If E has the form El && E2, we first generate jumping code for 
E and then assign true or false to a new temporary t at the true and false exits, 
respectively, from the jumping code. 

For example, the assignment x = a < b && c < d can be implemented by the 
code in Fig. 6.42. 

6.6.7 Exercises for Section 6.6 

Exercise 6.6.1 : Add rules to the syntax-directed definition of Fig. 6.36 for 
the following control-flow constructs: 

a) A repeat-statment repeat  S while B 



6.6. CONTROL FLOW 

i f F a l s e  a  < b go to  L1 
i f F a l s e  c > d goto L1 
t = t r u e  
go t0  L2 

L1 : t = f a l s e  
L2: x = t  

Figure 6.42: Translating a boolean assignment by computing the value of a 
temporary 

! b) A for-loop for (S1 ; B;  S2) S3. 

Exercise 6.6.2: Modern machines try to execute many instructions at the 
same time, including branching instructions. Thus, there is a severe cost if the 
machine speculatively follows one branch, when control actually goes another 
way (all the speculative work is thrown away). It is therefore desirable to min- 
imize the number of branches. Notice that the implementation of a while-loop 
in Fig. 6.35(c) has two branches per interation: one to enter the body from 
the condition B and the other to jump back to the code for B.  As a result, 
it is usually preferable to implement while (B) S as if it were if (B) { re- 
peat S until ! (B)  ). Show what the code layout looks like for this translation, 
and revise the rule for while-loops in Fig. 6.36. 

! Exercise 6.6.3 : Suppose that there were an "exclusive-or" operator (true if 
and only if exactly one of its two arguments is true) in C. Write the rule for 
this operator in the style of Fig. 6.37. 

Exercise 6.6.4 : Translate the following expressions using the goto-avoiding 
translation scheme of Section 6.6.5: 

Exercise 6.6.5 : Give a translation scheme based on the syntax-directed defi- 
nition in Figs. 6.36 and 6.37. 

Exercise 6.6.6 : Adapt the semantic rules in Figs. 6.36 and 6.37 to allow 
control to fall through, using rules like the ones in Figs. 6.39 and 6.40. 

! Exercise 6.6.7 : The semantic rules for statements in Exercise 6.6.6 generate 
unnecessary labels. Modify the rules for statements in Fig. 6.36 to create labels 
as needed, using a special label deferred to mean that a label has not yet been 
created. Your rules must generate code similar to that in Example 6.21. 



410 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

!! Exercise 6.6.8 : Section 6.6.5 talks about using fall-through code to minimize 
the number of jumps in the generated intermediate code. However, it does not 
take advantage of the option to replace a condition by its complement, e.g., re- 
place i f  a < b go to  L1 ; go to  L2 by i f  b >= a go to  La ; go to  L1. Develop 
a SDD that does take advantage of this option when needed. 

6.7 Backpatching 

A key problem when generating code for boolean expressions and flow-of-control 
statements is that of matching a jump instruction with the target of the jump. 
For example, the translation of the boolean expression B in i f  ( B ) S contains 
a jump, for when B is false, to the instruction following the code for S. In a 
one-pass translation, B must be translated before S is examined. What then 
is the target of the goto  that jumps over the code for S? In Section 6.6 we 
addressed this problem by passing labels as inherited attributes to where the 
relevant jump instructions were generated. But a separate pass is then needed 
to bind labels to addresses. 

This section takes a complementary approach, called backpatching, in which 
lists of jumps are passed as synthesized attributes. Specifically, when a jump 
is generated, the target of the jump is temporarily left unspecified. Each such 
jump is put on a list of jumps whose labels are to be filled in when the proper 
label can be determined. All of the jumps on a list have the same target label. 

6.7.1 One-Pass Code Generation Using Backpatching 

Backpatching can be used to generate code for boolean expressions and flow- 
of-control statements in one pass. The translations we generate will be of the 
same form as those in Section 6.6, except for how we manage labels. 

In this section, synthesized attributes truelist and falselist of nonterminal B 
are used to manage labels in jumping code for boolean expressions. In particu- 
lar, B.truelist will be a list of jump or conditional jump instructions into which 
we must insert the label to which control goes if B is true. B.falselist likewise is 
the list of instructions that eventually get the label to which control goes when 
B is false. As code is generated for B ,  jumps to the true and false exits are left 
incomplete, with the label field unfilled. These incomplete jumps are placed 
on lists pointed to by B.truelist and B.falselist, as appropriate. Similarly, a 
statement S has a synthesized attribute S.nextlist, denoting a list of jumps to 
the instruction immediately following the code for S. 

For specificity, we generate instructions into an instruction array, and labels 
will be indices into this array. To manipulate lists of jumps, we use three 
functions: 

1. makelist(i) creates a new list containing only i, an index into the array of 
instructions; makelist returns a pointer to the newly created list. 



2. merge(pl , p2)  concatenates the lists pointed to by pl and p2 , and returns 
a pointer to the concatenated list. 

3. backpatch(p, i )  inserts i as the target label for each of the instructions on 
the list pointed to by p. 

6.7.2 Backpatching for Boolean Expressions 

We now construct a translation scheme suitable for generating code for boolean 
expressions during bottom-up parsing. A marker nonterminal M in the gram- 
mar causes a semantic action to pick up, at appropriate times, the index of the 
next instruction to be generated. The grammar is as follows: 

B -+ B1 I I MB2 1 B1 && M B2 1 ! B1 I ( B 1 )  ( El re1 E2 I true 1 false 
M + €  

The translation scheme is in Fig. 6.43. 

1) B -+ B1 I l M B2 { backpatch(B1.falselist, M.instr); 
B. truelist = merge(B1. truelist, B2. truelist); 
B. falselist = B2. falselist; ) 

2 )  B -+ B1 && M B2 { backpatch(B1 . truelist, M .  instr); 
B. truelist = B2 . truelist; 
B. falselist = merge(Bl. falselist, B2 . falselist); } 

3) B + ! B1 { B. truelist = Bl . falselist; 
B. falselist = Bl . truelist; ) 

4) B - + ( B 1 )  { B,  truelist = Bl . truelist; 
B. falselist = Bl .falselist; ) 

5) B -+ El re1 E2 { B. truelist = makelist(nextinstr) ; 
B. falselist = makelist(nextinstr + I ) ;  
emit('ifl El .addr rel.op E2.addr 'goto - I ) ;  

emit('goto - I ) ;  ) 

6 )  B -+ true { B . truelist = makelist(nextinstr) ; 
emit('goto -I); ) 

7 )  B -+ false { B .falselist = makelist(nextinstr) ; 
emit('goto - I ) ;  ) 

Figure 6.43: Translation scheme for boolean expressions 

Consider semantic action (1) for the production B i B1 I I M B2. If B1 is 
true, then B is also true, so the jumps on B1. truelist become part of B.truelist. 
If B1 is false, however, we must next test B2, so the target for the jumps 



412 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

Bl.falselist must be the beginning of the code generated for B2. This target is 
obtained using the marker nonterminal M .  That nonterminal produces, as a 
synthesized attribute M.instr, the index of the next instruction, just before B2 
code starts being generated. 

To obtain that instruction index, we associate with the production M -+ c 
the semantic action 

{ M. instr = nextinstr; } 

The variable nextinstr holds the index of the next instruction to follow. This 
value will be backpatched onto the Bl .falselist (i.e., each instruction on the 
list Bl. falselist will receive M.instr as its target label) when we have seen the 
remainder of the production B -+ B1 I I M B2. 

Semantic action (2) for B -+ B1 && M BZ is similar to (I). Action (3) for 
B -+ ! B swaps the true and false lists. Action (4) ignores parentheses. 

For simplicity, semantic action ( 5 )  generates two instructions, a conditional 
goto and an unconditional one. Neither has its target filled in. These instruc- 
tions are put on new lists, pointed to by B.truelist and B.falselist, respectively. 

Figure 6.44: Annotated parse tree for x < 100 1 I x > 200 && x ! = y 

Example 6.24 : Consider again the expression 

An annotated parse tree is shown in Fig. 6.44; for readability, attributes tru- 
elist, falselist, and instr are represented by their initial letters. The actions are 
performed during a depth-first traversal of the tree. Since all actions appear at 
the ends of right sides, they can be performed in conjunction with reductions 
during a bottom-up parse. In response to the reduction of x < 100 to B by 
production (5), the two instructions 



are generated. (We arbitrarily start instruction numbers at 100.) The marker 
nonterminal M in the production 

records the value of nextinstr, which at this time is 102. The reduction of 
x > 200 to B by production (5) generates the instructions 

The subexpression x > 200 corresponds to B1 in the production 

The marker nonterminal M records the current value of nextinstr, which is now 
104. Reducing x ! = y into B by production (5) generates 

We now reduce by B -+ B1 && M B2. The corresponding semantic ac- 
tion calls backpatch(B1 .truelist, M.instr) to bind the true exit of Bl to the first 
instruction of B2. Since B1. truelist is (102) and M. instr is 104, this call to 
backpatch fills in 104 in instruction 102. The six instructions generated so far 
are thus as shown in Fig. 6.45(a). 

The semantic action associated with the final reduction by B -+ B1 I I M B2 
calls backpatch({101},102) which leaves the instructions as in Fig. 6.45(b). 

The entire expression is true if and only if the gotos of instructions 100 
or 104 are reached, and is false if and only if the gotos of instructions 103 or 
105 are reached. These instructions will have their targets filled in later in 
the compilation, when it is seen what must be done depending on the truth or 
falsehood of the expression. EI 

6.7.3 Flow-of-Control Statements 

We now use backpatching to translate flow-of-control statements in one pass. 
Consider statements generated by the following grammar: 

Here S denotes a statement, L a statement list, A an assignment-statement, 
and B a boolean expression. Note that there must be other productions, such as 



CHAPTER 6. INTERMEDIATE-CODE GENERATION 

(a) After backpatching 104 into instruction 102. 

(b) After backpatching 102 into instruction 101. 

Figure 6.45: Steps in the backpatch process 

those for assignment-statements. The productions given, however, are sufficient 
to illustrate the techniques used to translate flow-of-control statements. 

The code layout for if-, if-else-, and while-statements is the same as in 
Section 6.6. We make the tacit assumption that the code sequence in the 
instruction array reflects the natural flow of control from one instruction to the 
next. If not, then explicit jumps must be inserted to implement the natural 
sequential flow of control. 

The translation scheme in Fig. 6.46 maintains lists of jumps that are filled in 
when their targets are found. As in Fig. 6.43, boolean expressions generated by 
nonterminal B have two lists of jumps, B. truelist and B.falselist, corresponding 
to the true and false exits from the code for B ,  respectively. Statements gener- 
ated by nonterminals S and L have a list of unfilled jumps, given by attribute 
nextlist, that must eventually be completed by backpatching. S.next1ist is a list 
of all conditional and unconditional jumps to the instruction following the code 
for statement S in execution order. L.nextlist is defined similarly. 

Consider the semantic action (3) in Fig. 6.46. The code layout for production 
S -+ while ( B  ) S1 is as in Fig. 6.35(c). The two occurrences of the marker 
nonterminal M in the production 

S -+ while n/l; ( B Ad2 SI 

record the instruction numbers of the beginning of the code for B and the 
beginning of the code for S1. The corresponding labels in Fig. 6.35(c) are begin 
and B. true, respectively. 



1)  S + if ( B ) M Sl { backpateh(B.truelist, M.instr); 
S. nextlist = merge(B.falselist, Sl . nextlist); ) 

2) S -+ if ( B ) Ml S1 N else M2 S2 
{ backpatch(B. truelist, Ml . instr); 

backpatch(l3 .falselist, M2. instr) ; 
temp = merge(&. nextlist, N.  nextlist) ; 
S.nextlist = merge(temp, S2. nextlist); ) 

3) S -+ while Ml ( B ) M2 S1 
{ backpatch(S1. nextlist, Ml . instr) ; 

bachpatch(B. truelist, M2. instr) ; 
S.nextlist = B.falselist; 
emit('got o' MI.  instr) ; } 

5 )  S - + A ;  { S.nextlist = null; ) 

Figure 6.46: Translation of statements 

Again, the only production for M is M -+ 6. Action (6) in Fig. 6.46 sets 
attribute M.instr to the number of the next instruction. After the body Sl 
of the while-statement is executed, control flows to the beginning. Therefore, 
when we reduce while MI ( B ) M2 Sl to S ,  we backpatch Sl.nextlist to make 
all targets on that list be MI .instr. An explicit jump to the beginning of the 
code for B is appended after the code for S1 because control may also "fall out 
the bottom." B.truelist is backpatched to go to the beginning of Sl by making 
jumps an B.  truelist go to M2 . instr. 

A more compelling argument for using S.next1ist and L.nextlist comes when 
code is generated for the conditional statement if ( B ) S1 else S2. If control 
"falls out the bottom" of Sl ,  as when Sl is an assignment, we must include 
at the end of the code for S1 a jump over the code for S2. We use another 
marker nonterminal to generate this jump after Sl . Let nonterminal N be this 



416 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

marker with production N -+ E .  N has attribute N.nextlist, which will be a list 
consisting of the instruction number of the jump goto - that is generated by 
the semantic action (7) for N.  

Semantic action (2) in Fig. 6.46 deals with if-else-statements with the syntax 

We backpatch the jumps when B is true to the instruction Ml.instr; the latter 
is the beginning of the code for S1. Similarly, we backpatch jumps when B is 
false to go to the beginning of the code for S2. The list S.nextlist includes all 
jumps out of S1 and S2, as well as the jump generated by N. (Variable temp is 
a temporary that is used only for merging lists.) 

Semantic actions (8) and (9) handle sequences of statements. In 

the instruction following the code for Ll in order of execution is the beginning 
of S. Thus the Ll .nextlist list is backpatched to the beginning of the code for 
S, which is given by M. instr. In L -+ S, L. nextlist is the same as S.nextEist. 

Note that no new instructions are generated anywhere in these semantic 
rules, except for rules (3) and (7). All other code is generated by the semantic 
actions associated with assignment-st atement s and expressions. The flow of 
control causes the proper backpatching so that the assignments and boolean 
expression evaluations will connect properly. 

6.7.4 Break-, Continue-, and Goto-Statements 

The most elementary programming language construct for changing the flow of 
control in a program is the goto-statement. In C, a statement like goto L sends 
control to the statement labeled L - there must be precisely one statement with 
label L in this scope. Goto-statements can be implemented by maintaining a 
list of unfilled jumps for each label and then backpatching the target when it 
is known. 

Java does away with goto-statements. However, Java does permit disci- 
plined jumps called break-statements, which send control out of an enclosing 
construct, and continue-statements, which trigger the next iteration of an en- 
closing loop. The following excerpt from a lexical analyzer illustrates simple 
break- and continue-st atement s: 

1) f o r  ( ; ; readch()  ) ( 

2) i f (  peek == ' ' I I peek == ' \ t '  ) cont inue;  
3) e l s e  i f(  peek == )\n) ) l i n e  = l i n e  + 1; 

4) e l s e  break;  
5 )  1 

Control jumps from the break-statement on line 4 to the next statement after 
the enclosing for loop. Control jumps from the continue-statement on line 2 to 
code to evaluate readch() and then to the if-statement on line 2. 



If S is the enclosing construct, then a break-statement is a jump to the first 
instruction after the code for S .  We can generate code for the break by (1) 
keeping track of the enclosing statement S, (2) generating an unfilled jump for 
the break-statement , and (3) putting this unfilled jump on S. nextlist, where 
nextlist is as discussed in Section 6.7.3. 

In a two-pass front end that builds syntax trees, S.next1ist can be imple- 
mented as a field in the node for S .  We can keep track of S by using the 
symbol table to map a special identifier break to  the node for the enclosing 
statement S. This approach will also handle labeled break-statements in Java, 
since the symbol table can be used to map the label to the syntax-tree node for 
the enclosing construct. 

Alternatively, instead of using the symbol table to access the node for S ,  
we can put a pointer to S.nextlist in the symbol table. Now, when a break- 
statement is reached, we generate an unfilled jump, look up nextlist through 
the symbol table, and add the jump to the list, where it will be backpatched as 
discussed in Section 6.7.3. 

Continue-statements can be handled in a manner analogous to the break- 
statement. The main difference between the two is that the target of the gen- 
erated jump is different. 

6.7.5 Exercises for Section 6.7 

Exercise 6.7.1 : Using the translation of Fig. 6.43, translate each of the fol- 
lowing expressions. Show the true and false lists for each subexpression. You 
may assume the address of the first instruction generated is 100. 

Exercise 6.7.2 : In Fig. 6.47(a) is the outline of a program, and Fig. 6.47(b) 
sketches the structure of the generated three-address code, using the backpatch- 
ing translation of Fig. 6.46. Here, il through i8 are the labels of the generated 
instructions that begin each of the "Code" sections. When we implement this 
translation, we maintain, for each boolean expression E, two lists of places in 
the code for E, which we denote by E.true and E.false. The places on list 
E.true are those places where we eventually put the label of the statement to 
which control must flow whenever E is true; E.false similarly lists the places 
where we put the label that control flows to when E is found to be false. Also, 
we maintain for each statement S ,  a list of places where we must put the label 
to which control flows when S is finished. Give the value (one of il through is) 
that eventually replaces each place on each of the following lists: 

(a) E3.false (b) S2 .next (c) E4.false (d) Sl .next (e) Ez. true 



CHAPTER 6. INTERMEDIATE-CODE GENERATION 

while (El) { 
if (E2) 

while (E3) 
s1; 

else { 
if (E4) 

s 2  ; 
s3 

il : Code for El 
i2: Code for E2 
i3: Code for E3 
i4: Code for S1 
is: Code for E4 
i6: Code for S2 
i7: Code for S3 
is: . . .  

Figure 6.47: Control-flow structure of program for Exercise 6.7.2 

Exercise 6.7.3 : When performing the translatiofi of Fig. 6.47 using the scheme 
of Fig. 6.46, we create lists S. next for each statement, starting with the assign- 
ment-statements S1, S2, and S3, and proceeding to progressively larger if- 
statements, if-else-statements, while-statements, and statement blocks. There 
are five constructed statements of this type in Fig. 6.47: 

S4: while (E3) S1. 

$6: The block consisting of S5 and S3. 

S7: The statement if S4 else Ss. 

Sg : The entire program. 

For each of these constructed statements, there is a rule that allows us 
to construct &.next in terms of other Sj.next lists, and the lists Ek.true and 
Ek.false for the expressions in the program. Give the rules for 

(a) S4. next (b) S5. next (c) S6 .next (d) S7 .next (e) S8. next 

6.8 Switch-Statements 

The "switch" or "case" statement is available in a variety of languages. Our 
switch-statement syntax is shown in Fig. 6.48. There is a selector expression 
E, which is to be evaluated, followed by n constant values Vl , V2, . . - , Vn that 
the expression might take, perhaps including a default "value," which always 
matches the expression if no other value does. 



6.8. S WITCH-STATEMENTS 

switch ( E ) ( 
case Vl: S1 
case V2 : S2 

. . .  
case Vn-l: SnV1 
default: S, 

3 

Figure 6.48: Switch-statement syntax 

6.8.1 Translation of Switch-Statements 

The intended translation of a switch is code to: 

1. Evaluate the expression E. 

2. Find the value V, in the list of cases that is the same as the value of the 
expression. Recall that the default value matches the expression if none 
of the values explicitly mentioned in cases does. 

3. Execute the statement S j  associated with the value found. 

Step (2) is an n-way branch, which can be implemented in one of several 
ways. If the number of cases is small, say 10 at  most, then it is reasonable to 
use a sequence of conditional jumps, each of which tests for an individual value 
and transfers to the code for the corresponding statement. 

A compact way to implement this sequence of conditional jumps is to create 
a table of pairs, each pair consisting of a value and a label for the corresponding 
statement's code. The value of the expression itself, paired with the label for the 
default statement is placed at the end of the table at run time. A simple loop 
generated by the compiler compares the value of the expression with each value 
in the table, being assured that if no other match is found, the last (default) 
entry is sure to match. 

If the number of values exceeds 10 or so, it is more efficient to construct a 
hash table for the values, with the labels of the various statements as entries. 
If no entry for the value possessed by the switch expression is found, a jump to 
the default statement is generated. 

There is a common special case that can be implemented even more effi- 
ciently than by an n-way branch. If the values all lie in some small range, 
say rnin to max, and the number of different values is a reasonable fraction of 
max - min, then we can construct an array of max - min "buckets," where 
bucket j - min contains the label of the statement with value j ;  any bucket 
that would otherwise remain unfilled contains the default label. 

To perform the switch, evaluate the expression to obtain the value j ;  check 
that it is in the range min to mas and transfer indirectly to the table entry at  
offset j - min. For example, if the expression is of type character, a table of, 



420 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

say, 128 entries (depending on the character set) may be created and transferred 
through with no range testing. 

6.8.2 Syntax-Directed Translation of Switch-Statements 

The intermediate code in Fig. 6.49 is a convenient translation of the switch- 
statement in Fig. 6.48. The tests all appear at the end so that a simple code 
generator can recognize the multiway branch and generate efficient code for it, 
using the most appropriate implementation suggested at  the beginning of this 
section. 

code to evaluate E into t 
go to  t e s t  

L1: code for S1 
goto next  

: code for Sz 
goto next  
. . . 

L : code for Sn-1 
goto next  

L,: code for Sn 
goto next 

t e s t :  i f  t = Vl goto L1 
i f  t = V2 goto  L2 
. . .  
i f  t = T/,-l goto LnV1 
got0 Ln 

next : 

Figure 6.49: Translation of a switch-statement 

The more straightforward sequence shown in Fig. 6.50 would require the 
compiler to do extensive analysis to find the most efficient implementation. Note 
that it is inconvenient in a one-pass compiler to place the branching statements 
at the beginning, because the compiler could not then emit code for each of the 
statements Si as it saw them. 

To translate into the form of Fig. 6.49, when we see the keyword switch, we 
generate two new labels t e s t  and next ,  and a new temporary t .  Then, as we 
parse the expression E ,  we generate code to evaluate E into t. After processing 
E, we generate the jump goto t e s t .  

Then, as we see each case keyword, we create a new label Li and enter it into 
the symbol table. We place in a queue, used only to store cases, a value-label 
pair consisting of the value V,  of the case constant and Li (or a pointer to the 
symbol-table entry for L i )  We process each statement case V,  : Si by emitting 
the label Li attached to the code for Si7 followed by the jump goto next.  



6.8. S WITCH-STATEMENTS 

code to evaluate E into t 
i f  t != Vl goto L1 
code for S1 
goto next 

L1: i f  t ! =  V2 goto L2 
code for S2 
goto next 

L2: 

L,-2: i f  t != VnW1 goto Ln-i 
code for Sn-1 
goto next 

LnVl : code for S, 
next : 

Figure 6.50: Another translation of a switch statement 

When the end of the switch is found, we are ready to generate the code for 
the n-way branch. Reading the queue of value-label pairs, we can generate a 
sequence of three-address statements of the form shown in Fig. 6.51. There, t 
is the temporary holding the value of the selector expression E, and L, is the 
label for the default statement. 

case t Vl L1 
case t V2 L2 

case t Vn-l Ln-l 
case t t L, 
l a b e l  next 

Figure 6.51: Case three-address-code instructions used to translate a switch- 
statement 

The case t Vi Li instruction is a synonym for i f  t = Vi goto Li  in Fig. 6.49, 
but the case instruction is easier for the final code generator to detect as a 
candidate for special treatment. At the code-generation phase, these sequences 
of case statements can be translated into an n-way branch of the most efficient 
type, depending on how many there are and whether the values fall into a small 
range. 

6.8.3 Exercises for Section 6.8 

! Exercise 6.8.1 : In order to translate a switch-statement into a sequence of 
case-statements as in Fig. 6.51, the translator needs to create the list of value- 



422 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

label pairs, as it processes the source code for the switch. We can do so, using 
an additional translation that accumulates just the pairs. Sketch a syntax- 
direction definition that produces the list of pairs, while also emitting code for 
the statements Si that are the actions for each case. 

6.9 Intermediate Code for Procedures 

Procedures and their implementation will be discussed at length in Chapter 7, 
along with the run-time management of storage for names. We use the term 
function in this section for a procedure that returns a value. We briefly discuss 
function declarations and three-address code for function calls. In three-address 
code, a function call is unraveled into the evaluation of parameters in prepa- 
ration for a call, followed by the call itself. For simplicity, we assume that 
parameters are passed by value; parameter-passing methods are discussed in 
Section 1.6.6. 

Example 6.25 : Suppose that a is an array of integers, and that f is a function 
from integers to integers. Then, the assignment 

might translate into the following three-address code: 

1) t l = i * 4  
2) t 2  = a tl 1 
3) param t 2  

4) t 3  = call f, 1 
5) n = t 3  

The first two lines compute the value of the expression a[ i l  into temporary 
t2, as discussed in Section 6.4. Line 3 makes ta an actual parameter for the 
call on line 4 of f with one parameter. Line 5 assigns the value returned by the 
function call to t3. Line 6 assigns the returned value to n. 

The productions in Fig. 6.52 allow function definitions and function calls. 
(The syntax generates unwanted commas after the last parameter, but is good 
enough for illustrating translation.) Nonterminals D and T generate declara- 
tions and types, respectively, as in Section 6.3. A function definition gener- 
ated by D consists of keyword define, a return type, the function name, for- 
mal parameters in parentheses and a function body consisting of a statement. 
Nonterminal F generates zero or more formal parameters, where a formal pa- 
rameter consists of a type followed by an identifier. Nonterminals S and E 
generate statements and expressions, respectively. The production for S adds a 
statement that returns the value of an expression. The production for E adds 
function calls, with actual parameters generated by A. An actual parameter is 
an expression. 



6.9. INTERMEDIATE CODE FOR PROCEDLTRES 

D + define T id ( F ) ( S ) 

F + c 1 T i d , F  

S + return E ; 

E + i d ( A )  

A + € 1  E , A  

Figure 6.52: Adding functions to the source language 

Function definitions and function calls can be translated using concepts that 
have already been introduced in this chapter. 

Function types. The type of a function must encode the return type and 
the types of the formal parameters. Let void be a special type that repre- 
sents no parameter or no return type. The type of a function pop() that 
returns an integer is therefore "function from void to integer." Function 
types can be represented by using a constructor fun applied to the return 
type and an ordered list of types for the parameters. 

Symbol tables. Let s be the top symbol table when the function definition 
is reached. The function name is entered into s for use in the rest of the 
program. The formal parameters of a function can be handled in analogy 
with field names in a record (see Fig. 6.18. In the production for D ,  after 
seeing define and the function name, we push s and set up a new symbol 
table 

Env.push(top); top = new Env(top); 

Call the new symbol table, t .  Note that top is passed as a parameter in 
new Env(top),  so the new symbol table t can be linked to the previous 
one, s. The new table t is used to translate the function body. We revert 
to the previous symbol table s after the function body is translated. 

Type checking. Within expressions, a function is treated like any other 
operator. The discussion of type checking in Section 6.5.2 therefore carries 
over, including the rules for coercions. For example, iff is a function with 
a parameter of type real, then the integer 2 is coerced to a real in the call 

f (2). 

Function calls. When generating three-address instructions for a function 
call id(E, 6,.  . . , E), it is sufficient to generate the three-address instruc- 
tions for evaluating or reducing the parameters E to addresses, followed 
by a param instruction for each parameter. If we do not want to mix 
the parameter-evaluating instructions with the param instructions, the 
attribute E . a d d r  for each expression E can be saved in a data structure 



CHAPTER 6. INTERMEDIATE-CODE GENERATION 

such as a queue. Once all the expressions are translated, the param in- 
structions can be generated as the queue is emptied. 

The procedure is such an important and frequently used programming con- 
struct that it is imperative for a compiler to good code for procedure calls and 
returns. The run-time routines that handle procedure parameter passing, calls, 
and returns are part of the run-time support package. Mechanisms for run-time 
support are discussed in Chapter 7. 

6.10 Summary of Chapter 6 

The techniques in this chapter can be combined to build a simple compiler front 
end, like the one in Appendix A. The front end can be built incrementally: 

+ Pick an  intermediate representation: An intermediate representation is 
typically some combination of a graphical notation and three-address 
code. As in syntax trees, a node in a graphical notation represents a 
construct; the children of a node represent its subconstructs. Three ad- 
dress code takes its name from instructions of the form x = y op z,  with 
at most one operator per instruction. There are additional instructions 
for control flow. 

+ Translate expressions: Expressions with built-up operations can be un- 
wound into a sequence of individual operations by attaching actions to 
each production of the form E -+ El op E2. The action either creates 
a node for E with the nodes for El and E2 as children, or it generates 
a three-address instruction that applies op to the addresses for El and 
E2 and puts the result into a new temporary name, which becomes the 
address for E. 

+ Check types: The type of an expression El op Ez is determined by the 
operator op and the types of El and Ez. A coercion is an implicit type 
conversion, such as from integer to float. Intermediate code contains ex- 
plicit type conversions to ensure an exact match between operand types 
and the types expected by an operator. 

+ Use a symbol table to  zmplement declarations: A declaration specifies the 
type of a name. The width of a type is the amount of storage needed for 
a name with that type. Using widths, the relative address of a name at 
run time can be computed as an offset from the start of a data area. The 
type and relative address of a name are put into the symbol table due to 
a declaration, so the translator can subsequently get them when the name 
appears in an expression. 

+ Flatten arrays: For quick access, array elements are stored in consecutive 
locations. Arrays of arrays are flattened so they can be treated as a one- 



6.11. REFERENCES FOR CHAPTER 6 425 

dimensional array of individual elements. The type of an array is used to 
calculate the address of an array element relative to the base of the array. 

4 Generate jumping code for boolean expressions: In short-circuit or jump- 
ing code, the value of a boolean expression is implicit in the position 
reached in the code. Jumping code is useful because a boolean expression 
B is typically used for control flow, as in if (B) S .  Boolean values can be 
computed by jumping to t = t r u e  or t = false, as appropriate, where t is 
a temporary name. Using labels for jumps, a boolean expression can be 
translated by inheriting labels corresponding to its true and false exits. 
The constants true and false translate into a jump to the true and false 
exits, respectively. 

4 Implement statements using control Bow: Statements can be translated 
by inheriting a label next, where next marks the first instruction after the 
code for this statement. The conditional S -+ if (B) S1 can be translated 
by attaching a new label marking the beginning of the code for S1 and 
passing the new label and S.next for the true and false exits, respectively, 
of B. 

4 Alternatively, use backpatching: Backpatching is a technique for generat- 
ing code for boolean expressions and statements in one pass. The idea 
is to maintain lists of incomplete jumps, where all the jump instructions 
on a list have the same target. When the target becomes known, all the 
instructions on its list are completed by filling in the target. 

4 Implement records: Field names in a record or class can be treated as a 
sequence of declarations. A record type encodes the types and relative 
addresses of the fields. A symbol table object can be used for this purpose. 

6.11 References for Chapter 6 

Most of the techniques in this chapter stem from the flurry of design and im- 
plementation activity around Algol 60. Syntax-directed translation into inter- 
mediate code was well established by the time Pascal [Ill  and C [6, 91 were 
created. 

UNCOL (for Universal Compiler Oriented Language) is a mythical universal 
intermediate language, sought since the mid 1950's. Given an UNCOL, com- 
pilers could be constructed by hooking a front end for a given source language 
with a back end for a given target language [lo]. The bootstrapping techniques 
given in the report [lo] are routinely used to retarget compilers. 

The UNCOL ideal of mixing and matching front ends with back ends has 
been approached in a number of ways. A retargetable compiler consists of one 
front end that can be put together with several back ends to implement a given 
language on several machines. Neliac was an early example of a language with 
a retargetable compiler [5] written in its own language. Another approach is to 



426 CHAPTER 6. INTERMEDIATE-CODE GENERATION 

retrofit a front end for a new language onto an existing compiler. Feldman [2] 
describes the addition of a Fortran 77 front end to the C compilers [6] and 
[9]. GCC, the GNU Compiler Collection [3], supports front ends for C, C++, 
Objective-C, Fortran, Java, and Ada. 

Value numbers and their implementation by hashing are from Ershov [I]. 
The use of type information to improve the security of Java bytecodes is 

described by Gosling [4]. 
Type inference by using unification to solve sets of equations has been re- 

discovered several times; its application to ML is described by Milner [7]. See 
Pierce [8] for a comprehensive treatment of types. 

1. Ershov, A. P., "On programming of arithmetic operations," Comm. ACM 
1:8 (1958), pp. 3-6. See also Comm. ACM 1:9 (1958), p. 16. 

2. Feldman, S. I., "Implementation of a portable Fortran 77 compiler using 
modern tools," ACM SIGPLAN Notices 14:8 (1979), pp. 98-106 

3. GCC home page h t t p :  //gcc .gnu. org/, Free Software Foundation. 

4. Gosling, J., "Java intermediate bytecodes," Proc. A CM SIGPLA N Work- 
shop on Intermediate Representations (1995), pp. 11 1-1 18. 

5 .  Huskey, H. D., M. H. Halstead, and R. McArthur, "Neliac - a dialect of 
Algol," Comm. A CM 3:8 (1960), pp. 463-468. 

6. Johnson, S. C., "A tour through the portable C compiler," Bell Telephone 
Laboratories, Inc., Murray Hill, N. J., 1979. 

7. Milner, R., "A theory of type polymorphism in programming," J. Com- 
puter and System Sciences 17:3 (1978), pp. 348-375. 

8. Pierce, B. C., Types and Programming Languages, MIT Press, Cambridge, 
Mass., 2002. 

9. Ritchie, D. M., "A tour through the UNIX C compiler," Bell Telephone 
Laboratories, Inc., Murray Hill, N. J., 1979. 

10. Strong, J., J .  Wegstein, A. Tritter, J .  Olsztyn, 0 .  Mock, and T. Steel, 
"The problem of programming communication with changing machines: 
a proposed solution," Comm. ACM 1:8 (1958), pp. 12-18. Part 2: 1:9 
(1958), pp. 9-15. Report of the Share Ad-Hoc committee on Universal 
Languages. 

11. Wirth, N. "The design of a Pascal compiler," Softurare-Practice and 
Experience 1:4 (1971), pp. 309-333. 



Chapter 7 

Run-Time Environments 

A compiler must accurately implement the abstractions embodied in the source- 
language definition. These abstractions typically include the concepts we dis- 
cussed in Section 1.6 such as names, scopes, bindings, data types, operators, 
procedures, parameters, and flow-of-control constructs. The compiler must co- 
operate with the operating system and other systems software to support these 
abstractions on the target machine. 

To do so, the compiler creates and manages a run-time environment in which 
it assumes its target programs are being executed. This environment deals with 
a variety of issues such as the layout and allocation of storage locations for the 
objects named in the source program, the mechanisms used by the target pro- 
gram to access variables, the linkages between procedures, the mechanisms for 
passing parameters, and the interfaces to the operating system, input/output 
devices, and other programs. 

The two themes in this chapter are the allocation of storage locations and 
access to variables and data. We shall discuss memory management in some 
detail, including stack allocation, heap management, and garbage collection. In 
the next chapter, we present techniques for generating target code for many 
common language constructs. 

Storage Organization 

From the perspective of the compiler writer, the executing target program runs 
in its own logical address space in which each program value has a location. The 
management and organization of this logical address space is shared between 
the compiler, operating system, and target machine. The operating system 
maps the logical addresses into physical addresses, which are usually spread 
throughout memory. 

The run-time representation of an object program in the logical address 
space consists of data and program areas as shown in Fig. 7.1. A compiler for a 



CHAPTER 7. RUN-TIME ENVIRONMENTS 

language like C++ on an operating system like Linux might subdivide memory 
in this way. 

/ Static 1 

I Free Memory / 

Stack 

Figure 7.1: Typical subdivision of run-time memory into code and data areas 

Throughout this book, we assume the run-time storage comes in blocks of 
contiguous bytes, where a byte is the smallest unit of addressable memory. A 
byte is eight bits and four bytes form a machine word. Multibyte objects are 
stored in consecutive bytes and given the address of the first byte. 

As discussed in Chapter 6, the amount of storage needed for a name is de- 
termined from its type. An elementary data type, such as a character, integer, 
or float, can be stored in an integral number of bytes. Storage for an aggre- 
gate type, such as an array or structure, must be large enough to hold all its 
components. 

The storage layout for data objects is strongly influenced by the addressing 
constraints of the target machine. On many machines, instructions to add 
integers may expect integers to be aligned, that is, placed at an address divisible 
by 4. Although an array of ten characters needs only enough bytes to hold ten 
characters, a compiler may allocate 12 bytes to get the proper alignment, leaving 
2 bytes unused. Space left unused due to alignment considerations is referred 
to as padding. When space is at a premium, a compiler may pack data so that 
no padding is left; additional instructions may then need to be executed at run 
time to position packed data so that it can be operated on as if it were properly 
aligned. 

The size of the generated target code is fixed at compile time, so the com- 
piler can place the executable target code in a statically determined area Code, 
usually in the low end of memory. Similarly, the size of some program data 
objects, such as global constants, and data generated by the compiler, such as 
information to support garbage collection, may be known at compile time, and 
these data objects can be placed in another statically determined area called 
Static. One reason for statically allocating as many data objects as possible is 



7.1. STORAGE ORGANIZATION 

that the addresses of these objects can be compiled into the target code. In 
early versions of Fortran, all data objects could be allocated statically. 

To maximize the utilization of space at  run time, the other two areas, Stack 
and Heap, are at the opposite ends of the remainder of the address space. These 
areas are dynamic; their size can change as the program executes. These areas 
grow towards each other as needed. The stack is used to store data structures 
called activation records that get generated during procedure calls. 

In practice, the stack grows towards lower addresses, the heap towards 
higher. However, throughout this chapter and the next we shall assume that 
the stack grows towards higher addresses so that we can use positive offsets for 
notational convenience in all our examples. 

As we shall see in the next section, an activation record is used to store 
information about the status of the machine, such as the value of the program 
counter and machine registers, when a procedure call occurs. When control 
returns from the call, the activation of the calling procedure can be restarted 
after restoring the values of relevant registers and setting the program counter 
to the point immediately after the call. Data objects whose lifetimes are con- 
tained in that of an activation can be allocated on the stack along with other 
information associated with the activation. 

Many programming languages allow the programmer to allocate and deal- 
locate data under program control. For example, C has the functions malloc 
and free that can be used to obtain and give back arbitrary chunks of stor- 
age. The heap is used to manage this kind of long-lived data. Section 7.4 will 
discuss various memory-management algorithms that can be used to maintain 
the heap. 

7.1.1 Static Versus Dynamic Storage Allocation 

The layout and allocation of data to memory locations in the run-time envi- 
ronment are key issues in storage management. These issues are tricky because 
the same name in a program text can refer to multiple locations at run time. 
The two adjectives static and dynamic distinguish between compile time and 
run time, respectively. We say that a storage-allocation decision is static, if it 
can be made by the compiler looking only at the text of the program, not at 
what the program does when it executes. Conversely, a decision is dynamic if 
it can be decided only while the program is running. Many compilers use some 
combination of the following two strategies for dynamic storage allocation: 

1. Stack storage. Names local to a procedure are allocated space on a stack. 
We discuss the "run-time stack" starting in Section 7.2. The stack sup- 
ports the normal call/return policy for procedures. 

2. Heap storage. Data that may outlive the call to the procedure that cre- 
ated it is usually allocated on a "heap" of reusable storage. We discuss 
heap management starting in Section 7.4. The heap is an area of virtual 



CHAPTER 7. RUN-TIME ENVIRONMENTS 

memory that allows objects or other data elements to obtain storage when 
they are created and to return that storage when they are invalidated. 

To support heap management, "garbage collection" enables the run-time 
system to detect useless data elements and reuse their storage, even if the pro- 
grammer does not return their space explicitly. Automatic garbage collection 
is an essential feature of many modern languages, despite it being a difficult 
operation to do efficiently; it may not even be possible for some languages. 

7.2 Stack Allocation of Space 
Almost all compilers for languages that use procedures, functions, or methods 
as units of user-defined actions manage at least part of their run-time memory 
as a stack. Each time a procedure1 is called, space for its local variables is 
pushed onto a stack, and when the procedure terminates, that space is popped 
off the stack. As we shall see, this arrangement not only allows space to be 
shared by procedure calls whose durations do not overlap in time, but it allows 
us to compile code for a procedure in such a way that the relative addresses of its 
nonlocal variables are always the same, regardless of the sequence of procedure 
calls. 

7.2.1 Activation Trees 

Stack allocation would not be feasible if procedure calls, or activations of pro- 
cedures, did not nest in time. The following example illustrates nesting of 
procedure calls. 

Example 7.1 : Figure 7.2 contains a sketch of a program that reads nine inte- 
gers into an array a and sorts them using the recursive quicksort algorithm. 

The main function has three tasks. It calls readArray, sets the sentinels, and 
then calls quicksort on the entire data array. Figure 7.3 suggests a sequence of 
calls that might result from an execution of the program. In this execution, the 
call to partition(l,9) returns 4, so a[l] through a[3] hold elements less than its 
chosen separator value v, while the larger elements are in a[5] through a[9]. 

In this example, as is true in general, procedure activations are nested in 
time. If an activation of procedure p calls procedure q,  then that activation of 
q must end before the activation of p can end. There are three common cases: 

1. The activation of q terminates normally. Then in essentially any language, 
control resumes just after the point of p at which the call to q was made. 

2. The activation of q, or some procedure q called, either directly or indi- 
rectly, aborts; i.e., it becomes impossible for execution to continue. In 
that case, p ends simultaneously with q. 

' ~ e c a l l  we use "procedure7' as a generic term for function, procedure, method, or subrou- 
tine. 



7.2. STACK ALLOCATION OF SPACE 

int a [ill ; 
void readArray() { /*  Reads 9 integers into a[l],  ..., a[9]. */ 

int i; 
. . . 

3 
int partition(int m y  int n) { 

/* Picks a separator value u, and partitions a[m .. n] so that 
a[m . .p - 11 are less than u, a[p] = u, and a[p + 1 .. n] are 
equal to or greater than u. Returns p. */ 

. . .  

void quicksort(int m, int n) ( 
int i; 
if (n > m) ( 

i = partition(m, n); 
quicksort (my i-I) ; 
quicksort (i+l, n) ; 

> 
1 
main() ( 

readArray () ; 
a[O] = -9999; 
a[lO] = 9999; 
quicksort ( I ,  9) ; 

3 

Figure 7.2: Sketch of a quicksort program 

3. The activation of q terminates because of an exception that q cannot han- 
dle. Procedure p may handle the exception, in which case the activation 
of q has terminated while the activation of p continues, although not nec- 
essarily from the point at which the call to q was made. If p cannot handle 
the exception, then this activation of p terminates at the same time as the 
activation of q, and presumably the exception will be handled by some 
other open activation of a procedure. 

We therefore can represent the activations of procedures during the running 
of an entire program by a tree, called an activation tree. Each node corresponds 
to one activation, and the root is the activation of the "main" procedure that 
initiates execution of the program. At a node for an activation of procedure p, 
the children correspond to activations of the procedures called by this activation 
of p. We show these activations in the order that they are called, from left to 
right. Notice that one child must finish before the activation to its right can 
begin. 



432 CHAPTER 7. RUN- TIME ENVIRONMENTS 

A Version of Quicksort 

The sketch of a quicksort program in Fig. 7.2 uses two auxiliary functions 
readArray and partition. The function readArray is used only to load the 
data into the array a. The first and last elements of a are not used for 
data, but rather for "sentinels" set in the main function. We assume a[O] 
is set to a value lower than any possible data value, and a[10] is set to a 
value higher than any data value. 

The function partition divides a portion of the array, delimited by the 
arguments rn and n, so the low elements of a[m] through a[n] are at  the 
beginning, and the high elements are at the end, although neither group is 
necessarily in sorted order. We shall not go into the way partition works, 
except that it may rely on the existence of the sentinels. One possible 
algorithm for partition is suggested by the more detailed code in Fig. 9.1. 

Recursive procedure quicksort first decides if it needs to sort more 
than one element of the array. Note that one element is always "sorted," 
so quicksort has nothing to do in that case. If there are elements to sort, 
quicksort first calls partition, which returns an index i to separate the low 
and high elements. These two groups of elements are then sorted by two 
recursive calls to quicksort. 

Example 7.2 : One possible activation tree that completes the sequence of 
calls and returns suggested in Fig. 7.3 is shown in Fig. 7.4. Functions are 
represented by the first letters of their names. Remember that this tree is only 
one possibility, since the arguments of subsequent calls, and also the number of 
calls along any branch is influenced by the values returned by partition. 

The use of a run-time stack is enabled by several useful relationships between 
the activation tree and the behavior of the program: 

1. The sequence of procedure calls corresponds to a preorder traversal of the 
activation tree. 

2. The sequence of returns corresponds to a postorder traversal of the acti- 
vation tree. 

3. Suppose that control lies within a particular activation of some procedure, 
corresponding to a node N of the activation tree. Then the activations 
that are currently open (live) are those that correspond to node N and its 
ancestors. The order in which these activations were called is the order 
in which they appear along the path to N ,  starting at  the root, and they 
will return in the reverse of that order. 



7.2. STACK ALLOCATION OF SPACE 

e n t e r  main ( ) 
e n t e r  readArray () 
l eave  readArray () 
e n t e r  qu icksor t  ( I ,  9) 

e n t e r  p a r t i t i o n ( 1 , g )  
l eave  p a r t i t i o n ( 1 , g )  
e n t e r  q u i c k s o r t ( l , 3 )  

. . .  
l eave  qu icksor t  ( l , 3 )  
e n t e r  qu icksor t (5 ,g )  

. . . 
l eave  qu icksor t (5 ,g )  

l eave  qu icksor t  ( l , 9 )  
l eave  main() 

Figure 7.3: Possible activations for the program of Fig. 7.2 

Figure 7.4: Activation tree representing calls during an execution of quicksort 

7.2.2 Activation Records 

Procedure calls and returns are usually managed by a run-time stack called the 
control stack. Each live activation has an activation record (sometimes called a 
frame) on the control stack, with the root of the activation tree at the bottom, 
and the entire sequence of activation records on the stack corresponding to the 
path in the activation tree to the activation where control currently resides. 
The latter activation has its record at the top of the stack. 

Example 7.3 : If control is currently in the activation q(2,3) of the tree of 
Fig. 7.4, then the activation record for q(2,3) is at the top of the control stack. 
Just below is the activation record for q(1,3), the parent of q(2,3) in the tree. 
Below that is the activation record q(l ,9) ,  and at the bottom is the activation 
record for m, the main function and root of the activation tree. 



434 CHAPTER 7. RUN- TIME ENVIRONMENTS 

We shall conventionally draw control stacks with the bottom of the stack 
higher than the top, so the elements in an activation record that appear lowest 
on the page are actually closest to the top of the stack. 

The contents of activation records vary with the language being imple- 
mented. Here is a list of the kinds of data that might appear in an activation 
record (see Fig. 7.5 for a summary and possible order for these elements): 

I Actual parameters 
- - - - - - - - - - - - - - - -  1 

Returned values 
- - - - - - - - - - - - - - - - - -  

Control link 

Access link 
- - - - - - - - - - - - - - - - - -  

Saved machine status 
- - - - - - - - - - - - - - - - - -  

Local data 
- - - - - - - - - - - - - - - - - -  

Temporaries 

Figure 7.5: A general activation record 

1. Temporary values, such as those arising from the evaluation of expres- 
sions, in cases where those temporaries cannot be held in registers. 

2. Local data belonging to the procedure whose activation record this is. 

3. A saved machine status, with information about the state of the machine 
just before the call to the procedure. This information typically includes 
the return address (value of the program counter, to which the called 
procedure must return) and the contents of registers that were used by 
the calling procedure and that must be restored when the return occurs. 

4. An "access link" may be needed to locate data needed by the called proce- 
dure but found elsewhere, e.g., in another activation record. Access links 
are discussed in Section 7.3.5. 

5 .  A control link, pointing to the activation record of the caller. 

6. Space for the return value of the called function, if any. Again, not all 
called procedures return a value, and if one does, we may prefer to place 
that value in a register for efficiency. 

7. The actual parameters used by the calling procedure. Commonly, these 
values are not placed in the activation record but rather in registers, when 
possible, for greater efficiency. However, we show a space for them to be 
completely general. 



7.2. STACK ALLOCATION OF SPACE 435 

Example 7.4: Figure 7.6 shows snapshots of the run-time stack as control 
flows through the activation tree of Fig. 7.4. Dashed lines in the partial trees 
go to  activations that have ended. Since array a is global, space is allocated for 
it before execution begins with an activation of procedure main, as shown in 
Fig. 7.6(a). 

main main main 

(a) Frame for main 

integer a 11 F T  
main I main I 

(b) r is activated 

integer a 11 m 
main I main I 

I integer i I 
(c) r has been popped and q(1,9) pushed (d) Control returns t o  q( l ,3)  

Figure 7.6: Downward-growing stack of activation records 

When control reaches the first call in the body of main, procedure r is 
activated, and its activation record is pushed onto the stack (Fig. 7.6(b)). The 
activation record for r contains space for local variable i. Recall that the top of 
stack is at  the bottom of diagrams. When control returns from this activation, 
its record is popped, leaving just the record for main on the stack. 

Control then reaches the call to  q (quicksort) with actual parameters 1 and 
9, and an activation record for this call is placed on the top of the stack, as in 
Fig. 7.6(c). The activation record for q contains space for the parameters m 
and n and the local variable i, following the general layout in Fig. 7.5. Notice 
that space once used by the call of r is reused on the stack. No trace of data 
local to r will be available to q( l ,9) .  When q(l,9) returns, the stack again has 
only the activation record for main. 

Several activations occur between the last two snapshots in Fig. 7.6. A 
recursive call to  q(1,3) was made. Activations p( l ,3)  and q(1,O) have begun 
and ended during the lifetime of q( l ,3) ,  leaving the activation record for q(l ,3) 



436 CHAPTER 7. RUN-TIME ENVIRONMENTS 

on top (Fig. 7.6(d)). Notice that when a procedure is recursive, it is normal to 
have several of its activation records on the stack at the same time. 

7.2.3 Calling Sequences 

Procedure calls are implemented by what are known as calling sequences, which 
consists of code that allocates an activation record on the stack and enters 
information into its fields. A return sequence is similar code to restore the state 
of the machine so the calling procedure can continue its execution after the call. 

Calling sequences and the layout of activation records may differ greatly, 
even among implementations of the same language. The code in a calling se- 
quence is often divided between the calling procedure (the "caller") and the 
procedure it calls (the "callee"). There is no exact division of run-time tasks 
between caller and callee; the source language, the target machine, and the op- 
erating system impose requirements that may favor one solution over another. 
In general, if a procedure is called from n different points, then the portion of 
the calling sequence assigned to the caller is generated n times. However, the 
portion assigned to the callee is generated only once. Hence, it is desirable to 
put as much of the calling sequence into the callee as possible - whatever the 
callee can be relied upon to know. We shall see, however, that the callee cannot 
know everything. 

When designing calling sequences and the layout of activation records, the 
following principles are helpful: 

1. Values communicated between caller and callee are generally placed at the 
beginning of the callee7s activation record, so they are as close as possible 
to the caller's activation record. The motivation is that the caller can 
compute the values of the actual parameters of the call and place them 
on top of its own activation record, without having to create the entire 
activation record of the callee, or even to know the layout of that record. 
Moreover, it allows for the use of procedures that do not always take 
the same number or type of arguments, such as C's p r i n t f  function. 
The callee knows where to place the return value, relative to its own 
activation record, while however many arguments are present will appear 
sequentially below that place on the stack. 

2. Fixed-length items are generally placed in the middle. F'rom Fig. 7.5, such 
items typically include the control link, the access link, and the machine 
status fields. If exactly the same components of the machine status are 
saved for each call, then the same code can do the saving and restoring 
for each. Moreover, if we standardize the machine's status information, 
then programs such as debuggers will have an easier time deciphering the 
stack contents if an error occurs. 

3. Items whose size may not be known early enough are placed at the end 
of the activation record. Most local variables have a fixed length, which 



7.2. STACK ALLOCATION OF SPACE 437 

can be determined by the compiler by examining the type of the variable. 
However, some local variables have a size that cannot be determined until 
the program executes; the most common example is a dynamically sized 
array, where the value of one of the callee's parameters determines the 
length of the array. Moreover, the amount of space needed for tempo- 
raries usually depends on how successful the code-generation phase is in 
keeping temporaries in registers. Thus, while the space needed for tem- 
poraries is eventually known to the compiler, it may not be known when 
the intermediate code is first generated. 

4. We must locate the top-of-stack pointer judiciously. A common approach 
is to  have it point to  the end of the fixed-length fields in the activation 
record. Fixed-length data can then be accessed by fixed offsets, known to 
the intermediate-code generator, relative to  the top-of-stack pointer. A 
consequence of this approach is that variable-length fields in the activation 
records are actually "above" the top-of-stack. Their offsets need to be 
calculated at run time, but they too can be accessed from the top-of- 
stack pointer, by using a positive offset. 

\ / Parameters and returned value 
. . . . . . . . . . . . . . . . . . . . . .  Y Control link 

Links and saved status 
. . . . . . . . . . . . . . . . . . . . . .  

i I Temporaries and local data 

Parameters and returned value v------ . . . . . . . . . . . . . . . . . . . . . .  
Control link 

Links and saved status 
top-sp . . . . . . . . . . . . . . . . . . . . . .  

Temporaries and local data 

T 
Caller's 

activation 
r e c r d  

responsibility 

"l" 
$. Callee's 

activation 
record 

Callee's 
responsibility 1 

Figure 7.7: Division of tasks between caller and callee 

An example of how caller and callee might cooperate in managing the stack 
is suggested by Fig. 7.7. A register top-sp points to  the end of the machine- 
status field in the current top activation record. This position within the callee's 
activation record is known to the caller, so the caller can be made responsible 
for setting top-sp before control is passed to  the callee. The calling sequence 
and its division between caller and callee is as follows: 

1. The caller evaluates the actual parameters. 



438 CHAPTER 7. RUN-TIME ENVIRONMENTS 

2. The caller stores a return address and the old value of top-sp into the 
callee's activation record. The caller then increments top-sp to the po- 
sition shown in Fig. 7.7. That is, top-sp is moved past the caller's local 
data and temporaries and the callee's parameters and status fields. 

3. The callee saves the register values and other status information. 

4. The callee initializes its local data and begins execution. 

A suitable, corresponding return sequence is: 

1. The callee places the return value next to the parameters, as in Fig. 7.5. 

2. Using information in the machine-status field, the callee restores top-sp 
and other registers, and then branches to the return address that the 
caller placed in the status field. 

3. Although top-sp has been decremented, the caller knows where the return 
value is, relative to the current value of top-sp; the caller therefore may 
use that value. 

The above calling and return sequences allow the number of arguments of 
the called procedure to vary from call to call (e.g., as in C's printf  function). 
Note that at compile time, the target code of the caller knows the number and 
types of arguments it is supplying to the callee. Hence the caller knows the size 
of the parameter area. The target code of the callee, however, must be prepared 
to handle other calls as well, so it waits until it is called and then examines the 
parameter field. Using the organization of Fig. 7.7, information describing the 
parameters must be placed next to the status field, so the callee can find it. 
For example, in the printf  function of C, the first argument describes the 
remaining arguments, so once the first argument has been located, the caller 
can find whatever other arguments there are. 

7.2.4 Variable-Length Data on the Stack 

The run-time memory-management system must deal frequently with the allo- 
cation of space for objects the sizes of which are not known at compile time, 
but which are local to a procedure and thus may be allocated on the stack. In 
modern languages, objects whose size cannot be determined at compile time are 
allocated space in the heap, the storage structure that we discuss in Section 7.4. 
However, it is also possible to allocate objects, arrays, or other structures of 
unknown size on the stack, and we discuss here how to do so. The reason to 
prefer placing objects on the stack if possible is that we avoid the expense of 
garbage collecting their space. Note that the stack can be used only for an 
object if it is local to a procedure and becomes inaccessible when the procedure 
returns. 

A common strategy for allocating variable-length arrays (i.e., arrays whose 
size depends on the value of one or more parameters of the called procedure) is 



7.2. STACK ALLOCATION OF SPACE 439 

shown in Fig. 7.8. The same scheme works for objects of any type if they are 
local to the procedure called and have a size that depends on the parameters 
of the call. 

In Fig. 7.8, procedure p has three local arrays, whose sizes we suppose cannot 
be determined at compile time. The storage for these arrays is not part of the 
activation record for p, although it does appear on the stack. Only a pointer 
to the beginning of each array appears in the activation record itself. Thus, 
when p is executing, these pointers are at known offsets from the top-of-stack 
pointer, so the target code can access array elements through these pointers. 

Figure 7.8: Access to dynamically allocated arrays 

' Control link and saved status 
- - - - - - - - - - - - - - - - - - - - - - - -  

. . . - - - - - - - - - - - - - - - - - - - - - - - -  
Pojnt_e: _to_ _a - - - - - - -> - - - - - - - - 

- - - - - - - - flo_iint_er: _to _b- - - - - - -\_ 

Also shown in Fig. 7.8 is the activation record for a procedure q, called by p. 
The activation record for q begins after the arrays of p, and any variable-length 
arrays of q are located beyond that. 

Access to the data on the stack is through two pointers, top and top-sp. 
Here, top marks the actual top of stack; it points to the position at which 
the next activation record will begin. The second, top-sp is used to find local, 
fixed-length fields of the top activation record. For consistency with Fig. 7.7, 
we shall suppose that top-sp points to the end of the machine-status field. In 
Fig. 7.8, top-sp points to the end of this field in the activation record for q. 
From there, we can find the control-link field for q, which leads us to the place 
in the activation record for p where top-sp pointed when p was on top. 

The code to reposition top and top-sp can be generated at compile time, 

Activation record 

- - - - - - - - Po_int_er t o  c - - - - - - 
. . .  

Array a 
- - - - - - - - - - - - - - - - - - - - - - - -  

Array b -I Arrays fOl of p 
. . . . . . . . . . . . . . . . . . . . . . .  

Array c 

. . . . . . . . . . . . . . . . . . . . . . .  I 
top-sp +- 

t 
Arrays of q 

top 

' Control link and saved status - - - - - - - - - - - - - - - - - - - - - - - 
Activation record for 

procedure q called by p 



440 CHAPTER 7. RUN-TIME ENVIRONMENTS 

in terms of sizes that will become known at run time. When q returns, top-sp 
can be restored from the saved control link in the activation record for q. The 
new value of top is (the old unrestored value of) top-sp minus the length of the 
machine-status, control and access link, return-value, and parameter fields (as 
in Fig. 7.5) in q's activation record. This length is known at compile time to 
the caller, although it may depend on the caller, if the number of parameters 
can vary across calls to q. 

7.2.5 Exercises for Section 7.2 

Exercise 7.2.1 : Suppose that the program of Fig. 7.2 uses a partition function 
that always picks a[m] as the separator u. Also, when the array a[m], . . . , a[n] 
is reordered, assume that the order is preserved as much as possible. That is, 
first come all the elements less than u, in their original order, then all elements 
equal to v, and finally all elements greater than v,  in their original order. 

a) Draw the activation tree when the numbers 9,8,7,6,5,4,3,2,1 are sorted. 

b) What is the largest number of activation records that ever appear together 
on the stack? 

Exercise 7.2.2 : Repeat Exercise 7.2.1 when the initial order of the numbers 
is 1,3,5,7,9,2,4,6,8. 

Exercise 7.2.3: In Fig. 7.9 is C code to compute Fibonacci numbers recur- 
sively. Suppose that the activation record for f includes the following elements 
in order: (return value, argument n, local s, local t ) ;  there will normally be 
other elements in the activation record as well. The questions below assume 
that the initial call is f(5). 

a) Show the complete activation tree. 

b) What does the stack and its activation records look like the first time f (1) 
is about to return? 

! c) What does the stack and its activation records look like the fifth time 
f (1) is about to return? 

Exercise 7.2.4 : Here is a sketch of two C functions f and g: 

i n t  f ( i n t  x) { i n t  i ;  r e tu rn  i+1; . . .  
i n t  g ( i n t  y) { i n t  j ;  . - .  f ( j + l )  1 

That is, function g calls f . Draw the top of the stack, starting with the acti- 
vation record for g, after g calls f ,  and f is about to return. You can consider 
only return values, parameters, control links, and space for local variables; you 
do not have to consider stored state or temporary or local values not shown in 
the code sketch. However, you should indicate: 



7.3. ACCESS TO NONLOCAL DATA ON THE STACK 

i n t  f  ( i n t  n) ( 
i n t  t ,  s ;  
i f  (n < 2) r e t u r n  1 ;  
s = f (n-1); 
t = f (n-2) ; 
r e t u r n  s + t ;  

3 

Figure 7.9: Fibonacci program for Exercise 7.2.3 

a) Which function creates the space on the stack for each element? 

b) Which function writes the value of each element? 

c) To which activation record does the element belong? 

Exercise 7.2.5 : In a language that passes parameters by reference, there is a 
function f (x, y) that does the following: 

x  = x  + 1 ;  y  = y + 2;  r e t u r n  x+y; 

If a is assigned the value 3, and then f (a, a) is called, what is returned? 

Exercise 7.2.6: The C function f is defined by: 

i n t  f  ( i n t  x ,  *py , **ppz) ( 
**ppz += 1; *py += 2 ;  x  += 3 ;  r e t u r n  x+y+z; 

Variable a is a pointer to b; variable b is a pointer to  c, and c is an integer 
currently with value 4. If we call f (c, b, a) ,  what is returned? 

7.3 Access to  Nonlocal Data on the Stack 

In this section, we consider how procedures access their data. Especially im- 
portant is the mechanism for finding data used within a procedure p but that 
does not belong to p. Access becomes more complicated in languages where 
procedures can be declared inside other procedures. We therefore begin with 
the simple case of C functions, and then introduce a language, ML, that permits 
both nested function declarations and functions as "first-class objects;" that is, 
functions can take functions as arguments and return functions as values. This 
capability can be supported by modifying the implementation of the run-time 
stack, and we shall consider several options for modifying the stack frames of 
Section 7.2. 



442 CHAPTER 7. RUN-TIME ENVIRONMENTS 

7.3.1 Data Access Without Nested Procedures 

In the C family of languages, all variables are defined either within a single 
function or outside any function ( "globally"). Most importantly, it is impossible 
to declare one procedure whose scope is entirely within another procedure. 
Rather, a global variable v has a scope consisting of all the functions that follow 
the declaration of v, except where there is a local definition of the identifier v. 
Variables declared within a function have a scope consisting of that function 
only, or part of it, if the function has nested blocks, as discussed in Section 1.6.3. 

For languages that do not allow nested procedure declarations, allocation of 
storage for variables and access to those variables is simple: 

1. Global variables are allocated static storage. The locations of these vari- 
ables remain fixed and are known at compile time. So to access any 
variable that is not local to the currently executing procedure, we simply 
use the statically determined address. 

2. Any other name must be local to the activation at the top of the stack. 
We may access these variables through the top-sp pointer of the stack. 

An important benefit of static allocation for globals is that declared proce- 
dures may be passed as parameters or returned as results (in C, a pointer to 
the function is passed), with no substantial change in the data-access strategy. 
With the C static-scoping rule, and without nested procedures, any name non- 
local to one procedure is nonlocal to all procedures, regardless of how they are 
activated. Similarly, if a procedure is returned as a result, then any nonlocal 
name refers to the storage statically allocated for it. 

7.3.2 Issues With Nested Procedures 

Access becomes far more complicated when a language allows procedure dec- 
larations to be nested and also uses the normal static scoping rule; that is, a 
procedure can access variables of the procedures whose declarations surround 
its own declaration, following the nested scoping rule described for blocks in 
Section 1.6.3. The reason is that knowing at compile time that the declaration 
of p is immediately nested within q does not tell us the relative positions of 
their activation records at run time. In fact, since either p or q or both may be 
recursive, there may be several activation records of p and/or q on the stack. 

Finding the declaration that applies to a nonlocal name x in a nested pro- 
cedure p is a static decision; it can be done by an extension of the static-scope 
rule for blocks. Suppose x is declared in the enclosing procedure q. Finding 
the relevant activation of q from an activation of p is a dynamic decision; it re- 
quires additional run-time information about activations. One possible solution 
to this problem is to use LLaccess links," which we introduce in Section 7.3.5. 



7.3. ACCESS TO NONLOCAL DATA ON THE STACK 443 

7.3.3 A Language With Nested Procedure Declarations 

The C family of languages, and many other familiar languages do not support 
nested procedures, so we introduce one that does. The history of nested pro- 
cedures in languages is long. Algol 60, an ancestor of C, had this capability, 
as did its descendant Pascal, a once-popular teaching language. Of the later 
languages with nested procedures, one of the most influential is ML, and it 
is this language whose syntax and semantics we shall borrow (see the box on 
"More about ML" for some of the interesting features of ML): 

ML is a functional language, meaning that variables, once declared and 
initialized, are not changed. There are only a few exceptions, such as the 
array, whose elements can be changed by special function calls. 

Variables are defined, and have their unchangeable values initialized, by 
a statement of the form: 

v a l  (name) = (expression) 

Functions are defined using the syntax: 

fun (name) ( (arguments) 1 = (body) 

For function bodies we shall use let-statements of the form: 

l e t  (list of definitions) i n  (statements) end 

The definitions are normally v a l  or fun statements. The scope of each 
such definition consists of all following definitions, up to  the in ,  and all the 
statements up to the end. Most importantly, function definitions can be 
nested. For example, the body of a function p can contain a let-statement 
that includes the definition of another (nested) function q. Similarly, q 
can have function definitions within its own body, leading to arbitrarily 
deep nesting of functions. 

7.3.4 Nesting Depth 

Let us give nesting depth 1 to procedures that are not nested within any other 
procedure. For example, all C functions are at nesting depth 1. However, if a 
procedure p is defined immediately within a procedure at nesting depth i, then 
give p the nesting depth i + 1. 

Example 7.5 : Figure 7.10 contains a sketch in ML of our running quicksort 
example. The only function at  nesting depth 1 is the outermost function, sort, 
which reads an array a of 9 integers and sorts them using the quicksort algo- 
rithm. Defined within sort, at  line (2), is the array a itself. Notice the form 



444 CHAPTER 7. RUN-TIME ENVIRONMENTS 

More About ML 

In addition to being almost purely functional, ML presents a number of 
other surprises to the programmer who is used t o  C and its family. 

ML supports higher-order funct ions.  That is, a function can take 
functions as arguments, and can construct and return other func- 
tions. Those functions, in turn, can take functions as arguments, to  
any level. 

ML has essentially no iteration, as in C7s for- and while-statements, 
for instance. Rather, the effect of iteration is achieved by recur- 
sion. This approach is essential in a functional language, since 
we cannot change the value of an iteration variable like i in 
"for  (i=O ; i<10 ; i++) " of C. Instead, ML would make i a function 
argument, and the function would call itself with progressively higher 
values of i until the limit was reached. 

ML supports lists and labeled tree structures as primitive data types. 

ML does not require declaration of variable types. Rather, it deduces 
types at compile time, and treats it as an error if it cannot. For 
example, v a l  x = I evidently makes x have integer type, and if we 
also see v a l  y = 2*x7 then we know y is also an integer. 

of the ML declaration. The first argument of a r r a y  says we want the array 
to  have 11 elements; all ML arrays are indexed by integers starting with 0, so 
this array is quite similar to  the C array a from Fig. 7.2. The second argument 
of a r r a y  says that initially, all elements of the array a hold the value 0. This 
choice of initial value lets the ML compiler deduce that a is an integer array, 
since 0 is an integer, so we never have to declare a type for a. 

Also declared within s o r t  are several functions: readArray,  exchange, and 
quicksort .  On lines (4) and (6) we suggest that r e a d A m y  and exchange each 
access the array a.  Note that in ML, array accesses can violate the functional 
nature of the language, and both these functions actually change values of a's 
elements, as in the C version of quicksort. Since each of these three functions is 
defined immediately within a function at nesting depth 1, their nesting depths 
are all 2. 

Lines (7) through (11) show some of the detail of quicksort .  Local value v, 
the pivot for the partition, is declared at line (8). Function p a r t i t i o n  is defined 
at line (9). In line (10) we suggest that p a r t i t i o n  accesses both the array a 
and the pivot value v, and also calls the function exchange. Since p a r t  it i on  is 
defined immediately within a function at nesting depth 2, it is at  depth 3. Line 



7.3. ACCESS TO NONLOCAL DATA ON THE STACK 

1) fun sort (inputFile, outputFile) = 

let 

2) val a = array(II,O); 
3) fun readArray(inputFi1e) = . . .  ; 
4) . . .  a . . .  . 
5 > fun exchange(i, j) = 

6) . . . a . . .  . 
7) fun quicksort(m,n) = 

let 

8) v a l v =  . . .  . 
9) fun partition(y,z) = 

10) . . . a . . . v . . .  exchange . . . 
in 

11) . . . a . . . v . . .  partition - - . quicksort 
end 

in 

l2> a - .  - readArray . .  quicksort - 
end ; 

Figure 7.10: A version of quicksort, in ML style, using nested functions 

(11) suggests that quicksort accesses variables a and v,  the function partition, 
and itself recursively. 

Line (12) suggests that the outer function sort accesses a and calls the two 
procedures readArray and quicksort. 

7.3.5 Access Links 

A direct implementation of the normal static scope rule for nested functions is 
obtained by adding a pointer called the access link to each activation record. If 
procedure p is nested immediately within procedure q in the source code, then 
the access link in any activation of p points to the most recent activation of q. 
Note that the nesting depth of q must be exactly one less than the nesting depth 
of p. Access links form a chain from the activation record at the top of the stack 
to a sequence of activations at progressively lower nesting depths. Along this 
chain are all the activations whose data and procedures are accessible to the 
currently executing procedure. 

Suppose that the procedure p at the top of the stack is at nesting depth n,, 
and p needs to access x, which is an element defined within some procedure q 
that surrounds p and has nesting depth n,. Note that n, 5 n,, with equality 
only if p and q are the same procedure. To find x, we start at the activation 
record for p at  the top of the stack and follow the access link n, - n, times, 
from activation record to activation record. Finally, we wind up at an activation 
record for q, and it will always be the most recent (highest) activation record 



446 CHAPTER 7. RUN- TIME ENVIRONMENTS 

for q that currently appears on the stack. This activation record contains the 
element x that we want. Since the compiler knows the layout of activation 
records, x will be found at some fixed offset from the position in q7s activation 
record that we can reach by following the last access link. 

Example 7.6 : Figure 7.11 shows a sequence of stacks that might result from 
execution of the function sort of Fig. 7.10. As before, we represent function 
names by their first letters, and we show some of the data that might appear in 
the various activation records, as well as the access link for each activation. In 
Fig. 7.11(a), we see the situation after sort has called readArray to load input 
into the array a and then called quicksort(l,9) to sort the array. The access link 
from quicksort(179) points to the activation record for sort, not because sort 
called quicksort but because sort is the most closely nested function surrounding 
quicksort in the program of Fig. 7.10. 

S 
- - - - - - - - - 

access link 
- - - - - - - - - 

a 

4 1 7  9) - - - - - - - - - 

access link 
- - - - - - - - - 

v 

q(17 3) - - - - - - - - - 
access link - - - - - - - 

- - - - - - - 
access link 

* - - - I  
access link 

Figure 7.11: Access links for finding nonlocal data 

In successive steps of Fig. 7.11 we see a recursive call to quicksort(173), 
followed by a call to partition, which calls exehange. Notice that quicksort(173)'s 
access link points to sort, for the same reason that quicksort(179)'s does. 

In Fig. 7.11 (d), the access link for exchange bypasses the activation records 
for quicksort and partition, since exchange is nested immediately within sort. 
That arrangement is fine, since exchange needs to access only the array a,  and 
the two elements it must swap are indicated by its own parameters i and j .  



7,3. ACCESS TO NONLOCAL DATA ON THE STACK 

7.3.6 Manipulating Access Links 

How are access links determined? The simple case occurs when a procedure 
call is to  a particular procedure whose name is given explicitly in the procedure 
call. The harder case is when the call is to a procedure-parameter; in that 
case, the particular procedure being called is not known until run time, and the 
nesting depth of the called procedure may differ in different executions of the 
call. Thus, let us first consider what should happen when a procedure q calls 
pracedure p, explicitly. There are three cases: 

1. Procedure p is at a higher nesting depth than q. Then p must be defined 
immediately within q, or the call by q would not be at a position that 
is within the scope of the procedure name p. Thus, the nesting depth of 
p is exactly one greater than that of q, and the access link from p must 
lead to q. It is a simple matter for the calling sequence to include a step 
that places in the access link for p a pointer to the activation record of q. 
Examples include the call of quicksort by sort to set up Fig. 7.11 (a), and 
the call of partition by quicksort to create Fig. 7.11(c). 

2. The call is recursive, that is, p = qS2 Then the access link for the new acti- 
vation record is the same as that of the activation record below it. An ex- 
ample is the call of quicksort(l,3) by quicksort(l,9) to set up Fig. 7.11(b). 

3. The nesting depth n, of p is less than the nesting depth n, of q. In 
order for the call within q to be in the scope of name p, procedure q 
must be nested within some procedure r ,  while p is a procedure defined 
immediately within r.  The top activation record for r can therefore be 
found by following the chain of access links, starting in the activation 
record for q, for n, - n, + 1 hops. Then, the access link for p must go to 
this activation of r .  

Example 7.7 : For an example of case (3), notice how we go from Fig. 7.11(c) 
to Fig. 7.11(d). The nesting depth 2 of the called function exchange is one 
less than the depth 3 of the calling function partition. Thus, we start at the 
activation record for partition and follow 3 - 2 + 1 = 2 access links, which takes 
us from partition's activation record to that of quicksort(l,3) to that of sort. 
The access link for exchange therefore goes to the activation record for sort, as 
we see in Fig. 7.11(d). 

An equivalent way to discover this access link is simply to follow access links 
for n, - n, hops, and copy the access link found in that record. In our example, 
we would go one hop to the activation record for quicksort(l,3) and copy its 
access link to sort. Notice that this access link is correct for exchange, even 
though exchange is not in the scope of quicksort, these being sibling functions 
nested within sort. 

2~~ allows mutually recursive functions, which would be handled the same way. 



448 CHAPTER 7. RUN- TIME ENVIRONMENTS 

7.3.7 Access Links for Procedure Parameters 

When a procedure p is passed to another procedure q as a parameter, and q then 
calls its parameter (and therefore calls p in this activation of q), it is possible 
that q does not know the context in which p appears in the program. If so, it is 
impossible for q to know how to set the access link for p. The solution to this 
problem is as follows: when procedures are used as parameters, the caller needs 
to pass, along with the name of the procedure-parameter, the proper access link 
for that parameter. 

The caller always knows the link, since if p is passed by procedure r as an 
actual parameter, then p must be a name accessible to r ,  and therefore, r can 
determine the access link for p exactly as if p were being called by r directly. 
That is, we use the rules for constructing access links given in Section 7.3.6. 

Example 7.8: In Fig. 7.12 we see a sketch of an ML function a that has 
functions b and c nested within it. Function b has a function-valued parameter 
f, which it calls. Function c defines within it a function d, and c then calls b 
with actual parameter d. 

fun a ( x )  = 
l e t  

fun b ( f )  = 
. . .  f ... 

fun c(y) = 
l e t  

fun d(z)  = ... 
i n  

. . . b(d) . . . 
end 

i n  
. . .  c ( i )  . . .  

end ; 

Figure 7.12: Sketch of ML program that uses function-parameters 

Let us trace what happens when a is executed. First, a calls c, so we place 
an activation record for c above that for a on the stack. The Access link for 
c points to the record for a ,  since c is defined immediately within a. Then c 
calls b(d). The calling sequence sets up an activation record for b, as shown in 
Fig. 7.13(a). 

Within this activation record is the actual parameter d and its access link, 
which together form the value of formal parameter f in the activation record 
for b. Notice that c knows about d, since d is defined within c, and therefore 
c passes a pointer to its own activation record as the access link. No matter 
where d was defined, if c is in the scope of that definition, then one of the three 
rules of Section 7.3.6 must apply, and c can provide the link. 



7.3. ACCESS TO NONLOCAL DATA ON THE STACK 

d 

access link 

C - - - - - - - - -  
access link 

Figure 7.13: Actual parameters carry their access link with them 

f : (d, -)- - 

Now, let us look at what b does. We know that at some point, it uses 
its parameter f ,  which has the effect of calling d. An activation record for d 
appears on the stack, as shown in Fig. 7.13(b). The proper access link to place 
in this activation record is found in the value for parameter f; the link is to 
the activation record for c, since c immediately surrounds the definition of d. 
Notice that b is capable of setting up the proper link, even though b is not in 
the scope of c7s definition. 

/ - -  

7.3.8 Displays 

One problem with the access-link approach to nonlocal data is that if the nesting 
depth gets large, we may have to follow long chains of links to reach the data 
we need. A more efficient implementation uses an auxiliary array d, called the 
display, which consists of one pointer for each nesting depth. We arrange that, 
at all times, d[i] is a pointer to the highest activation record on the stack for 
any procedure at nesting depth i .  Examples of a display are shown in Fig. 7.14. 
For instance, in Fig. 7.14(d), we see the display d, with d[l] holding a pointer 
to the activation record for s o r t ,  the highest (and only) activation record for a 
function at nesting depth 1. Also, d[2] holds a pointer to the activation record 
for exchange, the highest record at depth 2, and d[3] points to partition, the 
highest record at depth 3. 

The advantage of using a display is that if procedure p is executing, and 
it needs to access element x belonging to some procedure q,  we need to look 
only in d[i], where i is the nesting depth of q; we follow the pointer d[i] to the 
activation record for q, wherein x is found at a known offset. The compiler 
knows what i is, so it can generate code to access x using d [ i ]  and the offset of 



CHAPTER 7. RUN-TIME ENVIRONMENTS 

Figure 7.14: Maintaining the display 



7.3. ACCESS TO NONLOCAL DATA ON THE STACK 451 

x from the top of the activation record for q. Thus, the code never needs to 
follow a long chain of access links. 

In order to maintain the display correctly, we need to save previous values 
of display entries in new activation records. If procedure p at depth n, is called, 
and its activation record is not the first on the stack for a procedure at  depth 
n,, then the activation record for p needs to hold the previous value of d[np], 
while d[n,] itself is set to  point to this activation of p. When p returns, and its 
activation record is removed from the stack, we restore d[n,] to have its value 
prior to the call of p. 

Example 7.9: Several steps of manipulating the display are illustrated in 
Fig. 7.14. In Fig. 7.14(a), sort at depth 1 has called quicksort(1, 9) at depth 2. 
The activation record for quicksort has a place to store the old value of d[2], 
indicated as saved d[2], although in this case since there was no prior activation 
record at  depth 2, this pointer is null. 

In Fig. 7.14(b), quicksort(1, 9) calls quicksort(l,3). Since the activation 
records for both calls are at depth 2, we must store the pointer to quicksort(l,9), 
which was in d[2], in the record for quicksort(l,3). Then, d[2] is made to point 
to quicksort(173). 

Next, partition is called. This function is at depth 3, so we use the slot d[3] 
in the display for the first time, and make it point to the activation record for 
partition. The record for partition has a slot for a former value of d[3], but in 
this case there is none, so the pointer remains null. The display and stack at  
this time are shown in Fig. 7.14(c). 

Then, partition calls exchange. That function is at depth 2, so its activa- 
tion record stores the old pointer d[2], which goes to the activation record for 
quicksort(l, 3). Notice that the display pointers "cross"; that is; d[3] points 
further down the stack than d[2] does. However, that is a proper situation; 
exchange can only access its own data and that of sort, via d[I]. 

7.3.9 Exercises for Section 7.3 

Exercise 7.3.1 : In Fig. 7.15 is a ML function main that computes Fibonacci 
numbers in a nonstandard way. Function f ibO will compute the nth Fibonacci 
number for any n 2 0. Nested within in is f i b l ,  which computes the nth 
Fibonacci number on the assumption n > 2, and nested within f i b l  is f ib2, 
which assumes n 2 4. Note that neither f i b l  nor f ib2 need to check for the 
basis cases. Show the stack of activation records that result from a call to main, 
up until the time that the first call (to f ib0 (1) ) is about to return. Show the 
access link in each of the activation records on the stack. 

Exercise 7.3.2 : Suppose that we implement the functions of Fig. 7.15 using 
a display. Show the display at the moment the first call to f ib0 (1) is about to 
return. Also, indicate the saved display entry in each of the activation records 
on the stack at  that time. 



CHAPTER 7. RUN-TIME ENVIRONMENTS 

fun  main () C 
l e t  

fun  f  ib0 (n) = 

l e t  
fun f i b l ( n )  = 

l e t  
fun  f ib2(n)  = f  ibl(n-1)  + f  ibl(n-2)  

i n  
i f  n  >= 4 then f i b2 (n )  
e l s e  fibO(n-1) + fibO(n-2) 

end 
i n  

i f  n  >= 2 then  f i b l ( n )  
e l s e  1 

end 
i n  

f  ib0  (4) 
end ; 

Figure 7.15: Nested functions computing Fibonacci numbers 

7.4 Heap Management 

The heap is the portion of the store that is used for data that lives indefinitely, or 
until the program explicitly deletes it. While local variables typically become 
inaccessible when their procedures end, many languages enable us to create 
objects or other data whose existence is not tied to the procedure activation 
that creates them. For example, both C++ and Java give the programmer new 
to create objects that may be passed - or pointers to them may be passed - 
from procedure to procedure, so they continue to exist long after the procedure 
that created them is gone. Such objects are stored on a heap. 

In this section, we discuss the memory manager, the subsystem that allo- 
cates and deallocates space within the heap; it serves as an interface between 
application programs and the operating system. For languages like C or C++ 
that deallocate chunks of storage manually (i.e., by explicit statements of the 
program, such as f r e e  or de l e t e ) ,  the memory manager is also responsible for 
implementing deallocation. 

In Section 7.5, we discuss garbage collection, which is the process of finding 
spaces within the heap that are no longer used by the program and can therefore 
be reallocated to house other data items. For languages like Java, it is the 
garbage collector that deallocates memory. When it is required, the garbage 
collector is an important subsystem of the memory manager. 



7.4. HEAP MANAGEMENT 

7.4.1 The Memory Manager 

The memory manager keeps track of all the free space in heap storage at  all 
times. It performs two basic functions: 

Allocation. When a program requests memory for a variable or ~ b j e c t , ~  
the memory manager produces a chunk of contiguous heap memory of 
the requested size. If possible, it satisfies an allocation request using free 
space in the heap; if no chunk of the needed size is available, it seeks to  
increase the heap storage space by getting consecutive bytes of virtual 
memory from the operating system. If space is exhausted, the memory 
manager passes that information back to the application program. 

Deallocation. The memory manager returns deallocated space to the pool 
of free space, so it can reuse the space to satisfy other allocation requests. 
Memory managers typically do not return memory to the operating sys- 
tem, even if the program's heap usage drops. 

Memory management would be simpler if (a) all allocation requests were 
for chunks of the same size, and (b) storage were released predictably, say, 
first-allocated first-deallocated. There are some languages, such as Lisp, for 
which condition (a) holds; pure Lisp uses only one data element - a two- 
pointer cell - from which all data structures are built. Condition (b) also 
holds in some situations, the most common being data that can be allocated 
on the run-time stack. However, in most languages, neither (a) nor (b) holds 
in general. Rather, data elements of different sizes are allocated, and there is 
no good way to predict the lifetimes of all allocated objects. 

Thus, the memory manager must be prepared to  service, in any order, allo- 
cation and deallocation requests of any size, ranging from one byte to  as large 
as the program's entire address space. 

Here are the properties we desire of memory managers: 

Space Efficiency. A memory manager should minimize the total heap 
space needed by a program. Doing so allows larger programs to run in 
a fixed virtual address space. Space efficiency is achieved by minimizing 
"fragmentation," discussed in Section 7.4.4. 

Program Efficiency. A memory manager should make good use of the 
memory subsystem to allow programs to run faster. As we shall see in 
Section 7.4.2, the time taken to execute an instruction can vary widely 
depending on where objects are placed in memory. Fortunately, programs 
tend to  exhibit "locality," a phenomenon discussed in Section 7.4.3, which 
refers to the nonrandom clustered way in which typical programs access 
memory. By attention to  the placement of objects in memory, the memory 
manager can make better use of space and, hopefully, make the program 
run faster. 

3 ~ n  what follows, we shall refer to things requiring memory space as "objects," even if they 
are not true objects in the "object-oriented programming" sense. 



CHAPTER 7. RUN- TIME ENVIRONMENTS 

Low Overhead. Because memory allocations and deallocations are fre- 
quent operations in many programs, it is important that these operations 
be as efficient as possible. That is, we wish to minimize the overhead - 
the fraction of execution time spent performing allocation and dealloca- 
tion. Notice that the cost of allocations is dominated by small requests; 
the overhead of managing large objects is less important, because it usu- 
ally can be amortized over a larger amount of computation. 

7.4.2 The Memory Hierarchy of a Computer 

Memory management and compiler optimization must be done with an aware- 
ness of how memory behaves. Modern machines are designed,so that program- 
mers can write correct programs without concerning themselves with the details 
of the memory subsystem. However, the efficiency of a program is determined 
not just by the number of instructions executed, but also by how long it takes 
to execute each of these instructions. The time taken to execute an instruction 
can vary significantly, since the time taken to access different parts of memory 
can vary from nanoseconds to milliseconds. Data-intensive programs can there- 
fore benefit significantly from optimizations that make good use of the memory 
subsystem. As we shall see in Section 7.4.3, they can take advantage of the 
phenomenon of "locality" - the nonrandom behavior of typical programs. 

The large variance in memory access times is due to the fundamental limi- 
tation in hardware technology; we can build small and fast storage, or large and 
slow storage, but not storage that is both large and fast. It is simply impos- 
sible today to build gigabytes of storage with nanosecond access times, which 
is how fast high-performance processors run. Therefore, practically all modern 
computers arrange their storage as a memory hierarchy. A memory hierarchy, 
as shown in Fig. 7.16, consists of a series of storage elements, with the smaller 
faster ones "closer" to the processor, and the larger slower ones further away. 

Typically, a processor has a small number of registers, whose contents are 
under software control. Next, it has one or more levels of cache, usually made 
out of static RAM, that are kilobytes to several megabytes in size. The next 
level of the hierarchy is the physical (main) memory, made out of hundreds of 
megabytes or gigabytes of dynamic RAM. The physical memory is then backed 
up by virtual memory, which is implemented by gigabytes of disks. Upon a 
memory access, the machine first looks for the data in the closest (lowest-level) 
storage and, if the data is not there, looks in the next higher level, and so on. 

Registers are scarce, so register usage is tailored for the specific applications 
and managed by the code that a compiler generates. All the other levels of the 
hierarchy are managed automatically; in this way, not only is the programming 
task simplified, but the same program can work effectively across machines 
with different memory configurations. With each memory access, the machine 
searches each level of the memory in succession, starting with the lowest level, 
until it locates the data. Caches are managed exclusively in hardware, in order 
to keep up with the relatively fast RAM access times. Because disks are rela- 



7.4. HEAP MANAGEMENT 

Typical Sizes Typical Access Times 

256MB - 2GB I Physical Memory 1 100 - 150 ns 

128KB - 4MB I 2nd-Level Cache 1 40 - 60 ns 

3 - 1 5 m s  > 2GB 

16 - 64KB I 1st-Level Cache I 

Virtual Memory (Disk) 

Figure 7.16: Typical Memory Hierarchy Configurations 

32 Words 

tively slow, the virtual memory is managed by the operating system, with the 
assistance of a hardware structure known as the "translation lookaside buffer." 

Data is transferred as blocks of contiguous storage. To amortize the cost 
of access, larger blocks are used with the slower levels of the hierarchy. Be- 

Registers (Processor) 

tween main memory and cache, data is transferred in blocks known as cache 
lines, which are typically from 32 to  256 bytes long. Between virtual memory 
(disk) and main memory, data is transferred in blocks known as pages, typically 
between 4K and 64K bytes in size. 

1 ns 

7.4.3 Locality in Programs 

Most programs exhibit a high degree of locality; that is, they spend most of 
their time executing a relatively small fraction of the code and touching only 
a small fraction of the data. We say that a program has temporal locality if 
the memory locations it accesses are likely to be accessed again within a short 
period of time. We say that a program has spatial locality if memory locations 
close to the location accessed are likely also to be accessed within a short period 
of time. 

The conventional wisdom is that programs spend 90% of their time executing 
10% of the code. Here is why: 

Programs often contain many instructions that are never executed. Pro- 
grams built with components and libraries use only a small fraction of the 
provided functionality. Also as requirements change and programs evolve, 
legacy systems often contain many instructions that are no longer used. 



456 CHAPTER 7. RUN-TIME ENVIRONMENTS 

Static and Dynamic RAM 

Most random-access memory is dynamic, which means that it is built of 
very simple electronic circuits that lose their charge (and thus "forget" 
the bit they were storing) in a short time. These circuits need to be 
refreshed - that is, their bits read and rewritten - periodically. On 
the other hand, static RAM is designed with a more complex circuit for 
each bit, and consequently the bit stored can stay indefinitely, until it is 
changed. Evidently, a chip can store more bits if it uses dynamic-RAM 
circuits than if it uses static-RAM circuits, so we tend to see large main 
memories of the dynamic variety, while smaller memories, like caches, are 
made from static circuits. 

Only a small fraction of the code that could be invoked is actually executed 
in a typical run of the program. For example, instructions to handle 
illegal inputs and exceptional cases, though critical to the correctness of 
the program, are seldom invoked on any particular run. 

The typical program spends most of its time executing innermost loops 
and tight recursive cycles in a program. 

Locality allows us to take advantage of the memory hierarchy of a modern 
computer, as shown in Fig. 7.16. By placing the most common instructions and 
data in the fast-but-small storage, while leaving the rest in the slow-but-large 
storage, we can lower the average memory-access time of a program significantly. 

It has been found that many programs exhibit both temporal and spatial 
locality in how they access both instructions and data. Data-access patterns, 
however, generally show a greater variance than instruction-access patterns. 
Policies such as keeping the most recently used data in the fastest hierarchy 
work well for common programs but may not work well for some data-intensive 
programs - ones that cycle through very large arrays, for example. 

We often cannot tell, just from looking at the code, which sections of the 
code will be heavily used, especially for a particular input. Even if we know 
which instructions are executed heavily, the fastest cache often is not large 
enough to hold all of them at the same time. We must therefore adjust the 
contents of the fastest storage dynamically and use it to hold instructions that 
are likely to be used heavily in the near future. 

Optimization Using the Memory Hierarchy 

The policy of keeping the most recently used instructions in the cache tends 
to work well; in other words, the past is generally a good predictor of future 
memory usage. When a new instruction is executed, there is a high proba- 
bility that the next instruction also will be executed. This phenomenon is an 



7.4. HEAP MANAGEMENT 457 

Cache Architectures 

How do we know if a cache line is in a cache? It would be too expensive 
to check every single line in the cache, so it is common practice to restrict 
the placement of a cache line within the cache. This restriction is known 
as set associativity. A cache is k-way set associative if a cache line can 
reside only in k locations. The simplest cache is a 1-way associative cache, 
also known as a direct-mapped cache. In a direct-mapped cache, data with 
memory address n can be placed only in cache address n mod s, where s 
is the size of the cache. Similarly, a k-way set associative cache is divided 
into k sets, where a datum with address n can be mapped only to the 
location n mod (slk) in each set. Most instruction and data caches have 
associativity between 1 and 8. When a cache line is brought into the 
cache, and all the possible locations that can hold the line are occupied, 
it is typical to evict the line that has been the least recently used. 

example of spatial locality. One effective technique to improve the spatial lo- 
cality of instructions is to have the compiler place basic blocks (sequences of 
instructions that are always executed sequentially) that are likely to follow each 
other contiguously - on the same page, or even the same cache line, if possi- 
ble. Instructions belonging to the same loop or same function also have a high 
probability of being executed t ~ g e t h e r . ~  

We can also improve the temporal and spatial locality of data accesses in 
a program by changing the data layout or the order of the computation. For 
example, programs that visit large amounts of data repeatedly, each time per- 
forming a small amount of computation, do not perform well. It is better if we 
can bring some data from a slow level of the memory hierarchy to a faster level 
(e.g., disk to main memory) once, and perform all the necessary computations 
on this data while it resides at the faster level. This concept can be applied 
recursively to reuse data in physical memory, in the caches and in the registers. 

7.4.4 Reducing Fragmentation 
At the beginning of program execution, the heap is one contiguous unit of free 
space. As the program allocates and deallocates memory, this space is broken 
up into free and used chunks of memory, and the free chunks need not reside in 
a contiguous area of the heap. We refer to the free chunks of memory as holes. 
With each allocation request, the memory manager must place the requested 
chunk of memory into a large-enough hole. Unless a hole of exactly the right 
size is found, we need to split some hole, creating a yet smaller hole. 

4 ~ s  a machine fetches a word in memory, it is relatively inexpensive to prefetch the next 
several contiguous words of memory as well. Thus, a common memory-hierarchy feature is 
that a multiword block is fetched from a level of memory each time that level is accessed. 



458 CHAPTER 7. RUN-TIME ENVIRONn(lENTS 

With each deallocation request, the freed chunks of memory are added back 
to the pool of free space. We coalesce contiguous holes into larger holes, as the 
holes can only get smaller otherwise. If we are not careful, the memory may 
end up getting fragmented, consisting of large numbers of small, noncontiguous 
holes. It is then possible that no hole is large enough to satisfy a future request, 
even though there may be sufficient aggregate free space. 

Best-Fit and Next-Fit Object Placement 

We reduce fragmentation by controlling how the memory manager places new 
objects in the heap. It has been found empirically that a good strategy for mini- 
mizing fragmentation for real-life programs is to allocate the requested memory 
in the smallest available hole that is large enough. This best-fit algorithm tends 
to spare the large holes to satisfy subsequent, larger requests. An alternative, 
called first-fit, where an object is placed in the first (lowest-address) hole in 
which it fits, takes less time to place objects, but has been found inferior to 
best-fit in overall performance. 

To implement best-fit placement more efficiently, we can separate free space 
into bins, according to their sizes. One practical idea is to have many more bins 
for the smaller sizes, because there are usually many more small objects. For 
example, the Lea memory manager, used in the GNU C compiler gcc, aligns 
all chunks to 8-byte boundaries. There is a bin for every multiple of 8-byte 
chunks from 16 bytes to 512 bytes. Larger-sized bins are logarithmically spaced 
(i.e., the minimum size for each bin is twice that of the previous bin), and 
within each of these bins the chunks are ordered by their size. There is always 
a chunk of free space that can be extended by requesting more pages from the 
operating system. Called the wilderness chunk, this chunk is treated by Lea as 
the largest-sized bin because of its extensibility. 

Binning makes it easy to find the best-fit chunk. 

If, as for small sizes requested from the Lea memory manager, there is a 
bin for chunks of that size only, we may take any chunk from that bin. 

For sizes that do not have a private bin, we find the one bin that is 
allowed to include chunks of the desired size. Within that bin, we can use 
either a first-fit or a best-fit strategy; i.e., we either look for and select 
the first chunk that is sufficiently large or, we spend more time and find 
the smallest chunk that is sufficiently large. Note that when the fit is not 
exact, the remainder of the chunk will generally need to be placed in a 
bin with smaller sizes. 

However, it may be that the target bin is empty, or all chunks in that 
bin are too small to satisfy the request for space. In that case, we simply 
repeat the search, using the bin for the next larger size(s). Eventually, 
we either find a chunk we can use, or we reach the "wilderness7' chunk, 
from which we can surely obtain the needed space, possibly by going to 
the operating system and getting additional pages for the heap. 



7.4. HEAP MANAGEMENT 459 

While best-fit placement tends to improve space utilization, it may not be 
the best in terms of spatial locality. Chunks allocated at about the same time by 
a program tend to have similar reference patterns and to have similar lifetimes. 
Placing them close together thus improves the program's spatial locality. One 
useful adaptation of the best-fit algorithm is to modify the placement in the 
case when a chunk of the exact requested size cannot be found. In this case, we 
use a next-fit strategy, trying to allocate the object in the chunk that has last 
been split, whenever enough space for the new object remains in that chunk. 
Next-fit also tends to improve the speed of the allocation operation. 

Managing and Coalescing Free Space 

When an object is deallocated manually, the memory manager must make its 
chunk free, so it can be allocated again. In some circumstances, it may also be 
possible to combine (coalesce) that chunk with adjacent chunks of the heap, to 
form a larger chunk. There is an advantage to doing so, since we can always 
use a large chunk to do the work of small chunks of equal total size, but many 
small chunks cannot hold one large object, as the combined chunk could. 

If we keep a bin for chunks of one fixed size, as Lea does for small sizes, 
then we may prefer not to coalesce adjacent blocks of that size into a chunk of 
double the size. It is simpler to keep all the chunks of one size in as many pages 
as we need, and never coalesce them. Then, a simple allocation/deallocation 
scheme is to keep a bitmap, with one bit for each chunk in the bin. A 1 indicates 
the chunk is occupied; 0 indicates it is free. When a chunk is deallocated, we 
change its 1 to a 0. When we need to allocate a chunk, we find any chunk with 
a 0 bit, change that bit to  a I, and use the corresponding chunk. If there are 
no free chunks, we get a new page, divide it into chunks of the appropriate size, 
and extend the bit vector. 

Matters are more complex when the heap is managed as a whole, without 
binning, or if we are willing to coalesce adjacent chunks and move the resulting 
chunk to a different bin if necessary. There are two data structures that are 
useful to support coalescing of adjacent free blocks: 

Boundary Tags. At both the low and high ends of each chunk, whether 
free or allocated, m7e keep vital information. At both ends, we keep a 
free/used bit that tells whether or not the block is currently allocated 
(used) or available (free). Adjacent to each free/used bit is a count of the 
total number of bytes in the chunk. 

A Doubly Linked, Embedded Free List. The free chunks (but not the 
allocated chunks) are also linked in a doubly linked list. The pointers for 
this list are within the blocks themselves, say adjacent to the boundary 
tags at  either end. Thus, no additional space is needed for the free list, 
although its existence does place a lower bound on how small chunks can 
get; they must accommodate two boundary tags and two pointers, even 
if the object is a single byte. The order of chunks on the free list is left 



460 CHAPTER 7. RUN-TIME ENVIRONMENTS 

unspecified. For example, the list could be sorted by size, thus facilitating 
best-fit placement. 

Example 7.10 : Figure 7.17 shows part of a heap with three adjacent chunks, 
A, B ,  and C. Chunk B ,  of size 100, has just been deallocated and returned to 
the free list. Since we know the beginning (left end) of B ,  we also know the 
end of the chunk that happens to be immediately to B's left, namely A in this 
example. The freelused bit at the right end of A is currently 0, so A too is free. 
We may therefore coalesce A and B into one chunk of 300 bytes. 

Chunk A Chunk B Chunk C 

Figure 7.17: Part of a heap and a doubly linked free list 

It might be the case that chunk C,  the chunk immediately to B's right, 
is also free, in which case we can combine all of A, B ,  and C. Note that if 
we always coalesce chunks when we can, then there can never be two adjacent 
free chunks, so we never have to look further than the two chunks adjacent to 
the one being deallocated. In the current case, we find the beginning of C by 
starting at the left end of B, which we know, and finding the total number of 
bytes in B, which is found in the left boundary tag of B and is 100 bytes. With 
this information, we find the right end of B and the beginning of the chunk to 
its right. At that point, we examine the freelused bit of C and find that it is 1 
for used; hence, C is not available for coalescing. 

Since we must coalesce A and B ,  we need to remove one of them from the free 
list. The doubly linked free-list structure lets us find the chunks before and after 
each of A and B. Notice that it should not be assumed that physical neighbors 
A and B are also adjacent on the free list. Knowing the chunks preceding and 
following A and B on the free list, it is straightforward to manipulate pointers 
on the list to replace A and B by one coalesced chunk. 

Automatic garbage collection can eliminate fragmentation altogether if it 
moves all the allocated objects to contiguous storage. The interaction between 
garbage collection and memory management is discussed in more detail in Sec- 
tion 7.6.4. 

7.4.5 Manual Deallocation Requests 

We close this section with manual memory management, where the programmer 
must explicitly arrange for the deallocation of data, as in C and C++. Ideally, 
any storage that will no longer be accessed should be deleted. Conversely, any 
storage that may be referenced must not be deleted. Unfortunately, it is hard to 
enforce either of these properties. In addition to considering the difficulties with 



7.4. HEAP MANAGEMENT 

manual deallocation, we shall describe some of the techniques programmers use 
to help with the difficulties. 

Problems with Manual Deallocation 

Manual memory management is error-prone. The common mistakes take two 
forms: failing ever to delete data that cannot be referenced is called a rnernory- 
leak error, and referencing deleted data is a dangling-pointer-dereference error. 

It is hard for programmers to tell if a program will  never  refer to some stor- 
age in the future, so the first common mistake is not deleting storage that will 
never be referenced. Note that although memory leaks may slow down the exe- 
cution of a program due to increased memory usage, they do not affect program 
correctness, as long as the machine does not run out of memory. Many pro- 
grams can tolerate memory leaks, especially if the leakage is slow. However, for 
long-running programs, and especially nonstop programs like operating systems 
or server code, it is critical that they not have leaks. 

Automatic garbage collection gets rid of memory leaks by deallocating all 
the garbage. Even with automatic garbage collection, a program may still use 
more memory than necessary. A programmer may know that an object will 
never be referenced, even though references to that object exist somewhere. In 
that case, the programmer must deliberately remove references to objects that 
will never be referenced, so the objects can be deallocated automatically. 

Being overly zealous about deleting objects can lead to even worse problems 
than memory leaks. The second common mistake is to delete some storage and 
then try to refer to the data in the deallocated storage. Pointers to storage that 
has been deallocated are known as dangling pointers.  Once the freed storage 
has been reallocated to a new variable, any read, write, or deallocation via 
the dangling pointer can produce seemingly random effects. We refer to any 
operation, such as read, write, or deallocate, that follows a pointer and tries to 
use the object it points to, as dereferencing the pointer. 

Notice that reading through a dangling pointer may return an arbitrary 
value. Writing through a dangling pointer arbitrarily changes the value of the 
new variable. Deallocating a dangling pointer's storage means that the storage 
of the new variable may be allocated to yet another variable, and actions on 
the old and new variables may conflict with each other. 

Unlike memory leaks, dereferencing a dangling pointer after the freed storage 
is reallocated almost always creates a program error that is hard to debug. As 
a result, programmers are more inclined not to deallocate a variable if they are 
not certain it is unreferencable. 

A related form of programming error is to access an illegal .address. Common 
examples of such errors include dereferencing null pointers and accessing an 
out-of-bounds array element. It is better for such errors to be detected than to 
have the program silently corrupt the results. In fact, many security violations 
exploit programming errors of this type, where certain program inputs allow 
unintended access to data, leading to a "hacker" taking control of the program 



462 CHAPTER 7. RUN-TIME ENVIRONMENTS 

An Example: Purify 

Rational's Purify is one of the most popular commercial tools that helps 
programmers find memory access errors and memory leaks in programs. 
Purify instruments binary code by adding additional instructions to check 
for errors as the program executes. It keeps a map of memory to indicate 
where all the freed and used spaces are. Each allocated object is bracketed 
with extra space; accesses to unallocated locations or to spaces between 
objects are flagged as errors. This approach finds some dangling pointer 
references, but not when the memory has been reallocated and a valid 
object is sitting in its place. This approach also finds some out-of-bound 
array accesses, if they happen to land in the space inserted at the end of 
the objects. 

Purify also finds memory leaks at the end of a program execution. It 
searches the contents of all the allocated objects for possible pointer values. 
Any object without a pointer to it is a leaked chunk of memory. Purify 
reports the amount of memory leaked and the locations of the leaked 
objects. We may compare Purify to a "conservative garbage collector," 
which will be discussed in Section 7.8.3. 

and machine. One antidote is to have the compiler insert checks with every 
access, to make sure it is within bounds. The compiler's optimizer can discover 
and remove those checks that are not really necessary because the optimizer 
can deduce that the access must be within bounds. 

Programming Conventions and Tools 

We now present a few of the most popular conventions and tools that have been 
developed to help programmers cope with the complexity in managing memory: 

Object ownership is useful when an object's lifetime can be statically rea- 
soned about. The idea is to associate an owner with each object at all 
times. The owner is a pointer to that object, presumably belonging to 
some function invocation. The owner (i.e., its function) is responsible for 
either deleting the object or for passing the object to another owner. It 
is possible to have other, nonowning pointers to the same object; these 
pointers can be overwritten any time, and no deletes should ever be ap- 
plied through them. This convention eliminates memory leaks, as well as 
attempts to delete the same object twice. However, it does not help solve 
the dangling-pointer-reference problem, because it is possible to follow a 
nonowning pointer to an object that has been deleted. 

Reference counting is useful when an object's lifetime needs to be deter- 
mined dynamically. The idea is to associate a count with each dynamically 



7.5. INTRODUCTION TO GARBAGE COLLECTION 463 

allocated object. Whenever a reference to the object is created, we incre- 
ment the reference count; whenever a reference is removed, we decrement 
the reference count. When the count goes to zero, the object can no longer 
be referenced and can therefore be deleted. This technique, however, does 
not catch useless, circular data structures, where a collection of objects 
cannot be accessed, but their reference counts are not zero, since they 
refer to each other. For an illustration of this problem, see Example 7.11. 
Reference counting does eradicate all dangling-pointer references, since 
there are no outstanding references to any deleted objects. Reference 
counting is expensive because it imposes an overhead on every operation 
that stores a pointer. 

Region-based allocation is useful for collections of objects whose lifetimes 
are tied to specific phases in a computation.When objects are created to 
be used only within some step of a computation, we can allocate all such 
objects in the same region. We then delete the entire region once that 
computation step completes. This region-based allocation technique has 
limited applicability. However, it is very efficient whenever it can be used; 
instead of deallocating objects one at a time, it deletes all objects in the 
region in a wholesale fashion. 

7.4.6 Exercises for Section 7.4 

Exercise 7.4.1 : Suppose the heap consists of seven chunks, starting at  address 
0. The sizes of the chunks, in order, are 80, 30, 60, 50, 70, 20, 40 bytes. When 
we place an object in a chunk, we put it at the high end if there is enough 
space remaining to form a smaller chunk (so that the smaller chunk can easily 
remain on the linked list of free space). However, we cannot tolerate chunks 
of fewer that 8 bytes, so if an object is almost as large as the selected chunk, 
we give it the entire chunk and place the object at the low end of the chunk. 
If we request space for objects of the following sizes: 32, 64, 48, 16, in that 
order, what does the free space list look like after satisfying the requests, if the 
method of selecting chunks is 

a) First fit. 

b) Best fit. 

7.5 Introduction to Garbage Collection 

Data that cannot be referenced is generally known as garbage. Many high-level 
programming languages remove the burden of manual memory management 
from the programmer by offering automatic garbage collection, which deallo- 
cates unreachable data. Garbage collection dates back to the initial implemen- 
tation of Lisp in 1958. Other significant languages that offer garbage collection 
include Java, Perl, ML, Modula-3, Prolog, and Smalltalk. 



464 CHAPTER 7. RUN-TIME ENVIRONMENTS 

In this section, we introduce many of the concepts of garbage collection. 
The notion of an object being "reachable" is perhaps intuitive, but we need to 
be precise; the exact rules are discussed in Section 7.5.2. We also discuss, in 
Section 7.5.3, a simple, but imperfect, method of automatic garbage collection: 
reference counting, which is based on the idea that once a program has lost all 
references to an object, it simply cannot and so will not reference the storage. 

Section 7.6 covers trace-based collectors, which are algorithms that discover 
all the objects that are still useful, and then turn all the other chunks of the 
heap into free space. 

7.5.1 Design Goals for Garbage Collectors 

Garbage collection is the reclamation of chunks of storage holding objects that 
can no longer be accessed by a program. We need to assume that objects have 
a type that can be determined by the garbage collector at run time. From the 
type information, we can tell how large the object is and which components of 
the object contain references (pointers) to other objects. We also assume that 
references to objects are always to the address of the beginning of the object, 
never pointers to places within the object. Thus, all references to an object 
have the same value and can be identified easily. 

A user program, which we shall refer to as the mutator,  modifies the col- 
lection of objects in the heap. The mutator creates objects by acquiring space 
from the memory manager, and the mutator may introduce and drop references 
to existing objects. Objects become garbage when the mutator program cannot 
"reach77 them, in the sense made precise in Section 7.5.2. The garbage collector 
finds these unreachable objects and reclaims their space by handing them to 
the memory manager, which keeps track of the free space. 

A Basic Requirement: Type Safety 

Not all languages are good candidates for automatic garbage collection. For a 
garbage collector to work, it must be able to tell whether any given data element 
or component of a data element is, or could be used as, a pointer to a chunk of 
allocated memory space. A language in which the type of any data component 
can be determined is said to be type safe. There are type-safe languages like 
ML, for which we can determine types at compile time. There are other type- 
safe languages, like Java, whose types cannot be determined at compile time, 
but can be determined at run time. The latter are called dynamically typed 
languages. If a language is neither statically nor dynamically type safe, then it 
is said to be unsafe. 

Unsafe languages, which unfortunately include some of the most impor- 
tant languages such as C and C++, are bad candidates for automatic garbage 
collection. In unsafe languages, memory addresses can be manipulated arbi- 
trarily: arbitrary arithmetic operations can be applied to pointers to create 
new pointers, and arbitrary integers can be cast as pointers. Thus a program 



7.5. INTRODUCTION TO GARBAGE COLLECTION 

theoretically could refer to any location in memory at any time. Consequently, 
no memory location can be considered to be inaccessible, and no storage can 
ever: be reclaimed safely. 

In practice, most C and C++ programs do not generate pointers arbitrarily, 
and a theoretically unsound garbage collector that works well empirically has 
been developed and used. We shall discuss conservative garbage collection for 
C and C++ in Section 7.8.3. 

Performance Metrics 

Garbage collection is often so expensive that, although it was invented decades 
ago and absolutely prevents memory leaks, it has yet to be adopted by many 
mainstream programming languages. Many different approaches have been pro- 
posed over the years, and there is not one clearly best garbage-collection algo- 
rithm. Before exploring the options, let us first enumerate the performance 
metrics that must be considered when designing a garbage collector. 

Overall Execution Time. Garbage collection can be very slow. It is impor- 
tant that it not significantly increase the total run time of an application. 
Since the garbage collector necessarily must touch a lot of data, its perfor- 
mance is determined greatly by how it leverages the memory subsystem. 

Spa& Usage. It is important that garbage collection avoid fragmentation 
and make the best use of the available memory. 

Pause Time. Simple garbage collectors are notorious for causing pro- 
grams - the mutators - to pause suddenly for an extremely long time, 
as garbage collection kicks in without warning. Thus, besides minimiz- 
ing the overall execution time, it is desirable that the maximum pause 
time be minimized. As an important special case, real-time applications 
require certain computations to be completed within a time limit. We 
must either suppress garbage collection while performing real-time tasks, 
or restrict maximum pause time. Thus, garbage collection is seldom used 
in real-time applications. 

Program Locality. We cannot evaluate the speed of a garbage collector 
solely by its running time. The garbage collector controls the placement 
of data and thus influences the data locality of the mutator program. It 
can improve a mutator's temporal locality by freeing up space and reusing 
it; it can improve the mutator's spatial locality by relocating data used 
together in the same cache or pages. 

Some of these design goals conflict with one another, and tradeoffs must be 
made carefully by considering how programs typically behave. Also objects of 
different characteristics may favor different treatments, requiring a collector to 
use different techniques for different kinds of objects. 



CHAPTER 7. RUN-TIME ENVIRONMENTS 

For example, the number of objects allocated is dominated by small objects, 
so allocation of small objects must not incur a large overhead. On the other 
hand, consider garbage collectors that relocate reachable objects. Relocation is 
expensive when dealing with large objects, but less so with small objects. 

As another example, in general, the longer we wait to collect garbage in a 
trace-based collector, the larger the fraction of objects that can be collected. 
The reason is that objects often "die young," so if we wait a while, many of 
the newly allocated objects will become unreachable. Such a collector thus 
costs less on the average, per unreachable object collected. On the other hand, 
infrequent collection increases a program's memory usage, decreases its data 
locality, and increases the length of the pauses. 

In contrast, a reference-counting collector, by introducing a constant over- 
head to many of the mutator's operations, can slow down the overall execution 
of a program significantly. On the other hand, reference counting does not cre- 
ate long pauses, and it is memory efficient, because it finds garbage as soon 
as it is produced (with the exception of certain cyclic structures discussed in 
Section 7.5.3). 

Language design can also affect the characteristics of memory usage. Some 
languages encourage a programming style that generates a lot of garbage. For 
example, programs in functional or almost functional programming languages 
create more objects to avoid mutating existing objects. In Java, all objects, 
other than base types like integers and references, are allocated on the heap 
and not the stack, even if their lifetimes are confined to that of one function 
invocation. This design frees the programmer from worrying about the lifetimes 
of variables, at the expense of generating more garbage. Compiler optimizations 
have been developed to analyze the lifetimes of variables and allocate them on 
the stack whenever possible. 

7.5.2 Reachability 

We refer to all the data that can be accessed directly by a program, without 
having to dereference any pointer, as the root set. For example, in Java the root 
set of a program consists of all the static field members and all the variables 
on its stack. A program obviously can reach any member of its root set at  
any time. Recursively, any object with a reference that is stored in the field 
members or array elements of any reachable object is itself reachable. 

Reachability becomes a bit more complex when the program has been op- 
timized by the compiler. First, a compiler may keep reference variables in 
registers. These references must also be considered part of the root set. Sec- 
ond, even though in a type-safe language programmers do not get to manipulate 
memory addresses directly, a compiler often does so for the sake of speeding up 
the code. Thus, registers in compiled code may point to the middle of an object 
or an array, or they may contain a value to which an offset will be applied to 
compute a legal address. Here are some things an optimizing compiler can do 
to enable the garbage collector to find the correct root set: 



7.5. INTRODUCTION TO GARBAGE COLLECTION 

The compiler can restrict the invocation of garbage collection to only 
certain code points in the program, when no "hidden" references exist. 

The compiler can write out information that the garbage collector can 
use to recover all the references, such as specifying which registers contain 
references, or how to compute the base address of an object that is given 
an internal address. 

The compiler can assure that there is a reference to the base address of 
all reachable objects whenever the garbage collector may be invoked. 

The set of reachable objects changes as a program executes. It grows as new 
objects get created and shrinks as objects become unreachable. It is important 
to remember that once an object becomes unreachable, it cannot become reach- 
able again. There are four basic operations that a mutator performs to change 
the set of reachable objects: 

Object Allocations. These are performed by the memory manager, which 
returns a reference to each newly allocated chunk of memory. This oper- 
ation adds members to the set of reachable objects. 

Parameter Passing and Return Values. References to objects are passed 
from the actual input parameter to the corresponding formal parameter, 
and from the returned result back to the callee. Objects pointed to by 
these references remain reachable. 

Reference Assignments. Assignments of the form u = v, where u and v 
are references, have two effects. First, u is now a reference to the object 
referred to by v. As long as u is reachable, the object it refers to is surely 
reachable. Second, the original reference in u is lost. If this reference is 
the last to some reachable object, then that object becomes unreachable. 
Any time an object becomes unreachable, all objects that are reachable 
only through references contained in that object also become unreachable. 

Procedure Returns. As a procedure exits, the frame holding its local 
variables is popped off the stack. If the frame holds the only reachable 
reference to any object, that object becomes unreachable. Again, if the 
now unreachable objects hold the only references to other objects, they 
too become unreachable, and so on. 

In summary, new objects are introduced through object allocations. Param- 
eter passing and assignments can propagate reachability; assignments and ends 
of procedures can terminate reachability. As an object becomes unreachable, it 
can cause more objects to become unreachable. 

There are two basic ways to find unreachable objects. Either we catch the 
transitions as reachable objects turn unreachable, or we periodically locate all 
the reachable objects and then infer that all the other objects are unreachable. 
Reference counting, introduced in Section 7.4.5, is a well-known approximation 



468 CHAPTER 7. RUN-TIME ENVIRONMENTS 

Survival of Stack Objects 

When a procedure is called, a local variable v, whose object is allocated 
on the stack, may have pointers to v placed in nonlocal variables. These 
pointers will continue to exist after the procedure returns, yet the space for 
v disappears, resulting in a dangling-reference situation. Should we ever 
allocate a local like v on the stack, as C does for example? The answer 
is that the semantics of many languages requires that local variables cease 
to exist when their procedure returns. Retaining a reference to such a 
variable is a programming error, and the compiler is not required to fix 
the bug in the program. 

to the first approach. We maintain a count of the references to an object, as 
the mutator performs actions that may change the reachability set. When the 
count goes to zero, the object becomes unreachable. We discuss this approach 
in more detail in Section 7.5.3. 

The second approach computes reachability by tracing all the references 
transitively. A trace-based garbage collector starts by labeling ("marking") all 
objects in the root set as "reachable," examines iteratively all the references 
in reachable objects to find more reachable objects, and labels them as such. 
This approach must trace all the references before it can determine any object 
to be unreachable. But once the reachable set is computed, it can find many 
unreachable objects all at once and locate a good deal of free storage at the same 
time. Because all the references must be analyzed at the same time, we have 
an option to relocate the reachable objects and thereby reduce fragmentation. 
There are many different trace-based algorithms, and we discuss the options in 
Sections 7.6 and 7.7.1. 

7.5.3 Reference Counting Garbage Collectors 
We now consider a simple, although imperfect, garbage collector, based on 
reference counting, which identifies garbage as an object changes from being 
reachable to unreachable; the object can be deleted when its count drops to 
zero. With a reference-counting garbage collector, every object must have a 
field for the reference count. Reference counts can be maintained as follows: 

1. Object Allocation. The reference count of the new object is set to 1. 

2. Parameter Passing. The reference count of each object passed into a 
procedure is incremented. 

3. Reference Assignments. For statement u = v, where u and v are refer- 
ences, the reference count of the object referred to by v goes up by one, 
and the count for the old object referred to by u goes down by one. 



7.5. INTRODUCTION TO GARBAGE COLLECTION 469 

4. Procedure Returns. As a procedure exits, all the references held by the 
local variables of that procedure activation record must also be decre- 
mented. If several local variables hold references to the same object, that 
object's count must be decremented once for each such reference. 

5. Transitive Loss of Reachability. Whenever the reference count of an object 
becomes zero, we must also decrement the count of each object pointed 
to by a reference within the object. 

Reference counting has two main disadvantages: it cannot collect unreach- 
able, cyclic data structures, and it is expensive. Cyclic data structures are quite 
plausible; data structures often point back to their parent nodes, or point to 
each other as cross references. 

Example 7.11 : Figure 7.18 shows three objects with references among them, 
but no references from anywhere else. If none of these objects is part of the 
root set, then they are all garbage, but their reference counts are each greater 
than 0. Such a situation is tantamount to a memory leak if we use reference 
counting for garbage collection, since then this garbage and any structures like 
it are never deallocated. 

_ - - -  - - - - - - - -  - - - - No pointers 
outside 

Figure 7.18: An unreachable, cyclic data structure 

The overhead of reference counting is high because additional operations are 
introduced with each reference assignment, and at procedure entries and exits. 
This overhead is proportional to the amount of computation in the program, and 
not just to the number of objects in the system. Of particular concern are the 
updates made to references in the root set of a program. The concept of deferred 
reference counting has been proposed as a means to eliminate the overhead 
associated with updating the reference counts due to local stack accesses. That 
is, reference counts do not include references from the root set of the program. 
An object is not considered to be garbage until the entire root set is scanned 
and no references to the object are found. 

The advantage of reference counting, on the other hand, is that garbage col- 
lection is performed in an incremental fashion. Even though the total overhead 
can be large, the operations are spread throughout the mutator's computation. 



470 CHAPTER 7. RUN- TIME ENVIRONMENTS 

Although removing one reference may render a large number of objects un- 
reachable, the operation of recursively modifying reference counts can easily be 
deferred and performed piecemeal across time. Thus, reference counting is par- 
ticularly attractive algorithm when timing deadlines must be met, as well as for 
interactive applications where long, sudden pauses are unacceptable. Another 
advantage is that garbage is collected immediately, keeping space usage low. 

Figure 7.19: A network of objects 

7.5.4 Exercises for Section 7.5 

Exercise 7.5.1 : What happens to the reference counts of the objects in Fig. 
7.19 if: 

a) The pointer from A to B is deleted. 

b) The pointer from X to A is deleted. 

c) The node C is deleted. 

Exercise 7.5.2 : What happens to reference counts when the pointer from A 
to D in Fig. 7.20 is deleted? 

7.6 Introduction to Trace-Based Collection 

Instead of collecting garbage as it is created, trace-based collectors run periodi- 
cally to find unreachable objects and reclaim their space. Typically, we run the 



7.6. INTRODUCTION TO TRACE-BASED COLLECTION 

Figure 7.20: Another network of objects 

trace-based collector whenever the free space is exhausted or its amount drops 
below some threshold. 

We begin this section by introducing the simplest "mark-and-sweep" gar- 
bage collection algorithm. We then describe the variety of trace-based algo- 
rithms in terms of four states that chunks of memory can be put in. This 
section also contains a number of improvements on the basic algorithm, includ- 
ing those in which object relocation is a part of the garbage-collection function. 

7.6.1 A Basic Mark-and-Sweep Collector 

Mark-and-sweep garbage-collection algorithms are straightforward, stop-the- 
world algorithms that find all the unreachable objects, and put them on the list 
of free space. Algorithm 7.12 visits and "marks" all the reachable objects in the 
first tracing step and then "sweeps" the entire heap to free up unreachable ob- 
jects. Algorithm 7.14, which we consider after introducing a general framework 
for trace-based algorithms, is an optimization of Algorithm 7.12. By using an 
additional list to hold all the allocated objects, it visits the reachable objects 
only once. 

Algorithm 7.12 : Mark-and-sweep garbage collection. 

INPUT: A root set of objects, a heap, and a free list, called Free, with all the 
unallocated chunks of the heap. As in Section 7.4.4, all chunks of space are 
marked with boundary tags to indicate their free/used status and size. 

OUTPUT: A modified Free list after all the garbage has been removed. 

METHOD: The algorithm, shown in Fig. 7.21, uses several simple data struc- 
tures. List Free holds objects known to be free. A list called Unscanned, holds 
objects that we have determined are reached, but whose successors we have not 
yet considered. That is, we have not scanned these objects to see what other 



CHAPTER 7. RUN-TME ENVIRONMENTS 

/* marking phase */ 
set the reached-bit to 1 and add to list Unscanned each object 

referenced by the root set; 
while ( Unscanned # 0) { 

remove some object o from Unscanned; 
for (each object o' referenced in o) { 

if (0' is unreached; i.e., its reached-bit is 0) { 
set the reached-bit of o' to 1; 
put o' in Unscanned; 

1 
I 

I 
/* sweeping phase */ 
Free = 0; 
for (each chunk of memory o in the heap) { 

if (o is unreached, i.e., its reached-bit is 0) add o to Free; 
else set the reached-bit of o to 0;  

3 

Figure 7.21: A Mark-and-Sweep Garbage Collector 

objects can be reached through them. The Unscanned list is empty initially. 
Additionally, each object includes a bit to indicate whether it has been reached 
(the reached- bit). Before the algorithm begins, all allocated objects have the 
reached-bit set to 0. 

In line (1) of Fig. 7.21, we initialize the Unscanned list by placing there all 
the objects referenced by the root set. The reached-bit for these objects is also 
set to 1. Lines (2) through (7) are a loop, in which we, in turn, examine each 
object o that is ever placed on the Unscanned list. 

The for-loop of lines (4) through (7) implements the scanning of object o. 
We examine each object o' for which we find a reference within o. If o' has 
already been reached (its reached-bit is I) ,  then there is no need to do anything 
about 0'; it either has been scanned previously, or it is on the Unscanned list 
to be scanned later. However, if o' was not reached already, then we need to 
set its reached-bit to 1 in line (6) and add o' to the Unscanned list in line (7). 
Figure 7.22 illustrates this process. It shows an Unscanned list with four objects. 
The first object on this list, corresponding to object o in the discussion above, 
is in the process of being scanned. The dashed lines correspond to the three 
kinds of objects that might be reached from o: 

1. A previously scanned object that need not be scanned again. 

2. An object currently on the Unscanned list. 

3. An item that is reachable, but was previously thought to be unreached. 



7.6. INTRODUCTION TO TRACE-BASED COLLECTION 

Free and unreached objects 
reached bit = 0 

Unscanned and previously scanned objects 
reached bit = 1 

Figure 7.22: The relationships among objects during the marking phase of a 
mark-and-sweep garbage collector 

Lines (8) through (ll), the sweeping phase, reclaim the space of all the 
objects that remain unreached at the end of the marking phase. Note that 
these will include any objects that were on the Free list originally. Because the 
set of unreached objects cannot be enumerated directly, the algorithm sweeps 
through the entire heap. Line (10) puts free and unreached objects on the 
Free list, one at a time. Line (11) handles the reachable objects. We set their 
reached-bit to 0, in order to maintain the proper preconditions for the next 
execution of the garbage-collection algorithm. 

7.6.2 Basic Abstraction 

All trace-based algorithms compute the set of reachable objects and then take 
the complement of this set. Memory is therefore recycled as follows: 

a) The program or mutator runs and makes allocation requests. 

b) The garbage collector discovers reachability by tracing. 

c) The garbage collector reclaims the storage for unreachable objects. 

This cycle is illustrated in Fig. 7.23 in terms of four states for chunks of memory: 
Free, Unreached, Unscanned, and Scanned. The state of a chunk might be stored 
in the chunk itself, or it might be implicit in the data structures used by the 
garbage-collection algorithm. 

While trace- based algorithms may differ in their implement ation, they can 
all be described in terms of the following states: 

1. Free. A chunk is in the Free state if it is ready to be allocated. Thus, a 
Free chunk must not hold a reachable object. 

2. Unreached. Chunks are presumed unreachable, unless proven reachable by 
tracing. A chunk is in the Unreached state at any point during garbage 



CHAPTER 7. RUN-'TIME ENVIRONMENTS 

allocate 
Free 

(a) Before tracing: action of mutator 

pointers root set 

(b) Discovering reachability by tracing 

- - ' ready for 
next collection 

(c) Reclaiming storage 

Figure 7.23: States of memory in a garbage collection cycle 

collection if its reachability has not yet been established. Whenever a 
chunk is allocated by the memory manager, its state is set to Unreached 
as illustrated in Fig. 7.23(a). Also, after a round of garbage collection, 
the state of a reachable object is reset to Unreached to get ready for the 
next round; see the transition from Scanned to Unreached, which is shown 
dashed to emphasize that it prepares for the next round. 

3. Unscanned, Chunks that are known to be reachable are either in state 
Unscanned or state Scanned. A chunk is in the Unscanned state if it is 
known to be reachable, but its pointers have not yet been scanned. The 
transition to Unscanned from Unreached occurs when we discover that a 
chunk is reachable; see Fig. 7.23(b). 

4. Scanned. Every Unscanned object will eventually be scanned and tran- 
sition to the Scanned state. To scan an object, we examine each of the 
pointers within it and follow those pointers to the objects to which they 
refer. If a reference is to an Unreached object, then that object is put in 
the Unscanned state. When the scan of an object is completed, that object 
is placed in the Scanned state; see the lower transition in Fig. 7.23(b). A 
Scanned object can only contain references to other Scanned or Unscanned 
objects, and never to Unreached objects. 



7.6. INTRODUCTION TO TRACE-BASED COLLECTION 475 

When no objects are left in the Unscanned state, the computation of reach- 
ability is complete. Objects left in the Unreached state at the end are truly 
unreachable. The garbage collector reclaims the space they occupy and places 
the chunks in the Free state, as illustrated by the solid transition in Fig. 7.23(c). 
To get ready for the next cycle of garbage collection, objects in the Scanned state 
are returned to  the Unreached state; see the dashed transition in Fig. 7.23(c). 
Again, remember that these objects really are reachable right now. The Un- 
reachable state is appropriate because we shall want to start all objects out 
in this state when garbage collection next begins, by which time any of the 
currently reachable objects may indeed have been rendered unreachable. 

Example 7.13: Let us see how the data structures of Algorithm 7.12 relate 
to the four states introduced above. Using the reached-bit and membership on 
lists Free and Unscanned, we can distinguish among all four states. The table 
of Fig. 7.24 summarizes the characterization of the four states in terms of the 
data structure for Algorithm 7.12. 

Figure 7.24: Representation of states in Algorithm 7.12 

STATE 
Free 
Unreached 
Unscanned 
Scanned 

7.6.3 Optimizing Mark-and-Sweep 

ON Free ON Unscanned REACHED-BIT 
Yes No 0 
No No 0 
No Yes 1 
No No 1 

The final step in the basic mark-and-sweep algorithm is expensive because there 
is no easy way to  find only the unreachable objects without examining the entire 
heap. An improved algorithm, due to Baker, keeps a list of all allocated objects. 
To find the set of unreachable objects, which we must return to free space, we 
take the set difference of the allocated objects and the reached objects. 

Algorithm 7.14 : Baker's mark-and-sweep collector. 
\ 

INPUT: A root set of objects, a heap, a free list Free, and a list of allocated 
objects, which we refer to  as Unreached. 

OUTPUT: Modified lists Free and Unreached, which holds allocated objects. 

METHOD: In this algorithm, shown in Fig. 7.25, the data structure for garbage 
collection is four lists named Free, Unreached, Unscanned, and Scanned, each 
of which holds all the objects in the state of the same name. These lists may 
be implemented by embedded, doubly linked lists, as was discussed in Sec- 
tion 7.4.4. A reached-bit in objects is not used, but we assume that each object 



476 CHAPTER 7. RUN-TIME ENVIRONMENTS 

contains bits telling which of the four states it is in. Initially, Free is the free 
list maintained by the memory manager, and all allocated objects are on the 
Unreached list (also maintained by the memory manager as it allocates chunks 
to objects). 

I) Scanned = 0; 
2) Unscanned = set of objects referenced in the root set; 

3) while (Unscanned # 0) { 
4) move object o from Unscanned to Scanned; 
5) for (each object o' referenced in o) { 
6) if (0' is in Unreached) 
7 )  move o' from Unreached to Unscanned; 

1 
1 

8) Free = Free U Unreached; 
9) Unreached = Scanned; 

Figure 7.25: Baker's mark-and-sweep algorithm 

Lines (1) and (2) initialize Scanned to be the empty list, and Unscanned to 
have only the objects reached from the root set. Note that these objects were 
presumably on the list Unreached and must be removed from there. Lines (3) 
through (7) are a straightforward implementation of the basic marking algo- 
rithm, using these lists. That is, the for-loop of lines (5) through (7) examines 
the references in one unscanned object o, and if any of those references o' have 
not yet been reached, line (7) changes o' to the Unscanned state. 

At the end, line (8) takes those objects that are still on the Unreached list 
and deallocates their chunks, by moving them to the Free list. Then, line (9) 
takes all the objects in state Scanned, which are the reachable objects, and 
reinitializes the Unreached list to be exactly those objects. Presumably, as the 
memory manager creates new objects, those too will be added to the Unreached 
list and removed from the Free list. 

In both algorithms of this section, we have assumed that chunks returned 
to the free list remain as they were before deallocation. However, as discussed 
in Section 7.4.4, it is often advantageous to combine adjacent free chunks into 
larger chunks. If we wish to do so, then every time we return a chunk to the 
free list, either at line (10) of Fig. 7.21 or line (8) of Fig. 7.25, we examine the 
chunks to its left and right, and merge if one is free. 

7.6.4 Mark-and-Compact Garbage Collectors 

Relocating collectors move reachable objects around in the heap to eliminate 
memory fragmentation. It is common that the space occupied by reachable ob- 
jects is much smaller than the freed space. Thus, after identifying all the holes, 



7.6. INTRODUCTION T O  TRACE-BASED COLLECTION 477 

instead of freeing them individually, one attractive alternative is to relocate all 
the reachable objects into one end of the heap, leaving the entire rest of the 
heap as one free chunk. After all, the garbage collector has already analyzed 
every reference within the reachable objects, so updating them to point to the 
new locations does not require much more work. These, plus the references in 
the root set, are all the references we need to change. 

Having all the reachable objects in contiguous locations reduces fragmen- 
tation of the memory space, making it easier to house large objects. Also, by 
making the data occupy fewer cache lines and pages, relocation improves a pro- 
gram's temporal and spatial locality, since new objects created at about the 
same time are allocated nearby chunks. Objects in nearby chunks can bene- 
fit from prefetching if they are used together. Further, the data structure for 
maintaining free space is simplified; instead of a free list, all we need is a pointer 
free to the beginning of the one free block. 

Relocating collectors vary in whether they relocate in place or reserve space 
ahead of time for the relocation: 

A mark-and-compact collector, described in this section, compacts objects 
in place. Relocating in place reduces memory usage. 

The more efficient and popular copying collector in Section 7.6.5 moves 
objects from one region of memory to another. Reserving extra space for 
relocation allows reachable objects to be moved as they are discovered. 

The mark-and-compact collector in Algorithm 7.15 has three phases: 

1. First is a marking phase, similar to that of the mark-and-sweep algorithms 
described previously. 

2. Second, the algorithm scans the allocated section of the heap and com- 
putes a new address for each of the reachable objects. New addresses are 
assigned from the low end of the heap, so there are no holes between reach- 
able objects. The new address for each object is recorded in a structure 
called NewLocation. 

3. Finally, the algorithm copies objects to their new locations, updating all 
references in the objects to point to the corresponding new locations. The 
needed addresses are found in NewLocation. 

Algorithm 7.15 : A mark-and-compact garbage collector. 

INPUT: A root set of objects, a heap, and free, a pointer marking the start of 
free space. 

OUTPUT: The new value of pointer free. 

METHOD: The algorithm is in Fig. 7.26; it uses the following data structures: 

1. An Unscanned list, as in Algorithm 7.12. 



478 CHAPTER 7. RUN-TIME ENVIRONMENTS 

2. Reached bits in all objects, also as in Algorithm 7.12. To keep our de- 
scription simple, we refer to objects as "reached" or "unreached," when 
we mean that their reached-bit is 1 or 0, respectively. Initially, all objects 
are unreached. 

3. The pointer free, which marks the beginning of undlocated space in the 
heap. 

4. The table NewLocation. This structure could be a hash table, search tree, 
or another structure that implements the two operations: 

(a) Set NewLocation(o) to a new address for object o. 

(b) Given object o, get the value of NewLocation(o). 

We shall not concern ourselves with the exact structure used, although 
you may assume that NewLocation is a hash table, and therefore, the 
"set" and "get" operations are each performed in average constant time, 
independent of how many objects are in the heap. 

The first, or marking, phase of lines (I)  through (7) is essentially the same 
as the first phase of Algorithm 7.12. The second phase, lines (8) through (12), 
visits each chunk in the allocated part of the heap, from the left, or low end. As 
a result, chunks are assigned new addresses that increase in the same order as 
their old addresses. This ordering is important, since when we relocate objects, 
we can do so in a way that assures we only move objects left, into space that 
was formerly occupied by objects we have moved already. 

Line (8) starts the free pointer at the low end of the heap. In this phase, 
we use free to indicate the first available new address. We create a new address 
only for those objects o that are marked as reached. Object o is given the next 
available address at line (lo),  and at line (11) we increment free by the amount 
of storage that object o requires, so free again points to the beginning of free 
space. 

In the final phase, lines (13) through (17), we again visit the reached objects, 
in the same from-the-left order as in the second phase. Lines (15) and (16) 
replace all internal pointers of a reached object o by their proper new values, 
using the ~ e w ~ o c a t i o n  table to determine the replacement. Then, line (17) 
moves the object o, with the revised internal references, to its new location. 
Finally, lines (18) and (19) retarget pointers in the elements of the root set that 
are not themselves heap objects, e.g., statically allocated or stack-allocated 
objects. Figure 7.27 suggests how the reachable objects (those that are not 
shaded) are moved down the heap, while the internal pointers are changed to 
point to the new locations of the reached objects. 

7.6.5 Copying collectors 

A copying collector reserves, ahead of time, space to which the objects can 
move, thus breaking the dependency between tracing and finding free space. 



7.6. INTRODUCTION T O  TRACE-BASED COLLECTION 

/* mark */  
Unscanned = set of objects referenced by the root set; 
while ( Unscanned # 0) { 

remove object o from Unscanned; 
for (each object o' referenced in o) { 

if (0' is unreached) { 
mark o' as reached; 
put o' on list Unscanned; 

1 
1 

1 
/* compute new locations */ 
free = starting location of heap storage; 
for (each chunk of memory o in the heap, from the low end) { 

if (o is reached { 
NewLocation(o) = free; 
free = free + sixeof(o); 

1 
1 
/* retarget references and move reached objects */ 
for (each chunk of memory o in the heap, from the low end) { 

if (o is reached) { 
for (each reference o.r in o) 

copy o to NewLocation(o); 

1 
I- 
for (each reference r in the root set) 

r = NewLocation(r); 

Figure 7.26: A Mark-and-Compact Collector 

The memory space is partitioned into two semispaces, A and B. The mutator 
allocates memory in one semispace, say A, until it fills up, at which point the 
mutator is stopped and the garbage collector copies the reachable objects to 
the other space, say B. When garbage collection completes, the roles of the 
semispaces are reversed. The mutator is allowed to resume and allocate objects 
in space B, and the next round of garbage collection moves reachable objects 
to space A. The following algorithm is due to C. J. Cheney. 

Algorithm 7.16 : Cbeney 's copying collector. 

INPUT: A root set of objects, and a heap consisting of the From semispace, 
containing allocated objects, and the To semispace, all of which is free. 



CHAPTER 7. RUN-TIME ENVIRONMENTS 

\ / 
\ , I 

- - _ _ - #  free 

Figure 7.27: Moving reached objects to the front of the heap, while preserving 
internal pointers 

OUTPUT: At the end, the To semispace holds the allocated objects. A free 
pointer indicates the start of free space remaining in the To semispace. The 
From semispace is completely free. 

METHOD: The algorithm is shown in Fig. 7.28. Cheney's algorithm finds 
reachable objects in the From semispace and copies them, as soon as they are 
reached, to the To semispace. This placement groups related objects toget her 
and may improve spatial locality. 

Before examining the algorithm it self, which is the function Copying Collec- 
tor in Fig. 7.28, consider the auxiliary function LookupNewLocation in lines (11) 
through (16). This function takes an object o and finds a new location for it 
in the To space if o has no location there yet. All new locations are recorded 
in a structure NewLocation, and a value of NULL indicates o has no assigned 
10cation.~ As in Algorithm 7.15, the exact form of structure NewLocation may 
vary, but it is fine to assume that it is a hash table. 

If we find at line (12) that o has no location, then it is assigned the beginning 
of the free space within the To semispace, at  line (13). Line (14) increments 
the free pointer by the amount of space taken by o, and at line (15) we copy o 
from the From space to the To space. Thus, the movement of objects from one 
semispace to the other occurs as a side effect, the first time we loolr up the new 
location for the object. Regardless of whether the location of o was or was not 
previously established, line (16) returns the location of o in the To space. 

Now, we can consider the algorithm itself. Line (2) establishes that none of 
the objects in the From space have new addresses yet. At line (3), we initialize 
two pointers, unscanned and free, to the beginning of the To semispace. Pointer 
free will always indicate the beginning of free space within the To space. As we 
add objects to the To space, those with addresses below unscanned will be in 
the Scanned state, while those between unscanned and free are in the Unscanned 

5 ~ n  a typical data structure, such as a hash table, if o is not assigned a location, then there 
simply would be no mention of it in the structure. 



7.6. INTRODUCTION TO TRACE-BASED COLLECTION 481 

Copying Collector () { 
for (all objects o in From space) NewLocation(o) =NULL; 
unscanned = free = starting address of To space; 
for (each reference r in the root set) 

replace r with LookupNewLocation(r) ; 
while '(unscanned # free) { 

o = object at  location unscanned; 
for (each reference o.r within o) 

unscanned = unscanned + sizeof(o); 

1 
1 

/* Look up the new location for object if it has been moved. */ 
/* Place object in Unscanned state otherwise. */ 
LookupNewLocation(o) { 

if (NewLocation(o) = NULL) { 
NewLocation(o) = free; 
free = free + sizeof(o); 
copy o to NewLocation(o); 

1 
return NewLocatzon(o) ; 

1 

Figure 7.28: A Copying Garbage Collector 

state. Thus, free always leads unscanned, and when the latter catches up to 
the former, there are no more Unscanned objects, and we are done with the 
garbage collection. Notice that we do our work within the To space, although 
all references within objects examined at line (8) lead us back to the From 
space. 

Lines (4) and (5) handle the objects reachable from the root set. Note that 
as a side effect, some of the calls to LookupNewLocation at line (5) will increase 
free, as chunks for these objects are allocated within To. Thus, the loop of lines 
(6) through (10) will be entered the first time it is reached, unless there are no 
objects referenced by the root set (in which case the entire heap is garbage). 
This loop then scans each of the objects that has been added to To and is in the 
Unscanned state. Line (7) takes the next unscanned object, o. Then, at  lines 
(8) and (9), each reference within o is translated from its value in the From 
semispace to its value in the To semispace. Notice that, as a side effect, if a 
reference within o is to an object we have not reached previously, then the call 
to LookupNewLocatzon at  line (9) creates space for that object in the To space 
and moves the object there. Finally, line (10) increments unscanned to point 
to the next object, just beyond o in the To space. 0 



482 CHAPTER 7. RUN- TIME ENVIRONMENTS 

7.6.6 Comparing Costs 

Cheney's algorithm has the advantage that it does not touch any of the un- 
reachable objects. On the other hand, a copying garbage collector must move 
the contents of all the reachable objects. This process is especially expensive for 
large objects and for long-lived objects that survive multiple rounds of garbage 
collection. We can summarize the running time of each of the four algorithms 
described in this section, as follows. Each estimate ignores the cost of processing 
the root set. 

Basic Mark-and-Sweep (Algorithm 7.12) : Proportional to the number of 
chunks in the heap. 

Baker's Mark-and-Sweep (Algorithm 7.14): Proportional to the number 
of reached objects. 

Baszc Mark-and-Compact (Algorithm 7.15): Proportional to the number 
of chunks in the heap plus the total size of the reached objects. 

Cheney's Copying Collector (Algorithm 7.16): Proportional to the total 
size of the reached objects. 

7.6.7 Exercises for Section 7.6 

Exercise 7.6.1 : Show the steps of a mark-and-sweep garbage collector on 

a) Fig. 7.19 with the pointer A -+ B deleted. 

b) Fig. 7.19 with the pointer A -+ C deleted. 

c) Fig. 7.20 with the painter A -+ D deleted. 

d) Fig. 7.20 with the object B deleted. 

Exercise 7.6.2 : The Baker mark-and-sweep algorithm moves objects among 
four lists: Free, Unreached, Unscanned, and Scanned. For each of the object 
networks of Exercise 7.6.1, indicate for each object the sequence of lists on 
which it finds itself from just before garbage collection begins until just after it 
finishes. 

Exercise 7.6.3 : Suppose we perform a mark-and-compact garbage collection 
on each of the networks of Exercise 7.6.1. Also, suppose that 

i .  Each object has size 100 bytes, and 

ii. Initially, the nine objects in the heap are arranged in alphabetical order, 
starting at byte 0 of the heap. 

What is the address of each object after garbage collection? 



7.7. SHORT-PA USE GARBAGE COLLECTION 483 

Exercise 7.6.4 : Suppose we execute Cheney7s copying garbage collection al- 
gorithm on each of the networks of Exercise 7.6.1. Also, suppose that 

i. Each object has size 100 bytes, 

ii. The unscanned list is managed as a queue, and when an object has more 
than one pointer, the reached objects are added to the queue in alpha- 
betical order, and 

iii. The From semispace starts at location 0, and the To semispace starts at  
location 10,000. 

What is the value of NewLocation(o) for each object o that remains after garbage 
collection? 

7.7 Short-Pause Garbage Collection 

Simple trace-based collectors do stop-the-world-style garbage collection, which 
may introduce long pauses into the execution of user programs. We can reduce 
the length of the pauses by performing garbage collection one part at a time. 
We can divide the work in time, by interleaving garbage collection with the 
mutation, or we can divide the work in space by collecting a subset of the 
garbage at  a time. The former is known as incremental collection and the 
latter is known as partial collection. 

An incremental collector breaks up the reachability analysis into smaller 
units, allowing the mutator to run between these execution units. The reachable 
set changes as the mutator executes, so incremental collection is complex. As 
we shall see in Section 7.7.1, finding a slightly conservative answer can make 
tracing more efficient. 

The best known of partial-collection algorithms is generational garbage col- 
lection; it partitions objects according to how long they have been allocated 
and collects the newly created objects more often because they tend to have a 
shorter lifetime. An alternative algorithm, the train algorithm, also collects a 
subset of garbage at a time, and is best applied to more mature objects. These 
two algorithms can be used together to create a partial collector that handles 
younger and older objects differently. We discuss the basic algorithm behind 
partial collection in Section 7.7.3, and then describe in more detail how the 
generational and train algorithms work. 

Ideas from both incremental and partial collection can be adapted to cre- 
ate an algorithm that collects objects in parallel on a multiprocessor; see Sec- 
tion 7.8.1. 

7.7.1 Incremental Garbage Collection 

Incremental collectors are conservative. While a garbage collector must not 
collect objects that are not garbage, it does not have to collect all the garbage 



CHAPTER 7. RUN-TIME ENVIRONMENTS 

in each round. We refer to the garbage left behind after collection as floating 
garbage. Of course it is desirable to minimize floating garbage. In particular, 
an incremental collector should not leave behind any garbage that was not 
reachable at the beginning of a collection cycle. If we can be sure of such 
a collection guarantee, then any garbage not collected in one round will be 
collected in the next, and no memory is leaked because of this approach to 
garbage collection. 

In other words, incremental collectors play it safe by overestimating the set 
of reachable objects. They first process the program's root set atomically, with- 
out interference from the mutator. After finding the initial set of unscanned 
objects, the mutator's actions are interleaved with the tracing step. During this 
period, any of the mutator's actions that may change reachability are recorded 
succinctly, in a side table, so that the collector can make the necessary ad- 
justments when it resumes execution. If space is exhausted before tracing com- 
pletes, the collector completes the tracing process, without allowing the mutator 
to execute. In any event, when tracing is done, space is reclaimed atomically. 

Precision of Incremental Collection 

Once an object becomes unreachable, it is not possible for the object to become 
reachable again. Thus, as garbage collection and mutation proceed, the set of 
reachable objects can only 

1. Grow due to new objects allocated after garbage collection starts, and 

2. Shrink by losing references to allocated objects. 

Let the set of reachable objects at the beginning of garbage collection be R; 
let New be the set of allocated objects during garbage collection, and let Lost 
be the set of objects that have become unreachable due to lost references since 
tracing began. The set of objects reachable when tracing completes is 

( R  u New) - Lost. 

It is expensive to reestablish an object's reachability every time a mutator 
loses a reference to the object, so incremental collectors do not attempt to 
collect all the garbage at the end of tracing. Any garbage left behind - floating 
garbage - should be a subset of the Lost objects. Expressed formally, the set 
S of objects found by tracing must satisfy 

( R  U New) - Lost C S C ( R  U New) 

Simple Increment a1 Tracing 

We first describe a straightforward tracing algorithm that finds the upper bound 
R  U New. The behavior of the mutator is modified during the tracing as follows: 



7.7. SHORT-PAUSE GARBAGE COLLECTION 485 

a All references that existed before garbage collection are preserved; that is, 
before the mutator overwrites a reference, its old value is remembered and 
treated like an additional unscanned object containing just that reference. 

a All objects created are considered reachable immediately and are placed 
in the Unscanned state. 

This scheme is conservative but correct, because it finds R, the set of all the 
objects reachable before garbage collection, plus New, the set of all the newly 
allocated objects. However, the cost is high, because the algorithm intercepts 
all write operations and remembers all the overwritten references. Some of this 
work is unnecessary because it may involve objects that are unreachable at the 
end of garbage collection. We could avoid some of this work and also improve 
the algorithm's precision if we could detect when the overwritten references 
point to  objects that are unreachable when this round of garbage collection 
ends. The next algorithm goes fairly far in these two directions. 

7.7.2 Incremental Reachability Analysis 

If we interleave the mutator with a basic tracing algorithm, such as Algo- 
rithm 7.12, then some reachable objects may be misclassified as unreachable. 
The problem is that the actions of the mutator can violate a key invariant of 
the algorithm; namely, a Scanned object can only contain references to  other 
Scanned or Unscanned objects, never to Unreached objects. Consider the fol- 
lowing scenario: 

1. The garbage collector finds object 01 reachable and scans the pointers 
within 01, thereby putting 01 in the Scanned state. 

2. The mutator stores a reference to  an Unreached (but reachable) object o 
into the Scanned object 01. It does so by copying a reference to  o from 
an object 0 2  that is currently in the Unreached or Unscanned state. 

3. The mutator loses the reference to  o in object 02. It  may have overwrit- 
ten 02's reference to o before the reference is scanned, or 0 2  may have 
become unreachable and never have reached the Unscanned state to have 
its references scanned. 

Now, o is reachable through object 01, but the garbage collector may have seen 
neither the reference to  o in 01 nor the reference to  o in 02. 

The key to a more precise, yet correct, incremental trace is that we must 
note all copies of references to  currently unreached objects from an object that 
has not been scanned to one that has. To intercept problematic transfers of 
references, the algorithm can modify the mutator's action during tracing in any 
of the following ways: 



CHAPTER 7. RUN- TIME ENVIRONMENTS 

Write Barriers. Intercept writes of references into a Scanned object 01, 

when the reference is to an Unreached object o. In this case, classify o 
as reachable and place it in the Unscanned set. Alternatively, place the 
written object 01 back in the Unscanned set so we can rescan it. 

Read Barriers. Intercept the reads of references in Unreached or Un- 
scanned objects. Whenever the mutator reads a reference to an object o 
from an object in either the Unreached or Unscanned state, classify o as 
reachable and place it in the Unscanned set. 

Transfer Barriers. Intercept the loss of the original reference in an Un- 
reached or Unscanned object. Whenever the mutator overwrites a ref- 
erence in an Unreached or Unscanned object, save the reference being 
overwritten, classify it as reachable, and place the reference itself in the 
Unscanned set. 

None of the options above finds the smallest set of reachable objects. If the 
tracing process determines an object to be reachable, it stays reachable even 
though all references to it are overwritten before tracing completes. That is, 
the set of reachable objects found is between ( R  U New) - Lost and ( R  U New). 

Write barriers are the most efficient of the options outlined above. Read 
barriers are more expensive because typically there are many more reads than 
there are writes. Transfer barriers are not competitive; because many objects 
"die young," this approach would retain many unreachable objects. 

Implementing Write Barriers 

We can implement write barriers in two ways. The first approach is to re- 
member, during a mutation phase, all new references written into the Scanned 
objects. We can place all these references in a list; the size of the list is propor- 
tional to the number of write operations to Scanned objects, unless duplicates 
are removed from the list. Note that references on the list may later be over- 
written themselves and potentially could be ignored. 

The second, more efficient approach is to remember the locations where the 
writes occur. We may remember them as a list of locations written, possibly 
with duplicates eliminated. Note it is not important that we pinpoint the 
exact locations written, as long as all the locations that have been written are 
rescanned. Thus, there are several techniques that allow us to remember less 
detail about exactly where the rewritten locations are. 

Instead of remembering the exact address or the object and field that is 
written, we can remember just the objects that hold the written fields. 

We can divide the address space into fixed-size blocks, known as cards, 
and use a bit array to remember the cards that have been written into. 



7.7. SHORT-PAUSE GARBAGE COLLECTION 487 

We can choose to remember the pages that contain the written locations. 
We can simply protect the pages containing Scanned objects. Then, any 
writes into Scanned objects will be detected without executing any ex- 
plicit instructions, because they will cause a protection violation, and the 
operating system will raise a program exception. 

In general, by coarsening the granularity at which we remember the written 
locations, less storage is needed, at the expense of increasing the amount of 
rescanning performed. In the first scheme, all references in the modified objects 
will have to be rescanned, regardless of which reference was actually modified. 
In the last two schemes, all reachable objects in the modified cards or modified 
pages need to be rescanned at the end of the tracing process. 

Combining Incremental and Copying Techniques 

The above methods are sufficient for mark-and-sweep garbage collection. Copy- 
ing collection is slightly more complicated, because of its interaction with the 
mutator. Objects in the Scanned or Unscanned states have two addresses, one 
in the From semispace and one in the To semispace. As in Algorithm 7.16, we 
must keep a mapping from the old address of an object to its relocated address. 

There are two choices for how we update the references. First, we can have 
the mutator make all the changes in the From space, and only at the end of 
garbage collection do we update all the pointers and copy all the contents over 
to the To space. Second, we can instead make changes to the representation in 
the To space. Whenever the mutator dereferences a pointer to the From space, 
the pointer is translated to a new location in the To space if one exists. All the 
pointers need to be translated to point to the To space in the end. 

7.7.3 Partial-Collection Basics 

The fundamental fact is that objects typically "die young." It has been found 
that usually between 80% and 98% of all newly allocated objects die within a 
few million instructions, or before another megabyte has been allocated. That 
is, objects often become unreachable before any garbage collection is invoked. 
Thus, is it quite cost effective to garbage collect new objects frequently. 

Yet, objects that survive a collection once are likely to survive many more 
collections. With the garbage collectors described so far, the same mature 
objects will be found to be reachable over and over again and, in the case 
of copying collectors, copied over and over again, in every round of garbage 
collection. Generational garbage collection works most frequently on the area 
of the heap that contains the youngest objects, so it tends to collect a lot of 
garbage for relatively little work. The train algorithm, on the other hand, does 
not spend a large proportion of time on young objects, but it does limit the 
pauses due to garbage collection. Thus, a good combination of strategies is 
to use generational collection for young objects, and once an object becomes 



488 CHAPTER 7. RUN-TIME ENVIRONMENTS 

sufficiently mature, to "promote" it to a separate heap that is managed by the 
train algorithm. 

We refer to the set of objects to be collected on one round of partial collection 
as the t a r g e t  set and the rest of the objects as the s tab le  set. Ideally, a partial 
collector should reclaim all objects in the target set that are unreachable from 
the program's root set. However, doing so would require tracing all objects, 
which is what we try to avoid in the first place. Instead, partial collectors 
conservatively reclaim only those objects that cannot be reached through either 
the root set of the program or the stable set. Since some objects in the stable 
set may themselves be unreachable, it is possible that we shall treat as reachable 
some objects in the target set that really have no path from the root set. 

We can adapt the garbage collectors described in Sections 7.6.1 and 7.6.4 to 
work in a partial manner by changing the definition of the "root set." Instead of 
referring to just the objects held in the registers, stack and global variables, the 
root set now also includes all the objects in the stable set that point to objects 
in the target set. References from target objects to other target objects are 
traced as before to find all the reachable objects. We can ignore all pointers to 
stable objects, because these objects are all considered reachable in this round 
of partial collection. 

To identify those stable objects that reference target objects, we can adopt 
techniques similar to those used in incremental garbage collection. In incremen- 
tal collection, we need to remember all the writes of references from scanned 
objects to unreached objects during the tracing process. Here we need to re- 
member all the writes of references from the stable objects to the target objects 
throughout the mutator's execution. Whenever the mutator stores into a sta- 
ble object a reference to an object in the target set, we remember either the 
reference or the location of the write. We refer to the set of objects holding 
references from the stable to the target objects as the r emembered  se t  for this 
set of target objects. As discussed in Section 7.7.2, we can compress the repre- 
sentation of a remembered set by recording only the card or page in which the 
written object is found. 

Partial garbage collectors are often implemented as copying garbage collec- 
tors. Noncopying collectors can also be implemented by using linked lists to 
keep track of the reachable objects. The "generational" scheme described below 
is an example of how copying may be combined with partial collection. 

7.7.4 Generational Garbage Collect ion 

Generational garbage collection is an effective way to exploit the property that 
most objects die young. The heap storage in generational garbage collection is 
separated into a series of partitions. We shall use the convention of numbering 
them 0,1,2, . . . , n, with the lower-numbered partitions holding the younger 
objects. Objects are first created in partition 0. When this partition fills up, 
it is garbage collected, and its reachable objects are moved into partition 1. 
Now, with partition 0 empty again, we resume allocating new objects in that 



7.7. SHORT-PAUSE GARBAGE COLLECTION 489 

partition. When partition 0 again fills,6 it is garbage collected and its reachable 
objects copied into partition 1, where they join the previously copied objects. 
This pattern repeats until partition 1 also fills up, at which point garbage 
collection is applied to partitions 0 and 1. 

In general, each round of garbage collection is applied to all partitions num- 
bered i or below, for some i ;  the proper i to choose is the highest-numbered 
partition that is currently full. Each time an object survives a collection (i.e., 
it is found to be reachable), it is promoted to the next higher partition from 
the one it occupies, until it reaches the oldest partition, the one numbered n. 

Using the terminology introduced in Section 7.7.3, when partitions i and 
below are garbage collected, the partitions from 0 through i make up the target 
set, and all partitions above i comprise the stable set. To support finding root 
sets for all possible partial collections, we keep for each partition i a r emembered  
set ,  consisting of all the objects in partitions above i that point to objects in set 
i .  The root set for a partial collection invoked on set i includes the remembered 
sets for partition i and below. 

In this scheme, all partitions below i are collected whenever we collect i. 
There are two reasons for this policy: 

1. Since younger generations contain more garbage and are collected more 
often anyway, we may as well collect them along with an older generation. 

2. Following this strategy, we need to remember only the references pointing 
from an older generation to a newer generation. That is, neither writes 
to objects in the youngest generation nor promoting objects to the next 
generation causes updates to any remembered set. If we were to collect 
a partition without a younger one, the younger generation would become 
part of the stable set, and we would have to remember references that 
point from younger to older generations as well. 

In summary, this scheme collects younger generations more often, and col- 
lections of these generations are particularly cost effective, since LLobjects die 
young.." Garbage collection of older generations takes more time, since it in- 
cludes the collection of all the younger generations and contains proportionally 
less garbage. Nonetheless, older generations do need to be collected once in 
a while to remove unreachable objects. The oldest generation holds the most 
mature objects; its collection is expensive because it is equivalent to a full collec- 
tion. That is, generational collectors occasionally require that the full tracing 
step be performed and therefore can introduce long pauses into a program's 
execution. An alternative for handling mature objects only is discussed next. 

'~echnical l~,  partitions do not "fill," since they can be expanded with additional disk 
blocks by the memory manager, if desired. However, there is normally a limit on the size of a 
partition, other than the last. We shall refer to reaching this limit as "filling" the partition. 



490 CHAPTER 7. RUN-TIME ENVIRONMENTS 

7.7.5 The Train Algorithm 

While the generational approach is very efficient for the handling of immature 
objects, it is less efficient for the mature objects, since mature objects are moved 
every time there is a collection involving them, and they are quite unlikely to 
be garbage. A different approach to incremental collection, called the train 
algorithm, was developed to improve the handling of mature objects. It can be 
used for collecting all garbage, but it is probably better to use the generational 
approach for immature objects and, only after they have survived a few rounds 
of collection, "promote" them to another heap, managed by the train algorithm. 
Another advantage to the train algorithm is that we never have to do a complete 
garbage collection, as we do occasionally for generational garbage collection. 

To motivate the train algorithm, let us look at a simple example of why it is 
necessary, in the generational approach, to have occasional all-inclusive rounds 
of garbage collection. Figure 7.29 shows two mutually linked objects in two 
partitions i and j, where j > i .  Since both objects have pointers from outside 
their partition, a collection of only partition i or only partition j could never 
collect either of these objects. Yet they may in fact be part of a cyclic garbage 
structure with no links from the outside. In general, the "links" between the 
objects shown may involve many objects and long chains of references. 

Partition i - Partition j 

Figure 7.29: A cyclic structure across partitions that may be cyclic garbage 

In generational garbage collection, we eventually collect partition j, and 
since i < j, we also collect i at that time. Then, the cyclic structure will be 
completely contained in the portion of the heap being collected, and we can 
tell if it truly is garbage. However, if we never have a round of collection that 
includes both i and j ,  we would have a problem with cyclic garbage, just as we 
did with reference counting for garbage collection. 

The train algorithm uses fixed-length partitions, called cars; a car might be 
a single disk block, provided there are no objects larger than disk blocks, or the 
car size could be larger, but it is fixed once and for all. Cars are organized into 
trains. There is no limit to the number of cars in a train, and no limit to the 
number of trains. There is a lexicographic order to cars: first order by train 
number, and within a train, order by car number, as in Fig. 7.30. 

There are two ways that garbage is collected by the train algorithm: 

The first car in lexicographic order (that is, the first remaining car of the 
first remaining train) is collected in one incremental garbage-collection 
step. This step is similar to collection of the first partition in the gener- 
ational algorithm, since we maintain a "remembered" list of all pointers 



7.7. SHORT-PAUSE GARBAGE COLLECTION 

Train 1 

Train 2 

Train 3 

Figure 7.30: Organization of the heap for the train algorithm 

from outside the car. Here, we identify objects with no references at  all, 
as well as garbage cycles that are contained completely within this car. 
Reachable objects in the car are always moved to some other car, so each 
garbage-collected car becomes empty and can be removed from the train. 

a Sometimes, the first train has no external references. That is, there are 
no pointers from the root set to any car of the train, and the remembered 
sets for the cars contain only references from other cars in the train, not 
from other trains. In this situation, the train is a huge collection of cyclic 
garbage, and we delete the entire train. 

Remembered Sets 

We now give the details of the train algorithm. Each car has a remembered set 
consisting of all references to objects in the car from 

a) Objects in higher-numbered cars of the same train, and 

b) Objects in higher-numbered trains. 

In addition, each train has a remembered set consisting of all references from 
higher-numbered trains. That is, the remembered set for a train is the union of 
the remembered sets for its cars, except for those references that are internal 
to the train. It is thus possible to represent both kinds of remembered sets 
by dividing the remembered sets for the cars into "internal" (same train) and 
"external" (other trains) portions. 

Note that references to objects can come from anywhere, not just from 
lexicographically higher cars. However, the two garbage-collection processes 
deal with the first car of the first train, and the entire first train, respectively. 
Thus, when it is time to use the remembered sets in a garbage collection, there 
is nothing earlier from which references could come, and therefore there is no 
point in remembering references to higher cars at any time. We must be careful, 
of course, to manage the remembered sets properly, changing them whenever 
the mutator modifies references in any object. 



CHAPTER 7. RUN-TIME ENVIRONMENTS 

Managing Trains 

Our objective is to draw out of the first train all objects that are not cyclic 
garbage. Then, the first train either becomes nothing but cyclic garbage and is 
therefore collected at the next round of garbage collection, or if the garbage is 
not cyclic, then its cars may be collected one at a time. 

We therefore need to start new trains occasionally, even though there is no 
limit on the number of cars in one train, and we could in principle simply add 
new cars to a single train, every time we needed more space. For example, we 
could start a new train after every k object creations, for some k. That is, in 
general, a new object is placed in the last car of the last train, if there is room, 
or in a new car that is added to the end of the last train, if there is no room. 
However, periodically, we instead start a new train with one car, and place the 
new object there. 

Garbage Collecting a Car 

The heart of the train algorithm is how we process the first car of the first 
train during a round of garbage collection. Initially, the reachable set is taken 
to be the objects of that car with references from the root set and those with 
references in the remembered set for that car. We then scan these objects as 
in a mark-and-sweep collector, but we do not scan any reached objects outside 
the one car being collected. After this tracing, some objects in the car may 
be identified as garbage. There is no need to reclaim their space, because the 
entire car is going to disappear anyway. 

However, there are likely to be some reachable objects in the car, and these 
must be moved somewhere else. The rules for moving an object are: 

If there is a reference in the remembered set from any other train (which 
will be higher-numbered than the train of the car being collected), then 
move the object to one of those trains. If there is room, the object can 
go in some existing car of the train from which a reference emanates, or 
it can go in a new, last car if there is no room. 

If there is no reference from other trains, but there are references from 
the root set or from the first train, then move the object to any other car 
of the same train, creating a new, last car if there is no room. If possible, 
pick a car from which there is a reference, to help bring cyclic structures 
to a single car. 

After moving all the reachable objects from the first car, we delete that car. 

Panic Mode 

There is one problem with the rules above. In order to be sure that all garbage 
will eventually be collected, we need to be sure that every train eventually 
becomes the first train, and if this train is not cyclic garbage, then eventually 



7.7. SHORT-PA USE GARBAGE COLLECTION 493 

all cars of that train are removed and the train disappears one car at a time. 
However, by rule (2) above, collecting the first car of the first train can produce 
a new last car. It cannot produce two or more new cars, since surely all the 
objects of the first car can fit in the new, last car. However, could we be in a 
situation where each collection step for a train results in a new car being added, 
and we never get finished with this train and move on to the other trains? 

The answer is, unfortunately, that such a situation is possible. The problem 
arises if we have a large, cyclic, nongarbage structure, and the mutator manages 
to change references in such a way that we never see, at  the time we collect 
a car, any references from higher trains in the remembered set. If even one 
object is removed from the train during the collection of a car, then we are OK, 
since no new objects are added to the first train, and therefore the first train 
will surely run out of objects eventually. However, there may be no garbage 
at  all that we can collect at a stage, and we run the risk of a loop where we 
perpetually garbage collect only the current first train. 

To avoid this problem, we need to behave differently whenever we encounter 
a futile garbage collection, that is, a car from which not even one object can be 
deleted as garbage or moved to another train. In this "panic mode," we make 
two changes: 

1. When a reference to an object in the first train is rewritten, we maintain 
the reference as a new member of the root set. 

2. When garbage collecting, if an object in the first car has a reference from 
the root set, including dummy references set up by point (I), then we 
move that object to another train, even if it has no references from other 
trains. It is not important which train we move it to, as long as it is not 
the first train. 

In this way, if there are any references from outside the first train to objects 
in the first train, these references are considered as we collect every car, and 
eventually some object will be removed from that train. We can then leave panic 
mode and proceed normally, sure that the current first train is now smaller than 
it was. 

7.7.6 Exercises for Section 7.7 

Exercise 7.7.1 : Suppose that the network of objects from Fig. 7.20 is managed 
by an incremental algorithm that uses the four lists Unreached, Unscanned, 
Scanned, and Free, as in Baker's algorithm. To be specific, the Unscanned list 
is managed as a queue, and when more than one object is to be placed on this list 
due to the scanning of one object, we do so in alphabetical order. Suppose also 
that we use write barriers to assure that no reachable object is made garbage. 
Starting with A and B on the Unscanned list, suppose the following events 
occur: 

i .  A is scanned. 



494 CHAPTER 7. RUN-TIME ENVIRONMENTS 

ii. The pointer A -+ D is rewritten to be A -+ H. 

iii. B is scanned. 

iv. D is scanned. 

v. The pointer B -+ C is rewritten to be B -+ I. 

Simulate the entire incremental garbage collection, assuming no more pointers 
are rewritten. Which objects are garbage? Which objects are placed on the 
Free list? 

Exercise 7.7.2 : Repeat Exercise 7.7.1 on the assumption that 

a) Events (ii) and (v) are interchanged in order. 

b) Events (ii) and (v) occur before (i), (iii), and (iv). 

Exercise 7.7.3 : Suppose the heap consists of exactly the nine cars on three 
trains shown in Fig. 7.30 (i.e., ignore the ellipses). Object o in car I1 has 
references from cars 12, 23, and 32. When we garbage collect car 11, where 
might o wind up? 

Exercise 7.7.4 : Repeat Exercise 7.7.3 for the cases that o has 

a) Only references from cars 22 and 31. 

b) No references other than from car 11. 

Exercise 7.7.5 : Suppose the heap consists of exactly the nine cars on three 
trains shown in Fig. 7.30 (i.e., ignore the ellipses). We are currently in panic 
mode. Object 01 in car 11 has only one reference, from object 02 in car 12. That 
reference is rewritten. When we garbage collect car 11, what could happen to 
ol? 

7.8 Advanced Topics in Garbage Collection 
We close our investigation of garbage collection with brief treatments of four 
additional topics: 

1. Garbage collection in parallel environments. 

2. Partial relocations of objects. 

3. Garbage collection for languages that are not type-safe. 

4. The interaction between programmer-controlled and automatic garbage 
collect ion. 



7.8. ADVANCED TOPICS IN GARBAGE COLLECTION 

7.8.1 Parallel and Concurrent Garbage Collection 

Garbage collection becomes even more challenging when applied to applications 
running in parallel on a multiprocessor machine. It is not uncommon for server 
applications to  have thousands of threads running at the same time; each of 
these threads is a mutator. Typically, the heap will consist of gigabytes of 
memory. 

Scalable garbage-collection algorithms must take advantage of the presence 
of multiple processors. We say a garbage collector is parallel if it uses multiple 
threads; it is concurrent  if it runs simultaneously with the mutator. 

We shall describe a parallel, and mostly concurrent, collector that uses a 
concurrent and parallel phase that does most of the tracing work, and then a 
stop-the-world phase that guarantees all the reachable objects are found and re- 
claims the storage. This algorithm introduces no new basic concepts in garbage 
collection per se; it shows how we can combine the ideas described so far to 
create a full solution to the parallel-and-concurrent collection problem. How- 
ever, there are some new implementation issues that arise due to the nature 
of parallel execution. We shall discuss how this algorithm coordinates multiple 
threads in a parallel computation using a rather common work-queue model. 

To understand the design of the algorithm we must keep in mind the scale 
of the problem. Even the root set of a parallel application is much larger, 
consisting of every thread's stack, register set and globally accessible variables. 
The amount of heap storage can be very large, and so is the amount of reachable 
data. The rate at which mutations take place is also much greater. 

To reduce the pause time, we can adapt the basic ideas developed for in- 
cremental analysis to overlap garbage collection with mutation. Recall that an 
incremental analysis, as discussed in Section 7.7, performs the following three 
steps: 

1. Find the root set. This step is normally performed atomically, that is, 
with the mutator(s) stopped. 

Interleave the tracing of the reachable objects with the execution of the 
mutator(s). In this period, every time a mutator writes a reference that 
points from a Scanned object to an Unreached object, we remember that 
reference. As discussed in Section 7.7.2, we have options regarding the 
granularity with which these references are remembered. In this section, 
we shall assume the card-based scheme, where we divide the heap into 
sections called "cards" and maintain a bit map indicating which cards are 
dir ty  (have had one or more references within them rewritten). 

3. Stop the mutator(s) again to rescan all the cards that may hold references 
to unreached objects. 

For a large multithreaded application, the set of objects reached by the root 
set can be very large. It is infeasible to take the time and space to visit all such 
objects while all mutations cease. Also, due to the large heap and the large 



CHAPTER 7. RUN-TIME ENVIRONMENTS 

number of mutation threads, many cards may need to be rescanned after all 
objects have been scanned once. It is thus advisable to scan some of these cards 
in parallel, while the mutators are allowed to continue to execute concurrently. 

To implement the tracing of step (2) above, in parallel, we shall use multiple 
garbage-collecting threads concurrently with the mutator threads to trace most 
of the reachable objects. Then, to implement step (3), we stop the mutators 
and use parallel threads to ensure that all reachable objects are found. 

The tracing of step (2) is carried out by having each mutator thread per- 
form part of the garbage collection, along with its own work. In addition, we 
use threads that are dedicated purely to collecting garbage. Once garbage col- 
lection has been initiated, whenever a mutator thread performs some memory- 
allocation operation, it also performs some tracing computation. The pure 
garbage-collecting threads are put to use only when a machine has idle cycles. 
As in incremental analysis, whenever a mutator writes a reference that points 
from a Scanned object to an Unreached object, the card that holds this reference 
is marked dirty and needs to be rescanned. 

Here is an outline of the parallel, concurrent garbage-collection algorithm. 

1. Scan the root set for each mutator thread, and put all objects directly 
reachable from that thread into the Unscanned state. The simplest incre- 
mental approach to this step is to wait until a mutator thread calls the 
memory manager, and have it scan its own root set if that has not already 
been done. If some mutator thread has not called a memory allocation 
function, but all the rest of tracing is done, then this thread must be 
interrupted to have its root set scanned. 

2. Scan objects that are in the Unscanned state. To support parallel com- 
putation, we use a work queue of fixed-size work packets, each of which 
holds a number of Unscanned objects. Unscanned objects are placed in 
work packets as they are discovered. Threads looking for work will de- 
queue these work packets and trace the Unscanned objects therein. This 
strategy allows the work to be spread evenly among workers in the tracing 
process. If the system runs out of space, and we cannot find the space to 
create these work packets, we simply mark the cards holding the objects 
to force them to be scanned. The latter is always possible because the bit 
array holding the marks for the cards has already been allocated. 

3. Scan the objects in dirty cards. When there are no more Unscanned ob- 
jects left in the work queue, and all threads' root sets have been scanned, 
the cards are rescanned for reachable objects. As long as the mutators 
continue to execute, dirty cards continue to be produced. Thus, we need 
to stop the tracing process using some criterion, such as allowing cards to 
be rescanned only once or a fixed number of times, or when the number 
of outstanding cards is reduced to some threshold. As a result, this paral- 
lel and concurrent step normally terminates before completing the trace, 
which is finished by the final step, below. 



7.8. ADVANCED TOPICS IN GARBAGE COLLECTION 

4. The final step guarantees that all reachable objects are marked as reached. 
With all the mutators stopped, the root sets for all the threads can now 
be found quickly using all the processors in the system. Because the 
reachability of most objects has been traced, only a small number of 
objects are expected to be placed in the Unscanned state. All the threads 
then participate in tracing the rest of the reachable objects and rescanning 
all the cards. 

It is important that we control the rate at which tracing takes place. The 
tracing phase is like a race. The mutators create new objects and new references 
that must be scanned, and the tracing tries to scan all the reachable objects and 
rescan the dirty cards generated in the meanwhile. It is not desirable to start 
the tracing too much before a garbage collection is needed, because that will 
increase the amount of floating garbage. On the other hand, we cannot wait 
until the memory is exhausted before the tracing starts, because then mutators 
will not be able to make forward progress and the situation degenerates to that 
of a stop-the-world collector. Thus, the algorithm must choose the time to 
commence the collection and the rate of tracing appropriately. An estimate 
of the mutation rate from previous cycles of collection can be used to help in 
the decision. The tracing rate is dynamically adjusted to account for the work 
performed by the pure garbage-collecting threads. 

7.8.2 Partial Object Relocation 

As discussed starting in Section 7.6.4, copying or compacting collectors are ad- 
vantageous because they eliminate fragmentation. However, these collectors 
have nontrivial overheads. A compacting collector requires moving all objects 
and updating all the references at the end of garbage collection. A copying 
collector figures out where the reachable objects go as tracing proceeds; if trac- 
ing is performed incrementally, we need either to translate a mutator's every 
reference, or to move all the objects and update their references at the end. 
Both options are very expensive, especially for a large heap. 

We can instead use a copying generational garbage collector. It is effective in 
collecting immature objects and reducing fragmentation, but can be expensive 
when collecting mature objects. We can use the train algorithm to limit the 
amount of mature data analyzed each time. However, the overhead of the train 
algorithm is sensitive to the size of the remembered set for each partition. 

There is a hybrid collection scheme that uses concurrent tracing to reclaim 
all the unreachable objects and at the same time moves only a part of the 
objects. This method reduces fragmentation without incurring the full cost of 
relocation in each collection cycle. 

1. Before tracing begins, choose a part of the heap that will be evacuated. 

2. As the reachable objects are marked, also remember all the references 
pointing to objects in the designated area. 



498 CHAPTER 7. RUN-TIME ENVIRONMENTS 

3. When tracing is complete, sweep the storage in parallel to reclaim the 
space occupied by unreachable objects. 

4. Finally, evacuate the reachable objects occupying the designated area and 
fix up the references to the evacuated objects. 

7.8.3 Conservative Collection for Unsafe Languages 

As discussed in Section 7.5.1, it is impossible to build a garbage collector that is 
guaranteed to work for all C and C++ programs. Since we can always compute 
an address with arithmetic operations, no memory locations in C and C++ can 
ever be shown to be unreachable. However, many C or C++ programs never 
fabricate addresses in this way. It has been demonstrated that a conservative 
garbage collector - one that does not necessarily discard all garbage - can be 
built to work well in practice for this class of programs. 

A conservative garbage collector assumes that we cannot fabricate an ad- 
dress, or derive the address of an allocated chunk of memory without an ad- 
dress pointing somewhere in the same chunk. We can find all the garbage in 
programs satisfying such an assumption by treating as a valid address any bit 
pattern found anywhere in reachable memory, as long as that bit pattern may 
be construed as a memory location. This scheme may classify some data erro- 
neously as addresses. It is correct, however, since it only causes the collector to 
be conservative and keep more data than necessary. 

Object relocation, requiring all references to the old locations be updated to 
point to the new locations, is incompatible with conservative garbage collection. 
Since a conservative garbage collector does not know if a particular bit pattern 
refers to an actual address, it cannot change these patterns to point to new 
addresses. 

Here is how a conservative garbage collector works. First, the memory 
manager is modified to keep a data map of all the allocated chunks of memory. 
This map allows us to find easily the starting and ending boundary of the chunk 
of memory that spans a certain address. The tracing starts by scanning the 
program's root set to find any bit pattern that looks like a memory location, 
without worrying about its type. By looking up these potential addresses in the 
data map, we can find the starting addresses of those chunks of memory that 
might be reached, and place them in the Unscanned state. We then scan all the 
unscanned chunks, find more (presumably) reachable chunks of memory, and 
place them on the work list until the work list becomes empty. After tracing 
is done, we sweep through the heap storage using the data map to locate and 
free all the unreachable chunks of memory. 

7.8.4 Weak References 

Sometimes, programmers use a language with garbage collection, but also wish 
to manage memory, or parts of memory, themselves. That is, a programmer 
may know that certain objects are never going to be accessed again, even though 



7.8. ADVANCED TOPICS IN GARBAGE COLLECTION 499 

references t o  the objects remain. An example from compiling will suggest the 
problem. 

Example 7.17 : We have seen that the lexical analyzer often manages a sym- 
bol table by creating an object for each identifier it sees. These objects may 
appear as lexical values attached to leaves of the parse tree representing those 
identifiers, for instance. However, it is also useful to  create a hash table, keyed 
by the identifier's string, to  locate these objects. That table makes it easier for 
the lexical analyzer to  find the object when it encounters a lexeme that is an 
identifier. 

When the compiler passes the scope of an identifier I, its symbol-table 
object no longer has any references from the parse tree, or probably any other 
intermediate structure used by the compiler. However, a reference to  the object 
is still sitting in the hash table. Since the hash table is part of the root set of the 
compiler, the object cannot be garbage collected. If another identifier with the 
same lexeme as I is encountered, then it will be discovered that I is out of scope, 
and the reference to  its object will be deleted. However, if no other identifier 
with this lexeme is encountered, then I 's  object may remain as uncollectable, 
yet useless, throughout compilation. O 

If the problem suggested by Example 7.17 is important, then the compiler 
writer could arrange to delete from the hash table all references to  objects as 
soon as their scope ends. However, a technique known as weak references allows 
the programmer to  rely on automatic garbage collection, and yet not have the 
heap burdened with reachable, yet truly unused, objects. Such a system allows 
certain references to  be declared "weak." An example would be all the references 
in the hash table we have been discussing. When the garbage collector scans 
an object, it does not follow weak references within that object, and does not 
make the objects they point t o  reachable. Of course, such an object may still 
be reachable if there is another reference to  it that is not weak. 

7.8.5 Exercises for Section 7.8 

! Exercise 7.8.1 : In Section 7.8.3 we suggested that it was possible to  garbage 
collect for C programs that do not fabricate expressions that point to  a place 
within a chunk unless there is an address that points somewhere within that 
same chunk. Thus, we rule out code like 

because, while p might point to  some chunk accidentally, there could be no other 
pointer to that chunk. On the other hand, with the code above, it is more likely 
that p points nowhere, and executing that code will result in a segmentation 
fault. However, in C it is possible to write code such that a variable like p is 
guaranteed to  point to some chunk, and yet there is no pointer to  that chunk. 
Write such a program. 



CHAPTER 7. RUN-TIME ENVIRONMENTS 

7.9 Summary of Chapter 7 

+ Run-Time Organixation. To implement the abstractions embodied in the 
source language, a compiler creates and manages a run-time environment 
in concert with the operating system and the target machine. The run- 
time environment has static data areas for the object code and the static 
data objects created at compile time. It also has dynamic stack and heap 
areas for managing objects created and destroyed as the target program 
executes. 

+ Control Stack. Procedure calls and returns are usually managed by a run- 
time stack called the control stack. We can use a stack because procedure 
calls or activations nest in time; that is, if p calls q, then this activation 
of q is nested within this activation of p. 

+ Stack Allocation. Storage for local variables can allocated on a run-time 
stack for languages that allow or require local variables to become inacces- 
sible when their procedures end. For such languages, each live activation 
has an activation record (or frame) on the control stack, with the root of 
the activation tree at the bottom, and the entire sequence of activation 
records on the stack corresponding to the path in the activation tree to 
the activation where control currently resides. The latter activation has 
its record at the top of the stack. 

+ Access t o  Nonlocal Data on  the Stack. For languages like C that do not 
allow nested procedure declarations, the location for a variable is either 
global or found in the activation record on top of the run-time stack. For 
languages with nested procedures, we can access nonlocal data on the 
stack through access links, which are pointers added to each activation 
record. The desired nonlocal data is found by following a chain of access 
links to the appropriate activation record. A display is an auxiliary array, 
used in conjunction with access links, that provides an efficient short-cut 
alternative to a chain of access links. 

+ Heap Management. The heap is the portion of the store that is used for 
data that can live indefinitely, or until the program deletes it explicitly. 
The memory  manager allocates and deallocates space within the heap. 
Garbage collection finds spaces within the heap that are no longer in use 
and can therefore be reallocated to house other data items. For languages 
that require it, the garbage collector is an important subsystem of the 
memory manager. 

+ Exploiting Locality. By  making good use of the memory hierarchy, mem- 
ory managers can influence the run time of a program. The time taken to 
access different parts of memory can vary from nanoseconds to millisec- 
onds. Fortunately, most programs spend most of their time executing a 
relatively small fraction of the code and touching only a small fraction of 



7.9. SUMMARY OF CHAPTER 7 

the data. A program has temporal locality if it is likely to  access the same 
memory locations again soon; it has spatial locality if it is likely to  access 
nearby memory locations soon. 

+ Reducing Fragmentation. As the program allocates and deallocates mem- 
ory, the heap may get fragmented, or broken into large numbers of small 
noncontiguous free spaces or holes. The best fit strategy - allocate the 
smallest available hole that satisfies a request - has been found empir- 
ically to  work well. While best fit tends to  improve space utilization, it 
may not be best for spatial locality. Fragmentation can be reduced by 
combining or coalescing adjacent holes. 

+ Manual Deallocation. Manual memory management has two common 
failings: not deleting data that can not be referenced is a memory-leak 
error, and referencing deleted data is a dangling-pointer-dereference error. 

+ Reachability. Garbage is data that cannot be referenced or reached. There 
are two basic ways of finding unreachable objects: either catch the tran- 
sition as a reachable object turns unreachable, or periodically locate all 
reachable objects and infer that all remaining objects are unreachable. 

+ Reference-Counting Collectors maintain a count of the references to  an ob- 
ject; when the count transitions to zero, the object becomes unreachable. 
Such collectors introduce the overhead of maintaining references and can 
fail to find "cyclic" garbage, which consists of unreachable objects that 
reference each other, perhaps through a chain of references. 

+ Trace- Based Garbage Collectors iteratively examine or trace all references 
to  find reachable objects, starting with the root set consisting of objects 
that can be accessed directly without having to dereference any pointers. 

+ Mark-and-Sweep Collectors visit and mark all reachable objects in a first 
tracing step and then sweep the heap to free up unreachable objects. 

+ Mark-and-Compact Collectors improve upon mark-and-sweep; they relo- 
cate reachable objects in the heap to eliminate memory fragmentation. 

+ Copying Collectors break the dependency between tracing and finding 
free space. They partition the memory into two semispaces, A and B. 
Allocation requests are satisfied from one semispace, say A, until it fills 
up, a t  which point the garbage collector takes over, copies the reachable 
objects to  the other space, say B, and reverses the roles of the semispaces. 

+ Incremental Collectors. Simple trace-based collectors stop the user pro- 
gram while garbage is collected. Incremental collectors interleave the 
actions of the garbage collector and the mutator or user program. The 
mutator can interfere with incremental reachability analysis, since it can 



502 CHAPTER 7. RUN-TIME ENVIRONMENTS 

change the references within previously scanned objects. Incremental col- 
lectors therefore play it safe by overestimating the set of reachable objects; 
any "floating garbage" can be picked up in the next round of collection. 

+ Partial Collectors also reduce pauses; they collect a subset of the garbage 
at a time. The best known of partial-collection algorithms, generational 
garbage collection, partitions objects according to how long they have 
been allocated and collects the newly created objects more often because 
they tend to have shorter lifetimes. An alternative algorithm, the train 
algorithm, uses fixed length partitions, called cars, that are collected into 
trains. Each collection step is applied to the first remaining car of the first 
remaining train. When a car is collected, reachable objects are moved out 
to other cars, so this car is left with garbage and can be removed from 
the train. These two algorithms can be used together to create a partial 
collector that applies the generational algorithm to younger objects and 
the train algorithm to more mature objects. 

7.10 References for Chapter 7 

In mathematical logic, scope rules and parameter passing by substitution date 
back to Frege [8]. Church's lambda calculus [3] uses lexical scope; it has been 
used as a model for studying programming languages. Algol 60 and its succes- 
sors, including C and Java, use lexical scope. Once introduced by the initial 
implementation of Lisp, dynamic scope became a feature of the language; Mc- 
Carthy [14] gives the history. 

Many of the concepts related to stack allocation were stimulated by blocks 
and recursion in Algol 60. The idea of a display for accessing nonlocals in 
a lexically scoped language is due to Dijkstra [5]. A detailed description of 
stack allocation, the use of a display, and dynamic allocation of arrays appears 
in Randell and Russell [16]. Johnson and Ritchie [lo] discuss the design of a 
calling sequence that allows the number of arguments of a procedure to vary 
from call to call. 

Garbage collection has been an active area of investigation; see for example 
Wilson [17]. Reference counting dates back to Collins [4]. Trace-based collection 
dates back to McCarthy [13], who describes a mark-sweep algorithm for fixed- 
length cells. The boundary-tag for managing free space was designed by Knuth 
in 1962 and published in [ll].  

Algorithm 7.14 is based on Baker [I]. Algorithm 7.16 is based on Cheney's [2] 
nonrecursive version of Fenichel and Yochelson's [7] copying collector. 

Incremental reachability analysis is explored by Dijkstra et al. [6]. Lieber- 
man and Hewitt [12] present a generational collector as an extension of copying 
collection. The train algorithm began with Hudson and Moss [9]. 

I .  Baker, H. G. Jr., "The treadmill: real-time garbage collection without 
motion sickness," ACM SIGPLAN Notices 27:3 (Mar., 1992), pp. 66-70. 



7.10. REFERENCES FOR CHAPTER 7 503 

2. Cheney, C. J . ,  "A nonrecursive list compacting algorithm," Comm. ACM 
13:ll (Nov., 1970), pp. 677-678. 

3. Church, A., The Calculi of Lambda Conversion, Annals of Math. Studies, 
No. 6, Princeton University Press, Princeton, N. J. ,  1941. 

4. Collins, G. E., "A method for overlapping and erasure of lists," Comm. 
ACM 2:12 (Dec., 1960), pp. 655-657. 

5. Dijkstra, E. W ., "Recursive programming," Numerische Math. 2 (1960), 
pp. 312-318. 

6. Dijkstra, E. W., L. Lamport, A. J. Martin, C. S. Scholten, and E. F. 
M. Steffens, "On-the-fly garbage collection: an exercise in cooperation," 
Comm. ACM 21: l l  (1978), pp. 966-975. 

7. Fenichel, R. R. and J .  C. Yochelson, "A Lisp garbage-collector for virtual- 
memory computer systems", Comm. ACM 12:11 (1969), pp. 611-612. 

8. Frege, G., "Begriffsschrift, a formula language, modeled upon that of 
arithmetic, for pure thought," (1879). In J .  van Heijenoort, From Frege 
to Godel, Harvard Univ. Press, Cambridge MA, 1967. 

9. Hudson, R. L. and J .  E. B. Moss, "Incremental Collection of Mature 
Objects", Proc. Intl. Workshop on Memory Management, Lecture Notes 
In Computer Science 637  (1992), pp. 388-403. 

10. Johnson, S. C. and D. M. Ritchie, "The C language calling sequence," 
Computing Science Technical Report 102, Bell Laboratories, Murray Hill 
NJ, 1981. 

11. Knuth, D. E., Art of Computer Programming, Volume I :  Fundamental 
Algorithms, Addison-Wesley, Boston MA, 1968. 

12. Lieberman, H. and C. Hewitt, "A real-time garbage collector based on 
the lifetimes of objects," Comm. ACM 26:6 (June 1983), pp. 419-429. 

13. McCarthy, J. ,  "Recursive functions of symbolic expressions and their com- 
putation by machine," Comm. ACM 3:4 (Apr., 1960), pp. 184-195. 

14. McCarthy, J . ,  L'History of Lisp." See pp. 173-185 in R. L. Wexelblat (ed.), 
History of Programming Languages, Academic Press, New York, 1981. 

15. Minsky, M., "A LISP garbage collector algorithm using secondary stor- 
age," A. I. Memo 58, MIT Project MAC, Cambridge MA, 1963. 

16. Randell, B. and L. J. Russell, Algol 60 Implementation, Academic Press, 
New York, 1964. 

17. Wilson, P. R., "Uniprocessor garbage collection techniques," 





Chapter 8 

Code Generation 

The final phase in our compiler model is the code generator. It takes as input 
the intermediate representation (IR) produced by the front end of the com- 
piler, along with relevant symbol table information, and produces as output a 
semantically equivalent target program, as shown in Fig. 8.1. 

The requirements imposed on a code generator are severe. The target pro- 
gram must preserve the semantic meaning of the source program and be of 
high quality; that is, it must make effective use of the available resources of the 
target machine. Moreover, the code generator it self must run efficiently. 

The challenge is that, mathematically, the problem of generating an optimal 
target program for a given source program is undecidable; many of the subprob- 
lems encountered in code generation such as register allocation are computa- 
tionally intractable. In practice, we must be content with heuristic techniques 
that generate good, but not necessarily optimal, code. Fortunately, heuristics 
have matured enough that a carefully designed code generator can produce code 
that is several times faster than code produced by a naive one. 

Compilers that need to produce efficient target programs, include an op- 
timization phase prior to code generation. The optimizer maps the IR into 
IR from which more efficient code can be generated. In general, the code- 
optimization and code-generation phases of a compiler, often referred to as the 
back end, may make multiple passes over the IR before generating the target 
program. Code optimization is discussed in detail in Chapter 9. The tech- 
niques presented in this chapter can be used whether or not an optimization 
phase occurs before code generation. 

A code generator has three primary tasks: instruction selection, register 

 source^ FIont 1 intermediats Code ?ntermediatq Code p a r g e t  
program End code ) Optimixer ) code Generator program 

Figure 8.1: Position of code generator 



CHAPTER 8. CODE GENERATION 

allocation and assignment, and instruction ordering. The importance of these 
tasks is outlined in Section 8.1. Instruction selection involves choosing appro- 
priate target-machine instructions to implement the IR statements. Register 
allocation and assignment involves deciding what values to keep in which reg- 
isters. Instruction ordering involves deciding in what order to schedule the 
execution of instructions. 

This chapter presents algorithms that code generators can use to trans- 
late the IR into a sequence of target language instructions for simple register 
machines. The algorithms will be illustrated by using the machine model in Sec- 
tion 8.2. Chapter 10 covers the problem of code generation for complex modern 
machines that support a great deal of parallelism within a single instruction. 

After discussing the broad issues in the design of a code generator, we show 
what kind of target code a compiler needs to generate to support the abstrac- 
tions embodied in a typical source language. In Section 8.3, we outline imple- 
mentations of static and stack allocation of data areas, and show how names in 
the IR can be converted into addresses in the target code. 

Many code generators partition IR instructions into "basic blocks," which 
consist of sequences of instructions that are always executed together. The 
partitioning of the IR into basic blocks is the subject of Section 8.4. The 
following section presents simple local transformations that can be used to 
transform basic blocks into modified basic blocks from which more efficient 
code can be generated. These transformations are a rudimentary form of code 
optimization, although the deeper theory of code optimization will not be taken 
up until Chapter 9. An example of a useful, local transformation is the discovery 
of common subexpressions at the level of intermediate code and the resultant 
replacement of arithmetic operations by simpler copy operations. 

Section 8.6 presents a simple code-generation algorithm that generates code 
for each statement in turn, keeping operands in registers as long as possible. 
The output of this kind of code generator can be readily improved by peephole 
optimization techniques such as those discussed in the following Section 8.7. 

The remaining sections explore instruction selection and register allocation. 

8.1 Issues in the Design of a Code Generator 

While the details are dependent on the specifics of the intermediate represen- 
tation, the target language, and the run-time system, tasks such as instruction 
selection, register allocation and assignment, and instruction ordering are en- 
countered in the design of almost all code generators. 

The most important criterion for a code generator is that it produce cor- 
rect code. Correctness takes on special significance because of the number of 
special cases that a code generator might face. Given the premium on correct- 
ness, designing a code generator so it can be easily implemented, tested, and 
maintained is an important design goal. 



8.1. ISSUES IN THE DESIGN OF A CODE GENERATOR 

8.1.1 Input to the Code Generator 

The input to  the code generator is the intermediate representation of the source 
program produced by the front end, along with information in the symbol table 
that is used to  determine the run-time addresses of the data objects denoted 
by the names in the IR. 

The many choices for the IR include three-address representations such as 
quadruples, triples, indirect triples; virtual machine representations such as 
bytecodes and stack-machine code; linear representations such as postfix no- 
tation; and graphical representations such as syntax trees and DAG's. Many 
of the algorithms in this chapter are couched in terms of the representations 
considered in Chapter 6: three-address code, trees, and DAG7s. The techniques 
we discuss can be applied, however, to the other intermediate representations 
as well. 

In this chapter, we assume that the front end has scanned, parsed, and 
translated the source program into a relatively low-level IR, so that the values 
of the names appearing in the IR can be represented by quantities that the 
target machine can directly manipulate, such as integers and floating-point 
numbers. We also assume that all syntactic and static semantic errors have 
been detected, that the necessary type checking has taken place, and that type- 
conversion operators have been inserted wherever necessary. The code generator 
can therefore proceed on the assumption that its input is free of these kinds of 
errors. 

8.1.2 The Target Program 

The instruction-set architecture of the target machine has a significant im- 
pact on the difficulty of constructing a good code generator that produces 
high-quality machine code. The most common target-machine architectures 
are RISC (reduced instruction set computer), CISC (complex instruction set 
computer), and stack based. 

A RISC machine typically has many registers, three-address instructions, 
simple addressing modes, and a relatively simple instruction-set architecture. 
In contrast, a CISC machine typically has few registers, two-address instruc- 
tions, a variety of addressing modes, several register classes, variable-length 
instructions, and instructions with side effects. 

In a stack-based machine, operations are done by pushing operands onto a 
stack and then performing the operations on the operands at the top of the 
stack. To achieve high performance the top of the stack is typically kept in 
registers. Stack-based machines almost disappeared because it was felt that 
the stack organization was too limiting and required too many swap and copy 
operations. 

However, stack-based architectures were revived with the introduction of 
the Java Virtual Machine (JVM). The JVM is a software interpreter for Java 
bytecodes, an intermediate language produced by Java compilers. The inter- 



CHAPTER 8. CODE GENERATION 

preter provides software compatibility across multiple platforms, a major factor 
in the success of Java. 

To overcome the high performance penalty of interpretation, which can be 
on the order of a factor of 10, just-in-time (JIT) Java compilers have been 
created. These JIT compilers translate bytecodes during run time to the native 
hardware instruction set of the target machine. Another approach to improving 
Java performance is to build a compiler that compiles directly into the machine 
instructions of the target machine, bypassing the Java bytecodes entirely. 

Producing an absolute machine-language program as output has the ad- 
vantage that it can be placed in a fixed location in memory and immediately 
executed. Programs can be compiled and executed quickly. 

Producing a relocatable machine-language program (often called an object 
module) as output allows subprograms to be compiled separately. A set of 
relocatable object modules can be linked together and loaded for execution by a 
linking loader. Although we must pay the added expense of linking and loading 
if we produce relocatable object modules, we gain a great deal of flexibility 
in being able to compile subroutines separately and to call other previously 
compiled programs from an object module. If the target machine does not 
handle relocation automatically, the compiler must provide explicit relocation 
information to the loader to link the separately compiled program modules. 

Producing an assembly-language program as output makes the process of 
code generation somewhat easier. We can generate symbolic instructions and 
use the macro facilities of the assembler to help generate code. The price paid 
is the assembly step after code generation. 

In this chapter, we shall use a very simple RISC-like computer as our target 
machine. We add to it some CISC-like addressing modes so that we can also 
discuss code-generation techniques for CISC machines. For readability, we use 
assembly code as the target language . As long as addresses can be calculated 
from offsets and other information stored in the symbol table, the code gener- 
ator can produce relocatable or absolute addresses for names just as easily as 
symbolic addresses. 

8.1.3 Instruction Selection 

The code generator must map the IR program into a code sequence that can be 
executed by the target machine. The complexity of performing this mapping is 
determined by a factors such as 

the level of the IR 

the nature of the instruction-set architecture 

the desired quality of the generated code. 

If the IR is high level, the code generator may translate each IR statement 
into a sequence of machine instructions using code templates. Such statement- 
by-statement code generation, however, often produces poor code that needs 



8.1. ISSUES IN THE DESIGN OF A CODE GENERATOR 509 

further optimization. If the IR reflects some of the low-level details of the un- 
derlying machine, then the code generator can use this information to generate 
more efficient code sequences. 

The nature of the instruction set of the target machine has a strong effect 
on the difficulty of instruction selection. For example, the uniformity and com- 
pleteness of the instruction set are important factors. If the target machine 
does not support each data type in a uniform manner, then each exception to 
the general rule requires special handling. On some machines, for example, 
floating-point operations are done using separate registers. 

Instruction speeds and machine idioms are other important factors. If we 
do not care about the efficiency of the target program, instruction selection is 
straightforward. For each type of three-address statement, we can design a code 
skeleton that defines the target code to be generated for that construct. For 
example, every three-address statement of the form x = y + z, where x, y, and z 
are statically allocated, can be translated into the code sequence 

LD ROY y // RO = y (load y into register RO) 
A D D R O ,  R O Y  z / /  RO = R O  + z ( a d d z t o ~ ~ )  
S T  x ,  RO // x = RO (store RO into x) 

This strategy often produces redundant loads and stores. For example, the 
sequence of t hree-address statements 

would be translated into 

LD R O Y  b / /  RO = b 
ADD ROY ROY c // RO = RO + c 
S T  a ,  RO / /  a = RO 
LD ROY a // RO = a 
ADD ROY ROY e // RO = RO + e 
S T  d ,  RO // d = RO 

Here, the fourth statement is redundant since it loads a value that has just been 
stored, and so is the third if a is not subsequently used. 

The quality of the generated code is usually determined by its speed and 
size. On most machines, a given IR program can be implemented by many 
different code sequences, with significant cost differences between the different 
implementations. A naive translation of the intermediate code may therefore 
lead to correct but unacceptably inefficient target code. 

For example, if the target machine has an "increment" instruction (INC), 
then the three-address statement a = a + 1 may be implemented more efficiently 
by the single instruction INC a, rather than by a more obvious sequence that 
loads a into a register, adds one to the register, and then stores the result back 
into a: 



CHAPTER 8. CODE GENERATION 

LD RO, a // RO = a 
ADD ROY ROY #1 // RO = RO + 1 
ST a, RO // a = RO 

We need to know instruction costs in order to design good code sequences 
but, unfortunately, accurate cost information is often difficult to obtain. De- 
ciding which machine-code sequence is best for a given three-address construct 
may also require knowledge about the context in which that construct appears. 

In Section 8.9 we shall see that instruction selection can be modeled as a 
tree-pattern matching process in which we represent the IR and the machine 
instructions as trees. We then attempt to "tile" an IR tree with a set of sub- 
trees that correspond to machine instructions. If we associate a cost with each 
machine-instruction subtree, we can use dynamic programming to generate op- 
timal code sequences. Dynamic programming is discussed in Section 8.11. 

8.1.4 Register Allocation 

A key problem in code generation is deciding what values to hold in what 
registers. Registers are the fastest computational unit on the target machine, 
but we usually do not have enough of them to hold all values. Values not held 
in registers need to reside in memory. Instructions involving register operands 
are invariably shorter and faster than those involving operands in memory, so 
efficient utilization of registers is particularly important. 

The use of registers is often subdivided into two subproblems: 

1. Register allocation, during which we select the set of variables that will 
reside in registers at each point in the program. 

2. Register assignment, during which we pick the specific register that a 
variable will reside in. 

Finding an optimal assignment of registers to variables is difficult, even 
with single-register machines. Mathematically, the problem is NP-complete. 
The problem is further complicated because the hardware and/or the operating 
system of the target machine may require that certain register-usage conventions 
be observed. 

Example 8.1 : Certain machines require register-pairs (an even and next odd- 
numbered register) for some operands and results. For example, on some ma- 
chines, integer multiplication and integer division involve register pairs. The 
multiplication instruction is of the form 

where x, the multiplicand, is the even register of an even/odd register pair and 
y, the multiplier, is the odd register. The product occupies the entire even/odd 
register pair. The division instruction is of the form 



8.1. ISSUES IN THE DESIGN OF A CODE GENERATOR 511 

where the dividend occupies an evenlodd register pair whose even register is x; 
the divisor is y. After division, the even register holds the remainder and the 
odd register the quotient. 

Now, consider the two three-address code sequences in Fig. 8.2 in which the 
only difference in (a) and (b) is the operator in the second statement. The 
shortest assembly-code sequences for (a) and (b) are given in Fig. 8.3. 

Figure 8.2: Two three-address code sequences 

L R O , a  
A R 0 , b  
A R O , c  
SRDA ROY 3 2  
D R O , d  
ST R 1 ,  t 

Figure 8.3: Optimal machine-code sequences 

Ri stands for register i. SRDA stands for Shift-Right-Double-Arithmetic and 
SRDA R 0 , 3 2  shifts the dividend into R 1  and clears RO so all bits equal its sign 
bit. L, ST, and A stand for load, store, and add, respectively. vote that the 
optimal choice for the register into which a is to be loaded depends on what 
will ultimately happen to t. 

Strategies for register allocation and assignment are discussed in Section 8.8. 
Section 8.10 shows that for certain classes of machines we can construct code 
sequences that evaluate expressions using as few registers as possible. 

8.1.5 Evaluation Order 

The order in which computations are performed can affect the efficiency of the 
target code. As we shall see, some computation orders require fewer registers 
to hold intermediate results than others. However, picking a best order in 
the general case is a difficult NP-complete problem. Initially, we shall avoid 



512 CHAPTER 8. CODE GENERATION 

the problem by generating code for the three-address statements in the order 
in which they have been produced by the intermediate code generator. In 
Chapter 10, we shall study code scheduling for pipelined machines that can 
execute several operations in a single clock cycle. 

8.2 The Target Language 

Familiarity with the target machine and its instruction set is a prerequisite 
for designing a good code generator. Unfortunately, in a general discussion of 
code generation it is not possible to describe any target machine in sufficient 
detail to generate good code for a complete language on that machine. In 
this chapter, we shall use as a target language assembly code for a simple 
computer that is representative of many register machines. However, the code- 
generation techniques presented in this chapter can be used on many other 
classes of machines as well. 

8.2.1 A Simple Target Machine Model 

Our target computer models a three-address machine with load and store oper- 
ations, computation operations, jump operations, and conditional jumps. The 
underlying computer is a byte-addressable machine with n general-purpose reg- 
isters, RO, R1,  . . . , Rn - 1. A full-fledged assembly language would have scores 
of instructions. To avoid hiding the concepts in a myriad of details, we shall 
use a very limited set of instructions and assume that all operands are integers. 
Most instructions consists of an operator, followed by a target, followed by a 
list of source operands. A label may precede an instruction. We assume the 
following kinds of instructions are available: 

Load operations: The instruction LD dst, addr loads the value in location 
addr into location dst. This instruction denotes the assignment dst = addr. 
The most common form of this instruction is LD r, x which loads the value 
in location x into register r .  An instruction of the form LD r l ,  r2 is a 
register-to-register copy in which the contents of register r 2  are copied 
into register r l .  

Store operations: The instruction ST x, r stores the value in register r into 
the location x. This instruction denotes the assignment x = r .  

Computation operations of the form OP dst, srcl, s r e ,  where OP is a op- 
erator like ADD or SUB, and dst, srcl , and src2 are locations, not necessarily 
distinct. The effect of this machine instruction is to apply the operation 
represented by OP to the values in locations srcl and src2, and place the 
result of this operation in location dst. For example, SUB r l  , r 2 ,  r~ com- 
putes rl = r2 - r s  Any value formerly stored in rl is lost, but if r l  is 
r 2  or r ~ ,  the old value is read first. Unary operators that take only one 
operand do not have a src2. 



8.2. THE TARGET LANGUAGE 

Unconditional jumps: The instruction BR L causes control to branch to 
the machine instruction with label L. (BR stands for branch.) 

Conditional jumps of the form Bcond r,  L, where r is a register, L is a label, 
and cond stands for any of the common tests on values in the register r. 
For example, BLTZ r, L causes a jump to label L if the value in register r is 
less than zero, and allows control to pass to the next machine instruction 
if not. 

We assume our target machine has a variety of addressing modes: 

In instructions, a location can be a variable name x referring to the mem- 
ory location that is reserved for x (that is, the 1-value of x). 

A location can also be an indexed address of the form a(r),  where a is 
a variable and r is a register. The memory location denoted by a(r) is 
computed by taking the 1-value of a and adding to it the value in register 
r. For example, the instruction LD R1, a(R2) has the effect of setting 
R l  = contents (a + contents ( ~ 2 ) ) ,  where contents(x) denotes the contents 
of the register or memory location represented by x. This addressing 
mode is useful for accessing arrays, where a is the base address of the 
array (that is, the address of the first element), and r holds the number 
of bytes past that address we wish to go to reach one of the elements of 
array a. 

A memory location can be an integer indexed by a register. For ex- 
ample, LD R 1 ,  lOO(R2) has the effect of setting R 1  = contents(100 + 
contents(~2)),  that is, of loading into R 1  the value in the memory loca- 
tion obtained by adding 100 to the contents of register R2. This feature 
is useful for following pointers, as we shall see in the example below. 

We also allow two indirect addressing modes: *r means the memory lo- 
cation found in the location represented by the contents of register r and 
*100(r) means the memory location found in the location obtained by 
adding 100 to the contents of r .  For example, LD R1, * 100 (R2) has the 
effect of setting R 1  = contents(contents(l00 + contents(R2))), that is, of 
loading into R 1  the value in the memory location stored in the memory 
location obtained by adding 100 to the contents of register R2. 

Finally, we allow an immediate constant addressing mode. The constant 
is prefixed by #. The instruction LD R1, #I00 loads the integer 100 into 
register R1, and ADD R1, R1, #I00 adds the integer 100 into register R1. ' 

Comments at the end of instructions are preceded by //. 

Example 8.2 : The three-address statement x = y - z can be implemented by 
the machine instructions: 



514 CHAPTER 8. CODE GENERATION 

LD R1, y / /  R1 = y 
LD R2, z // R2 = z 
SUB R1, R1, R2 // R1 = R1 - R2 
ST x, R1 / /  x = R1 

We can do better, perhaps. One of the goals of a good code-generation algorithm 
is to avoid using all four of these instructions, whenever possible. For example, 
y and/or z may have been computed in a register, and if so we can avoid the LD 
step(s). Likewise, we might be able to avoid ever storing x if its value is used 
within the register set and is not subsequently needed. 

Suppose a is an array whose elements are 8-byte values, perhaps real num- 
bers. Also assume elements of a are indexed starting at 0. We may execute the 
three-address instruction b = a [i] by the machine instructions: 

LD R1, i // R1 = i 
MUL R1, R1, 8 // R1 = Rl * 8 
LD R2, a(R1) // R2 = contents(a + contents(R1)) 
ST b, R2 // b = R2 

That is, the second step computes 8i, and the third step places in register R2 
the value in the ith element of a - the one found in the location that is 8i 
bytes past the base address of the array a. 

Similarly, the assignment into the array a represented by three-address in- 
struction a[j] = c is implemented by: 

LD R1, c // R1 = c 
LD R2, j / /  R2 = j 
MUL R2, R2, 8 // R2 = R2 * 8 
ST a(R2), R1 // contents(a + contents(R2)) = R1 

TO implement a simple pointer indirection, such as the three-address state- 
ment x = *p, we can use machine instructions like: 

The assignment through a pointer *p = y is similarly implemented in machine 
code by: 

Finally, consider a conditional-jump three-address instruction like 



8.2. THE TARGET LANGUAGE 

The machine-code equivalent would be something like: 

LD R1, x // R 1  = x 
LD R2, y / /  R2 = y 
SUB R 1 ,  R1, R2 // R 1  = R 1  - R2 
BLTZ R 1 ,  M / /  i f  R 1  < 0 jump t o  M 

Here, M is the label that represents the first machine instruction generated from 
the three-address instruction that has label L. As for any three-address instruc- 
tion, we hope that we can save some of these machine instructions because the 
needed operands are already in registers or because the result need never be 
stored. 

8.2.2 Program and Instruction Costs 

We often associate a cost with compiling and running a program. Depending 
on what aspect of a program we are interested in optimizing, some common 
cost measures are the length of compilation time and the size, running time 
and power consumption of the target program. 

Determining the actual cost of compiling and running a program is a com- 
plex problem. Finding an optimal target program for a given source program is 
an undecidable problem in general, and many of the subproblems involved are 
NP-hard. As we have indicated, in code generation we must often be content 
with heuristic techniques that produce good but not necessarily optimal target 
programs. 

For the remainder of this chapter, we shall assume each target-language 
instruction has an associated cost. For simplicity, we take the cost of an in- 
struction to be one plus the costs associated with the addressing modes of the 
operands. This cost corresponds to the length in words of the instruction. 
Addressing modes involving registers have zero additional cost, while those in- 
volving a memory location or constant in them have an additional cost of one, 
because such operands have to be stored in the words following the instruction. 
Some examples: 

The instruction LD RO, R 1  copies the contents of register R 1  into register 
RO. This instruction has a cost of one because no additional memory 
words are required. 

The instruction LD R O Y  M loads the contents of memory location M into 
register RO. The cost is two since the address of memory location M is in 
the word following the instruction. 

The instruction LD R1, *100(R2) loads into register R 1  the value given 
by contents(contents(l00 + contents(R2))). The cost is three because the 
constant 100 is stored in the word following the instruction. 



516 CHAPTER 8. CODE GENERATION 

In this chapter we assume the cost of a target-language program on a given 
input is the sum of costs of the individual instructions executed when the pro- 
gram is run on that input. Good code-generation algorithms seek to minimize 
the sum of the costs of the instructions executed by the generated target pro- 
gram on typical inputs. We shall see that in some situations we can actually 
generate optimal code for expressions on certain classes of register machines. 

8.2.3 Exercises for Section 8.2 

Exercise 8.2.1 : Generate code for the following three-address statements as- 
suming all variables are stored in memory locations. 

e) The two statements 

Exercise 8.2.2 : Generate code for the following three-address statements as- 
suming a and b are arrays whose elements are 4-byte values. 

a) The four-statement sequence 

b) The t hree-statement sequence 

c) The three-statement sequence 



8.2. THE TARGET LANGUAGE 517 

Exercise 8.2.3 : Generate code for the following three-address sequence as- 
suming that p and q are in memory locations: 

Exercise 8.2.4 : Generate code for the following sequence assuming that x, y, 
and z are in memory locations: 

i f  x < y goto  L1 
z = o  
got0  L2 

Ll: z = 1 

Exercise 8.2.5 : Generate code for the following sequence assuming hat n is 
in a memory location: 

Exercise 8.2.6 : Determine the costs of the following instruction sequences: 

a> LD ROY y 
LD R1, z 
ADD ROY RO, R1 
ST x, RO 

b LD RO, i 
MUL ROY ROY 8 
LD R1, a(R0) 
ST b, R1 

c> LD ROY c 
LD R1, i 
MUL Rl, R1, 8 
ST a(RI), RO 

d) LD ROY p 
LD Rl, O(R0) 
ST x, R1 



CHAPTER 8. CODE GENERATION 

LD RO, p 
LD R1, x 
ST 0 (RO) , R1 

LD ROY x 
LD R1, y 
SUB RO, RO, R1 
BLTZ *R3, RO 

8.3 Addresses in the Target Code 

In this section, we show how names in the IR can be converted into addresses 
in the target code by looking at  code generation for simple procedure calls and 
returns using static and stack allocation. In Section 7.1, we described how each 
executing program runs in its own logical address space that was partitioned 
into four code and data areas: 

1. A statically determined area Code that holds the executable target code. 
The size of the target code can be determined at compile time. 

2. A statically determined data area Static for holding global constants and 
other data generated by the compiler. The size of the global constants 
and compiler data can also be determined at compile time. 

3. A dynamically managed area Heap for holding data objects that are allo- 
cated and freed during program execution. The size of the Heap cannot 
be determined at compile time. 

4. A dynamically managed area Stack for holding activation records as they 
are created and destroyed during procedure calls and returns. Like the 
Heap, the size of the Stack cannot be determined at compile time. 

8.3.1 Static Allocation 

To illustrate code generation for simplified procedure calls and returns, we shall 
focus on the following three-address statements: 

c a l l  callee 

r e t u r n  

h a l t  

act ion, which is a placeholder for other three-address statements. 

The size and layout of activation records are determined by the code gener- 
ator via the information about names stored in the symbol table. We shall first 
illustrate how to store the return address in an activation record on a procedure 



8.3. ADDRESSES IN THE TARGET CODE 519 

call and how to return control to it after the procedure call. For convenience, 
we assume the first location in the activation holds the return address. 

Let us first consider the code needed to implement the simplest case, static 
allocation. Here, a c a l l  callee statement in the intermediate code can be im- 
plemented by a sequence of two target-machine instructions: 

ST callee.staticArea, #here + 20 
BR cal lee. codeArea 

The ST instruction saves the return address at the beginning of the activation 
record for callee, and the BR transfers control to the target code for the called 
procedure callee. The attribute before callee.staticArea is a constant that gives 
the address of the beginning of the activation record for callee, and the attribute 
callee.codeArea is a constant referring to the address of the first instructiorr of 
the called procedure callee in the Code area of the run-time memory. 

The operand #here+ 20 in the ST instruction is the literal return address; it 
is the address of the instruction following the BR instruction. We assume that 
#here is the address of the current instruction and that the three constants plus 
the two instructions in the calling sequence have a length of 5 words or 20 bytes. 

The code for a procedure ends with a return to the calling procedure, except 
that the first procedure has no caller, so its final instruction is HALT, which 
returns control to the operating system. A r e tu rn  callee statement can be 
implemented by a simple jump instruction 

which transfers control to the address saved at the beginning of the activation 
record for callee. 

Example 8.3 : Suppose we have the following three-address code: 

/ /  code for c 
a c t  ionl 
c a l l  p 
a c t  ionz 
h a l t  

// code for p 
ac t  ion3 
r e tu rn  

Figure 8.4 shows the target program for this three-address code. We use the 
pseudoinstruction ACTION to represent the sequence of machine instructions to 
execute the statement ac t ion ,  which represents three-address code that is not 
relevant for this discussion. We arbitrarily start the code for procedure c at 
address 100 and for procedure p at address 200. We that assume each ACTION 
instruction takes 20 bytes. We further assume that the activation records for 
these procedures are statically allocated starting at locations 300 and 364, re- 
spectively. 

The instructions starting at  address 100 implement the statements 



CHAPTER 8. CODE GENERATION 

ac t i on l ;  c a l l  p; ac t ion2;  h a l t  

of the first procedure c. Execution therefore starts with the instruction ACTIONl 
at address 100. The ST instruction at address 120 saves the return address 140 
in the machine-status field, which is the first word in the activation record of p. 
The BR instruction at address 132 transfers control the first instruction in the 
target code of the called procedure p. 

// code for c 
ACTIONl // code for a c t  ionl 
ST 364, #I40 // save return address 140 in location 364 
BR 200 // call p 
ACTION2 
HALT // return to operating system 
... 

// code for p 
ACTION3 
BR *364 // return to address saved in location 364 

// 300-363 hold activation record for c 
// return address 
// local data for c 

. . . 
// 364-451 hold activation record for p 
// return address 
// local data for p 

Figure 8.4: Target code for static allocation 

After executing ACTION3, the jump instruction at location 220 is executed. 
Since location 140 was saved at address 364 by the call sequence above, *364 
represents 140 when the BR statement at address 220 is executed. Therefore, 
when procedure p terminates, control returns to address 140 and execution of 
procedure c  resumes. 0. 

8.3.2 Stack Allocation 

Static allocation can become stack allocation by using relative addresses for 
storage in activation records. In stack allocation, however, the position of an 
activation record for a procedure is not known until run time. This position is 
usually stored in a register, so words in the activation record can be accessed as 
offsets from the value in this register. The indexed address mode of our target 
machine is convenient for this purpose. 

Relative addresses in an activation record can be taken as offsets from any 
known position in the activation record, as we saw in Chapter 7. For conve- 



8.3. ADDRESSES IN THE TARGET CODE 521 

nience, we shall use positive offsets by maintaining in a register SP a pointer t o  
the beginning of the activation record on top of the stack. When a procedure 
call occurs, the calling procedure increments SP and transfers control to  the 
called procedure. After control returns to  the caller, we decrement SP, thereby 
deallocating the activation record of the called procedure. 

The code for the first procedure initializes the stack by setting SP to the 
start of the stack area in memory: 

LD SP, #stackStart // initialize the stack 
code for the first procedure 
HALT / /  terminate execution 

A procedure call sequence increments SP, saves the return address, and transfers 
control to  the called procedure: 

ADD SP , SP , #caller. recordsize // increment stack pointer 
ST *SP , #here + 16 // save return address 
BR callee.codeArea // return to  caller 

The operand #caller.recordSize represents the size of an activation record, so 
the ADD instruction makes SP point t o  the next activation record. The operand 
#here + 16 in the ST instruction is the address of the instruction following BR; 
it is saved in the address pointed to  by SP. 

The return sequence consists of two parts. The called procedure transfers 
control to  the return address using 

BR *O(SP) // return to  caller 

The reason for using *O (SP) in the BR instruction is that we need two levels 
of indirection: O(SP) is the address of the first word in the activation record 
and *O(SP) is the return address saved there. 

The second part of the return sequence is in the caller, which decrements 
SP, thereby restoring SP to its previous value. That is, after the subtraction SP 
points to  the beginning of the activation record of the caller: 

SUB SP , SP , #caller. recordsize / /  decrement stack pointer 

Chapter 7 contains a broader discussion of calling sequences and the trade- 
offs in the division of labor between the calling and called procedures. 

Example 8.4 : The program in Fig. 8.5 is an abstraction of the quicksort 
program in the previous chapter. Procedure q is recursive, so more than one 
activation of q can be alive at the same time. 

Suppose that the sizes of the activation records for procedures m, p, and q 
have been determined to be msize, psize, and qsize, respectively. The first word 
in each activation record will hold a return address. We arbitrarily assume that 
the code for these procedures starts a t  addresses 100, 200, and 300, respectively, 



CHAPTER 8. CODE GENERATION 

/ /  code for m 
a c t  ionl 
c a l l  q 
a c t  ionz 
h a l t  

ac t  ions 
r e tu rn  

// code for p 

// code for q 
a c t  ion4 
c a l l  p 
a c t  ion5 
c a l l  q 
a c t  ion6 
c a l l  q 
r e tu rn  

Figure 8.5: Code for Example 8.4 

and that the stack starts at address 600. The target program is shown in 
Figure 8.6. 

We assume that ACTION4 contains a conditional jump to the address 456 of 
the return sequence from q; otherwise, the recursive procedure q is condemned 
to call itself forever. 

If msixe, psixe, and qsixe are 20, 40, and 60, respectively, the first instruction 
at address 100 initializes the SP to 600, the starting address of the stack. SP 
holds 620 just before control transfers from m to q, because msixe is 20. Sub- 
sequently, when q calls p, the instruction at address 320 increments SP to 680, 
where the activation record for p begins; SP reverts to 620 after control returns 
to q. If the next two recursive calls of q return immediately, the maximum value 
of SP during this execution 680. Note, however, that the last stack location used 
is 739, since the activation record of q starting at location 680 extends for 60 
bytes. 

8.3.3 Run-Time Addresses for Names 

The storage-allocation strategy and the layout of local data in an activation 
record for a procedure determine how the storage for names is accessed. In 
Chapter 6, we assumed that a name in a three-address statement is really a 
pointer to a symbol-table entry for that name. This approach has a significant 
advantage; it makes the compiler more portable, since the front end need not 
be changed even when the compiler is moved to a different machine where a 
different run-time organization is needed. On the other hand, generating the 
specific sequence of access steps while generating intermediate code can be of 



8.3. ADDRESSES IN THE TARGET CODE 

LD SPY #600 
ACTIONl 
ADD SPY SPY #msixe 
ST *SPY #I52 
BR 300 
SUB SP , SPY #msixe 
ACTION1 2 
HALT 

/ /  code for m 
/ /  initialize the stack 
// code for act ionl 
/ /  call sequence begins 
// push return address 
// call q 
/ /  restore SP 

// code for p 

ACTION4 
ADD SPY SPY #qsixe 
ST *SPY #344 
BR 200 
SUB SPY SP , #qszxe 
ACTION5 
ADD SPY SPY #qsixe 
BR *SP, #396 
BR 300 
SUB SPY SPY #qsixe 
ACTION6 
ADD SPY SP, #qsixe 
ST *SPY #440 
BR 300 
SUB SPY SP , #qsixe 
BR *O(SP) 

// return 

/ / code for q 
// contains a conditional jump to 456 

/ /  push return address 
// call p 

// push return address 
// call q 

// push return address 
/ /  call q 

// return 

// stack starts here 

Figure 8.6: Target code for stack allocation 



524 CHAPTER 8. CODE GENERATION 

significant advantage in an optimizing compiler, since it lets the optimizer take 
advantage of details it would not see in the simple three-address statement. 

In either case, names must eventually be replaced by code to access storage 
locations. We thus consider some elaborations of the simple three-address copy 
statement x = 0. After the declarations in a procedure are processed, suppose 
the symbol-table entry for x contains a relative address 12 for x. For consider 
the case in which x is in a statically allocated area beginning at address static. 
Then the actual run-time address of x is stat ic + 12. Although the compiler can 
eventually determine the value of stat ic + 12 at compile time, the position of 
the static area may not be known when intermediate code to access the name 
is generated. In that case, it makes sense to generate three-address code to 
"compute" stat ic + 12, with the understanding that this computation will be 
carried out during the code generation phase, or possibly by the loader, before 
the program runs. The assignment x = 0 then translates into 

If the static area starts at address 100, the target code for this statement is 

8.3.4 Exercises for Section 8.3 

Exercise 8.3.1 : Generate code for the following three-address statements as- 
suming stack allocation where register SP points to the top of the stack. 

c a l l  p 
c a l l  q 
return 
c a l l  r 
return 
return 

Exercise 8.3.2 : Generate code for the following three-address statements as- 
suming stack allocation where register SP points to the top of the stack. 

e) The two statements 



8.4. BASIC BLOCKS AND FLOW GRAPHS 525 

Exercise 8.3.3 : Generate code for the following three-address statements 
again assuming stack allocation and assuming a and b are arrays whose ele- 
ments are 4-byte values. 

a) The four-statement sequence 

b) The t hree-st atement sequence 

c) The three-statement sequence 

8.4 Basic Blocks and Flow Graphs 

This section introduces a graph representation of intermediate code that is help- 
ful for discussing code generation even if the graph is not constructed explicitly 
by a code-generation algorithm. Code generation benefits from context. We 
can do a better job of register allocation if we know how values are defined 
and used, as we shall see in Section 8.8. We can do a better job of instruction 
selection by looking at sequences of three-address statements, as we shall see in 
Section 8.9. 

The representation is constructed as follows: 

1. Partition the intermediate code into basic blocks, which are maximal se- 
quences of consecutive three-address instructions with the properties that 

(a) The flow of control can only enter the basic block through the first 
instruction in the block. That is, there are no jumps into the middle 
of the block. 

(b) Control will leave the block without halting or branching, except 
possibly at the last instruction in the block. 

2. The basic blocks become the nodes of a flow graph, whose edges indicate 
which blocks can follow which other blocks. 



526 CHAPTER 8. CODE GENERATION 

The Effect of Interrupts 

The notion that control, once it reaches the beginning of a basic block is 
certain to continue through to the end requires a bit of thought. There are 
many reasons why an interrupt, not reflected explicitly in the code, could 
cause control to leave the block, perhaps never to return. For example, an 
instruction like x = y/z appears not to affect control flow, but if x is 0 it 
could actually cause the program to abort. 

We shall not worry about such possibilities. The reason is as follows. 
The purpose of constructing basic blocks is to optimize the code. Gener- 
ally, when an interrupt occurs, either it will be handled and control will 
come back to the instruction that caused the interrupt, as if control had 
never deviated, or the program will halt with an error. In the latter case, it 
doesn't matter how we optimized the code, even if we depended on control 
reaching the end of the basic block, because the program didn't produce 
its intended result anyway. 

Starting in Chapter 9, we discuss transformations on flow graphs that turn 
the original intermediate code into "optimized" intermediate code from which 
better target code can be generated. The "optimized" intermediate code is 
turned into machine code using the code-generation techniques in this chapter. 

8.4.1 Basic Blocks 

Our first job is to partition a sequence of three-address instructions into basic 
blocks. We begin a new basic block with the first instruction and keep adding 
instructions until we meet either a jump, a conditional jump, or a label on 
the following instruction. In the absence of jumps and labels, control proceeds 
sequentially from one instruction to the next. This idea is formalized in the 
following algorithm. 

Algorithm 8.5 : Partitioning three-address instructions into basic blocks. 

INPUT: A sequence of three-address instructions. 

OUTPUT: A list of the basic blocks for that sequence in which each instruction 
is assigned to exactly one basic block. 

METHOD: First, we determine those instructions in the intermediate code that 
are leaders, that is, the first instructions in some basic block. The instruction 
just past the end of the intermediate program is not included as a leader. The 
rules for finding leaders are: 

1. The first three-address instruction in the intermediate code is a leader. 



8.4. BASIC BLOCKS AND FLOW GRAPHS 527 

2. Any instruction that is the target of a conditional or unconditional jump 
is a leader. 

3. Any instruction that immediately follows a conditional or unconditional 
jump is a leader. 

Then, for each leader, its basic block consists of itself and all instructions up to 
but not including the next leader or the end of the intermediate program. 17 

Figure 8.7: Intermediate code to set a 10 x 10 matrix to an identity matrix 

Example 8.6 : The intermediate code in Fig. 8.7 turns a 10 x 10 matrix a into 
an identity matrix. Although it is not important where this code comes from, 
it might be the translation of the pseudocode in Fig. 8.8. In generating the 
intermediate code, we have assumed that the real-valued array elements take 8 
bytes each, and that the matrix a is stored in row-major form. 

for i from 1 to 10 do 
for j from 1 to 10 do 

a[i, j ]  = 0.0; 
for i from 1 to 10 do 

a[i, i] = 1.0; 

Figure 8.8: Source code for Fig. 8.7 



CHAPTER 8. CODE GENERATION 

First, instruction 1 is a leader by rule (I)  of Algorithm 8.5. To find the 
other leaders, we first need to find the jumps. In this example, there are three 
jumps, all conditional, at instructions 9, 11, and 17. By rule (2), the targets of 
these jumps are leaders; they are instructions 3, 2, and 13, respectively. Then, 
by rule (3), each instruction following a jump is a leader; those are instructions 
10 and 12. Note that no instruction follows 17 in this code, but if there were 
code following, the 18th instruction would also be a leader. 

We conclude that the leaders are instructions 1, 2, 3, 10, 12, and 13. The 
basic block of each leader contains all the instructions from itself until just 
before the next leader. Thus, the basic block of 1 is just 1, for leader 2 the 
block is just 2. Leader 3, however, has a basic block consisting of instructions 3 
through 9, inclusive. Instruction 10's block is 10 and 11; instruction 12's block 
is just 12, and instruction 13's block is 13 through 17. 

8.4.2 Next-Use Information 

Knowing when the value of a variable will be used next is essential for generating 
good code. If the value of a variable that is currently in a register will never be 
referenced subsequently, then that register can be assigned to another variable. 

The use of a name in a three-address statement is defined as follows. Suppose 
three-address statement i assigns a value to x. If statement j has x as an 
operand, and control can flow from statement i to j along a path that has 
no intervening assignments to x, then we say statement j uses the value of x 
computed at statement i .  We further say that x is live at statement i. 

We wish to determine for each three-address statement x = y + z what the 
next uses of x, y, and z are. For the present, we do not concern ourselves with 
uses outside the basic block containing this three-address statement. 

Our algorithm to determine liveness and next-use information makes a back- 
ward pass over each basic block. We store the information in the symbol table. 
We can easily scan a stream of three-address statements to find the ends of ba- 
sic blocks as in Algorithm 8.5. Since procedures can have arbitrary side effects, 
we assume for convenience that each procedure call starts a new basic block. 

Algorithm 8.7: Determining the liveness and next-use information for each 
statement in a basic block. 

INPUT: A basic block B of three-address statements. We assume that the 
symbol table initially shows all nontemporary variables in B as being live on 
exit. 

OUTPUT: At each statement i :  x = y + z in B, we attach to i the liveness and 
next-use information of x, y, and z. 

METHOD: We start at the last statement in B and scan backwards to the 
beginning of B. At each statement i :  x = y + z in B, we do the following: 

1. Attach to statement i the information currently found in the symbol table 
regarding the next use and liveness of x, y, and y. 



8.4. BASIC BLOCKS AND FLOW GRAPHS 

2. In the symbol table, set x to "not live" and "no next use." 

3. In the symbol table, set y and z to "live" and the next uses of y and z to 
2. 

Here we have used + as a symbol representing any operator. If the three-address 
statement i is of the form x = + y or x = y, the steps are the same as above, 
ignoring z .  Note that the order of steps (2) and (3) may not be interchanged 
because x may be y or x. 

8.4.3 Flow Graphs 

Once an intermediate-code program is partitioned into basic blocks, we repre- 
sent the flow of control between them by a flow graph. The nodes of the flow 
graph are the basic blocks. There is an edge from block B to block C if and 
only if it is possible for the first instruction in block C to immediately follow 
the last instruction in block B. Thete are two ways that such an edge could be 
justified: 

There is a conditional or unconditional jump from the end of B to the 
beginning of C. 

C immediately follows B in the original order of the three-address instruc- 
tions, and B does not end in an unconditional jump. 

We say that B is a predecessor of C,  and C is a successor of B.  
Often we add two nodes, called the entry and exit, that do not correspond 

to executable intermediate instructions. There is an edge from the entry to the 
first executable node of the flow graph, that is, to the basic block that comes 
from the first instruction of the intermediate code. There is an edge to the 
exit from any basic block that contains an instruction that could be the last 
executed instruction of the program. If the final instruction of the program is 
not an unconditional jump, then the block containing the final instruction of 
the program is one predecessor of the exit, but so is any basic block that has a 
jump to code that is not part of the program. 

Example 8.8 : The set of basic blocks constructed in Example 8.6 yields the 
flow graph of Fig. 8.9. The entry points to basic block B1, since B1 contains 
the first instruction of the program. The only successor of B1 is B2, because 
B1 does not end in an unconditional jump, and the leader of B2 immediately 
follows the end of B1. 

Block B3 has two successors. One is itself, because the leader of B3, instruc- 
tion 3, is the target of the conditional jump a t  the end of B3, instruction 9. The 
other successor is B4, because control can fall through the conditional jump at 
the end of B3 and next enter the leader of B4. 

Only Bs points to the exit of the flow graph, since the only way to get to 
code that follows the program from which we constructed the flow graph is to 
fall through the conditional jump that ends B6. 



CHAPTER 8. CODE GENERATION 

ENTRY 

B1 

Figure 8.9: Flow graph from Fig. 8.7 

8.4.4 Representation of Flow Graphs 

First, note from Fig. 8.9 that in the flow graph, it is normal to replace the jumps 
to instruction numbers or labels by jumps to basic blocks. Recall that every 
conditional or unconditional jump is to the leader of some basic block, and it 
is to this block that the jump will now refer. The reason for this change is that 
after constructing the flow graph, it is common to make substantial changes 
to the instructions in the various basic blocks. If jumps were to instructions, 
we would have to fix the targets of the jumps every time one of the target 
instructions was changed. 

Flow graphs, being quite ordinary graphs, can be represented by any of the 
data structures appropriate for graphs. The content of nodes (basic blocks) 
need their own representation. We might represent the content of a node by a 



8.4. BASIC BLOCKS AND FLOW GRAPHS 531 

pointer to  the leader in the array of three-address instructions, together with a 
count of the number of instructions or a second pointer to  the last instruction. 
However, since we may be changing the number of instructions in a basic block 
frequently, it is likely to  be more efficient to  create a linked list of instructions 
for each basic block. 

8.4.5 Loops 

Programming-language constructs like while-statements, do-while-statements, 
and for-statements naturally give rise to loops in programs. Since virtually every 
program spends most of its time in executing its loops, it is especially important 
for a compiler to  generate good code for loops. Many code transformations 
depend upon the identification of "loops" in a flow graph. We say that a set of 
nodes L in a flow graph is a loop if 

1. There is a node in L called the loop entry with the property that no other 
node in L has a predecessor outside L. That is, every path from the entry 
of the entire flow graph to any node in L goes through the loop entry. 

2. Every node in L has a nonempty path, completely within L, to  the entry 
of L. 

Example 8.9 : The flow graph of Fig. 8.9 has three loops: 

1. B3 by itself. 

2. Bg by itself. 

The first two are single nodes with an edge to the node itself. For instance, 
B3 forms a loop with B3 as its entry. Note that the second requirement for a 
loop is that there be a nonempty path from B3 to itself. Thus, a single node 
like B2, which does not have an edge B2 + B2, is not a loop, since there is no 
nonempty path from B2 to itself within {B2). 

The third loop, L = {B2, B3, B4), has B2 as its loop entry. Note that among 
these three nodes, only B2 has a predecessor, B1, that is not in L. Further, each 
of the three nodes has a nonempty path to  B2 staying within L. For instance, 
B2 has the path B2 + B3 + B4 + B2. 

8.4.6 Exercises for Section 8.4 

Exercise 8.4.1 : Figure 8.10 is a simple matrix-multiplication program. 

a) Translate the program into three-address statements of the type we have 
been using in this section. Assume the matrix entries are numbers that 
require 8 bytes, and that matrices are stored in row-major order. 



532 CHAPTER 8. CODE GENERATION 

b) Construct the flow graph for your code from (a). 

c) Identify the loops in your flow graph from (b). 

f o r  (i=O; i < n ;  i++) 
f o r  (j=O; j<n;  j++) 

c [ i ]  [j]  = 0.0;  
f o r  (i=O; i < n ;  i++) 

f o r  (j=O; j<n;  j++) 
f o r  (k=O; k<n; k++) 

c [ i ]  Cjl = cCil Cjl + aCil Ckl*bCkl Cjl ; 

Figure 8.10: A matrix-multiplication algorithm 

Exercise 8.4.2 : Figure 8.11 is code to count the number of primes from 2 to 
n, using the sieve method on a suitably large array a. That is, a[i] is TRUE at 
the end only if there is no prime & or less that evenly divides i. We initialize 
all a[i] to TRUE and then set a[ j ]  to FALSE if we find a divisor of j. 

a) Translate the program into three-address statements of the type we have 
been using in this section. Assume integers require 4 bytes. 

b) Construct the flow graph for your code from (a). 

c) Identify the loops in your flow graph from (b). 

f o r  ( i=2;  i<=n;  i++) 
ac i ]  = TRUE; 

count = 0 ;  
s = s q r t  (n) ; 
f o r  ( i=2 ;  i < = s ;  i++) 

i f  (a [ i ] )  /* i has been found t o  be a  prime */ C 
count++ ; 
f o r  ( j=2*i ;  j<=n; j  = j + i )  

a [ j ]  = FALSE; /* no mul t ip le  of i is a  prime */ 

Figure 8.11: Code to sieve for primes 



8.5. OPTIMIZATION OF BASIC BLOCKS 

8.5 Optimization of Basic Blocks 

We can often obtain a substantial improvement in the running time of code 
merely by performing local optimization within each basic block by itself. More 
thorough global optimization, which looks at how information flows among the 
basic blocks of a program, is covered in later chapters, starting with Chapter 9. 
It is a complex subject, with many different techniques to consider. 

8.5.1 The DAG Representation of Basic Blocks 

Many important techniques for local optimization begin by transforming a basic 
block into a DAG (directed acyclic graph). In Section 6.1 . l ,  we introduced the 
DAG as a representation for single expressions. The idea extends naturally 
to the collection of expressions that are created within one basic block. We 
construct a DAG for a basic blockas follows: 

1. There is a node in the DAG for each of the initial values of the variables 
appearing in the basic block. 

2. There is a node N associated with each statement s within the block. 
The children of N are those nodes corresponding to statements that are 
the last definitions, prior to s ,  of the operands used by s. 

3. Node N is labeled by the operator applied at s ,  and also attached to N 
is the list of variables for which it is the last definition within the block. 

4. Certain nodes are designated output  nodes. These are the nodes whose 
variables are live o n  exit from the block; that is, their values may be 
used later, in another block of the flow graph. Calculation of these "live 
variables" is a matter for global flow analysis, discussed in Section 9.2.5. 

The DAG representation of a basic block lets us perform several code- 
improving transformations on the code represented by the block. 

a) We can eliminate local common subexpressions, that is, instructions that 
compute a value that has already been computed. 

b) We can eliminate dead code, that is, instructions that compute a value 
that is never used. 

c) We can reorder statements that do not depend on one another; such 
reordering may reduce the time a temporary value needs to be preserved 
in a register. 

d) We can apply algebraic laws to reorder operands of three-address instruc- 
tions, and sometimes t hereby simplify t he computation. 



534 CHAPTER 8. CODE GENERATION 

8.5.2 Finding Local Common Subexpressions 

Common subexpressions can be detected by noticing, as a new node M is about 
to be added, whether there is an existing node N with the same children, in 
the same order, and with the same operator. If so, N computes the same value 
as M and may be used in its place. This technique was introduced as the 
"value-number" method of detecting common subexpressions in Section 6.1.1. 

Example 8.10 : A DAG for the block 

is shown in Fig. 8.12. When we construct the node for the third statement 
c = b + c, we know that the use of b in b + c refers to the node of Fig. 8.12 
labeled -, because that is the most recent definition of b. Thus, we do not 
confuse the values computed at statements one and three. 

Figure 8.12: DAG for basic block in Example 8.10 

However, the node corresponding to the fourth statement d = a - d has the 
operator - and the nodes with attached variables a and do as children. Since 
the operator and the children are the same as those for the node corresponding 
to statement two, we do not create this node, but add d to the list of definitions 
for the node labeled -. 

It might appear that, since there are only three nonleaf nodes in the DAG of 
Fig. 8.12, the basic block in Example 8.10 can be replaced by a block with only 
three statements. In fact, if b is not live on exit from the block, then we do not 
need to compute that variable, and can use d to receive the value represented 
by the node labeled -. in Fig. 8.12. The block then becomes 



8.5. OPTIMIZATION OF BASIC BLOCKS 535 

However, if both b and d are live on exit, then a fourth statement must be 
used to copy the value from one to the other.' 

Example 8.11 : When we look for common subexpressions, we really are look- 
ing for expressions that are guaranteed to compute the same value, no matter 
how that value is computed. Thus, the DAG method will miss the fact that the 
expression computed by the first and fourth statements in the sequence 

is the same, namely bo + co. That is, even though b and c both change between 
the first and last statements, their sum remains the same, because b + c = 
( b  - d)  + (c + d) .  The DAG for this sequence is shown in Fig. 8.13, but does 
not exhibit any common subexpressions. However, algebraic identities applied 
to the DAG, as discussed in Section 8.5.4, may expose the equivalence. 

Figure 8.13: DAG for basic block in Example 8.11 

8.5.3 Dead Code Elimination 

The operation on DAG's that corresponds to dead-code elimination can be im- 
plemented as follows. We delete from a DAG any root (node with no ancestors) 
that has no live variables attached. Repeated application of this transformation 
will remove all nodes from the DAG that correspond to dead code. 

Example 8.12: If, in Fig. 8.13, a and b are live but c and e are not, we can 
immediately remove the root labeled e .  Then, the node labeled c becomes a 
root and can be removed. The roots labeled a and b remain, since they each 
have live variables attached. 

'1n general, we must be careful, when reconstructing code from DAG's, how we choose 
the names of variables. If a variable x is defined twice, or if it is assigned once and the initial 
value xo is also used, then we must make sure that we do not change the value of x until we 
have made all uses of the node whose value x previously held. 



536 CHAPTER 8. CODE GENERATION 

8.5.4 The Use of Algebraic Identities 

Algebraic identities represent another important class of optimizations on basic 
blocks. For example, we may apply arithmetic identities, such as 

to eliminate computations from a basic block. 
Another class of algebraic optimizations includes local reduction in strength, 

that is, replacing a more expensive operator by a cheaper one as in: 

x - - X X X  

2 x x = x + x  
4 2  = x x 0.5 

A third class of related optimizations is constant folding. Here we evaluate 
constant expressions at  compile time and replace the constant expressions by 
their  value^.^ Thus the expression 2 * 3.14 would be replaced by 6.28. Many 
constant expressions arise in practice because of the frequent use of symbolic 
constants in programs. 

The DAG-construction process can help us apply these and other more 
general algebraic transformations such as commutativity and associativity. For 
example, suppose the language reference manual specifies that * is commutative; 
that is, x* y = y*x. Before we create a new node labeled * with left child M and 
right child N ,  we always check whether such a node already exists. However, 
because * is commutative, we should then check for a node having operator *, 
left child N ,  and right child M .  

The relational operators such as < and = sometimes generate unexpected 
common subexpressions. For example, the condition x > y can also be tested 
by subtracting the arguments and performing a test on the condition code set 
by the s~b t r ac t ion .~  Thus, only one node of the DAG may need to be generated 
for x - y and x > y. 

Associative laws might also be applicable to expose common subexpressions. 
For example, if the source code has the assignments 

the following intermediate code might be generated: 

2~r i thmet ic  expressions should be evaluated the same way at compile time as they are at 
run time. K. Thompson has suggested an elegant solution to constant folding: compile the 
constant expression, execute the target code on the spot, and replace the expression with the 
result. Thus, the compiler does not need to contain an interpreter. 

3 ~ h e  subtraction can, however, introduce overflows and underflows while a compare in- 
struction would not. 



8.5. OPTIMIZATION OF BASIC BLOCKS 

If t is not needed outside this block, we can change this sequence to 

using both the associativity and commutativity of +. 
The compiler writer should examine the language reference manual care- 

fully to  determine what rearrangements of computations are permitted, since 
(because of possible overflows or underflows) computer arithmetic does not al- 
ways obey the algebraic identities of mathematics. For example, the Fortran 
standard states that a compiler may evaluate any mathematically equivalent 
expression, provided that the integrity of parentheses is not violated. Thus, 
a compiler may evaluate x * y - x * x as x * (y - x), but it may not evaluate 
a + (b - c) as ( a  + b) - c. A Fortran compiler must therefore keep track of where 
parentheses were present in the source language expressions if it is to  optimize 
programs in accordance with the language definition. 

8.5.5 Representation of Array References 

At first glance, it might appear that the array-indexing instructions can be 
treated like any other operator. Consider for instance the sequence of three- 
address statements: 

If we think of a [il as an operation involving a and i, similar to  a  + i ,  then 
it might appear as if the two uses of a[il  were a common subexpression. In 
that case, we might be tempted t o  "optimize" by replacing the third instruction 
z = a Cil by the simpler z = x. However, since j could equal i, the middle 
statement may in fact change the value of a [il ; thus, it is not legal to make 
this change. 

The proper way to represent array accesses in a DAG is as follows. 

1. An assignment from an array, like x = a Cil , is represented by creating a 
node with operator =[] and two children representing the initial value of 
the array, a0 in this case, and the index i. Variable x becomes a label of 
this new node. 

2. An assignment to  an array, like a [ j l  = y, is represented by a new node 
with operator [I= and three children representing ao, j and y. There is 
no variable labeling this node. What is different is that the creation of 

* 



CHAPTER 8. CODE GENERATION 

this node kzlls all currently constructed nodes whose value depends on ao. 
A node that has been killed cannot receive any more labels; that is, it 
cannot become a common subexpression. 

Example 8.13 : The DAG for the basic block 

is shown in Fig. 8.14. The node N for x is created first, but when the node 
labeled [ 1 = is created, N is killed. Thus, when the node for x is created, it 
cannot be identified with N, and a new node with the same operands a0 and 
io must be created instead. 

Figure 8.14: The DAG for a sequence of array assignments 

Example 8.14 : Sometimes, a node must be killed even though none of its 
children have an array like a0 in Example 8.13 as attached variable. Likewise, 
a node can kill if it has a descendant that is an array, even though none of its 
children are array nodes. For instance, consider the three-address code 

What is happening here is that, for efficiency reasons, b has been defined to 
be a position in an array a. For example, if the elements of a are four bytes long, 
then b represents the fourth element of a. If j and i represent the same value, 
then b [i] and b[j] represent the same location. Therefore it is important 
to have the third instruction, b[j] = y, kill the node with x as its attached 
variable. However, as we see in Fig. 8.15, both the killed node and the node 
that does the killing have z+o as a grandchild, not as a child. 



8.5. OPTIMIZATION OF BASIC BLOCKS 

Figure 8.15: A node that kills a use of an array need not have that array as a 
child 

8.5.6 Pointer Assignments and Procedure Calls 

When we assign indirectly through a pointer, as in the assignments 

we do not know what p or q point to. In effect, x = *p is a use of every 
variable whatsoever, and *q = y is a possible assignment to  every variable. As 
a consequence, the operator =* must take all nodes that are currently associated 
with identifiers as arguments, which is relevant for dead-code elimination. More 
importantly, the *= operator kills all other nodes so far constructed in the DAG. 

There are global pointer analyses one could perform that might limit the set 
of variables a pointer could reference at a given place in the code. Even local 
analysis could restrict the scope of a pointer. For instance, in the sequence 

we know that x, and no other variable, is given the value of y, so we don't need 
to kill any node but the node to which x was attached. 

Procedure calls behave much like assignments through pointers. In the 
absence of global data-flow information, we must assume that a procedure uses 
and changes any data to  which it has access. Thus, if variable x is in the scope 
of a procedure P, a call to P both uses the node with attached variable x and 
kills that node. 

8.5.7 Reassembling Basic Blocks From DAG's 

After we perform whatever optimizations are possible while constructing the 
DAG or by manipulating the DAG once constructed, we may reconstitute the 
three-address code for the basic block from which we built the DAG. For each 



540 CHAPTER 8. CODE GENERATION 

node that has one or more attached variables, we construct a three-address 
statement that computes the value of one of those variables. We prefer to  
compute the result into a variable that is live on exit from the block. However, if 
we do not have global live-variable information to work from, we need to assume 
that every variable of the program (but not temporaries that are generated by 
the compiler to  process expressions) is live on exit from the block. 

If the node has more than one live variable attached, then we have to  in- 
troduce copy statements to  give the correct value to  each of those variables. 
Sometimes, global optimization can eliminate those copies, if we can arrange t o  
use one of two variables in place of the other. 

Example 8.15 : Recall the DAG of Fig. 8.12. In the discussion following 
Example 8.10, we decided that if b is not live on exit from the block, then the 
three statements 

suffice to  reconstruct the basic block. The third instruction, c = d + c, must use 
d as an operand rather than b, because the optimized block never computes b. 

If both b and d are live on exit, or if we are not sure whether or not they 
are live on exit, then we need to compute b as well as d. We can do so with the 
sequence 

This basic block is still more efficient than the original. Although the number 
of instructions is the same, we have replaced a subtraction by a copy, which 
tends to  be less expensive on most machines. Further, it may be that by doing 
a global analysis, we can eliminate the use of this computation of b outside 
the block by replacing it by uses of d. In that case, we can come back to this 
basic block and eliminate b = d later. Intuitively, we can eliminate this copy if 
wherever this value of b is used, d is still holding the same value. That situation 
may or may not be true, depending on how the program recomputes d. 

When reconstructing the basic block from a DAG, we not only need to worry 
about what variables are used to  hold the values of the DAG's nodes, but we 
also need to worry about the order in which we list the instructions computing 
the values of the various nodes. The rules to  remember are 

1. The order of instructions must respect the order of nodes in the DAG. 
That is, we cannot compute a node's value until we have computed a 
value for each of its children. 



8.5. OPTIMIZATION OF BASIC BLOCKS 541 

2. Assignments to an array must follow all previous assignments to, or eval- 
uations from, the same array, according to the order of these instructions 
in the original basic block. 

3. Evaluations of array elements must follow any previous (according to the 
original block) assignments to the same array. The only permutation 
allowed is that two evaluations from the same array may be done in either 
order, as long as neither crosses over an assignment to that array. 

4. Any use of a variable must follow all previous (according to the original 
block) procedure calls or indirect assignments through a pointer. 

5. Any procedure call or indirect assignment through a pointer must follow 
all previous (according to the original block) evaluations of any variable. 

That is, when reordering code, no statement may cross a procedure call or 
assignment through a pointer, and uses of the same array may cross each other 
only if both are array accesses, but not assignments to elements of the array. 

8.5.8 Exercises for Section 8.5 

Exercise 8.5.1 : Construct the DAG for the basic block 

Exercise 8.5.2 : Simplify the three-address code of Exercise 8.5.1, assuming 

a) Only a is live on exit from the block. 

b) a ,  b, and c are live on exit from the block. 

Exercise 8.5.3 : Construct the basic block for the code in block B6 of Fig. 8.9. 
Do not forget to include the comparison i 5 10. 

Exercise 8.5.4 : Construct the basic block for the code in block B3 of Fig. 8.9. 

Exercise 8.5.5 : Extend Algorithm 8.7 to process three-statements of the form 

a) a[il = b 

b) a = b [i] 

Exercise 8.5.6 : Construct the DAG for the basic block 



CHAPTER 8. CODE GENERATION 

on the assumption that 

a) p can point anywhere. 

b) p can point only to b or d. 

! Exercise 8.5.7 : If a pointer or array expression, such as a Cil or *p is assigned 
and then used, without the possibility of being changed in the interim, we can 
take advantage of the situation to simplify the DAG. For example, in the 
code of Exercise 8.5.6, since p is not assigned between the second and fourth 
statements, the statement e = *p can be replaced by e = c, regardless of what 
p points to. Revise the DAG-construction algorithm to take advantage of such 
situations, and apply your algorithm to the code of Example 8.5.6. 

Exercise 8.5.8 : Suppose a basic block is formed from the C assignment state- 
ment s 

a) Give the three-address statements (only one addition per statement) for 
this block. 

b) Use the associative and commutative laws to modify the block to use the 
fewest possible number of instructions, assuming both x and y are live on 
exit from the block. 

8.6 A Simple Code Generator 

In this section, we shall consider an algorithm that generates code for a single 
basic block. It considers each three-address instruction in turn, and keeps track 
of what values are in what registers so it can avoid generating unnecessary loads 
and stores. 

One of the primary issues during code generation is deciding how to use 
registers to best advantage. There are four principal uses of registers: 

In most machine architectures, some or all of the operands of an operation 
must be in registers in order to perform the operation. 

Registers make good temporaries - places to hold the result of a subex- 
pression while a larger expression is being evaluated, or more generally, a 
place to hold a variable that is used only within a single basic block. 



8.6. A SIMPLE CODE GENERATOR 

Registers are used to hold (global) values that are computed in one basic 
block and used in other blocks, for example, a loop index that is incre- 
mented going around the loop and is used several times within the loop. 

Registers are often used to help with run-time storage management, for 
example, to manage the run-time stack, including the maintenance of 
stack pointers and possibly the top elements of the stack itself. 

These are competing needs, since the number of registers available is limited. 
The algorithm in this section assumes that some set of registers is available 

to hold the values that are used within the block. Typically, this set of regis- 
ters does not include all the registers of the machine, since some registers are 
reserved for global variables and managing the stack. We assume that the basic 
block has already been transformed into a preferred sequence of three-address 
instructions, by transformations such as combining common subexpressions. 
We further assume that for each operator, there is exactly one machine instruc- 
tion that takes the necessary operands in registers and performs that operation, 
leaving the result in a register. The machine instructions are of the form 

LD reg, mem 

ST mem, reg 

OP  reg, reg, reg 

8.6.1 Register and Address Descriptors 

Qur code-generation algorithm considers each three-address instruction in turn 
and decides what loads are necessary to get the needed operands into registers. 
After generating the loads, it generates the operation itself. Then, if there is a 
need to store the result into a memory location, it also generates that store. 

In order to make the needed decisions, we require a data structure that tells 
us what program variables currently have their value in a register, and which 
register or registers, if so. We also need to know whether the memory location 
for a given variable currently has the proper value for that variable, since a new 
value for the variable may have been computed in a register and not yet stored. 
The desired data structure has the following descriptors: 

1. For each available register, a register descriptor keeps track of the variable 
names whose current value is in that register. Since we shall use only those 
registers that are available for local use within a basic block, we assume 
that initially, all register descriptors are empty. As the code generation 
progresses, each register will hold the value of zero or more names. 

2. For each program variable, an address descriptor keeps track of the loca- 
tion or locations where the current value of that variable can be found. 
The location might be a register, a memory address, a stack location, or 
some set of more than one of these. The information can be stored in the 
symbol-table entry for that variable name. 



CHAPTER 8. CODE GENERATION 

8.6.2 The Code-Generation Algorithm 

An essential part of the algorithm is a function getReg(I), which selects regis- 
ters for each memory location associated with the three-address instruction I. 
Function getReg has access to the register and address descriptors for all the 
variables of the basic block, and may also have access to certain useful data-flow 
information such as the variables that are live on exit from the block. We shall 
discuss getReg after presenting the basic algorithm. While we do not know the 
total number of registers available for local data belonging to a basic block, we 
assume that there are enough registers so that, after freeing all available regis- 
ters by storing their values in memory, there are enough registers to accomplish 
any three-address operation. 

In a three-address instruction such as x = y + z, we shall treat + as a generic 
operator and ADD as the equivalent machine instruction. We do not, therefore, 
take advantage of commutativity of +. Thus, when we implement the operation, 
the value of y must be in the second register mentioned in the ADD instruction, 
never the third. A possible improvement to the algorithm is to generate code 
for both x = y + z and x = z + y whenever + is a commutative operator, and pick 
the better code sequence. 

Machine Instructions for Operations 

For a three-address instruction such as x = y + z, do the following: 

1. Use getReg(x = y + z) to select registers for x, y, and z. Call these R,, 
R,, and R,. 

2. If y is not in R, (according to the register descriptor for R,), then issue 
an instruction LD R,, y', where y' is one of the memory locations for y 
(according to the address descriptor for y). 

3. Similarly, if z is not in R,, issue and instruction LD R,, z', where z' is a 
location for x . 

4. Issue the instruction ADD R,, R, , RZ. 

Machine Instructions for Copy Statements 

There is an important special case: a three-address copy statement of the form 
x = y. We assume that getReg will always choose the same register for both 
x and y. If y is not already in that register R,, then generate the machine 
instruction LD R,, y. If y was already in R,, we do nothing. It is only necessary 
that we adjust the register description for R, so that it includes x as one of the 
values found there. 



8.6. A SIMPLE CODE GENERATOR 

Ending the Basic Block 

As we have described the algorithm, variables used by the block may wind up 
with their only location being a register. If the variable is a temporary used 
only within the block, that is fine; when the block ends, we can forget about 
the value of the temporary and assume its register is empty. However, if the 
variable is live on exit from the block, or if we don't know which variables are 
live on exit, then we need to assume that the value of the variable is needed 
later. In that case, for each variable x whose location descriptor does not say 
that its value is located in the memory location for x, we must generate the 
instruction ST x, R,  where R is a register in which x's value exists at the end of 
the block. 

Managing Register and Address Descriptors 

As the code-generation algorithm issues load, store, and other machine instruc- 
tions, it needs to update the register and address descriptors. The rules are as 
follows: 

1. For the instruction LD R, x 

(a) Change the register descriptor for register R so it holds only x. 

(b) Change the address descriptor for x by adding register R as an ad- 
ditional location. 

2. For the instruction ST x, R, change the address descriptor for x to include 
its own memory location. 

3. For an operation such as ADD Rx,  R,, R, implementing a three-address 
instruction x = y + x 
(a) Change the register descriptor for Rx so that it holds only x. 

(b) Change the address descriptor for x so that its only location is fix. 
Note that the memory location for x is not now in the address de- 
scriptor for x. 

(c) Remove Rx from the address descriptor of any variable other than 
x. 

4. When we process a copy statement x = y, after generating the load for y 
into register By, if needed, and after managing descriptors as for all load 
statements (per rule I): 

(a) Add x to the register descriptor for R,. 

(b) Change the address descriptor for x so that its only location is R, . 

Example 8.16 : Let us translate the basic block consisting of the three-address 
statements 



CHAPTER 8. CODE GENERATION 

Here we assume that t, u, and v are temporaries, local to the block, while a ,  b, 
c, and d are variables that are live on exit from the block. Since we have not 
yet discussed how the function getReg might work, we shall simply assume that 
there are as many registers as we need, but that when a register's value is no 
longer needed (for example, it holds only a temporary, all of whose uses have 
been passed), then we reuse its register. 

A summary of all the machine-code instructions generated is in Fig. 8.16. 
The figure also shows the register and address descriptors before and after the 
translation of each three-address instruction. 

R 1  R 2  R 3  a b c d t u v  

LD R 1 ,  a 
LD R 2 ,  b 
SUB R 2 ,  R 1 ,  R 2  

LD R 3 ,  c 
SUB R l ,  R i ,  R 3  

ADD R i ,  R 3 ,  R 1  

u  ( t  ( c  

I d  l a  ( v  1 I R 2 l b  l c  ( R 1 1  I R 3  I 
exit 

I a I b lc ,~31 d I R 2  1 R 1  1 1 

Figure 8.16: Instructions generated and the changes in the register and address 
descriptors 

v = t + u  
ADD R 3 ,  R 2 ,  R l  

For the first three-address instruction, t = a - b we need to issue three in- 
structions, since nothing is in a register initially. Thus, we see a and b loaded 



8.6. A SIMPLE CODE GENERATOR 547 

into registers R 1  and R2, and the value t produced in register R2. Notice that 
we can use R2 for t because the value b previously in R2  is not needed within 
the block. Since b is presumably live on exit from the block, had it not been 
in its own memory location (as indicated by its address descriptor), we would 
have had to store R2 into b first. The decision to do so, had we needed R2, 
would be taken by getReg. 

The second instruction, u = a - c, does not require a load of a, since it is 
already in register R1. Further, we can reuse R 1  for the result, u, since the value 
of a, previously in that register, is no longer needed within the block, and its 
value is in its own memory location if a is needed outside the block. Note that 
we change the address descriptor for a to indicate that it is no longer in R1,  but 
is in the memory location called a. 

The third instruction, v = t + u, requires only the addition. Further, we can 
use R3 for the result, v, since the value of c in that register is no longer needed 
within the block, and c has its value in its own memory location. 

The copy instruction, a = d, requires a load of d, since it is not in memory. 
We show register R2's descriptor holding both a and d. The addition of a to 
the register descriptor is the result of our processing the copy statement, and 
is not the result of any machine instruction. 

The fifth instruction, d = v + u, uses two values that are in registers. Since 
u is a temporary whose value is no longer needed, we have chosen to reuse its 
register R 1  for the new value of d. Notice that d is now in only R1,  and is not 
in its own memory location. The same holds for a, which is in R2 and not in 
the memory location called a. As a result, we need a "coda" to the machine 
code for the basic block that stores the live-on-exit variables a and d into their 
memory locations. We show these as the last two instructions. 

8.6.3 Design of the Function getReg 

Lastly, let us consider how to implement getReg(I), for a three-address in- 
struction I. There are many options, although there are also some absolute 
prohibitions against choices that lead to incorrect code due to the loss of the 
value of one or more live variables. We begin our examination with the case of 
an operation step, for which we again use x = y + x as the generic example. 
First, we must pick a register for y and a register for x .  The issues are the same, 
so we shall concentrate on picking register Ry for y.  The rules are as follows: 

1. If y is currently in a register, pick a register already containing y as R,. 
Do not issue a machine instruction to load this register, as none is needed. 

2. If y is not in a register, but there is a register that is currently empty, 
pick one such register as Ry . 

3. The difficult case occurs when y is not in a register, and there is no register 
that is currently empty. We need to pick one of the allowable registers 
anyway, and we need to make it safe to reuse. Let R be a candidate 



CHAPTER 8. CODE GENERATION 

register, and suppose v is one of the variables that the register descriptor 
for R says is in R. We need to make sure that v's value either is not really 
needed, or that there is somewhere else we can go to get the value of R. 
The possibilities are: 

(a) If the address descriptor for v says that v is somewhere besides R, 
then we are OK. 

(b) If v is x, the vaIue being computed by instruction I, and x is not 
also one of the other operands of instruction I (z in this example), 
then we are OK. The reason is that in this case, we know this value 
of x is never again going to be used, so we are free to ignore it. 

(c) Otherwise, if v is not used later (that is, after the instruction I, there 
are no further uses of v, and if v is live on exit from the block, then 
v is recomputed within the block), then we are OK. 

(d) If we are not OK by one of the first two cases, then we need to 
generate the store instruction ST v, R to place a copy of v in its own 
memory location. This operation is called a spill. 

Since R may hold several variables at the moment, we repeat the above 
steps for each such variable v. At the end, R's "score" is the number of 
store instructions we needed to generate. Pick one of the registers with 
the lowest score. 

Now, consider the selection of the register Rx. The issues and options are 
almost as for y, so we shall only mention the differences. 

1. Since a new value of x is being computed, a register that holds only x is 
always an acceptable choice for Rx. This statement holds even if x is one 
of y and z, since our machine instructions allows two registers to be the 
same in one instruction. 

2. If y is not used after instruction I ,  in the sense described for variable v in 
item (3c), and R, holds only y after being loaded, if necessary, then R, 
can also be used as Rx. A similar option holds regarding x and R,. 

The last matter to consider specially is the case when I is a copy instruction 
x = y. We pick the register R, as above. Then, we always choose Rx = R,. 

8.6.4 Exercises for Section 8.6 

Exercise 8.6.1 : For each of the following C assignment statements 



8.7. PEEPHOLE OPTIMIZATION 

generate three-address code, assuming that all array elements are integers tak- 
ing four bytes each. In parts (d) and (e), assume that a, b, and c are constants 
giving the location of the first (0th) elements of the arrays with those names, 
as in all previous examples of array accesses in this chapter. 

! Exercise 8.6.2 : Repeat Exercise 8.6.1 parts (d) and (e), assuming that the 
arrays a, b, and c are located via pointers, pa, pb, and pc, respectively, pointing 
to the locations of their respective first elements. 

Exercise 8.6.3 : Convert your three-address code from Exercise 8.6.1 into ma- 
chine code for the machine model of this section. You may use as many registers 
as you need. 

Exercise 8.6.4 : Convert your three-address code from Exercise 8.6.1 into ma- 
chine code, using the simple code-generation algorithm of this section, assuming 
three registers are available. Show the register and address descriptors after 
each step. 

Exercise 8.6.5: Repeat Exercise 8.6.4, but assuming only two registers are 
available. 

8.7 Peephole Optimization 

While most production compilers produce good code through careful instruc- 
tion selection and register allocation, a few use an alternative strategy: they 
generate naive code and then improve the quality of the target code by applying 
"optimizing" transformations to the target program. The term "optimizing" is 
somewhat misleading because there is no guarantee that the resulting code is 
optimal under any mathematical measure. Nevertheless, many simple transfor- 
mations can significantly improve the running time or space requirement of the 
target program. 

A simple but effective technique for locally improving the target code is 
peephole optimization, which is done by examining a sliding window of target 
instructions (called the peephole) and replacing instruction sequences within 
the peephole by a shorter or faster sequence, whenever possible. Peephole 
optimization can also be applied directly after intermediate code generation to 
improve the intermediate representation. 

The peephole is a small, sliding window on a program. The code in the 
peephole need not be contiguous, although some implementations do require 
this. It is characteristic of peephole optimization that each improvement may 



CHAPTER 8. CODE GENERATION 

spawn opportunities for additional improvements. In general, repeated passes 
over the target code are necessary to get the maximum benefit. In this sec- 
tion, we shall give the following examples of program transformations that are 
characteristic of peephole optimizations: 

Redundant-instruction elimination 

Flow-of-control optimizations 

Algebraic simplifications 

Use of machine idioms 

8.7.1 Eliminating Redundant Loads and Stores 

If we see the instruction sequence 

LD a, RO 
ST RO, a 

in a target program, we can delete the store instruction because whenever it is 
executed, the first instruction will ensure that the value of a has already been 
loaded into register RO. Note that if the store instruction had a label, we could 
not be sure that the first instruction is always executed before the second, so we 
could not remove the store instruction. Put another way, the two instructions 
have to be in the same basic block for this transformation to be safe. 

Redundant loads and stores of this nature would not be generated by the 
simple code generation algorithm of the previous section. However, a naive code 
generation algorithm like the one in Section 8.1.3 would generate redundant 
sequences such as these. 

8.7.2 Eliminating Unreachable Code 

Another opportunity for peephole optimization is the removal of unreachable 
instructions. An unlabeled instruction immediately following an unconditional 
jump may be removed. This operation can be repeated to eliminate a sequence 
of instructions. For example, for debugging purposes, a large program may 
have within it certain code fragments that are executed only if a variable debug 
is equal to 1. In the intermediate representation, this code may look like 

i f  debug == 1 goto L1 
got0 L2 

L I : print debugging information 
L2: 

One obvious peephole optimization is to eliminate jumps over jumps. Thus, 
no matter what the value of debug, the code sequence above can be replaced 
by 



8.7. PEEPHOLE OPTIMIZATION 

if debug != 1 goto  L2 
print debugging information 

L2: 

If debug is set to 0 at the beginning of the program, constant propagation 
would transform this sequence into 

if 0 != 1 goto  L2 
print debugging information 

L2: 

Now the argument of the first statement always evaluates to true, so the 
statement can be replaced by goto L2. Then all statements that print debug- 
ging information are unreachable and can be eliminated one at a time. 

8.7.3 Flow-of-Control Optimizations 

Simple intermediate code-generation algorithms frequently produce jumps to 
jumps, jumps to conditional jumps, or conditional jumps to jumps. These 
unnecessary jumps can be eliminated in either the intermediate code or the 
target code by the following types of peephole optimizations. We can replace 
the sequence 

go t0  L1 
... 

Ll: got0  L2 

by the sequence 

If there are now no jumps to L1, then it may be possible to eliminate the 
statement L1: goto L2 provided it is preceded by an unconditional jump. 

Similarly, the sequence 

can be replaced by the sequence 

Finally, suppose there is only one jump to L1 and L1 is preceded by an 
unconditional goto. Then the sequence 



CHAPTER 8. CODE GENERATION 

may be replaced by the sequence 

While the number of instructions in the two sequences is the same, we sometimes 
skip the unconditional jump in the second sequence, but never in the first. Thus, 
the second sequence is superior to the first in execution time. 

8.7.4 Algebraic Simplification and Reduction in Strength 

In Section 8.5 we discussed algebraic identities that could be used to simplify 
DAG's. These algebraic identities can also be used by a peephole optimizer to 
eliminate t hree-address statements such as 

in the peephole. 
Similarly, reduction-in-strength transformations can be applied in the peep- 

hole to replace expensive operations by equivalent cheaper ones on the target 
machine. Certain machine instructions are considerably cheaper than others 
and can often be used as special cases of more expensive operators. For ex- 
ample, x2 is invariably cheaper to implement as x * x than as a call to an 
exponentiation routine. Fixed-point multiplication or division by a power of 
two is cheaper to implement as a shift. Floating-point division by a constant 
can be approximated as multiplication by a constant, which may be cheaper. 

8.7.5 Use of Machine Idioms 

The target machine may have hardware'instructions to implement certain spe- 
cific operations efficiently. Detecting situations that permit the use of these 
instructions can reduce execution time significantly. For example, some ma- 
chines have auto-increment and auto-decrement addressing modes. These add 
or subtract one from an operand before or after using its value. The use of the 
modes greatly improves the quality of code when pushing or popping a stack, 
as in parameter passing. These modes can also be used in code for statements 
like x=x+l. 



8.8. REGISTER ALLOCATION AND ASSIGNMENT 

8.7.6 Exercises for Section 8.7 

Exercise 8.7.1 : Construct an algorithm that will perform redundant-instruc- 
tion elimination in a sliding peephole on target machine code. 

Exercise 8.7.2 : Construct an algorithm that will do flow-of-control optimiza- 
tions in a sliding peephole on target machine code. 

Exercise 8.7.3 : Construct an algorithm that will do simple algebraic simpli- 
fications and reductions in strength in a sliding peephole on target machine 
code. 

8.8 Register Allocation and Assignment 

Instructions involving only register operands are faster than those involving 
memory operands. On modern machines, processor speeds are often an order 
of magnitude or more faster than memory speeds. Therefore, efficient utilization 
of registers is vitally important in generating good code. This section presents 
various strategies for deciding at each point in a program what values should 
reside in registers (register allocation) and in which register each value should 
reside (register assignment). 

One approach to register allocation and assignment is to assign specific 
values in the target program to certain registers. For example, we could decide 
to assign base addresses to one group of registers, arithmetic computations to 
another, the top of the stack to a fixed register, and so on. 

This approach has the advantage that it simplifies the design of a code gener- 
ator. Its disadvantage is that, applied too strictly, it uses registers inefficiently; 
certain registers may go unused over substantial portions of code, while unnec- 
essary loads and stores are generated into the other registers. Nevertheless, it is 
reasonable in most computing environments to reserve a few registers for base 
registers, stack pointers, and the like, and to allow the remaining registers to 
be used by the code generator as it sees fit. 

8.8.1 Global Register Allocation 

The code generation algorithm in Section 8.6 used registers to hold values for 
the duration of a single basic block. However, all live variables were stored 
at the end of each block. To save some of these stores and corresponding 
loads, we might arrange to assign registers to frequently used variables and keep 
these registers consistent across block boundaries (globally). Since programs 
spend most of their time in inner loops, a natural approach to global register 
assignment is to try to keep a frequently used value in a fixed register throughout 
a loop. For the time being, assume that we know the loop structure of a flow 
graph, and that we know what values computed in a basic block are used outside 
that block. The next chapter covers techniques for computing this information. 



554 CHAPTER 8. CODE GENERATION 

One strategy for global register allocation is to assign some fixed number 
of registers to hold the most active values in each inner loop. The selected 
values may be different in different loops. Registers not already allocated may 
be used to hold values local to one block as in Section 8.6. This approach 
has the drawback that the fixed number of registers is not always the right 
number to make available for global register allocation. Yet the method is 
simple to implement and was used in Fortran H, the optimizing Fortran compiler 
developed by IBM for the 360-series machines in the late 1960s. 

With early C compilers, a programmer could do some register allocation 
explicitly by using register declarations to keep certain values in registers for 
the duration of a procedure. Judicious use of register declarations did speed 
up many programs, but programmers were encouraged to first profile their 
programs to determine the program's hotspots before doing their own register 
allocation. 

8.8.2 Usage Counts 

In this section we shall assume that the savings to be realized by keeping a 
variable x in a register for the duration of a loop L is one unit of cost for each 
reference to x if x is already in a register. However, if we use the approach in 
Section 8.6 to generate code for a block, there is a good chance that after x has 
been computed in a block it will remain in a register if there are subsequent 
uses of x in that block. Thus we count a savings of one for each use of x in 
loop L that is not preceded by an assignment to x in the same block. We also 
save two units if we can avoid a store of x at the end of a block. Thus, if x 
is allocated a register, we count a savings of two for each block in loop L for 
which x is live on exit and in which x is assigned a value. 

On the debit side, if x is live on entry to the loop header, we must load x 
into its register just before entering loop L. This load costs two units. Similarly, 
for each exit block B of loop L at which x is live on entry to some successor of 
B outside of L, we must store x at a cost of two. However, on the assumption 
that the loop is iterated many times, we may neglect these debits since they 
occur only once each time we enter the loop. Thus, an approximate formula for 
the benefit to be realized from allocating a register x within loop L is 

use($, B) + 2 * live(x, B) (8-1) 
blocks B in L 

where use(x, B) is the number of times x is used in B prior to any definition of 
x; lzue(x, B) is 1 if x is live on exit from B and is assigned a value in B ,  and 
live(x, B) is 0 otherwise. Note that (8.1) is approximate, because not all blocks 
in a loop are executed with equal frequency and also because (8.1) is based 
on the assumption that a loop is iterated many times. On specific machines a 
formula analogous to (8.1), but possibly quite different from it, would have to 
be developed. 



8.8. REGISTER ALLOCATION AND ASSIGNMENT 555 

Example 8.17 : Consider the the basic blocks in the inner loop depicted in 
Fig. 8.17, where jump and conditional jump statements have been omitted. 
Assume registers RO, R1 ,  and R2 are allocated to  hold values throughout the 
loop. Variables live on entry into and on exit from each block are shown in 
Fig. 8.17 for convenience, immediately above and below each block, respectively. 
There are some subtle points about live variables that we address in the next 
chapter. For example, notice that both e and f are live a t  the end of B1, but of 
these, only e is live on entry to B2 and only f on entry to  B3. In general, the 
variables live at the end of a block are the union of those live at the beginning 
of each of its successor blocks. 

acdef 

'7 cdef f live 

bcdef 

b, c ,  d, e, f live 

Figure 8.17: Flow graph of an inner loop 

To evaluate (8.1) for x = a, we observe that a is live on exit from B1 and 
is assigned a value there, but is not live on exit from B2, B3, or B4. Thus, 
CB in use(a, B) = 2. Hence the value of (8.1) for x = a is 4. That is, four 
units of cost can be saved by selecting a for one of the global registers. The 
values of (8.1) for b, c, d, e ,  and f are 5, 3, 6, 4, and 4, respectively. Thus, 
we may select a ,  b, and d for registers RO, R1 ,  and R2, respectively. Using RO 
for e or f instead of a would be another choice with the same apparent benefit. 
Figure 8.18 shows the assembly code generated from Fig. 8.17, assuming that 
the strategy of Section 8.6 is used to generate code for each block. We do not 
show the generated code for the omitted conditional or unconditional jumps 
that end each block in Fig. 8.17, and we therefore do not show the generated 
code as a single stream as it would appear in practice. 



CHAPTER 8. CODE GENERATION 

LD Rl, b 
LD R2, d 

Figure 8.18: Code sequence using global register assignment 

t 
I 

LD R3, c 
ADD ROY R1, R3 
SUB R2, R2, Rl 
LD R3, f 
ADD R3, ROY R3 
ST e, R3 

8.8.3 Register Assignment for Outer Loops 

LD R3, f 

SUB R3, ROY R2 ADD Rl, R2, R3 

ST f, R3 J32 LD R3, c 
SUB R3, ROY R3 
ST e, R3 

Having assigned registers and generated code for inner loops, we may apply the 
same idea to progressively larger enclosing loops. If an outer loop L1 contains 
an inner loop L2, the names allocated registers in L2 need not be allocated 
registers in L1 - L2. Similarly, if we choose to allocate x a register in L2 but 
not L1, we must load x on entrance to L2 and store x on exit from L2. We leave 
as an exercise the derivation of a criterion for selecting names to be allocated 
registers in an outer loop L, given that choices have already been made for all 

J33 

loops nested within L. 

8.8.4 Register Allocation by Graph Coloring 

LD R3, c 
B4 ADD R1, R2, R3 

When a register is needed for a computation but all available registers are in 
use, the contents of one of the used registers must be stored (spilled) into a 
memory location in order to free up a register. Graph coloring is a simple, 
systematic technique for allocating registers and managing register spills. 

In the method, two passes are used. In the first, target-machine instruc- 
tions are selected as though there are an infinite number of symbolic registers; 
in effect, names used in the intermediate code become names of registers and 

ST b y  Rl 
ST a, R2 

4 



8.8. REGISTER ALLOCATION AND ASSIGNMENT 

the three-address instructions become machine-language instructions. If ac- 
cess to variables requires instructions that use stack pointers, display pointers, 
base registers, or other quantities that assist access, then we assume that these 
quantities are held in registers reserved for each purpose. Normally, their use is 
directly translatable into an access mode for an address mentioned in a machine 
instruction. If access is more complex, the access must be broken into several 
machine instructions, and a temporary symbolic register (or several) may need 
to be created. 

Once the instructions have been selected, a second pass assigns physical 
registers to symbolic ones. The goal is to find an assignment that minimizes 
the cost of spills. 

In the second pass, for each procedure a register-interference graph is con- 
structed in which the nodes are symbolic registers and an edge connects two 
nodes if one is live at a point where the other is defined. For example, a register- 
interference graph for Fig. 8.17 would have nodes for names a and d. In block 
B1, a is live at  the second statement, which defines d; therefore, in the graph 
there would be an edge between the nodes for a and d. 

An attempt is made to color the register-interference graph using k colors, 
where k is the number of assignable registers. A graph is said to be colored if 
each node has been assigned a color in such a way that no two adjacent nodes 
have the same color. A color represents a register, and the color makes sure 
that no two symbolic registers that can interfere with each other are assigned 
the same physical register. 

Although the problem of determining whether a graph is k-colorable is NP- 
complete in general, the following heuristic technique can usually be used to do 
the coloring quickly in practice. Suppose a node n in a graph G has fewer than 
k neighbors (nodes connected to n by an edge). Remove n and its edges from 
G to obtain a graph GI. A k-coloring of GI can be extended to a k-coloring of 
G by assigning n a color not assigned to any of its neighbors. 

By repeatedly eliminating nodes having fewer than k edges from the register- 
interference graph, either we obtain the empty graph, in which case we can 
produce a k-coloring for the original graph by coloring the nodes in the reverse 
order in which they were removed, or we obtain a graph in which each node has 
k or more adjacent nodes. In the latter case a kcoloring is no longer possible. 
At this point a node is spilled by introducing code to store and reload the 
register. Chaitin has devised several heuristics for choosing the node to spill. 
A general rule is to avoid introducing spill code into inner loops. 

8.8.5 Exercisesfor Section 8.8 

Exercise 8.8.1 : Construct the register-interference graph for the program in 
Fig. 8.17. 

Exercise 8.8.2 : Devise a register-allocation strategy on the assumption that 
we automatically store all registers on the stack before each procedure call and 
restore them after the return. 



CHAPTER 8. CODE GENERATION 

8.9 Instruction Selection by Tree Rewriting 
Instruction selection can be a large combinatorial task, especially on machines 
that are rich in addressing modes, such as CISC machines, or on machines with 
special-purpose instructions, say, for signal processing. Even if we assume that 
the order of evaluation is given and that registers are allocated by a separate 
mechanism, instruction selection - the problem of selecting target-language 
instructions to implement the operators in the intermediate representation - 
remains a large combinatorial task. 

In this section, we treat instruction selection as a tree-rewriting problem. 
Tree representations of target instructions have been used effectively in code- 
generator generators, which automatically construct the instruction-selection 
phase of a code generator from a high-level specification of the target machine. 
Better code might be obtained for some machines by using DAG's rather than 
trees, but DAG matching is more complex than tree matching. 

8.9.1 Tree-Translation Schemes 

Throughout this section, the input to the code-generation process will be a 
sequence of trees at  the semantic level of the target machine. The trees are 
what we might get after inserting run- time addresses into the intermediate 
representation, as described in Section 8.3. In addition, the leaves of the trees 
contain information about the storage types of their labels. 

Example 8.18 : Figure 8.19 contains a tree for the assignment statement 
aCil = b +  1, where the array a is stored on the run-time stack and the vari- 
able b is a global in memory location Mb. The run-time addresses of locals a 
and i are given as constant offsets C, and Ci from SP, the register containing 
the pointer to the beginning of the current activation record. 

The assignment to a[i] is an indirect assignment in which the r-value of 
the location for a [il is set to the r-value of the expression b + 1. The addresses 
of array a and variable i are given by adding the values of the constant C, and 
Ci , respectively, to the contents of register SP . We simplify array-address calcu- 
lations by assuming that all values are one-byte characters. (Some instruction 
sets make special provisions for multiplications by constants, such as 2, 4, and 
8, during address calculations .) 

In the tree, the ind operator treats its argument as a memory address. As 
the left child of an assignment operator, the ind node gives the location into 
which the r-value on the right side of the assignment operator is to be stored. 
If an argument of a + or ind operator is a memory location or a register, then 
the contents of that memory location or register are taken as the value. The 
leaves in the tree are labeled with attributes; a subscript indicates the value of 
the attribute. 

The target code is generated by applying a sequence of tree-rewriting rules 
to reduce the input tree to a single node. Each tree-rewriting rule has the form 



8.9. INSTRUCTION SELECTION BY TREE R E  WRITING 

Figure 8.19: Intermediate-code tree for a [i] = b + 1 

replacement t template { action ) 

where replacement is a single node, template is a tree, and action is a code 
fragment, as in a syntax-directed translation scheme. 

A set of tree-rewriting rules is called a tree-translation scheme. 
Each tree-rewriting rule represents the translation of a portion of the tree 

given by the template. The translation consists of a possibly empty sequence of 
machine instructions that is emitted by the action associated with the template. 
The leaves of the template are attributes with subscripts, as in the input tree. 
Sometimes, certain restrictions apply to the values of the subscripts in the 
templates; these restrictions are specified as semantic predicates that must be 
satisfied before the template is said to match. For example, a predicate might 
specify that the value of a constant fall in a certain range. 

A tree-translation scheme is a convenient way to represent the instruction- 
selection phase of a code generator. As an example of a tree-rewriting rule, 
consider the rule for the register-to-register add instruction: 

Ri t { ADD Ri , Ri , R j  ) 

Ri 
/+\ 

R,i 

This rule is used as follows. If the input tree contains a subtree that matches 
this tree template, that is, a subtree whose root is labeled by the operator + 
and whose left and right children are quantities in registers i and j, then we 
can replace that subtree by a single node labeled Ri and emit the instruction 
ADD R i ,  R i ,  R j  as output. We call this replacement a tiling of the subtree. 
More than one template may match a subtree at a given time; we shall describe 
shortly some mechanisms for deciding which rule to apply in cases of conflict. 

Example 8.19 : Figure 8.20 contains tree-rewriting rules for a few instructions 
of our target machine. These rules will be used in a running example throughout 
this section. The first two rules correspond to load instructions, the next two 



560 CHAPTER 8. CODE GENERATION 

to store instructions, and the remainder to indexed loads and additions. Note 
that rule (8) requires the value of the constant to be 1. This condition would 
be specified by a semantic predicate. 

8.9.2 Code Generation by Tiling an Input Tree 

A tree-translation scheme works as follows. Given an input tree, the templates 
in the tree-rewriting rules are applied to tile its subtrees. If a template matches, 
the matching subtree in the input tree is replaced with the replacement node of 
the rule and the action associated with the rule is done. If the action contains a 
sequence of machine instructions, the instructions are emitted. This process is 
repeated until the tree is reduced to a single node, or until no more templates 
match. The sequence of machine instructions generated as the input tree is 
reduced to a single node constitutes the output of the tree-translation scheme 
on the given input tree. 

The process of specifying a code generator becomes similar to that of us- 
ing a syntax-directed translation scheme to specify a translator. We write a 
tree-translation scheme to describe the instruction set of a target machine. In 
practice, we would like to find a scheme that causes a minimal-cost instruction 
sequence to be generated for each input tree. Several tools are available to help 
build a code generator automatically from a tree-translation scheme. 

Example 8.20 : Let us use the tree-translation scheme in Fig. 8.20 to generate 
code for the input tree in Fig. 8.19. Suppose that the first rule is applied to 
load the constant Ca into register RO: 

The label of the leftmost leaf then changes from Ca to Ro and the instruction 
LD ROY #a is generated. The seventh rule now matches the leftmost subtree 
with root labeled +: 

7) 
R0 + /+\ 

{ ADD ROY R Q y  SP ) 

Ro RSP 

Using this rule, we rewrite this subtree as a single node labeled Ro and generate 
the instruction ADD ROY ROY SP. Now the tree looks like 



8.9. INSTRUCTION SELECTION BY TREE RE WRITING 

Ri t M z  I { LD R i ,  x ) 

Ri t c a  { LD R i ,  # a  ) 

4) 

Figure 8.20: Tree-rewriting rules for some target-machine instructions 

M t - 

/-\ 
ind Rj 

I 

6) 

7) 

8) 

Ri t 

Ri 
/+\  

ind 
I 

c a  

/+\  
Rj 

Ri t 

Ri 
/+\  

Rj 

Ri t 

/+\ 
Ri C1 

{ ADD R i ,  R i ,  a ( R j )  ) 

{ ADD R i ,  R i ,  R j  ) 

{ I N C  R i  ) 



562 CHAPTER 8. CODE GENERATION 

At this point, we could apply rule (5) to reduce the subtree 

ind 

to a single node labeled, say, R1. We could also use rule (6) to reduce the larger 
subtree 

Ro 
/ , \  

ind 
I 

to a single node labeled Ro and generate the instruction ADD ROY ROY i (SP) . 
Assuming that it is more efficient to use a single instruction to compute the 
larger subtree rather than the smaller one, we choose rule (6) to get 

ind / = \  + 
I 

Ro Mb 
/ \ c1 

In the right subtree, rule (2) applies to the leaf Mb. It generates an instruction 
to load b into register R1, say. Now, using rule (8) we can match the subtree 

and generate the increment instruction INC Rl. At this point, the input tree 
has been reduced to 

/ \ 
ind RI 

This remaining tree is matched by rule (4), which reduces the tree to a single 
node and generates the instruction ST *ROY R1. We generate the following code 
sequence: 

LD ROY #a 
ADD ROY ROY SP 
ADD ROY ROY i(SP) 
LD Rl, b 
INC R1 
ST *ROY Rl 



8.9. INSTRUCTION SELECTION BY TREE RET;VRITING 

in the process of reducing the tree to a single node. 

In order to implement the tree-reduction process in Example 8.18, we must 
address some issues related to tree-pattern matching: 

HOW is tree-pattern matching to be done? The efficiency of the code- 
generation process (at compile time) depends on the efficiency of the tree- 
matching algorithm. 

What do we do if more than one template matches at a given time? 
The efficiency of the generated code (at run time) may depend on the 
order in which templates are matched, since different match sequences 
will in general lead to different target-machine code sequences, some more 
efficient than others. 

If no template matches, then the code-generation process blocks. At the 
other extreme, we need to guard against the possibility of a single node being 
rewritten indefinitely, generating an infinite sequence of register move instruc- 
tions or an infinite sequence of loads and stores. 

To prevent blocking, we assume that each operator in the intermediate code 
can be implemented by one or more target-machine instructions. We further 
assume that there are enough registers to compute each tree node by itself. 
Then, no matter how the tree matching proceeds, the remaining tree can always 
be translated into target-machine instructions. 

8.9.3 Pattern Matching by Parsing 

Before considering general tree matching, we consider a specialized approach 
that uses an LR parser to do the pattern matching. The input tree can be 
treated as a string by using its prefix representation. For example, the prefix 
representation for the tree in Fig. 8.19 is 

= ind + + C, RSp ind + Ci RSp + Mb C1 

The tree-translation scheme can be converted into a synt ax-directed trans- 
lation scheme by replacing the tree-rewriting rules with the productions of a 
context-free grammar in which the right sides are prefix representations of the 
instruction templates. 

Example 8.21 : The syntax-directed translation scheme in Fig. 8.21 is based 
on the tree-translation scheme in Fig. 8.20. 

The nonterminals of the underlying grammar are R and M. The terminal 
m represents a specific memory location, such as the location for the global 
variable b in Example 8.18. The production M --+ m in Rule (10) can be 
thought of as matching M with m prior to using one of the templates involving 
M. Similarly, we introduce a terminal sp for register SP and add the production 
R --+ SP. Finally, terminal c represents constants. 

Using these terminals, the string for the input tree in Fig. 8.19 is 



CHAPTER 8. CODE GENERATION 

1) Ri --+ c ,  { L D  R i ,  # a )  
2) Ri + Mz { LD Ri, x ) 
3) M + = Mz Ri { S T  x ,  R i )  
4) M --+ = ind Ri Rj { S T  *Ri ,  R j  ) 
5) Ri --+ ind + c ,  Rj { LD R i ,  a ( R j )  ) 
6) Ri --+ +Riind + c,Rj { A D D  R i ,  R i ,  a ( R j ) )  
7) Ri i + Ri Rj { ADD R i ,  R i ,  R j  ) 
8) Ri + + Ri C I  { I N C  R i  ) 
9) R --+ sp 

10) M --+ m 

Figure 8.21: Syntax-directed translation scheme constructed from Fig. 8.20 

= ind + + c ,  sp ind + ci sp + mb cl 

From the productions of the translation scheme we build an LR parser using 
one of the LR-parser construction techniques of Chapter 4. The target code is 
generated by emitting the machine instruction corresponding to each reduction. 

A code-generation grammar is usually highly ambiguous, and some care 
needs to be given to how the parsing-action conflicts are resolved when the 
parser is constructed. In the absence of cost information, a general rule is to 
favor larger reductions over smaller ones. This means that in a reduce-reduce 
conflict, the longer reduction is favored; in a shift-reduce conflict, the shift 
move is chosen. This "maximal munch" approach causes a larger number of 
operations to be performed with a single machine instruction. 

There are some benefits to using LR parsing in code generation. First, 
the parsing method is efficient and well understood, so reliable and efficient 
code generators can be produced using the algorithms described in Chapter 4. 
Second, it is relatively easy to retarget the resulting code generator; a code 
selector for a new machine can be constructed by writing a grammar to describe 
the instructions of the new machine. Third, the quality of the code generated 
can be made efficient by adding special-case productions to take advantage of 
machine idioms. 

However, there are some challenges as well. A left-to-right order of evalua- 
tion is fixed by the parsing method. Also, for some machines with large numbers 
of addressing modes, the machine-description grammar and resulting parser can 
become inordinately large. As a consequence, specialized techniques are neces- 
sary to encode and process the machine-description grammars. We must also 
be careful that the resulting parser does not block (has no next move) while 
parsing an expression tree, either because the grammar does not handle some 
operator patterns or because the parser has made the wrong resolution of some 
parsing-action conflict. We must also make sure the parser does not get into an 



8.9. INSTRUCTION SELECTION BY T R E E  REWRITING 565 

infinite loop of reductions of productions with single symbols on the right side. 
The looping problem can be solved using a state-splitting technique at the time 
the parser tables are generated. 

8.9.4 Routines for Semantic Checking 

In a code-generation translation scheme, the same attributes appear as in an 
input tree, but often with restrictions on what values the subscripts can have. 
For example, a machine instruction may require that an attribute value fall in 
a certain range or that the values of two attributes be related. 

These restrictions on attribute values can be specified as predicates that are 
invoked before a reduction is made. In fact, the general use of semantic actions 
and predicates can provide greater flexibility and ease of description than a 
purely grammatical specification of a code generator. Generic templates can 
be used to represent classes of instructions and the semantic actions can then 
be used to pick instructions for specific cases. For example, two forms of the 
addition instruction can be represented with one template: 

{ if ( a  = 1) Ri t. 

/+\ else I N C  R i  
Ri CCL ADD R i ,  R i ,  #a ) 

Parsing-action conflicts can be resolved by disambiguating predicates that 
can allow different selection strategies to be used in different contexts. A 
smaller description of a target machine is possible because certain aspects of 
the machine architecture, such as addressing modes, can be factored into the 
attributes. The complication in this approach is that it may become difficult 
to verify the accuracy of the translation scheme as a faithful description of the 
target machine, although this problem is shared to some degree by all code 
generators. 

8.9.5 General Tree Matching 

The LR-parsing approach to pattern matching based on prefix representations 
favors the left operand of a binary operator. In a prefix representation op El E2, 
the limited-lookahead LR parsing decisions must be made on the basis of some 
prefix of El, since El can be arbitrarily long. Thus, pattern matching can miss 
nuances of the target-instruction set that are due to right operands. 

Instead prefix representation, we could use a postfix representation. But, 
then an LR-parsing approach to pattern matching would favor the right oper- 
and. 

For a hand-written code generator, we can use tree templates, as in Fig. 8.20, 
as a guide and write an ad-hoc matcher. For example, if the root of the input 
tree is labeled ind,  then the only pattern that could match is for rule (5); 
otherwise, if the root is labeled +, then the patterns that could match are for 
rules (6-8). 



CHAPTER 8. CODE GENERATION 

For a code-generator generator, we need a general tree-matching algorithm. 
An efficient top-down algorithm can be developed by extending the string- 
pattern-matching techniques of Chapter 3. The idea is to represent each tem- 
plate as a set of strings, where a string corresponds to a path from the root to 
a leaf in the template. We treat all operands equally by including the position 
number of a child, from left to right, in the strings. 

Example 8.22 : In building the set of strings for an instruction set, we shall 
drop the subscripts, since pattern matching is based on the attributes alone, 
not on their values. 

The templates in Fig. 8.22 have the following set of strings from the root to 
a leaf: 

The string C represents the template with C at the root. The string + 1 R 
represents the + and its left operand R in the two templates that have + at 
the root. 

Ri 
/ \ 

ind 

Figure 8.22: An instruction set for tree matching 

Using sets of strings as in Example 8.22, a tree-pattern matcher can be con- 
structed by using techniques for efficiently matching multiple strings in parallel. 

In practice, the tree-rewriting process can be implemented by running the 
tree-pattern matcher during a depth-first traversal of the input tree and per- 
forming the reductions as the nodes are visited for the last time. 

Instruction costs can be taken into account by associating with each tree- 
rewriting rule the cost of the sequence of machine instructions generated if that 
rule is applied. In Section 8.11, we discuss a dynamic programming algorithm 
that can be used in conjunction with tree-pattern matching. 

By running the dynamic programming algorithm concurrently, we can select 
an optimal sequence of matches using the cost information associated with 
each rule. We may need to defer deciding upon a match until the cost of all 
alternatives is known. Using this approach, a small, efficient code generator can 



8.10. OPTIMAL CODE GENERATION FOR EXPRESSlOlVS 567 

be constructed quickly from a tree-rewriting scheme. Moreover, the dynamic 
programming algorithm frees the code-generator designer from having to resolve 
conflicting matches or decide upon an order for the evaluation. 

8.9.6 Exercises for Section 8.9 

Exercise 8.9.1 : Construct syntax trees for each of the following statements 
assuming all nonconstant operands are in memory locations: 

Use the tree-rewriting scheme in Fig. 8.20 to generate code for each statement. 

Exercise 8.9.2 : Repeat Exercise 8.9.1 above using the syntax-directed trans- 
lation scheme in Fig. 8.21 in place of the tree-rewriting scheme. 

! Exercise 8.9.3: Extend the tree-rewriting scheme in Fig. 8.20 to apply to 
while-statements. 

! Exercise 8.9.4 : How would you extend tree rewriting to apply to DAG7s? 

8.10 Optimal Code Generation for Expressions 

We can choose registers optimally when a basic block consists of a single expres- 
sion evaluation, or if we accept that it is sufficient to generate code for a block 
one expression at a time. In the following algorithm, we introduce a numbering 
scheme for the nodes of an expression tree (a syntax tree for an expression) that 
allows us to generate optimal code for an expression tree when there is a fixed 
number of registers with which to evaluate the expression. 

8.10.1 Ershov Numbers 

We begin by assigning to the nodes of an expression tree a number that tells 
how many registers are needed to evaluate that node without storing any tern- 
poraries. These numbers are sometimes called Ershov numbers, after A. Ershov, 
who used a similar scheme for machines with a single arithmetic register. For 
our machine model, the rules are: 

1. Label any leaf 1. 

2. The label of an interior node with one child is the label of its child. 

3. The label of an interior node with two children is 



568 CHAPTER 8. CODE GENERATION 

(a) The larger of the labels of its children, if those labels are different. 

(b) One plus the label of its children if the labels are the same. 

Example 8.23 : In Fig. 8.23 we see an expression tree (with operators omitted) 
that might be the tree for expression ( a  - b) + e x (c + d) or the three-address 
code: 

Each of the five leaves is labeled 1 by rule (I).  Then, we can label the interior 
node for t 1 = a - b, since both of its children are labeled. Rule (3b) applies, so 
it gets label one more than the labels of its children, that is, 2. The same holds 
for the interior node for t2 = c + d. 

Figure 8.23: A tree labeled with Ershov numbers 

Now, we can work on the node for t 3 = e * t 2. Its children have labels 1 and 
2, so the label of the node for t3 is the maximum, 2, by rule (3a). Finally, the 
root, the node for t 4  = t 1 + t3, has two children with label 2, and therefore it 
gets label 3. 

8.10.2 Generating Code From Labeled Expression Trees 

It can be proved that, in our machine model, where all operands must be in 
registers, and registers can be used by both an operand and the result of an 
operation, the label of a node is the fewest registers with which the expression 
can be evaluated using no stores of temporary results. Since in this model, we 
are forced to load each operand, and we are forced to compute the result cor- 
responding to each interior node, the only thing that can make the generated 
code inferior to the optimal code is if there are unnecessary stores of tempo- 
raries. The argument for this claim is embedded in the following algorithm for 
generating code with no stores of temporaries, using a number of registers equal 
to the label of the root. 

Algorithm 8.24 : Generating code from a labeled expression tree. 



8.10. OPTIMAL CODE GENERATION FOR EXPRESSIONS 

INPUT: A labeled tree with each operand appearing once (that is, no common 
subexpressions) . 

OUTPUT: An optimal sequence of machine instructions to evaluate the root 
into a register. 

METHOD: The following is a recursive algorithm to generate the machine code. 
The steps below are applied, starting at the root of the tree. If the algorithm 
is applied to a node with label k, then only k registers will be used. However, 
there is a "base" b > 1 for the registers used so that the actual registers used 
are Rb, Rb+1,. . . Rb+k-l. The result always appears in RbSkUl. 

1. To generate machine code for an interior node with label k and two chil- 
dren with equal labels (which must be k - l) do the following: 

(a) Recursively generate code for the right child, using base b + 1. The 
result of the right child appears in register Rb+k. 

(b) Recursively generate code for the left child, using base b; the result 
appears in Rb+k-1. 

(c) Generate the instruction OP Rb+k, Rb+k-1, Rb+k, where OP is the 
appropriate operation for the interior node in question. 

2. Suppose we have an interior node with label k and children with unequal 
labels. Then one of the children, which we'll call the "big" child, has label 
k ,  and the other child, the "little" child, has some label m < k .  Do the 
following to generate code for this interior node, using base b: 

(a) Recursively generate code for the big child, using base b; the result 
appears in register Rb+k-l. 

(b) Recursively generate code for the small child, using base b; the result 
appears in register Rb+m-l. Note that since m < k, neither Rb+k-l 
nor any higher-numbered register is used. 

(c) Generate the instruction OP Rb+k-l, Rb+m-l, Rb+k-1 or the instruc- 
tion OP Rb+iE-l, Rb+k-l, Rb+mPl, depending on whether the big child 
is the right or left child, respectively. 

3. For a leaf representing operand x, if the base is b generate the instruction 
LD Rb, x. 

Example 8.25 : Let us apply Algorithm 8.24 to the tree of Fig. 8.23. Since 
the label of the root is 3, the result will appear in Rg,  and only R1, R2, and 
R3 will be used. The base for the root is b = 1. Since the root has children of 
equal labels, we generate code for the right child first, with base 2. 

When we generate code for the right child of the root, labeled t3, we find the 
big child is the right child and the little child is the left child. We thus generate 
code for the right child first, with b = 2. Applying the rules for equal-labeled 
children and leaves, we generate the following code for the node labeled t2: 



CHAPTER 8. CODE GENERATION 

LD R3, d 
LD R2, c 
ADD R3, R2, R3 

Next, we generate code for the left child of the right child of the root; this node 
is the leaf labeled e. Since b = 2, the proper instruction is 

Now we can complete the code for the right child of the root by adding the 
instruction 

MUL R3, R2, R3 

The algorithm proceeds to generate code for the left child of the root, leaving 
the result in R2, and with base 1. The complete sequence of instructions is 
shown in Fig. 8.24. 

LD R3, d 
LD R2, c 
ADD R3, R2, R3 
LD R2, e 
MUL R3, R2, R3 
LD R2, b 
LD RI, a 
SUB R2, RI, R2 
ADD R3, R2, R3 

Figure 8.24: Optimal three-register code for the tree of Fig. 8.23 

8.10.3 Evaluating Expressions with an Insufficient Supply 
of Registers 

When there are fewer registers available than the label of the root of the tree, 
we cannot apply Algorithm 8.24 directly. We need to introduce some store 
instructions that spill values of subtrees into memory, and we then need to load 
those values back into registers as needed. Here is the modified algorithm that 
takes into account a limitation on the number of registers. 

Algorithm 8.26 : Generating code from a labeled expression tree. 

INPUT: A labeled tree with each operand appearing once (i.e., no common 
subexpressions) and a number of registers r > 2. 

OUTPUT: An optimal sequence of machine instructions to evaluate the root into 
a register, using no more than r registers, which we assume are R1, Rz , . . . , R, . 



8.10. OPTIMAL CODE GENERATION FOR EXPRESSIONS 571 

METHOD: Apply the following recursive algorithm, starting at the root of the 
tree, with base b = 1. For a node N with label r or less, the algorithm is exactly 
the same as Algorithm 8.24, and we shall not repeat those steps here. However, 
for interior nodes with a label k > r ,  we need to work on each side of the tree 
separately and store the result of the larger subtree. That result is brought 
back into memory just before node N is evaluated, and the final step will take 
place in registers R,-l and R,. The modifications to the basic algorithm are 
as follows: 

1. Node N has at least one child with label r or greater. Pick the larger 
child (or either if their labels are the same) to be the "big" child and let 
the other child be the "little" child. 

2. Recursively generate code for the big child, using base b = 1. The result 
of this evaluation will appear in register R,. 

3. Generate the machine instruction ST tk, R,, where tk is a temporary vari- 
able used for temporary results used to help evaluate nodes with label 
k. 

4. Generate code for the little child as follows. If the little child has label r 
or greater, pick base b = 1. If the label of the little child is j < r, then 
pick b = r - j .  Then recursively apply this algorithm to the little child; 
the result appears in R,. 

5. Generate the instruction LD R,-l, tk. 

6. If the big child is the right child of N, then generate the instruction 
OP R,, R,, R,-l. If the big child is the left child, generate OP R,, R,-l, R,. 

Example 8.27 : Let us revisit the expression represented by Fig. 8.23, but now 
assume that r = 2; that is, only registers R1 and R2 are available to hold tem- 
poraries used in the evaluation of expressions. When we apply Algorithm 8.26 
to Fig. 8.23, we see that the root, with label 3, has a label that is larger than 
r = 2. Thus, we need to identify one of the children as the "big" child. Since 
they have equal labels, either would do. Suppose we pick the right child as the 
big child. 

Since the label of the big child of the root is 2, there are enough registers. 
We thus apply Algorithm 8.24 to this subtree, with b = 1 and two registers. 
The result looks very much like the code we generated in Fig. 8.24, but with 
registers Rl and R2 in place of R2 and R3. This code is 

LD R2, d 
LD Rl, c 
ADD R2, R1, R2 
LD R1, e 
MUL R2, R1, R2 



572 CHAPTER 8. CODE GENERATION 

Now, since we need both registers for the left child of the root, we need to 
generate the instruction 

Next, the left child of the root is handled. Again, the number of registers is 
sufficient for this child, and the code is 

LD R2, b 
LD Rl, a 
SUB R2, Rl, R2 

Finally, we reload the temporary that holds the right child of the root with the 
instruction 

and execute the operation at the root of the tree with the instruction 

ADD R2, R2, R1 

The complete sequence of instructions is shown in Fig. 8.25. 

LD R2, d 
LD R1, c 
ADD R2, R1, R2 
LD R1, e 
MUL R2, R1, R2 
ST t3, R2 
LD R2, b 
LD R1, a 
SUB R2, R1, R2 
LD Rl, t3 
ADD R2, R2, R1 

Figure 8.25: Optimal three-register code for the tree of Fig. 8.23, using only 
two registers 

8.10.4 Exercises for Section 8.10 

Exercise 8.10.1 : Compute Ershov numbers for the following expressions: 

a) a/(b+c) - d * (e + f ) .  

b) a + b * (c * (d + e)) . 



8.11. DYNAMIC PROGRAMMING CODE-GENERATION 

C) (-a + *p )  * ( ( b  - * q ) / ( - c +  * r ) ) .  

Exercise 8.10.2 : Generate optimal code using two registers for each of the 
expressions of Exercise 8.10.1. 

Exercise 8.10.3 : Generate optimal code using three registers for each of the 
expressions of Exercise 8.10.1. 

! Exercise 8.10.4 : Generalize the computation of Ershov numbers to expression 
trees with interior nodes with three or more children. 

! Exercise 8.10.5 : An assignment to an array element, such as a [i] = x, ap- 
pears to be an operator with three operands: a ,  i ,  and x. How would you modify 
the tree-labeling scheme to generate optimal code for this machine model? 

! Exercise 8.10.6 : The original Ershov numbers were used for a machine that 
allowed the right operand of an expression to be in memory, rather than a 
register. How would you modify the tree-labeling scheme to generate optimal 
code for this machine model? 

! Exercise 8.10.7: Some machines require two registers for certain single-pre- 
cision values. Suppose that the result of a multiplication of single-register quan- 
tities requires two consecutive registers, and when we divide a/b,  the value of 
a must be held in two consecutive registers. How would you modify the tree- 
labeling scheme to generate optimal code for this machine model? 

8.11 Dynamic Programming Code-Generation 

Algorithm 8.26 in Section 8.10 produces optimal code from an expression tree 
using an amount of time that is a linear function of the size of the tree. This 
procedure works for machines in which all computation is done in registers and 
in which instructions consist of an operator applied to two registers or to a 
register and a memory location. 

An algorithm based on the principle of dynamic programming can be used 
to extend the class of machines for which optimal code can be generated from 
expression trees in linear time. The dynamic programming algorithm applies 
to a broad class of register machines with complex instruction sets. 

The dynamic programming algorithm can be used to generate code for any 
machine with r interchangeable registers RO, R 1 , .  . . , Rr-1 and load, store, and 
add instructions. For simplicity, we assume every instruction costs one unit, 
although the dynamic programming algorithm can easily be modified to work 
even if each instruction has its own cost. 



574 CHAPTER 8. CODE GENERATION 

8.11.1 Contiguous Evaluation 

The dynamic programming algorithm partitions the problem of generating op- 
timal code for an expression into the subproblems of generating optimal code 
for the subexpressions of the given expression. As a simple example, consider 
an expression E of the form El + E2. An optimal program for E is formed by 
combining optimal programs for El and E2, in one or the other order, followed 
by code to  evaluate the operator +. The subproblems of generating optimal 
code for El and E2 are solved similarly. 

An optimal program produced by the dynamic programming algorithm has 
an important property. It evaluates an expression E = El op E2 "contigu- 
ously." We can appreciate what this means by looking at the syntax tree T for 
E :  

Here TI and T2 are trees for El and E2, respectively. 
We say a program P evaluates a tree T contiguously if it first evaluates those 

subtrees of T that need to be computed into memory. Then, it evaluates the 
remainder of T either in the order TI, T2, and then the root, or in the order 
T2, TI, and then the root, in either case using the previously computed values 
from memory whenever necessary. As an example of noncontiguous evaluation, 
P might first evaluate part of TI leaving the value in a register (instead of 
memory), next evaluate T2, and then return to  evaluate the rest of TI. 

For the register machine in this section, we can prove that given any mach- 
ine-language program P to evaluate an expression tree T ,  we can find an equiv- 
alent program P' such that 

1. P' is of no higher cost than P, 

2. P' uses no more registers than P, and 

3. P' evaluates the tree contiguously. 

This result implies that every expression tree can be evaluated optimally by 
a contiguous program. 

By way of contrast, machines with even-odd register pairs do not always have 
optimal contiguous evaluations; the x86 architecture uses register pairs for mul- 
tiplication and division. For such machines, we can give examples of expression 
trees in which an optimal machine language program must first evaluate into 
a register a portion of the left subtree of the root, then a portion of the right 
subtree, then another part of the left subtree, then another part of the right, 
and so on. This type of oscillation is unnecessary for an optimal evaluation of 
any expression tree using the machine in this section. 



8.11. DYNAMIC PROGRAMMING CODE-GENERATION 

The contiguous evaluation property defined above ensures that for any ex- 
pression tree T there always exists an optimal program that consists of optimal 
programs for subtrees of the root, followed by an instruction to  evaluate the 
root. This property allows us to  use a dynamic programming algorithm to 
generate an optimal program for T. 

8.1 1.2 The Dynamic Programming Algorithm 

The dynamic programming algorithm proceeds in three phases (suppose the 
target machine has r registers): 

1. Compute bottom-up for each node n of the expression tree T an array C 
of costs, in which the ith component C[i] is the optimal cost of computing 
the subtree S rooted at n into a register, assuming i registers are available 
for the computation, for 1 5 i 5 r .  

2. Traverse T ,  using the cost vectors to  determine which subtrees of T must 
be computed into memory. 

3. Traverse each tree using the cost vectors and associated instructions to  
generate the final target code. The code for the subtrees computed into 
memory locations is generated first. 

Each of these phases can be implemented to run in time linearly proportional 
to  the size of the expression tree. 

The cost of computing a node n includes whatever loads and stores are 
necessary to  evaluate S in the given number of registers. It  also includes the 
cost of computing the operator at the root of S. The zeroth component of 
the cost vector is the optimal cost of computing the subtree S into memory. 
The contiguous evaluation property ensures that an optimal program for S can 
be generated by considering combinations of optimal programs only for the 
subtrees of the root of S. This restriction reduces the number of cases that 
need to be considered. 

In order to  compute the costs C[i] at  node n,  we view the instructions as 
tree-rewriting rules, as in Section 8.9. Consider each template E that matches 
the input tree a t  node n. By examining the cost vectors at the corresponding 
descendants of n, determine the costs of evaluating the operands at the leaves 
of E. For those operands of E that are registers, consider all possible orders in 
which the corresponding subtrees of T can be evaluated into registers. In each 
ordering, the first subtree corresponding to a register operand can be evaluated 
using i available registers, the second using i - 1 registers, and so on. To account 
for node n,  add in the cost of the instruction associated with the template E. 
The value C[i] is then the minimum cost over all possible orders. 

The cost vectors for the entire tree T can be computed bottom up in time 
linearly proportional to  the number of nodes in T. It is convenient to  store at 
each node the instruction used to achieve the best cost for C[i] for each value 



576 CHAPTER 8. CODE GENERATION 

of i. The smallest cost in the vector for the root of T gives the minimum cost 
of evaluating T. 

Example 8.28 : Consider a machine having two registers RO and R l  , and the 
following instructions, each of unit cost: 

LD R i ,  Mj  // R i  = M j  
op R i ,  R i ,  R j  / / R i Z R i  o p R j  
op R i ,  R i ,  Mj  / / R i = R i  o p M j  
LD R i ,  R j  // R i  = R j  
ST M i ,  R j  / /  M i  = R j  

In these instructions, R i  is either RO or R l ,  and M j  is a memory location. The 
operator op corresponds to an arithmetic operators. 

Let us apply the dynamic programming algorithm to generate optimal code 
for the syntax tree in Fig 8.26. In the first phase, we coznpute the cost vectors 
shown at each node. To illustrate this cost computation, consider the cost 
vector at the leaf a. C[O], the cost of computing a into memory, is 0 since it is 
already there. C[l], the cost of computing a into a register, is 1 since we can 
load it into a register with the instruction LD RO , a. C[2], the cost of loading a 
into a register with two registers available, is the same as that with one register 
available. The cost vector at leaf' a is therefore (O,1,1). 

Figure 8.26: Syntax tree for (a-b) +c* (d/e) with cost vector at each node 

Consider the cost vector at the root. We first determine the minimum 
cost of computing the root with one and two registers available. The machine 
instruction ADD RO, RO, M matches the root, because the root is labeled with 
the operator +. Using this instruction, the minimum cost of evaluating the 
root with one register available is the minimum cost of computing its right 
subtree into memory, plus the minimum cost of computing its left subtree into 
the register, plus 1 for the instruction. No other way exists. The cost vectors at  
the right and left children of the root show that the minimum cost of computing 
the root with one register available is 5 + 2 + 1 = 8. 

Now consider the minimum cost of evaluating the root with two registers 
available. Three cases arise depending on which instruction is used to compute 
the root and in what order the left and right subtrees of the root are evaluated. 



8.11. DYNAMIC PROGRAMMING CODE-GENERATION 577 

1. Compute the left subtree with two registers available into register RO, 
compute the right subtree with one register available into register R1,  and 
use the instruction ADD ROY ROY R 1  to compute the root. This sequence 
has cost 2 + 5 + 1 = 8. 

2. Compute the right subtree with two registers available into R l ,  compute 
the left subtree with one register available into RO, and use the instruction 
ADD R O Y  ROY R1. This sequence has cost 4+2+1 = 7. 

3. Compute the right subtree into memory location M, compute the left sub- 
tree with two registers available into register RO, and use the instruction 
ADD ROY R O Y  M. This sequence has cost 5 + 2 + 1 = 8. 

The second choice gives the minimum cost 7. 
The minimum cost of computing the root into memory is determined by 

adding one to the minimum cost of computing the root with all registers avail- 
able; that is, we compute the root into a register and then store the result. The 
cost vector at the root is therefore (8,8,7). 

From the cost vectors we can easily construct the code sequence by making 
a traversal of the tree. From the tree in Fig. 8.26, assuming two registers are 
available, an optimal code sequence is 

LD R O Y  c / /  RO = c 
LD Rl, d / /  R 1  = d 
D I V  R1, R1, e // R 1  = R 1  / e 
MUL ROY ROY R1 // RO = RO * R 1  
LD R 1 ,  a // R 1  = a 
SUB R1, R1, b / /  R 1  = R 1  - b 
ADD Rl, R1, RO // R 1  = R 1  + RO 

Dynamic programming techniques have been used in a number of compilers, 
including the second version of the portable C compiler, PCC2. The technique 
facilitates retargeting because of the applicability of the dynamic programming 
technique to a broad class of machines. 

8.11.3 Exercises for Section 8.11 

Exercise 8.11.1 : Augment the tree-rewriting scheme in Fig. 8.20 with costs, 
and use dynamic programming and tree matching to generate code for the 
statements in Exercise 8.9.1. 

!! Exercise 8.1 1.2 : How would you extend dynamic programming to do optimal 
code generation on dags? 



5 78 CHAPTER 8. CODE GENERATION 

8.12 Summary of Chapter 8 

+ Code generation is the final phase of a compiler. The code generator maps 
the intermediate representation produced by the front end, or if there is a 
code optimization phase by the code optimizer, into the target program. 

+ Instruction selection is the process of choosing target-language instruc- 
tions for each IR statement. 

+ Register allocation is the process of deciding which IR values to keep 
in registers. Graph coloring is an effective technique for doing register 
allocation in compilers. 

+ Register assignment is the process of deciding which register should hold 
a given IR value. 

+ A retargetable compiler is one that can generate code for multiple instruc- 
tion sets. 

+ A virtual machine is an interpreter for a bytecode intermediate language 
produced by languages such as Java and C#. 

4 A C I S C  machine is typically a two-address machine with relatively few 
registers, several register classes, and variable-length instructions with 
complex addressing modes. 

+ A R I S C  machine is typically a three-address machine with many registers 
in which operations are done in registers. 

A basic block is a maximal sequence of consecutive three-address state- 
ments in which flow of control can only enter at the first statement of the 
block and leave at  the last statement without halting or branching except 
possibly at  the last statement in the basic block. 

+ A flow graph is a graphical representation of a program in which the nodes 
of the graph are basic blocks and the edges of the graph show how control 
can flow among the blocks. 

+ A loop in a flow graph is a strongly connected region with a single entry 
point called the loop header. 

+ A DAG representation of a basic block is a directed acyclic graph in which 
the nodes of the DAG represent the statements within the block and each 
child of a node corresponds to the statement that is the last definition of 
an operand used in the statement. 

+ Peephole optimizations are local code-improving transformations that can 
be applied to a program, usually through a sliding window. 



8.13. REFERENCES FOR CHAPTER 8 579 

+ Instruct ion selection can be done by a tree-rewriting process in which 
tree patterns corresponding to machine instructions are used to tile a 
syntax tree. We can associate costs with the tree-rewriting rules and 
apply dynamic programming to obtain an optimal tiling for useful classes 
of machines and expressions. 

+ An Ershov number tells how many registers are needed to evaluate an 
expression without storing any temporaries. 

+ Spill code is an instruction sequence that stores a value in a register into 
memory in order to make room to hold another value in that register. 

8.13 References for Chapter 8 

Many of the techniques covered in this chapter have their origins in the earliest 
compilers. Ershov7s labeling algorithm appeared in 1958 [7]. Sethi and Ullman 
[16] used this labeling in an algorithm that they prove generated optimal code 
for arithmetic expressions. Aho and Johnson [I] used dynamic programming 
to generate optimal code for expression trees on CISC machines. Hennessy 
and Patterson [12] has a good discussion on the evolution of CISC and RISC 
machine architectures and the tradeoffs involved in designing a good instruction 
set. 

RISC architectures became popular after 1990, although their origins go 
back to computers like the CDC 6600, first delivered in 1964. Many of the 
computers designed before 1990 were CISC machines, but most of the general- 
purpose computers installed after 1990 are still CISC machines because they are 
based on the Intel 80x86 architecture and its descendants, such as the Pentium. 
The Burroughs B5000 delivered in 1963 was an early stack-based machine. 

Many of the heuristics for code generation proposed in this chapter have been 
used in various compilers. Our strategy of allocating a fixed number of registers 
to hold variables for the duration of a loop was used in the implementation of 
Fortran H by Lowry and Medlock [13]. 

Efficient register allocation techniques have also been studied from the time 
of the earliest compilers. Graph coloring as a register-allocation technique was 
proposed by Cocke, Ershov [8], and Schwartz [15]. Many variants of graph- 
coloring algorithms have been proposed for register allocation. Our treatment 
of graph coloring follows Chaitin [3] [4]. Chow and Hennessy describe their 
priority-based coloring algorithm for register allocation in [5]. See [6] for a 
discussion of more recent graph-splitting and rewriting techniques for register 
allocation. 

Lexical analyzer and parser generators spurred the development of pattern- 
directed instruction selection. Glanville and Graham [ll] used LR-parser gen- 
eration techniques for automated instruction selection. Table-driven code gen- 
erators evolved into a variety of tree-pattern matching code-generation tools 
[14]. Aho, Ganapat hi, and Tjiang [2] combined efficient tree-pattern matching 



580 CHAPTER 8. CODE GENERATION 

techniques with dynamic programming in the code generation tool twig. Fraser, 
Hanson, and Proebsting [lo] further refined these ideas in their simple efficient 
code-generator generator. 

1. Aho, A. V. and S. C. Johnson, "Optimal code generation for expression 
trees," J. ACM 23:3, pp. 488-501. 

2. Aho, A. V., M. Ganapathi, and S. W. K. Tjiang, "Code generation using 
tree matching and dynamic programming," A CM Trans. Programming 
Languages and Systems 11:4 (1989), pp. 491-516. 

3. Chaitin, G. J., M. A. Auslander, A. K. Chandra, J .  Cocke, M. E. Hop- 
kins, and P. W. Markstein, "Register allocation via coloring," Computer 
Languages 6:l (1981), pp. 47-57. 

4. Chaitin, G. J., "Register allocation and spilling via graph coloring," A CM 
SIGPLAN Notices 17:6 (1982), pp. 201-207. 

5. Chow, F. and J. L. Hennessy, "The priority-based coloring approach to 
register allocation," ACM Trans. Programming Languages and Systems 
12:4 (1990), pp. 501-536. 

6. Cooper, K. D. and L. Torczon, Engineering a Compiler, Morgan Kauf- 
mann, San Francisco CA, 2004. 

7. Ershov, A. P., "On programming of arithmetic operations," Comm. A CM 
1% (1958), pp. 3-6. Also, Comm. ACM 1:9 (1958), p. 16. 

8. Ershov, A. P., The Alpha Automatic Programming System, Academic 
Press, New York, 1971. 

9. Fischer, C. N. and R. J .  LeBlanc, Crafting a Compiler with C, Benjamin- 
Cummings, Redwood City, CA, 1991. 

10. Fraser, C. W., D. R. Hanson, and T. A. Proebsting, "Engineering a sim- 
ple, efficient code generator generator," ACM Letters on Programming 
Languages and Systems 1:3 (1992), pp. 213-226. 

11. Glanville, R. S. and S. L. Graham, "A new method for compiler code gen- 
eration," Conf. Rec. Fifth ACM Symposium on Principles of Programming 
Languages (1978), pp. 231-240. 

12. Hennessy, J. L. and D. A. Patterson, Computer Architecture: A Quanti- 
tative Approach, Third Edition, Morgan Kaufman, San Francisco, 2003. 

13. Lowry, E. S. and C. W. Medlock, "Object code optimization," Comm. 
ACM 12:l (1969), pp. 13-22. 



8.13. REFERENCES FOR CHAPTER 8 581 

14. Pelegri-Llopart, E. and S. L. Graham, "Optimal code generation for ex- 
pressions trees: an application of BURS theory," Conf. Rec. Fifteenth An- 
nual ACM Symposium on Principles of Programming Languages (1988), 
pp. 294-308. 

15. Schwartz, J. T., On Programming: An Interim Report on the SETL 
Project, Technical Report, Courant Institute of Mathematical Sciences, 
New York, 1973. 

16. Sethi, R. and J. D. Ullman, "The generation of optimal code for arithmetic 
expressions," J. ACM 17:4 (1970), pp. 715-728. 





Chapter 9 

Machine-Independent 
Optimizations 

High-level language constructs can introduce substantial run-time overhead if 
we naively translate each construct independently into machine code. This 
chapter discusses how to eliminate many of these inefficiencies. Elimination of 
unnecessary instructions in object code, or the replacement of one sequence of 
instructions by a faster sequence of instructions that does the same thing is 
usually called "code improvement" or "code optimization." 

Local code optimization (code improvement within a basic block) was intro- 
duced in Section 8.5. This chapter deals with global code optimization, where 
improvements take into account what happens across basic blocks. We begin 
in Section 9.1 with a discussion of the principal opportunities for code improve- 
ment. 

Most global optimizations are based on data-flow analyses, which are algo- 
rithms to gather information about a program. The results of data-flow analyses 
all have the same form: for each instruction in the program, they specify some 
property that must hold every time that instruction is executed. The analyses 
differ in the properties they compute. For example, a constant-propagation 
analysis computes, for each point in the program, and for each variable used by 
the program, whether that variable has a unique constant value at that point. 
This information may be used to replace variable references by constant values, 
for instance. As another example, a liveness analysis determines, for each point 
in the program, whether the value held by a particular variable at that point is 
sure to be overwritten before it is read. If so, we do not need to preserve that 
value, either in a register or in a memory location. 

We introduce data-flow analysis in Section 9.2, including several important 
examples of the kind of information we gather globally and then use to improve 
the code. Section 9.3 introduces the general idea of a data-flow framework, 
of which the data-flow analyses in Section 9.2 are special cases. We can use 
essentially the same algorithms for all these instances of data-flow analysis, and 



584 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

we can measure the performance of these algorithms and show their correctness 
on all instances, as well. Section 9.4 is an example of the general framework that 
does more powerful analysis than the earlier examples. Then, in Section 9.5 
we consider a powerful technique, called "partial redundancy elimination," for 
optimizing the placement of each expression evaluation in the program. The 
solution to this problem requires the solution of a variety of different data-flow 
problems. 

In Section 9.6 we take up the discovery and analysis of loops in programs. 
The identification of loops leads to another family of algorithms for solving 
data-flow problems that is based on the hierarchical structure of the loops of 
a well-formed ("reducible") program. This approach to data-flow analysis is 
covered in Section 9.7. Finally, Section 9.8 uses hierarchical analysis to eliminate 
induction variables (essentially, variables that count the number of iterations 
around a loop). This code improvement is one of the most important we can 
make for programs written in commonly used programming languages. 

9.1 The Principal Sources of Optimization 

A compiler optimization must preserve the semantics of the original program. 
Except in very special circumstances, once a programmer chooses and imple- 
ments a particular algorithm, the compiler cannot understand enough about 
the program to replace it with a substantially different and more efficient al- 
gorithm. A compiler knows only how to apply relatively low-level semantic 
transformations, using general facts such as algebraic identities like i + 0 = i or 
program semantics such as the fact that performing the same operation on the 
same values yields the same result. 

9.1.1 Causes of Redundancy 

There are many redundant operations in a typical program. Sometimes the 
redundancy is available at the source level. For instance, a programmer may 
find it more direct and convenient to recalculate some result, leaving it to  
the compiler to recognize that only one such calculation is necessary. But 
more often, the redundancy is a side effect of having written the program in a 
high-level language. In most languages (other than C or C++, where pointer 
arithmetic is allowed), programmers have no choice but to refer t o  elements of 
an array or fields in a structure through accesses like A[i][j] or X -+ f I. 

As a program is compiled, each of these high-level data-structure accesses 
expands into a number of low-level arithmetic operations, such as the computa- 
tion of the location of the (i, j)th element of a matrix A. Accesses to the same 
data structure often share many common low-level operations. Programmers 
are not aware of these low-level operations and cannot eliminate the redundan- 
cies themselves. It is, in fact, preferable from a software-engineering perspec- 
tive that programmers only access data elements by their high-level names; the 



9.1. THE PRINCIPAL SO URCES OF OPTIMIZATION 585 

programs are easier to write and, more importantly, easier to understand and 
evolve. By having a compiler eliminate the redundancies, we get the best of 
both worlds: the programs are both efficient and easy to maintain. 

9.1.2 A Running Example: Quicksort 

In the following, we shall use a fragment of a sorting program called quzcksort 
to  illustrate several important code-improving transformations. The C program 
in Fig. 9.1 is derived from Sedgewick,' who discussed the hand-optimization of 
such a program. We shall not discuss all the subtle algorithmic aspects of this 
program here, for example, the fact that a[O] must contain the smallest of the 
sorted elements, and a[max] the largest. 

void q u i c k s o r t ( i n t  m,  i n t  n) 
/* r e cu r s ive ly  s o r t s  a[m] through a[n] */ 

i 
i n t  i ,  j ;  
i n t  v ,  x ;  
i f  (n  <= m) r e t u r n ;  
/* fragment begins  here  */  
i = m-I; j  = n ;  v = a[n];  
while  (I) ( 

do i = i + l ;  while (a [ i ]  < v ) ;  
do j  = j-1; while (a [ j ]  > v ) ;  
i f  ( i  >= j )  break;  
x  = a [ i l ;  aCil = a [ j ] ;  a [ j l  = x ;  /* swap a [ i ] ,  a [ j ]  */ 

3 
x = a [ i l  ; a [ i l  = a[nl ; a[nl = x ;  /* swap a[il , a[n] */ 
/* fragment ends here  */ 
quicksor t  (m, j )  ; quicksor t  ( i + l  ,n)  ; 

Figure 9.1: C code for quicksort 

Before we can optimize away the redundancies in address calculations, the 
address operations in a program first must be broken down into low-level arith- 
metic operations to expose the redundancies. In the rest of this chapter, we as- 
sume that the intermediate representation consists of three-address statements, 
where temporary variables are used to hold all the results of intermediate ex- 
pressions. Intermediate code for the marked fragment of the program in Fig. 9.1 
is shown in Fig. 9.2. 

In this example we assume that integers occupy four bytes. The assignment 
x = aCil is translated as in Section 6.4.4 into the two three-address statements 

'R. Sedgewick, "Implementing Quicksort Programs,'' Cornrn. ACM, 21,1978, pp. 847-857. 



586 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

t10  = 4*j 
art101 = x 
goto ( 5 )  
tll = 4*i 
x = a [ t l l ]  
t 12  = 4*i 

Figure 9.2: Three-address code for fragment in Fig. 9.1 

as shown in steps (14) and (15) of Fig. 9.2. Similarly, a [ j ]  = x becomes 

in steps (20) and (21). Notice that every array access in the original program 
translates into a pair of steps, consisting of a multiplication and an array- 
subscripting operation. As a result, this short program fragment translates 
into a rather long sequence of three-address operations. 

Figure 9.3 is the flow graph for the program in Fig. 9.2. Block B1 is the 
entry node. All conditional and unconditional jumps to statements in Fig. 9.2 
have been replaced in Fig. 9.3 by jumps to the block of which the statements 
are leaders, as in Section 8.4. In Fig. 9.3, there are three loops. Blocks B2 and 
BS are loops by themselves. Blocks B2, B3, Bq, and B5 together form a loop, 
with B2 the only entry point. 

9.1.3 Semantics-Preserving Transformations 

There are a number of ways in which a compiler can improve a program without 
changing the function it computes. Common-subexpression elimination, copy 
propagation, dead-code elimination, and constant folding are common examples 
of such function-preserving (or semantics-preserving) transformations; we shall 
consider each in turn. 



9.1. THE PRINCIPAL SOURCES OF OPTIMIZATION 

tll = 4*i 
x = a[tll] 
t12 = 4*i 
t13 = 4*n 
t14 = a[t13] 
a[t12] = t14 
t15 = 4*n 
a[t15] = x 

Figure 9.3: Flow graph for the quicksort fragment 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

Frequently, a program will include several calculations of the same value, 
such as an offset in an array. As mentioned in Section 9.1.2, some of these 
duplicate calculations cannot be avoided by the programmer because they lie 
below the level of detail accessible within the source language. For example, 
block B5 shown in Fig. 9.4(a) recalculates 4 * i and 4 * j ,  although none of these 
calculations were requested explicitly by the programmer. 

(a) Before. (b) After. 

Figure 9.4: Local common-subexpression elimination 

9.1.4 Global Common Subexpressions 

An occurrence of an expression E is called a c o m m o n  subexpression if E was 
previously computed and the values of the variables in E have not changed since 
the previous computation. We avoid recomputing E if we can use its previously 
computed value; that is, the variable x to which the previous computation of 
E was assigned has not changed in the interim.2 

Example 9.1 : The assignments to t7 and t 10 in Fig. 9.4(a) compute the 
common subexpressions 4 * i and 4 * j, respectively. These steps have been 
eliminated in Fig. 9.4(b), which uses t6 instead of t7 and t8 instead of t10. 

Example 9.2 : Figure 9.5 shows the result of eliminating both global and local 
common subexpressions from blocks B5 and B6 in the flow graph of Fig. 9.3. 
We first discuss the transformation of B5 and then mention some subtleties 
involving arrays. 

After local common subexpressions are eliminated, B5 still evaluates 4*i and 
4 * j ,  as shown in Fig. 9.4(b). Both are common subexpressions; in particular, 
the three statements 

'1f x has changed, it may still be possible to reuse the computation of E if we assign its 
value to a new variable y, as well as to x, and use the value of y in place of a recomputation 
of E. 



9.1. THE PRINCIPAL SOURCES OF OPTIMIZATION 

Figure 9.5: B5 and B6 after common-subexpression elimination 

in B5 can be replaced by 

using t4 computed in block B3. In Fig. 9.5, observe that as control passes from 
the evaluation of 4 * j in B3 to Bs, there is no change to j and no change to t4,  
so t4 can be used if 4 * j is needed. 

Another common subexpression comes to light in B5 after t4 replaces t8. 
The new expression a[t4] corresponds to the value of a[ j ]  at the source level. 
Not only does j retain its value as control leaves B3 and then enters B5, but 



590 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

a[j], a value computed into a temporary t5, does too, because there are no 
assignments to elements of the array a in the interim. The statements 

in B5 therefore can be replaced by 

Analogously, the value assigned to x in block B5 of Fig. 9.4(b) is seen to be 
the same as the value assigned to t3 in block B2. Block B5 in Fig. 9.5 is the 
result of eliminating common subexpressions corresponding to the values of the 
source level expressions a[i] and a[j] from B5 in Fig. 9.4(b). A similar series of 
transformations has been done to B6 in Fig. 9.5. 

The expression a[tl] in blocks B1 and B6 of Fig. 9.5 is not considered a 
common subexpression, although t l  can be used in both places. After control 
leaves B1 and before it reaches B6, it can go through B5, where there are 
assignments to a. Hence, a[tl] may not have the same value on reaching B6 as 
it did on leaving B1, and it is not safe to treat a[tl] as a common subexpression. 

9.1.5 Copy Propagation 

Block B5 in Fig. 9.5 can be further improved by eliminating x, using two new 
transformations. One concerns assignments of the form u = v called copy state- 
ments, or copies for short. Had we gone into more detail in Example 9.2, copies 
would have arisen much sooner, because the normal algorithm for eliminating 
common subexpressions introduces them, as do several other algorithms. 

Figure 9.6: Copies introduced during common subexpression elimination 

Example 9.3 : In order to eliminate the common subexpression from the state- 
ment c = d+e in Fig. 9.6(a), we must use a new variable t to hold the value of 
d + e. The value of variable t ,  instead of that of the expression d + e, is assigned 
to c in Fig. 9.6(b). Since control may reach c = d+e either after the assignment 
to a or after the assignment to b, it would be incorrect to replace c = d+e by 
either c = a o r b y c  = b. 



9.1. THE PRINCIPAL SO URGES OF OPTIMIZATION 

The idea behind the copy-propagation transformation is to use v for u, 
wherever possible after the copy statement u = v. For example, the assignment 
x = t3 in block B5 of Fig. 9.5 is a copy. Copy propagation applied to B5 yields 
the code in Fig. 9.7. This change may not appear to be an improvement, but, 
as we shall see in Section 9.1.6, it gives us the opportunity to eliminate the 
assignment to x. 

Figure 9.7: Basic block B5 after copy propagation 

9.1.6 Dead-Code Elimination 

A variable is live at a point in a program if its value can be used subsequently; 
otherwise, it is dead at that point. A related idea is dead (or useless) code - 
statements that compute values that never get used. While the programmer is 
unlikely to introduce any dead code intentionally, it may appear as the result 
of previous transformations. 

Example 9.4 : Suppose debug is set to TRUE or FALSE at various points in the 
program, and used in statements like 

i f  (debug) p r i n t  . . .  

It may be possible for the compiler to deduce that each time the program 
reaches this statement, the value of debug is FALSE. Usually, it is because there 
is one particular statement 

debug = FALSE 

that must be the last assignment to debug prior to any tests of the value of 
debug, no matter what sequence of branches the program actually takes. If 
copy propagation replaces debug by FALSE, then the print statement is dead 
because it cannot be reached. We can eliminate both the test and the print 
operation from the object code. More generally, deducing at compile time that 
the value of an expression is a constant and using the constant instead is known 
as constant folding. 

One advantage of copy propagation is that it often turns the copy state- 
ment into dead code. For example, copy propagation followed by dead-code 
elimination removes the assignment to x and transforms the code in Fig 9.7 
into 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

This code is a further improvement of block B5 in Fig. 9.5. 

9.1.7 CodeMotion 

Loops are a very important place for optimizations, especially the inner loops 
where programs tend to spend the bulk of their time. The running time of a 
program may be improved if we decrease the number of instructions in an inner 
loop, even if we increase the amount of code outside that loop. 

An important modification that decreases the amount of code in a loop is 
code motion. This transformation takes an expression that yields the same 
result independent of the number of times a loop is executed (a loop-invariant 
computation) and evaluates the expression before the loop. Note that the notion 
"before the loop" assumes the existence of an entry for the loop, that is, one 
basic block to which all jumps from outside the loop go (see Section 8.4.5). 

Example 9.5 : Evaluation of limit - 2 is a loop-invariant computation in the 
following while-st atement : 

while ( i  <= l imit-2)  /* statement does not change l i m i t  */ 

Code motion will result in the equivalent code 

t = l imit-2 
while ( i  <= t )  /* statement does not change l i m i t  o r  t */ 

Now, the computation of limit - 2 is performed once, before we enter the loop. 
Previously, there would be n + 1 calculations of limit - 2 if we iterated the body 
of the loop n times. 

9.1.8 Induction Variables and Reduction in Strength 

Another important optimization is to find induction variables in loops and 
optimize their computation. A variable x is said to be an "induction variable" 
if there is a positive or negative constant c such that each time x is assigned, its 
value increases by c. For instance, i and t2 are induction variables in the loop 
containing Bz of Fig. 9.5. Induction variables can be computed with a single 
increment (addition or subtraction) per loop iteration. The transformation of 
replacing an expensive operation, such as multiplication, by a cheaper one, 
such as addition, is known as strength reduction. But induction variables not 
only allow us sometimes to perform a strength reduction; often it is possible to 
eliminate all but one of a group of induction variables whose values remain in 
lock step as we go around the loop. 



9 . .  THE PRINCIPAL SOURCES OF OPTIMIZATION 

Figure 9.8: Strength reduction applied to 4 * j in block B3 

When processing loops, it is useful to work "inside-out" ; that is, we shall 
start with the inner loops and proceed to progressively larger, surrounding 
loops. Thus, we shall see how this optimization applies to our quicksort example 
by beginning with one of the innermost loops: B3 by itself. Note that the values 
of j and t4 remain in lock step; every time the value of j decreases by 1, the 
value of t4 decreases by 4, because 4 * j is assigned to t4. These variables, j 
and t4, thus form a good example of a pair of induction variables. 

When there are two or more induction variables in a loop, it may be possible 
to get rid of all but one. For the inner loop of B3 in Fig. 9.5, we cannot get rid of 
either j or t4 completely; t4 is used in B3 and j is used in B4. However, we can 
illustrate reduction in strength and a part of the process of induction-variable 
elimination. Eventually, j will be eliminated when the outer loop consisting of 
blocks Bz, B3, B4 and Bs is considered. 



594 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

Example 9.6 : As the relationship t4 = 4 * j surely holds after assignment to 
t4 in Fig. 9.5, and t4 is not changed elsewhere in the inner loop around B3, it 
follows that just after the statement j = j -1 the relationship t4 = 4 * j + 4 
must hold. We may therefore replace the assignment t 4  = 4* j by t 4  = t4-4. 
The only problem is that t4 does not have a value when we enter block B3 for 
the first time. 

Since we must maintain the relationship t4 = 4 * j on entry to the block B3, 
we place an initialization of t4 at the end of the block where j itself is initialized, 
shown by the dashed addition to block B1 in Fig. 9.8. Although we have added 
one more iastruction, which is executed once in block B1, the replacement of a 
multiplication by a subtraction will speed up the object code if multiplication 
takes more time than addition or subtraction, as is the case on many machines. 

Figure 9.9: Flow graph after induction-variable elimination 

We conclude this section with one more instance of induction-variable elim- 



9.1. THE PRINCIPAL SOURCES OF OPTIMIZATION 595 

ination. This example treats i and j in the context of the outer loop containing 
B2, B3, B4 7 and B5. 

Example 9.7 : After reduction in strength is applied to the inner loops around 
B2 and B3, the only use of i and j is to determine the outcome of the test in 
block B4. We know that the values of i and t 2  satisfy the relationship t 2  = 4 * i ,  
while those of j and t 4  satisfy the relationship t 4  = 4* j .  Thus, the test t 2  2 t 4  
can substitute for i 2 j. Once this replacement is made, i in block B2 and j in 
block B3 become dead variables, and the assignments to them in these blocks 
become dead code that can be eliminated. The resulting flow graph is shown 
in Fig. 9.9. 

ENTRY 7 

Figure 9.10: Flow graph for Exercise 9.1.1 

The code-improving transformations we have discussed have been effective. 
In Fig. 9.9, the numbers of instructions in blocks B2 and B3 have been reduced 
from 4 to 3, compared with the original flow graph in Fig. 9.3. In B5, the number 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

has been reduced from 9 to 3, and in B6 from 8 to 3. True, B1 has grown from 
four instructions to six, but B1 is executed only once in the fragment, so the 
total running time is barely affected by the size of B1. 

9.1.9 Exercises for Section 9.1 

Exercise 9.1.1 : For the flow graph in Fig. 9.10: 

a) Identify the loops of the flow graph. 

b) Statements (1) and (2) in B1 are both copy statements, in which a and b 
are given constant values. For which uses of a and b can we perform copy 
propagation and replace these uses of variables by uses of a constant? Do 
so, wherever possible. 

c) Identify any global common subexpressions for each loop. 

d) Identify any induction variables for each loop. Be sure to take into account 
any constants introduced in (b). 

e) Identify any loop-invariant cornput ations for each loop. 

Exercise 9.1.2 : Apply the transformations of this section to the flow graph 
of Fig. 8.9. 

Exercise 9.1.3 : Apply the transformations of this section to your flow graphs 
from (a) Exercise 8.4.1; (b) Exercise 8.4.2. 

Exercise 9.1.4: In Fig. 9.11 is intermediate code to compute the dot product 
of two vectors A and B. Optimize this code by eliminating common subexpres- 
sions, performing reduction in strength on induction variables, and eliminating 
all the induction variables you can. 

Figure 9.11: Intermediate code to compute the dot product 



9.2. INTRODUCTION TO DATA-FLO W ANALYSIS 

9.2 Introduction to Data-Flow Analysis 

All the optimizations introduced in Section 9.1 depend on data-flow analysis. 
"Data-flow analysis" refers to a body of techniques that derive information 
about the flow of data along program execution paths. For example, one way to 
implement global common subexpression elimination requires us to determine 
whether two textually identical expressions evaluate to the same value along 
any possible execution path of the program. As another example, if the result 
of an assignment is not used along any subsequent execution path, then we 
can eliminate the assignment as dead code. These and many other important 
questions can be answered by data-flow analysis. 

9.2.1 The Data-Flow Abstraction 

Following Section 1.6.2, the execution of a program can be viewed as a series 
of transformations of the program state, which consists of the values of all the 
variables in the program, including those associated with stack frames below the 
top of the run-time stack. Each execution of an intermediate-code statement 
transforms an input state to a new output state. The input state is associated 
with the program point before the statement and the output state is associated 
with the program point after the statement. 

When we analyze the behavior of a program, we must consider all the pos- 
sible sequences of program points ("paths") through a flow graph that the pro- 
gram execution can take. We then extract, from the possible program states 
at  each point, the information we need for the particular data-flow analysis 
problem we want to solve. In more complex analyses, we must consider paths 
that jump among the flow graphs for various procedures, as calls and returns 
are executed. However, to begin our study, we shall concentrate on the paths 
through a single flow graph for a single procedure. 

Let us see what the flow graph tells us about the possible execution paths. 

Within one basic block, the program point after a statement is the same 
as the program point before the next statement. 

o If there is an edge from block B1 to block B2,  then the program point after 
the last statement of B1 may be followed immediately by the program 
point before the first statement of B2. 

Thus, we may define an execution path (or just path) from point pl to point p, 
to be a sequence of points p1 ,p2, . . . , Pn such that for each i = 1,2, . . . , n - 1, 
either 

1. pi is the point immediately preceding a statement and pi+l is the point 
immediately following that same statement, or 

2. pi is the end of some block and pi+l is the beginning of a successor block. 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

In general, there is an infinite number of possible execution paths through a 
program, and there is no finite upper bound on the length of an execution path. 
Program analyses summarize all the possible program states that can occur at 
a point in the program with a finite set of facts. Different analyses may choose 
to abstract out different information, and in general, no analysis is necessarily 
a perfect representation of the state. 

Example 9.8 : Even the simple program in Fig. 9.12 describes an unbounded 
number of execution paths. Not entering the loop at all, the shortest com- 
plete execution path consists of the program points (1,2,3,4,9). The next 
shortest path executes one iteration of the loop and consists of the points 
(1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,3 ,4 ,9 ) .  We know that, for example, the first time program 
point (5) is executed, the value of a is 1 due to definition dl.  We say that 
dl reaches point (5) in the first iteration. In subsequent iterations, dg reaches 
point (5) and the value of a is 243. 

Figure 9.12: Example program illustrating the data-flow abstraction 

In general, it is not possible to keep track of all the program states for all 
possible paths. In data-flow analysis, we do not distinguish among the paths 
taken to reach a program point. Moreover, we do not keep track of entire states; 
rather, we abstract out certain details, keeping only the data we need for the 
purpose of the analysis. Two examples will illustrate how the same program 
states may lead to different information abstracted at a point. 

1. To help users debug their programs, we may wish to find out what are 
all the values a variable may have at a program point, and where these 
values may be defined. For instance, we may summarize all the program 
states at point (5) by saying that the value of a is one of {I, 2431, and 
that it may be defined by one of {dl, ds). The definitions that m a y  reach 
a program point along some path are known as reaching def ini t ions. 



9.2. INTRODUCTION TO DATA-FLO W ANALYSIS 599 

2. Suppose, instead, we are interested in implementing constant folding. If a 
use of the variable x is reached by only one definition, and that definition 
assigns a constant to x, then we can simply replace x by the constant. 
If, on the other hand, several definitions of x may reach a single program 
point, then we cannot perform constant folding on x. Thus, for constant 
folding we wish to  find those definitions that are the unique definition of 
their variable to  reach a given program point, no matter which execution 
path is taken. For point (5) of Fig. 9.12, there is no definition that must 
be the definition of a at that point, so this set is empty for a a t  point (5). 
Even if a variable has a unique definition a t  a point, that definition must 
assign a constant to  the variable. Thus, we may simply describe certain 
variables as "not a constant," instead of collecting all their possible values 
or all their possible definitions. 

Thus, we see that the same information may be summarized differently, de- 
pending on the purpose of the analysis. 

9.2.2 The Data-Flow Analysis Schema 

In each application of data-flow analysis, we associate with every program point 
a data-flow value that represents an abstraction of the set of all possible program 
states that can be observed for that point. The set of possible data-flow values 
is the domain for this application. For example, the domain of data-flow values 
for reaching definitions is the set of all subsets of definitions in the program. 
A particular data-flow value is a set of definitions, and we want to  associate 
with each point in the program the exact set of definitions that can reach that 
point. As discussed above, the choice of abstraction depends on the goal of the 
analysis; to  be efficient, we only keep track of information that is relevant. 

We denote the data-flow values before and after each statement s by IN[S] 

and OUT[S], respectively. The data-flow problem is to  find a solution to  a set 
of constraints on the IN[s]'s and OUT[S]'s, for all statements s. There are two 
sets of constraints: those based on the semantics of the statements ( "transfer 
functions") and those based on the flow of control. 

Transfer Functions 

The data-flow values before and after a statement are constrained by the se- 
mantics of the statement. For example, suppose our data-flow analysis involves 
determining the constant value of variables a t  points. If variable a has value v 
before executing statement b = a, then both a and b will have the value v after 
the statement. This relationship between the data-flow values before and after 
the assignment statement is known as a transfer function. 

Transfer functions come in two flavors: information may propagate forward 
along execution paths, or it may flow backwards up the execution paths. In 
a forward-flow problem, the transfer function of a statement s ,  which we shall 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

usually denote f,, takes the data-flow value before the statement and produces 
a new data-flow value after the statement. That is, 

Conversely, in a backward-flow problem, the transfer function f, for statement 
s converts a data-flow value after the statement to a new data-flow value before 
the statement. That is, 

Control-Flow Constraints 

The second set of constraints on data-flow values is derived from the flow of 
control. Within a basic block, control flow is simple. If a block B consists of 
statements s l  , s2, . . . , S, in that order, then the control-flow value out of si is 
the same as the control-flow value into si+l. That is, 

1 ~ [ ~ i + l ]  = OUT[S~], for all i = 1 , 2 , .  . . , n - 1. 

However, control-flow edges between basic blocks create more complex con- 
straints between the last statement of one basic block and the first statement 
of the following block. For example, if we are interested in collecting all the 
definitions that may reach a program point, then the set of definitions reaching 
the leader statement of a basic block is the union of the definitions after the 
last statements of each of the predecessor blocks. The next section gives the 
details of how data flows among the blocks. 

9.2.3 Data-Flow Schemas on Basic Blocks 

While a data-flow schema technically involves data-flow values at each point in 
the program, we can save time and space by recognizing that what goes on inside 
a block is usually quite simple. Control flows from the beginning to the end of 
the block, without interruption or branching. Thus, we can restate the schema 
in terms of data-flow values entering and leaving the blocks. We denote the 
data-flow values immediately before and immediately after each basic block B 
by IN[B] and OUT[B], respectively. The constraints involving IN[B] and o u ~ [ B ]  
can be derived from those involving IN[S] and OUT[S] for the various statements 
s in B as follows. 

Suppose block B consists of statements s l ,  . . . , s,, in that order. If s l  is the 
first statement of basic block B, then IN[B] = lN[sl], Similarly, if s, is the last 
statement of basic block B ,  then OUT[B] = OUT[S,]. The transfer function of 
a basic block B ,  which we denote fB,  can be derived by composing the transfer 
functions of the statements in the block. That is, let fSi be the transfer function 
of statement si. Then fs = f,, o . . . o f,, o fsl. The relationship between the 
beginning and end of the block is 



9.2. INTRODUCTION TO DATA-FLOW ANALYSIS 

The constraints due to  control flow between basic blocks can easily be rewrit- 
ten by substituting IN[B] and OUT[B] for lN[sl] and OUT[S,], respectively. For 
instance, if data-flow values are information about the sets of constants that 
m a y  be assigned to a variable, then we have a forward-flow problem in which 

U P  a predecessor of B 
OUT[P]. 

When the data-flow is backwards as we shall soon see in live-variable analy- 
sis, the equations are similar, but with the roles of the IN'S and OUT'S reversed. 
That is, 

IN[B] = f~ (ouT[B]) 

= US a successor of B 
IN [S] . 

Unlike linear arithmetic equations, the data-flow equations usually do not 
have a unique solution. Our goal is to  find the most "precise" solution that 
satisfies the two sets of constraints: control-flow and transfer constraints. That 
is, we need a solution that encourages valid code improvements, but does not 
justify unsafe transformations - those that change what the program com- 
putes. This issue is discussed briefly in the box on "Conservatism" and more 
extensively in Section 9.3.4. In the following subsections, we discuss some of the 
most important examples of problems that can be solved by data-flow analysis. 

9.2.4 Reaching Definitions 

"Reaching definitions" is one of the most common, and useful data-flow schemas. 
By knowing where in a program each variable x may have been defined when 
control reaches each point pi we can determine many things about x. For just 
two examples, a compiler then knows whether x is a constant at point p, and 
a debugger can tell whether it is possible for x to  be an undefined variable, 
should x be used a t  p. 

We say a definition d reaches a point p if there is a path from the point 
immediately following d to  pi  such that d is not LLkilled" along that path. We 
kill a definition of a variable x if there is any other definition of x anywhere 
along the path.3 Intuitively, if a definition d of some variable x reaches point 
pi then d might be the place at which the value of x used a t  p was last defined. 

A definition of a variable x is a statement that assigns, or may assign, a 
value to  x . Procedure parameters, array accesses, and indirect references all 
may have aliases, and it is not easy to tell if a statement is referring to  a 
particular variable x. Program analysis must be conservative; if we do not 

- - 

3 ~ o t e  that the path may have loops, so we could come to another occurrence of d along 
the path, which does not "kill" d. 



602 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

Detecting Possible Uses Before Definition 

Here is how we use a solution to the reaching-definitions problem to detect 
uses before definition. The trick is to introduce a dummy definition for 
each variable x in the entry to the flow graph. If the dummy definition 
of x reaches a point p where x might be used, then there might be an 
opportunity to use x before definition. Note that we can never be abso- 
lutely certain that the program has a bug, since there may be some reason, 
possibly involving a complex logical argument, why the path along which 
p is reached without a real definition of x can never be taken. 

know whether a statement s is assigning a value to x, we must assume that 
it may assign to it; that is, variable x after statement s may have either its 
original value before s or the new value created by s. For the sake of simplicity, 
the rest of the chapter assumes that we are dealing only with variables that 
have no aliases. This class of variables includes all local scalar variables in most 
languages; in the case of C and C++, local variables whose addresses have been 
computed at some point are excluded. 

Example 9.9 : Shown in Fig. 9.13 is a flow graph with seven definitions. Let us 
focus on the definitions reaching block B2. All the definitions in block B1 reach 
the beginning of block B2. The definition ds: j = j-1 in block B2 also reaches 
the beginning of block B2, because no other definitions of j can be found in the 
loop leading back to B2. This definition, however, kills the definition d2: j = n, 
preventing it from reaching B3 or B4. The statement d4: i = i+l in B2 does 
not reach the beginning of B2 though, because the variable i is always redefined 
by d7: i = u3. Finally, the definition ds : a = u2 also reaches the beginning of 
block B2. 

By defining reaching definitions as we have, we sometimes allow inaccuracies. 
However, they are all in the "safe," or "conservative," direction. For example, 
notice our assumption that all edges of a flow graph can be traversed. This 
assumption may not be true in practice. For example, for no values of a and 
b can the flow of control actually reach statement 2 in the following program 
fragment: 

if (a == b) statement 1; else if (a == b) statement 2; 

To decide in general whether each path in a flow graph can be taken is 
an undecidable problem. Thus, we simply assume that every path in the flow 
graph can be followed in some execution of the program. In most applications 
of reaching definitions, it is conservative to assume that a definition can reach a 
point even if it might not. Thus, we may allow paths that are never be traversed 
in any execution of the program, and we may allow definitions to pass through 
ambiguous definitions of the same variable safely. 



9.2. INTRODUCTION TO DATA-FLO W ANALYSIS 603 

Conservatism in Data-Flow Analysis 

Since all data-flow schemas compute approximations to the ground truth 
(as defined by all possible execution paths of the program), we are obliged 
to assure that any errors are in the "safe" direction. A policy decision is 
safe (or conservative) if it never allows us to change what the program 
computes. Safe policies may, unfortunately, cause us to miss some code 
improvements that would retain the meaning of the program, but in essen- 
tially all code optimizations there is no safe policy that misses nothing. It 
would generally be unacceptable to use an unsafe policy - one that sped' 
up the code at the expense of changing what the program computes. 

Thus, when designing a data-flow schema, we must be conscious of 
how the information will be used, and make sure that any approximations 
we make are in the "conservative" or "safe" direction. Each schema and 
application must be considered independently. For instance, if we use 
reaching definitions for constant folding, it is safe to think a definition 
reaches when it doesn't (we might think x is not a constant, when in fact 
it is and could have been folded), but not safe to think a definition doesn't 
reach when it does (we might replace x by a constant, when the program 
would at  times have a value for x other than that constant). 

Transfer Equations for Reaching Definitions 

We shall now set up the constraints for the reaching definitions problem. We 
start by examining the details of a single statement. Consider a definition 

Here, and frequently in what follows, + is used as a generic binary operator. 
This statement "generates" a definition d of variable u and "kills" all the 

other definitions in the program that define variable u, while leaving the re- 
maining incoming definitions unaffected. The transfer function of definition d 
thus can be expressed as 

where gend = {d}, the set of definitions generated by the statement, and killd 
is the set of all other definitions of u in the program. 

As discussed in Section 9.2.2, the transfer function of a basic block can be 
found by composing the transfer functions of the statements contained therein. 
The composition of functions of the form (9.1), which we shall refer to as "gen- 
kill form," is also of that form, as we can see as follows. Suppose there are two 
functions f ~ ( x )  = genl U (x - M111) and f2(x) = genz U (x - killz). Then 



604 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

ENTRY '----- 

gen = { d6 1 
B3 

kill ={4} 
B3 

senB4 = {  d, 1 

kill = { dl, d4 } 
B4 

Figure 9.13: Flow graph for illustrating reaching definitions 

This rule extends to a block consisting of any number of statements. Suppose 
block B has n statements, with transfer functions f i ( x )  = geni U ( x  - killi) for 
i = 1 ,2 ,  . . . , n. Then the transfer function for block B may be written as: 

where 

killB = killl U kill2 U . - . U kill, 

and 

g e n ~  = gen, U (gen,-1 - kill,) U (gennV2 - - kill,) U 

- - . U (genl - killz - kills - . - . - kill,) 



9.2. INTRODUCTION T O  DATA-FLO W ANALYSIS 

Thus, like a statement, a basic block also generates a set of definitions and 
kills a set of definitions. The gen set contains all the definitions inside the block 
that are "visible" immediately after the block - we refer to them as downwards 
exposed. A definition is downwards exposed in a basic block only if it is not 
"killed" by a subsequent definition to the same variable inside the same basic 
block. A basic block's kill set is simply the union of all the definitions killed by 
the individual statements. Notice that a definition may appear in both the gen 
and kill set of a basic block. If so, the fact that it is in gen takes precedence, 
because in gen-kill form, the kill set is applied before the gen set. 

Example 9.10 : The gen set for the basic block 

is Id2) since dl  is not downwards exposed. The kill set contains both dl and 
d2, since dl kills d2 and vice versa. Nonetheless, since the subtraction of the 
kill set precedes the union operation with the gen set, the result of the transfer 
function for this block always includes definition dz. 

Control-Flow Equations 

Next, we consider the set of constraints derived from the control flow between 
basic blocks. Since a definition reaches a program point as long as there exists 
at least one path along which the definition reaches, OUT[P] C IN[B] whenever 
there is a control-flow edge from P to B. However, since a definition cannot 
reach a point unless there is a path along which it reaches, IN[B] needs to be no 
larger than the union of the reaching definitions of all the predecessor blocks. 
That is, it is safe to assume 

U P  a predecessor of B 
OUT[P] 

We refer to union as the meet  operator for reaching definitions. In any data- 
flow schema, the meet operator is the one we use to create a summary of the 
contributions from different paths at the confluence of those paths. 

Iterative Algorithm for Reaching Definitions 

We assume that every control-flow graph has two empty basic blocks, an ENTRY 

node, which represents the starting point of the graph, and an EXIT node to 
which all exits out of the graph go. Since no definitions reach the beginning 
of the graph, the transfer function for the ENTRY block is a simple constant 
function that returns 0 as an answer. That is, OUT[ENTRY] = 0. 

The reaching definitions problem is defined by the following equations: 



606 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

and for all basic blocks B other than ENTRY, 

OUT[B] = geng U (IN[B] - killB) 

U P  a predecessor of B 
OUT[P]. 

These equations can be solved using the following algorithm. The result of 
the algorithm is the least fixedpoint of the equations, i.e., the solution whose 
assigned values to the IN'S and OUT'S is contained in the corresponding values 
for any other solution to the equations. The result of the algorithm below is 
acceptable, since any definition in one of the sets IN or OUT surely must reach 
the point described. It is a desirable solution, since it does not include any 
definitions that we can be sure do not reach. 

Algorithm 9.11 : Reaching definitions. 

INPUT: A flow graph for which killB and g e n ~  have been computed for each 
block B. 

OUTPUT: IN[B] and OUT[B], the set of definitions reaching the entry and exit 
of each block B of the flow graph. 

METHOD: We use an iterative approach, in which we start with the "estimate" 
OUT[B] = 0 for all B and converge to the desired values of IN and OUT. As 
we must iterate until the IN'S (and hence the OUT'S) converge, we could use a 
boolean variable change to record, on each pass through the blocks, whether 
any OUT has changed. However, in this and in similar algorithms described 
later, we assume that the exact mechanism for keeping track of changes is 
understood, and we elide those details. 

The algorithm is sketched in Fig. 9.14. The first two lines initialize certain 
data-flow  value^.^ Line (3) starts the loop in which we iterate until convergence, 
and the inner loop of lines (4) through (6) applies the data-flow equations to 
every block other than the entry. 

Intuitively, Algorithm 9.11 propagates definitions as far as they will go with- 
out being killed, thus simulating all possible executions of the program. Algo- 
rithm 9.11 will eventually halt, because for every B,  OUT[B] never shrinks; once 
a definition is added, it stays there forever. (See Exercise 9.2.6.) Since the set of 
all definitions is finite, eventually there must be a pass of the while-loop during 
which nothing is added to any OUT, and the algorithm then terminates. We 
are safe terminating then because if the OUT'S have not changed, the IN'S will 

4 ~ h e  observant reader will notice that we could easily combine lines (1) and (2). However, 
in similar data-flow algorithms, it may be necessary to initialize the entry or exit node dif- 
ferently from the way we initialize the other nodes. Thus, we follow a pattern in all iterative 
algorithms of applying a "boundary condition" like line (1) separately from the initialization 
of line (2). 



9.2. INTRODUCTION TO DATA-FLOW ANALYSIS 

1) OUT[ENTRY] = 0; 
2) for (each basic block B other than ENTRY) OUT[B] = 0; 
3) while (changes to any OUT occur) 

4) for (each basic block B other than ENTRY) { 
5) = U P  a predecessor of B OuTIP1; 
6) OUT[B] = geng U (IN[B] - ki l lB);  

} 

Figure 9.14: Iterative algorithm to compute reaching definitions 

not change on the next pass. And, if the IN'S do not change, the OUT'S cannot, 
so on all subsequent passes there can be no changes. 

The number of nodes in the flow graph is an upper bound on the number of 
times around the while-loop. The reason is that if a definition reaches a point, 
it can do so along a cycle-free path, and the number of nodes in a flow graph is 
an upper bound on the number of nodes in a cycle-free path. Each time around 
the while-loop, each definition progresses by at least one node along the path 
in question, and it often progresses by more than one node, depending on the 
order in which the nodes are visited. 

In fact, if we properly order the blocks in the for-loop of line (5), there 
is empirical evidence that the average number of iterations of the while-loop 
is under 5 (see Section 9.6.7). Since sets of definitions can be represented 
by bit vectors, and the operations on these sets can be implemented by logical 
operations on the bit vectors, Algorithm 9.11 is surprisingly efficient in practice. 

Example 9.12 : We shall represent the seven definitions dl,  d2, . . . , d7 in the 
flow graph of Fig. 9.13 by bit vectors, where bit i from the left represents 
definition di. The union of sets is computed by taking the logical OR of the 
corresponding bit vectors. The difference of two sets S - T is computed by 
complementing the bit vector of T, and then taking the logical AND of that 
complement, with the bit vector for S.  

Shown in the table of Fig. 9.15 are the values taken on by the IN and OUT 

sets in Algorithm 9.11. The initial values, indicated by a superscript 0, as 
in OUT[B]O, are assigned, by the loop of line (2) of Fig. 9.14. They are each 
the empty set, represented by bit vector 000 0000. The values of subsequent 
passes of the algorithm are also indicated by superscripts, and labeled 1N[BI1 
and OUT[B]' for the first pass and 1N[BI2 and 0uT[BI2 for the second. 

Suppose the for-loop of lines (4) through (6) is executed with B taking on 
the values 

in that order. With B = B1, since OUT[ENTRY] = 0, IN[B~] '  is the empty set, 
and O U T [ B ~ ] ~  is geng,. This value differs from the previous value O U T [ B ~ ] ~ ,  so 



608 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

Figure 9.15: Computation of IN and OUT 

Block B 

B1 
B2 
BS 
B4 

EXIT 

we now know there is a change on the first round (and will proceed to a second 
round). 

Then we consider B = B2 and compute 

This computation is summarized in Fig. 9.15. For instance, at the end of the 
first pass, 0UT[B2I1 = 001 1100, reflecting the fact that d4 and d5 are generated 
in B2, while d3 reaches the beginning of B2 and is not killed in B2. 

Notice that after the second round, 0UT[B2] has changed to reflect the fact 
that d6 also reaches the beginning of B2 and is not killed by B2. We did not 
learn that fact on the first pass, because the path from ds to the end of B2, 
which is B3 -+ B4 -+ B2, is not traversed in that order by a single pass. That is, 
by the time we learn that d6 reaches the end of B4, we have already computed 
IN[B~]  and 0uT[B2] on the first pass. 

There are no changes in any of the OUT sets after the second pass. Thus, 
after a third pass, the algorithm terminates, with the IN'S and OUT'S as in the 
final two columns of Fig. 9.15. 

OUT[B]O 

000 0000 
000 0000 
000 0000 
000 0000 
000 0000 

9.2.5 Live-Variable Analysis 

Some code-improving transformations depend on information computed in the 
direction opposite to the flow of control in a program; we shall examine one 
such example now. In live-variable analysis we wish to know for variable x and 
point p whether the value of x at p could be used along some path in the flow 
graph starting at p. If so, we say x is live at p; otherwise, x is dead at p. 

An important use for live-variable information is register allocation for basic 
blocks. Aspects of this issue were introduced in Sections 8.6 and 8.8. After a 
value is computed in a register, and presumably used within a block, it is not 

1N[BI1 
000 0000 
111 0000 
001 1100 
001 1110 
001 0111 

OUT[B]~ 
111 0000 
001 1100 
000 1110 
001 0111 
001 0111 

1N[BI2 
000 0000 
111 0111 
001 1110 
001 1110 
001 0111 

OUT[B]~ 

111 0000 
001 1110 
000 1110 
001 0111 
001 0111 



9.2. INTRODUCTION TO DATA-FLO W ANALYSIS 609 

necessary to store that value if it is dead at the end of the block. Also, if all 
registers are full and we need another register, we should favor using a register 
with a dead value, since that value does not have to be stored. 

Here, we define the data-flow equations directly in terms of IN[B] and 
OUT[B], which represent the set of variables live at the points immediately 
before and after block B ,  respectively. These equations can also be derived 
by first defining the transfer functions of individual statements and composing 
them to create the transfer function of a basic block. Define 

1. defB as the set of variables defined (i.e., definitely assigned values) in B 
prior to any use of that variable in B ,  and 

2. u s e g  as the set of variables whose values may be used in B prior to any 
definition of the variable. 

Example 9.13 : For instance, block B2 in Fig. 9.13 definitely uses i .  It also 
uses j before any redefinition of j, unless it is possible that i and j are aliases 
of one another. Assuming there are no aliases among the variables in Fig. 9.13, 
then  use^, = {i, j ) .  Also, B2 clearly defines i and j. Assuming there are no 
aliases, d e f g ,  = {i, j), as well. 

As a consequence of the definitions, any variable in  use^ must be considered 
live on entrance to block B ,  while definitions of variables in defB definitely 
are dead at the beginning of B.  In effect, membership in defB "kills" any 
opportunity for a variable to be live becausq of paths that begin at B. 

Thus, the equations relating def and u s e  to the unknowns IN and OUT are 
defined as follows: 

and for all basic blocks B other than EXIT, 

IN[B] = u s e g  U (ouT[B] - defB)  

OUT[B] = U 
S a successor of B IN[SI 

The first equation specifies the boundary condition, which is that no variables 
are live on exit from the program. The second equation says that a variable is 
live coming into a block if either it is used before redefinition in the block or 
it is live coming out of the block and is not redefined in the block. The third 
equation says that a variable is live coming out of a block if and only if it is 
live coming into one of its successors. 

The relationship between the equations for liveness and the reaching-defin- 
itions equations should be noticed: 



610 CHAPTER 9. MA CHINE-INDEPENDENT OPTIMIZATIONS 

Both sets of equations have union as the meet operator. The reason is 
that in each data-flow schema we propagate information along paths, and 
we care only about whether any path with desired properties exist, rather 
than whether something is true along all paths. 

However, information flow for liveness travels "backward," opposite to the 
direction of control flow, because in this problem we want to make sure 
that the use of a variable x at a point p is transmitted to all points prior 
to p in an execution path, so that we may know at the prior point that x 
will have its value used. 

To solve a backward problem, instead of initializing OUT[ENTRY], we ini- 
tialize IN[EXIT]. Sets IN and OUT have their roles interchanged, and use and 
def substitute for gen and kill, respectively. As for reaching definitions, the 
solution to the liveness equations is not necessarily unique, and we want the so- 
lution with the smallest sets of live variables. The algorithm used is essentially 
a backwards version of Algorithm 9.1 1. 

Algorithm 9.14 : Live-variable analysis. 

INPUT: A flow graph with def and use computed for each block. 

OUTPUT: IN[B] and OUT[B], the set of variables live on entry and exit of each 
block B of the flow graph. 

METHOD: Execute the program in Fig. 9.16. 

IN[EXIT] = 0; 
for (each basic block B other than EXIT) IN[B] = 0; 
while (changes to any IN occur) 

for (each basic block B other than EXIT) { 
OUT[BI = US a successor of B IN IS1 ; 
IN[B] = useg U (ouT[B] - deb) ;  

1 

Figure 9.16: Iterative algorithm to compute live variables 

9.2.6 Available Expressions 

An expression x + y is available at a point p if every path from the entry node 
to p evaluates x + y, and after the last such evaluation prior to reaching p, 
there are no sltbsequent assignments to x or y.5 For the available-expressions 
data-flow schema we say that a block kills expression x + y if it assigns (or may 

5 ~ o t e  that, as usual in this chapter, we use the operator f as a generic operator, not 
necessarily standing for addition. 



9.2. INTRODUCTION TO DATA-FLO W ANALYSIS 611 

assign) x or y and does not subsequently recompute x + y. A block generates 
expression x + y if it definitely evaluates x + y and does not subsequently define 
x or y. 

Note that the notion of "killing" or "generating7' an available expression is 
not exactly the same as that for reaching definitions. Nevertheless, these notions 
of "kill7' and "generate7' behave essentially as they do for reaching definitions. 

The primary use of available-expression information is for detecting global 
common subexpressions. For example, in Fig. 9.17(a), the expression 4 * i in 
block B3 will be a common subexpression if 4 * i is available at  the entry point 
of block BS.  It will be available if i is not assigned a new value in block B2, or 
if, as in Fig. 9.17(b), 4 * i is recomputed after i is assigned in B2. 

Figure 9.17: Potential common subexpressions across blocks 

We can compute the set of generated expressions for each point in a block, 
working from beginning to end of the block. At the point prior to the block, no 
expressions are generated. If at point p set S of expressions is available, and q 
is the point after p, with statement x = y+z between them, then we form the 
set of expressions available at  q by the following two steps. 

1. Add to S the expression y + x. 

2. Delete from S any expression involving variable x. 

Note the steps must be done in the correct order, as x could be the same as 
y or z. After we reach the end of the block, S is the set of generated expressions 
for the block. The set of killed expressions is all expressions, say y + t, such 
that either 7~ or z is defined in the block, and y + x is not generated by the 
block. 

Example 9.15 : Consider the four statements of Fig. 9.18. After the first, b + c 
is available. After the second statement, a - d becomes available, but b + c is 
no longer available, because b has been redefined. The third statement does 
not make b + c available again, because the value of c is immediately changed. 



612 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

After the last statement, a - d is no longer available, because d has changed. 
Thus no expressions are generated, and all expressions involving a, b, c, or d 
are killed. 0 

Statement Available Expressions 

Figure 9.18: Computation of available expressions 

We can find available expressions in a manner reminiscent of the way reach- 
ing definitions are computed. Suppose U is the "universal" set of all expressions 
appearing on the right of one or more statements of the program. For each block 
B ,  let IN[B] be the set of expressions in U that are available at the point just 
before the beginning of B.  Let OUT[B] be the same for the point following the 
end of B. Define e - g e n ~  to be the expressions generated by B and e-killB to be 
the set of expressions in U killed in B. Note that IN, OUT, e-gen, and e-kill can 
all be represented by bit vectors. The following equations relate the unknowns 
IN and OUT to each other and the known quantities e-gen and e-kill: 

and for all basic blocks B other than ENTRY, 

OUT[B] = e-geng U (IN[B] - e.killB) 

= n p  a predecessor of B 
 OUT[^]. 

The above equations look almost identical to the equations for reaching 
definitions. Like reaching definitions, the boundary condition is OUT[ENTRY] = 
0, because at the exit of the ENTRY node, there are no available expressions. 
The most important difference is that the meet operator is intersection rather 
than union. This operator is the proper one because an expression is available 
at the beginning of a block only if it is available at the end of all its predecessors. 
In contrast, a definition reaches the beginning of a block whenever it reaches 
the end of any one or more of its predecessors. 



9.2. INTRODUCTION TO DATA-FLO W ANALYSIS 613 

The use of n rather than U makes the available-expression equations behave 
differently from those of reaching definitions. While neither set has a unique 
solution, for reaching definitions, it is the solution with the smallest sets that 
corresponds to the definition of "reaching," and we obtained that solution by 
starting with the assumption that nothing reached anywhere, and building up 
to the solution. In that way, we never assumed that a definition d could reach 
a point p unless an actual path propagating d to p could be found. In contrast, 
for available expression equations we want the solution with the largest sets of 
available expressions, so we start with an approximation that is too large and 
work down. 

It may not be obvious that by starting with the assumption "everything 
(i.e., the set U )  is available everywhere except at the end of the entry block" 
and eliminating only those expressions for which we can discover a path along 
which it is not available, we do reach a set of truly available expressions. In 
the case of available expressions, it is conservative to produce a subset of the 
exact set of available expressions. The argument for subsets being conservative 
is that our intended use of the information is to replace the computation of an 
available expression by a previously computed value. Not knowing an expres- 
sion is available only inhibits us from improving the code, while believing an 
expression is available when it is not could cause us to change what the program 
computes. 

Figure 9.19: Initializing the OUT sets to Q) is too restrictive. 

Example 9.16 : We shall concentrate on a single block, B2 in Fig. 9.19, to 
illustrate the effect of the initial approximation of 0uT[B2] on I N [ B ~ ] .  Let G 
and K abbreviate e -gen~,  and e-killB2, respectively. The data-flow equations 
for block B2 are 

These equations may be rewritten as recurrences, with ~i and 0j being the j th  



614 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

approximations of 1N[B2] and 0uT[B2], respectively: 

Starting with O0 = 0, we get I' = OUT[B~] n 0' = 0. However, if we start 
with 0' = U ,  then we get I' = OUT[B~] n O0 = OuTIB1], as we should. Intu- 
itively, the solution obtained starting with 0' = U is more desirable, because 
it correctly reflects the fact that expressions in OUTIB1] that are not killed by 
B2 are available at the end of B2. 

Algorithm 9.17 : Available expressions. 

INPUT: A flow graph with e-killB and e - g e n ~  computed for each block B.  The 
initial block is B1. 

OUTPUT: IN[B] and OUT[B], the set of expressions available at the entry and 
exit of each block B of the flow graph. 

METHOD: Execute the algorithm of Fig. 9.20. The explanation of the steps is 
similar to that for Fig. 9.14. 

OUT[ENTRY] = 0; 
for (each basic block B other than ENTRY) OUT[B] = U ;  
while (changes to any OUT occur) 

for (each basic block B other than ENTRY) { 
INPI =np a predecessor of B OUTPI ; 
OUT[B] = e - g e n ~  U (IN[B] - e-killB); 

1 

Figure 9.20: Iterative algorithm to compute available expressions 

9.2.7 Summary 

In this section, we have discussed three instances of data-flow problems: reach- 
ing definitions, live variables, and available expressions. As summarized in 
Fig. 9.21, the definition of each problem is given by the domain of the data- 
flow values, the direction of the data flow, the family of transfer functions, 
the boundary condition, and the meet operator. We denote the meet operator 
generically as A. 

The last row shows the initial values used in the iterative algorithm. These 
values are chosen so that the iterative algorithm will find the most precise 
solution to the equations. This choice is not strictly a part of the definition of 



9.2. INTRODUCTION TO DATA-FLO W ANALYSIS 615 

the data-flow problem, since it is an artifact needed for the iterative algorithm. 
There are other ways of solving the problem. For example, we saw how the 
transfer function of a basic block can be derived by composing the transfer 
functions of the individual statements in the block; a similar compositional 
approach may be used to compute a transfer function for the entire procedure, 
or transfer functions from the entry of the procedure to any program point. We 
shall discuss such an approach in Section 9.7. 

Boundary 1 OUT[ENTRY] = 0 I IN[EXIT] = @ I OUT[ENTRY] = 0 

Available Expressions 

Sets of expressions 

Forwards 

e - g e n ~  u (x - eAiEIB) 

Live Variables 

Sets of variables 

Backwards 

useB u (x - defB) 

Domain 

Direction 

Transfer 
function 

Meet (A) 

Equations 

Figure 9.21: Summary of three data-flow problems 

Reaching Definitions 

Sets of definitions 

Forwards 

g e n ~  U (x  -  kill^) 

Initialize 1 OUT[B] = 0 

9.2.8 Exercises for Section 9.2 

U 

OUT[B] = fB (IN[B]) 
IN[B] = 

Exercise 9.2.1: For the flow graph of Fig. 9.10 (see the exercises for Sec- 
tion 9.1), compute 

IN[B] = 0 

a) The gen and kill sets for each block. 

U 

IN[B] = f~ (OUT[B]) 

OUT[B] = 

OUT[B] = U 

b) The IN and OUT sets for each block. 

n 
OUT[B] = f~ (IN[B]) 

IN[B] = 

Exercise 9.2.2 : For the flow graph of Fig. 9.10, compute the e-gen, e-kill, IN, 

and OUT sets for available expressions. 

Exercise 9.2.3 : For the flow graph of Fig. 9.10, compute the def, use, IN; and 
OUT sets for live variable analysis. 

! Exercise 9.2.4 : Suppose V is the set of complex numbers. Which of the 
following operations can serve as the meet operation for a semilattice on V? 

a) Addition: (a + ib) A (c + id) = (a + b) + i(c + d). 

b) Multiplication: (a + ib) A (c + id) = (ac - bd) + i(ad + be). 



616 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

Why the Available-Expressions Algorithm Works 

We need to explain why starting all OUT'S except that for the entry block 
with U ,  the set of all expressions, leads to a conservative solution to the 
data-flow equations; that is, all expressions found to be available really 
are available. First, because intersection is the meet operation in this 
data-flow schema, any reason that an expression x + y is found not to be 
available at  a point will propagate forward in the flow graph, along all 
possible paths, until x + y is recomputed and becomes available again. 
Second, there are only two reasons x + y could be unavailable: 

1. x + y is killed in block B because x or y is defined without a subse- 
quent computation of x + y. In this case, the first time we apply the 
transfer function f B  , x + y will be removed from o u ~ [ B ] .  

2. x + y is never computed along some path. Since x + y is never ia 
OUT[ENTRY], and it is never generated along the path in question, 
we can show by induction on the length of the path that x + y is 
eventually removed from IN'S and OUT'S along that path. 

Thus, after changes subside, the solution provided by the iterative algo- 
rithm of Fig. 9.20 will include only truly available expressions. 

c) Componentwise minimum: (a + ib) A (c  + id) = min(a, c) + i min(b, d) . 

d) Componentwise maximum: (a + ib) A (c + id) = max(a, c) + i max(b, d). 

! Exercise 9.2.5 : We claimed that if a block B consists of n statements, and 
the ith statement has gen and kill sets geni and killi, then the transfer function 
for block B has gen and kill sets g e n ~  and killB given by 

killB = killl U kill2 U . - .  U kill, 

g e n ~  = gen, U (gen,-1 - kill,) U (genn-2 - - kill,) U 

. . U (genl - killa - kill3 - . - . - kill,). 

Prove this claim by induction on n. 

! Exercise 9.2.6 : Prove by induction on the number of iterations of the for-loop 
of lines (4) through (6) of Algorithm 9.11 that none of the IN'S or OUT'S ever 
shrinks. That is, once a definition is placed in one of these sets on some round, 
it never disappears on a subsequent round. 



9.2. INTRODUCTION TO DATA-FLO W ANALYSIS 

! Exercise 9.2.7: Show the correctness of Algorithm 9.11. That is, show that 

a) If definition d is put in IN[B] or OUT[B], then there is a path from d to 
the beginning or end of block B, respectively, along which the variable 
defined by d might not be redefined. 

b) If definition d is not put in IN[B] or OUT[B], then there is no path from d 
to the beginning or end of block B ,  respectively, along which the variable 
defined by d might not be redefined. 

! Exercise 9.2.8 : Prove the following about Algorithm 9.14: 

a) The IN'S and OUT'S never shrink. 

b) If variable x is put in IN[B] or OUT[B], then there is a path from the 
beginning or end of block B ,  respectively, along which x might be used. 

c) If variable x is not put in IN[B] or OUT[B], then there is no path from the 
beginning or end of block B ,  respectively, along which x might be used. 

! Exercise 9.2.9 : Prove the following about Algorithm 9.17: 

a) The IN'S and OUT'S never grow; that is, successive values of these sets are 
subsets (not necessarily proper) of their previous values. 

b) If expression e  is removed from IN[B] or OUT[B], then there is a path from 
the entry of the flow graph to the beginning or end of block B, respectively, 
along which e  is either never computed, or after its last computation, one 
of its arguments might be redefined. 

c) If expression e  remains in IN[B] or OUT[B], then along every path from the 
entry of the flow graph to the beginning or end of block B ,  respectively, 
e  is computed, and after the last computation, no argument of e  could be 
redefined. 

! Exercise 9.2.10 : The astute reader will notice that in Algorithm 9.11 we could 
have saved some time by initializing OUT[B] to g e n ~  for all blocks B. Likewise, 
in Algorithm 9.14 we could have initialized IN[B] to g e n ~ .  We did not do so for 
uniformity in the treatment of the subject, as we shall see in Algorithm 9.25. 
However, is it possible to initialize OUT[B] to e - g e n ~  in Algorithm 9.17? Why 
or why not? 

! Exercise 9.2.11 : Our data-flow analyses so far do not take advantage of the 
semantics of conditionals. Suppose we find at the end of a basic block a test 
such as 

How could we use our understanding of what the test x < 10 means to improve 
our knowledge of reaching definitions? Remember, "improve" here means that 
we eliminate certain reaching definitions that really cannot ever reach a certain 
program point. 



618 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

9.3 Foundat ions of Dat a-Flow Analysis 

Having shown several useful examples of the data-flow abstraction, we now 
study the family of data-flow schemas as a whole, abstractly. We shall answer 
several basic questions about data-flow algorithms formally: 

1. Under what circumstances is the iterative algorithm used in data-flow 
analysis correct? 

2. How precise is the solution obtained by the iterative algorithm? 

3. Will the iterative algorithm converge? 

4. What is the meaning of the solution to the equations? 

In Section 9.2, we addressed each of the questions above informally when 
describing the reaching-definitions problem. Instead of answering the same 
questions for each subsequent problem from scratch, we relied on analogies 
with the problems we had already discussed to explain the new problems. Here 
we present a general approach that answers all these questions, once and for 
all, rigorously, and for a large family of data-flow problems. We first iden- 
tify the properties desired of data-flow schemas and prove the implications of 
these properties on the correctness, precision, and convergence of the data-flow 
algorithm, as well as the meaning of the solution. Thus, to understand old 
algorithms or formulate new ones, we simply show that the proposed data-flow 
problem definitions have certain properties, and the answers to all the above 
difficult questions are available immediately. 

The concept of having a common theoretical framework for a class of sche- 
mas also has practical implications. The framework helps us identify the 
reusable components of the algorithm in our software design. Not only is cod- 
ing effort reduced, but programming errors are reduced by not having to recode 
similar details several times. 

A data-flow analysis framework (D, V, A,  F) consists of 

1. A direction of the data flow D,  which is either FORWARDS or BACKWARDS. 

2. A semilattice (see Section 9.3.1 for the definition), which includes a do- 
main of values V and a meet operator A. 

3. A family F of transfer functions from V to V. This family must include 
functions suitable for the boundary conditions, which are constant transfer 
functions for the special nodes ENTRY and EXIT in any flow graph. 

9.3.1 Semilattices 

A semilattice is a set V and a binary meet operator A such that for all x, y, 
and x in V: 



9.3. FOUNDATIONS OF DATA-FLO W ANALYSIS 

1. x A x = x (meet is idempotent). 

2. x A y = y A x (meet is commutative). 

3. x A (y A z) = (x A y) /\ x (meet is associative). 

A semilattice has a top element, denoted T,  such that 

for all x in V, T Ax = x. 

Optionally, a semilattice may have a bottom element, denoted I, such that 

Partial Orders 

As we shall see, the meet operator of a semilattice defines a partial order on 
the values of the domain. A relation < is a partial order on a set V if for all x, 
y, and z in V: 

1. x 5 x (the partial order is reflexive). 

2. If x < y and y < x, then x = y (the partial order is antisymmetric). 

3. If x 5 y and y < x, then x < x (the partial order is transitive). 

The pair (V, <) is called a poset, or partially ordered set. It is also convenient 
to have a < relation for a poset, defined as 

x < y if and only if (z < y) and (x # 9). 

The Partial Order for a Semilattice 

It is useful to define a partial order < for a semilattice (V, A). For all x and y 
in V, we define 

x < y if and only if x A y = x. 

Because the meet operator A is idempotent, commutative, and associative, the 
< order as defined is reflexive, antisymmetric, and transitive. To see why, - 
observe that: 

Reflexivity: for all x, x 5 x. The proof is that x A x = x since meet is 
idempotent. 

Antisymmetry: if x < y and y 5 x, then x = y. In proof, x 5 y 
means x A y = x and y 5 x means y A x = y. By commutativity of A,  
x = (xA y) = (y Ax) = y. 



620 CHAPTER 9. MA CHINE-INDEPENDENT OPTIMIZATIONS 

Transitivity: if x 5 y and y < z, then x 5 x. In proof, x 5 y and y 5 z 
means that x A y = x and y A x = y. Then (x A x) = ((x A y) A 2) = 
(x A (y A x)) = (x A y) = x, using associativity of meet. Since x A z = x 
has been shown, we have x 5 x, proving transitivity. 

Example 9.18 : The meet operators used in the examples in Section 9.2 are 
set union and set intersection. They are both idempotent, commutative, and 
associative. For set union, the top element is 0 and the bottom element is U, 
the universal set, since for any subset x of U, 0 u x = x and U U x = U. For 
set intersection, T is U and I is 8. V, the domain of values of the semilattice, 
is the set of all subsets of U, which is sometimes called the power set of U and 
denoted 2U. 

For all x and y in V, x U y = x implies x > y; therefore, the partial order 
imposed by set union is 2,  set inclusion. Correspondingly, the partial order 
imposed by set intersection is C, set containment. That is, for set intersection, 
sets with fewer elements are considered to be smaller in the partial order. How- 
ever, for set union, sets with more elements are considered to be smaller in the 
partial order. To say that sets larger in size are smaller in the partial order is 
counterintuitive; however, this situation is an unavoidable consequence of the 
 definition^.^ 

As discussed in Section 9.2, there are usually many solutions to a set of data- 
flow equations, with the greatest solution (in the sense of the partial order _<) 
being the most precise. For example, in reaching definitions, the most precise 
among all the solutions to the data-flow equations is the one with the smallest 
number of definitions, which corresponds to the greatest element in the partial 
order defined by the meet operation, union. In available expressions, the most 
precise solution is the one with the largest number of expressions. Again, it 
is the greatest solution in the partial order defined by intersection as the meet 
operation. CI 

Greatest Lower Bounds 

There is another useful relationship between the meet operation and the partial 
ordering it imposes. Suppose (V, A) is a semilattice. A greatest lower bound (or 
glb) of domain elements x and y is an element g  such that 

2. g _ <  y, and 

3. If x is any element such that x 5 x and x _< y, then x 5 g. 

It turns out that the meet of x and y is their only greatest lower bound. To see 
why, let g = x A y . Observe that: 

'And if we defined the partial order to be > instead of 5,  then the problem would surface 
when the meet was intersection, although not for union. 



9.3. FOUNDATIONS OF DATA-FLO W ANALYSIS 

Joins, Lub's, and Lattices 

In symmetry to the glb operation on elements of a poset, we may define 
the least upper bound (or lub) of elements x and y to be that element b 
such that x < b, y < b, and if z is any element such that x < z and y < z, 
then b < a. One can show that there is at most one such element b if it 
exists. 

In a true lattice, there are two operations on domain elements, the 
meet A, which we have seen, and the operator join, denoted V, which 
gives the lub of two elements (which therefore must always exist in the 
lattice). We have been discussing only "semi" lattices, where only one 
of the meet and join operators exist. That is, our semilattices are meet 
semilattices. One could also speak of join semilattices, where only the join 
operator exists, and in fact some literature on program analysis does use 
the notation of join semilattices. Since the traditional data-flow literature 
speaks of meet semilattices, we shall also do so in this book. 

g 5 x because (x A y) A x = x A y. The proof involves simple uses of 
associativity, commutativity, and idempotence. That is, 

g A x = ((x A y) Ax) = (x A (y Ax)) = 

(x A (x A = ((x A x) A y) = 

(x A Y )  = 9 

g < y by a similar argument. 

Suppose z is any element such that x 5 x and z < y. We claim z < g, 
and therefore, z cannot be a glb of x and y unless it is also g. In proof: 
(z A g) = (z A (x A y)) = ((z A x) A y).  Since z < x, we know ( z  A x) = z, so 
(z Ag) = (zA y). Since z 5 y, we know zA y = z, and therefore z Ag = z. 
We have proven z 5 g and conclude g = x A y is the only glb of x and y. 

Lattice Diagrams 

It often helps to draw the domain V as a lattice diagram, which is a graph whose 
nodes are the elements of V, and whose edges are directed downward, from x 
to y if y <_ x. For example, Fig. 9.22 shows the set V for a reaching-definitions 
data-flow schema where there are three definitions: dl, d2, and d3. Since <_ is 2,  
an edge is directed downward from any subset of these three definitions to each 
of its supersets. Since < is transitive, we conventionally omit the edge from x 



622 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

to y as long as there is another path from x to y left in the diagram. Thus, 
although {dl,d2,d3} 5 {dl), we do not draw this edge since it is represented 
by the path through {dl, d2}, for example. 

Figure 9.22: Lattice of subsets of definitions 

It is also useful to note that we can read the meet off such diagrams. Since 
x A y is the glb, it is always the highest x for which there are paths downward 
to z from both x and y. For example, if x is {dl) and y is {d2), then z in 
Fig. 9.22 is {dl, d2}, which makes sense, because the meet operator is union. 
The top element will appear at the top of the lattice diagram; that is, there is 
a path downward from T to each element. Likewise, the bottom element will 
appear at the bottom, with a path downward from every element to I. 

Product Lattices 

While Fig. 9.22 involves only three definitions, the lattice diagram of a typical 
program can be quite large. The set of data-flow values is the power set of the 
definitions, which therefore contains 2n elements if there are n definitions in 
the program. However, whether a definition reaches a program is independent 
of the reachability of the other definitions. We may thus express the lattice7 of 
definitions in terms of a "product lattice," built from one simple lattice for each 
definition. That is, if there were only one definition d in the program, then the 
lattice would have two elements: {I, the empty set, which is the top element, 
and (d), which is the bottom element. 

Formally, we may build product lattices as follows. Suppose (A ,  Aa) and 
(B, AB) are (semi)lattices. The product lattice for these two lattices is defined 
as follows: 

1. The domain of the product lattice is A x B.  

7 ~ n  this discussion and subsequently, we shall often drop the "semi," since lattices like the 
one under discussion do have a join or lub operator, even if we do not make use of it. 



9.3. FOUNDATIONS OF DATA-FLO W ANALYSIS 623 

2. The meet A for the product lattice is defined as follows. If (a, b) and 
(a', b') are domain elements of the product lattice, then 

(a, b) A (a', b') = (a A a', b A b'). (9.19) 

It is simple to express the 5 partial order for the product lattice in terms 
of the partial orders 5~ and SB for A and B 

(a, b) 5 (a', b') if and only if a a' and b SB b'. (9.20) 

To see why (9.20) follows from (9.19)) observe that 

(a, b) A (a', b') = (a AA a', b AB b'). 

So we might ask under what circumstances does (aAA a', bAB b') = (a, b)? That 
happens exactly when a AA a' = a and b AB b' = b. But these two conditions 
are the same as a LA a' and b <B b' . 

The product of lattices is an associative operation, so one can show that 
the rules (9.19) and (9.20) extend to any number of lattices. That is, if we are 
given lattices (Ai, Ai) for i = 1 ,2 , .  . . , k, then the product of all k lattices, in 
this order, has domain A1 x A2 x . . . x Ak, a meet operator defined by 

and a partial order defined by 

(al,  a2,. . . , ak) < (bl ,  b2,. . . , bk) if and only if ai 5 bi for all i .  

Height of a Semilattice 

We may learn something about the rate of convergence of a data-flow analysis 
algorithm by studying the "height" of the associated semilattice. An ascending 
chain in a poset (V, 5)  is a sequence where x1 < 2 2  < . . . < xn. The height 
of a semilattice is the largest number of < relations in any ascending chain; 
that is, the height is one less than the number of elements in the chain. For 
example, the height of the reaching definitions semilattice for a program with 
n definitions is n. 

Showing convergence of an iterative data-flow algorithm is much easier if the 
semilattice has finite height. Clearly, a lattice consisting of a finite set of values 
will have a finite height; it is also possible for a lattice with an infinite number 
of values to have a finite height. The lattice used in the constant propagation 
algorithm is one such example that we shall examine closely in Section 9.4. 

9.3.2 Transfer Functions 

The family of transfer functions F : V -+ V in a data-flow framework has the 
following properties: 



624 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

1. F has an identity function I, such that I ( x )  = x  for all x  in V. 

2. F is closed under composition; that is, for any two functions f and g in 
F, the function h defined by h(x)  = ( f  ( x ) )  is in F .  

Example 9.21 : In reaching definitions, F has the identity, the function where 
gen and bill are both the empty set. Closure under composition was actually 
shown in Section 9.2.4; we repeat the argument succinctly here. Suppose we 
have two functions 

fi (2)  = GI U ( x  - K1) and f 2  (2)  = G2 U ( X  - K2).  

Then 

f 2  ( f i  ( 2 ) )  = G2 U ( (GI  U ( x  - K l ) )  - K ~ ) .  

The right side of the above is algebraically equivalent to 

(G2 U (GI - K2)) U ( X  - (Ki  U ~ 2 ) ) .  

If we let K = Kl U K2 and G = G2 U (GI - K2),  then we have shown that 
the composition of f l  and f 2 ,  which is f ( x )  = G U (x  - K )  , is of the form 
that makes it a member of F. If we consider available expressions, the same 
arguments used for reaching definitions also show that F has an identity and is 
closed under composition. 

Monotone Frameworks 

To make an iterative algorithm for data-flow analysis work, we need for the 
data-flow framework to satisfy one more condition. We say that a framework 
is monotone if when we apply any transfer function f in F to two members of 
V, the first being no greater than the second, then the first result is no greater 
than the second result. 

Formally, a data-flow framework (D, F, V, A) is monotone if 

For all x  and y in V and f in F, x  5 y implies f ( x )  5 f ( y ) .  (9.22) 

Equivalently, monotonicity can be defined as 

For all z andy in V and f in F ,  f ( x A y )  5 f ( x ) A f ( y ) .  (9.23) 

Equation (9.23) says that if we take the meet of two values and then apply f , 
the,result is never greater than what is obtained by applying f to the values 
individually first and then "meeting" the results. Because the two definitions 
of monotonicity seem so different, they are both useful. We shall find one or 
the other more useful under different circumstances. Later, we sketch a proof 
to show that they are indeed equivalent. 



9.3. FOUNDATIONS O F  DATA-FLOW ANALYSIS 625 

We shall first assume (9.22) and show that (9.23) holds. Since x A y is the 
greatest lower bound of x and y, we know that 

Thus, by (9.22), 

Since f (x) A f (9) is the greatest lower bound of f (x) and f (y), we have (9.23). 
Conversely, let us assume (9.23) and prove (9.22). We suppose x 5 y and 

use (9.23) to conclude f (x) 5 f (y), thus proving (9.22). Equation (9.23) tells 
US 

But since x 5 y is assumed, x A y = x, by definition. Thus (9.23) says 

Since f ( x ) ~  f (y) is the glb o f f  (x) and f (y), we know f (x) A f (Y) F J(Y). Thus 

and (9.23) implies (9.22). 

Distributive Frameworks 

Often, a framework obeys a condition stronger than (9.23), which we call the 
distributivity condition, 

for all x and y in V and f in F. Certainly, if a = b, then a A b = a by idempot- 
ence, so a 5 b. Thus, distributivity implies monotonicity, although the converse 
is not true. 

Example 9.24: Let y and x be sets of definitions in the reaching-definitions 
framework. Let f be a function defined by f (x) = G U (x - K )  for some sets 
of definitions G and K .  We can verify that the reaching-definitions framework 
satisfies the distributivity condition, by checking that 

G U ((y U z) - K) = (G U (y - K))  U (G U (x - K)) .  

While the equation above may appear formidable, consider first those definitions 
in G. These definitions are surely in the sets defined by both the left and right 
sides. Thus, we have only to consider definitions that are not in G. In that 
case, we can eliminate G everywhere, and verify the equality 

(Y U z )  - K = (3 - K )  U (x - K) .  

The latter equality is easily checked using a Venn diagram. 



626 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

9.3.3 The Iterative Algorithm for General Frameworks 

We can generalize Algorithm 9.11 to make it work for a large variety of data-flow 
problems. 

Algorit hrn 9.25 : Iterative solution to general data-flow frameworks. 

INPUT: A data-flow framework with the following components: 

1. A data-flow graph, with specially labeled ENTRY and EXIT nodes, 

2. A direction of the data-flow D, 

3. A set of values V, 

4. A meet operator A, 

5. A set of functions F, where f B  in F is the transfer function for block B ,  
and 

6. A constant value v,,,, or v,,,, in V, representing the boundary condition 
for forward and backward frameworks, respectively. 

OUTPUT: Values in V for IN[B] and OUT[B] for each block B in the data-flow 
graph. 

METHOD: The algorithms for solving forward and backward data-flow prob- 
lems are shown in Fig. 9.23(a) and 9.23(b), respectively. As with the familiar 
iterative data-flow algorithms from Section 9.2, we compute IN and OUT for 
each block by successive approximation. 

It is possible to write the forward and backward versions of Algorithm 9.25 
so that a function implementing the meet operation is a parameter, as is a 
function that implements the transfer function for each block. The flow graph 
itself and the boundary value are also parameters. In this way, the compiler 
implementor can avoid recoding the basic iterative algorithm for each data-flow 
framework used by the optimization phase of the compiler. 

We can use the abstract framework discussed so far to prove a number of 
useful properties of the iterative algorithm: 

1. If Algorithm 9.25 converges, the result is a solution to the data-flow equa- 
t ions. 

2. If the framework is monotone, then the solution found is the maximum 
fixedpoint (MFP) of the data-flow equations. A maxzmum fixedpoint is a 
solution with the property that in any other solution, the values of IN[B] 
and OUT[B] are 5 the corresponding values of the MFP. 

3. If the semilattice of the framework is monotone and of finite height, then 
the algorithm is guaranteed to converge. 



9.3. FOUNDATIONS OF DATA-FLO W ANALYSIS 

I) OUT[ENTRY] = VENTRy; 

2) for (each basic block B other than ENTRY) OUT[B] = T; 

3) while (changes to any OUT occur) 
4) for (each basic block B other than ENTRY) { 
5 1 = A P  a predecessor of B O U T [ ~ I ;  
6) OUT[B] = ~B(IN[B]) ;  

} 

(a) Iterative algorithm for a forward data-flow problem. 

I) IN [EXIT] = VEXIT ; 
2) for (each basic block B other than EXIT) IN[B] = T; 

3) while (changes to any IN occur) 
4) for (each basic block B other than EXIT) { 
5) "'[BI = A ,S a successor of B "[SI ; 
6) IN[B] = ~B(ouT[B]);  

1 
(b) Iterative algorithm for a backward data-flow problem. 

Figure 9.23: Forward and backward versions of the iterative algorithm 

We shall argue these points assuming that the framework is forward. The 
case of backwards frameworks is essentially the same. The first property is easy 
to show. If the equations are not satisfied by the time the while-loop ends, then 
there will be at least one change to an OUT (in the forward case) or IN (in the 
backward case), and we must go around the loop again. 

To prove the second property, we first show that the values taken on by IN[B] 
and OUT[B] for any B can only decrease (in the sense of the 5 relationship for 
lattices) as the algorithm iterates. This claim can be proven by induction. 

BASIS: The base case is to show that the value of IN[B] and OUT[B] after the 
first iteration is not greater than the initialized value. This statement is trivial 
because IN[B] and OUT[B] for all blocks B # ENTRY are initialized with T. 

INDUCTION: Assume that after the kth iteration, the values are all no greater 
than those after the (k - 1)st iteration, and show the same for iteration k + 1 
compared with iteration k. Line (5) of Fig. 9.23(a) has 

IN[B] = A OUT[P]. 
P a predecessor of B 

Let us use the notation IN[@ and OUT[B]~ to denote the values of IN[B] and 
OUT[B] after iteration i. Assuming OUT[P]~ 5 OUT[P]'-~, we know that 
IN[B]'+' < IN[B] IC because of the properties of the meet operator. Next, line (6) 



628 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

says 

OUT[B] = f B ( l ~ [ B ] ) .  

Since IN[B]'++' 5 IN[B]', we have OUT[B]'+~ < OUT[B]"~ monotonicity. 

Note that every change observed for values of IN[B] and OUT[B] is necessary 
to satisfy the equation. The meet operators return the greatest lower bound of 
their inputs, and the transfer functions return the only solution that is consis- 
tent with the block itself and its given input. Thus, if the iterative algorithm 
terminates, the result must have values that are at least as great as the corre- 
sponding values in any other solution; that is, the result of Algorithm 9.25 is 
the MFP of the equations. 

Finally, consider the third point, where the data-flow framework has finite 
height. Since the values of every IN[B] and OUT[B] decrease with each change, 
and the algorithm stops if a t  some round nothing changes, the algorithm is 
guaranteed to  converge after a number of rounds no greater than the product 
of the height of the framework and the number of nodes of the flow graph. 

9.3.4 Meaning of a Data-Flow Solution 

We now know that the solution found using the iterative algorithm is the max- 
imum fixedpoint, but what does the result represent from a program-semantics 
point of view? To understand the solution of a data-flow framework (D, F, V, A),  
let us first describe what an ideal solution to  the framework would be. We show 
that the ideal cannot be obtained in general, but that Algorithm 9.25 approxi- 
mates the ideal conservatively. 

The Ideal Solution 

Without loss of generality, we shall assume for now that the data-flow framework 
of interest is a forward-flowing problem. Consider the entry point of a basic 
block B .  The ideal solution begins by finding all the possible execution paths 
leading from the program entry to  the beginning of B .  A path is "possible" 
only if there is some computation of the program that follows exactly that path. 
The ideal solution would then compute the data-flow value a t  the end of each 
possible path and apply the meet operator to  these values to  find their greatest 
lower bound. Then no execution of the program can produce a smaller value 
for that program point. In addition, the bound is tight; there is no greater 
data-flow value that is a glb for the value computed along every possible path 
to  B in the flow graph. 

We now try to define the ideal solution more formally. For each block B in 
a flow graph, let fB be the transfer function for B. Consider any path 

p = ENTRY + B1 + Bz + .. .  --+ Bk-1 + Bk 

from the initial node ENTRY to some block Bk. The program path may have 
cycles, so one basic block may appear several times on the path P. Define the 



9.3. FOUNDATIONS OF DATA-FLOW ANALYSIS 629 

transfer function for P,  fp ,  to be the composition of fB, , fB2 . . . , fBk-, . Note 
that fBk is not part of the composition, reflecting the fact that this path is 
taken to reach the beginning of block Bk,  not its end. The data-flow value 
created by executing this path is thus fp(uENT,), where uENT, is the result of 
the constant transfer function representing the initial node ENTRY. The ideal 
result for block B is thus 

IDEAL[B] = A f~   ENT TRY). 
P, a possible path from ENTRY to B 

We claim that, in terms of the lattice-theoretic partial order 5 for the framework 
in question, 

Any answer that is greater than IDEAL is incorrect. 

Any value smaller than or equal to the ideal is conservative, i.e., safe. 

Intuitively, the closer the value to the ideal the more precise it To see 
why solutions must be 5 the ideal solution, note that any solution greater than 
IDEAL for any block could be obtained by ignoring some execution path that 
the program could take, and we cannot be sure that there is not some effect 
along that path to invalidate any program improvement we might make based 
on the greater solution. Conversely, any solution less than IDEAL can be viewed 
as including certain paths that either do not exist in the flow graph, or that 
exist but that the program can never follow. This lesser solution will allow only 
transformations that are correct for all possible executions of the program, but 
may forbid some transformations that IDEAL would permit. 

The Meet-Over-Paths Solution 

However, as discussed in Section 9.1, finding all possible execution paths is 
undecidable. We must therefore approximate. In the dat a-flow abstraction, we 
assume that every path in the flow graph can be taken. Thus, we can define 
the meet-over-paths solution for B to be 

MOP[B] = A f~ (VENTRY) - 
P, a path from ENTRY to B 

Note that, as for IDEAL, the solution MOP[B] gives values for IN[B] in forward- 
flow frameworks. If we were to consider backward-flow frameworks, then we 
would think of MOP[B] as a value for OUT[B]. 

The paths considered in the MOP solution are a superset of all the paths 
that are possibly executed. Thus, the MOP solution meets together not only the 
data-flow values of all the executable paths, but also additional values associated 

-- 

' ~ o t e  that in forward problems, the value IDEAL[B] is what we would like IN[B] to be. In 
backward problems, which we do not discuss here, we would define IDEAL[B] to be the ideal 
value of OUT[B].  



630 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

with the paths that cannot possibly be executed. Taking the meet of the ideal 
solution plus additional terms cannot create a solution larger than the ideal. 
Thus, for all B we have MOP[B] 5 IDEAL[B], and we will simply say that 
MOP 5 IDEAL. 

The Maximum Fixedpoint Versus the MOP Solution 

Notice that in the MOP solution, the number of paths considered is still un- 
bounded if the flow graph contains cycles. Thus, the MOP definition does not 
lend itself to a direct algorithm. The iterative algorithm certainly does not first 
find all the paths leading to a basic block before applying the meet operator. 
Rather, 

1. The iterative algorithm visits basic blocks, not necessarily in the order of 
execution. 

2. At each confluence point, the algorithm applies the meet operator to 
the data-flow values obtained so far. Some of these values used were 
introduced artificially in the initialization process, not representing the 
result of any execution from the beginning of the program. 

So what is the relationship between the MOP solution and the solution MFP 
produced by Algorithm 9.25? 

We first discuss the order in which the nodes are visited. In an iteration, we 
may visit a basic block before having visited its predecessors. If the predecessor 
is the ENTRY node, OUT[ENTRY] would have already been initialized with the 
proper, constant value. Otherwise, it has been initialized to T, a value no 
smaller than the final answer. By monotonicity, the result obtained by using T 
as input is no smaller than the desired solution. In a sense, we can think of T 
as representing no information. 

Figure 9.24: Flow graph illustrating the effect of early meet over paths 

What is the effect of applying the meet operator early? Consider the simple 
example of Fig. 9.24, and suppose we are interested in the value of IN[B*]. By 



9.3. FOUNDATIONS OF DATA-FLO W ANALYSIS 

the definition of MOP, 

In the iterative algorithm, if we visit the nodes in the order B1, B2, BS, B4, then 

While the meet operator is applied at the end in the definition of MOP, the 
iterative algorithm applies it early. The answer is the same only if the data- 
flow framework is distributive. If the data-flow framework is monotone but 
not distributive, we still have IN[B~] 5 MOP[B~].  Recall that in general a 
solution IN[B] is safe (conservative) if IN[B] 5 IDEAL[B] for all blocks B. Surely, 
MOP[B] 5 IDEAL[B]. 

We now provide a quick sketch of why in general the MFP solution provided 
by the iterative algorithm is always safe. An easy induction on i shows that 
the values obtained after i iterations are smaller than or equal t o  the meet over 
all paths of length i or less. But the iterative algorithm terminates only if it 
arrives at the same answer as would be obtained by iterating an unbounded 
number of times. Thus, the result is no greater than the MOP solution. Since 
MOP < IDEAL and MFP 5 MOP, we know that MFP 5 IDEAL, and therefore the 
solution MFP provided by the iterative algorithm is safe. 

9.3.5 Exercises for Section 9.3 

Exercise 9.3.1 : Construct a lattice diagram for the product of three lattices, 
each based on a single definition di, for i = 1,2,3.  How is your lattice diagram 
related to  that in Fig. 9.22? 

! Exercise 9.3.2 : In Section 9.3.3 we argued that if the framework has finite 
height, then the iterative algorithm converges. Here is an example where the 
framework does not have finite height, and the iterative algorithm does not 
converge. Let the set of values V be the nonnegative real numbers, and let the 
meet operator be the minimum. There are three transfer functions: 

i .  The identity, f1(x) = X .  

. . 
22. "half," that is, the function fH(x) = 212. 
. . . 

22%. "one." that is, the function fo(x) = 1. 

The set of transfer functions F is these three plus the functions formed by 
composing them in all possible ways. 

a) Describe the set F. 

b) What is the 5 relationship for this framework? 



632 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

c) Give an example of a flow graph with assigned transfer functions, such 
that Algorithm 9.25 does not converge. 

d) Is this framework monotone? Is it distributive? 

! Exercise 9.3.3 : We argued that Algorithm 9.25 converges if the framework is 
monotone and of finite height. Here is an example of a framework that shows 
monotonicity is essential; finite height is not enough. The domain V is {1,2}, 
the meet operator is min, and the set of functions F is only the identity (fI) 
and the "switch" function (fs(x) = 3 - x) that swaps 1 and 2. 

a) Show that this framework is of finite height but not monotone. 

b) Give an example of a flow graph and assignment of transfer functions so 
that Algorithm 9.25 does not converge. 

! Exercise 9.3.4 : Let MOP~[B] be the meet over all paths of length i or less from 
the entry to block B.  Prove that after i iterations of Algorithm 9.25, IN[B] 5 
MOPi[B]. Also, show that as a consequence, if Algorithm 9.25 converges, then 
it converges to something that is 5 the MOP solution. 

! Exercise 9.3.5: Suppose the set F of functions for a framework are all of 
gen-kill form. That is, the domain V is the power set of some set, and f (x) = 
G U (x - K) for some sets G and K. Prove that if the meet operator is either 
(a) union or (b) intersection, then the framework is distributive. 

9.4 Constant Propagation 

All the data-flow schemas discussed in Section 9.2 are actually simple examples 
of distributive frameworks with finite height. Thus, the iterative Algorithm 9.25 
applies to them in either its forward or backward version and produces the MOP 
solution in each case. In this section, we shall examine in detail a useful data- 
flow framework with more interesting properties. 

Recall that const ant propagation, or "const ant folding," replaces expressions 
that evaluate to the same constant every time they are executed, by that con- 
stant. The constant-propagation framework described below is different from 
all the data-flow problems discussed so far, in that 

a) it has an unbounded set of possible data-flow values, even for a fixed flow 
graph, and 

b) it is not distributive. 

Constant propagation is a forward data-flow problem. The semilattice rep- 
resenting the data-flow values and the family of transfer functions are presented 
next. 



9.4. CONSTANT PROPAGATION 633 

9.4.1 Data-Flow Values for the Constant-Propagation 
Framework 

The set of data-flow values is a product lattice, with one component for each 
variable in a program. The lattice for a single variable consists of the following: 

1. All constants appropriate for the type of the variable. 

2. The value NAC, which stands for not-a-constant. A variable is mapped to 
this value if it is determined not to  have a constant value. The variable 
may have been assigned an input value, or derived from a variable that is 
not a constant, or assigned different constants along different paths that 
lead to  the same program point. 

3. The value UNDEF, which stands for undefined. A variable is assigned this 
value if nothing may yet be asserted; presumably, no definition of the 
variable has been discovered to reach the point in question. 

Note that NAC and UNDEF are not the same; they are essentially opposites. 
NAC says we have seen so many ways a variable could be defined that we know 
it is not constant; UNDEF says we have seen so little about the variable that we 
cannot say anything a t  all. 

The semilattice for a typical integer-valued variable is shown in Fig. 9.25. 
Here the top element is UNDEF, and the bottom element is NAC. That is, the 
greatest value in the partial order is UNDEF and the least is NAC. The constant 
values are unordered, but they are all less than UNDEF and greater than NAC. 

As discussed in Section 9.3.1, the meet of two values is their greatest lower 
bound. Thus, for all values u ,  

UNDEF A u = u and NAC A u = NAC. 

For any constant c, 

and given two distinct constants cl and cz, 

C1 r\ C2 = NAC. 

A data-flow value for this framework is a map from each variable in the 
program to one of the values in the constant semilattice. The value of a variable 
u in a map m is denoted by m(u) .  

9.4.2 The Meet for the Constant-Propagation Framework 

The semilattice of data-flow values is simply the product of the semilattices like 
Fig. 9.25, one for each variable. Thus, m < m' if and only if for all variables u 
we have m ( u )  5 m l ( u ) .  Put  another way, m Am1 = m" if m"(u )  = m ( v )  Arn1(v) 
for all variables u. 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

UNDEF 

NAC 

Figure 9.25: Semilattice representing the possible "values" of a single integer 
variable 

9.4.3 Transfer Functions for the Constant-Propagation 
Framework 

We assume in the following that a basic block contains only one statement. 
Transfer functions for basic blocks containing several statements can be con- 
structed by camposing the functions corresponding to individual statements. 
The set F consists of certain transfer functions that accept a map of variables 
to values in the constant lattice and return another such map. 

F contains the identity function, which takes a map as input and returns 
the same map as output. F also contains the constant transfer function for 
the ENTRY node. This transfer function, given any input map, returns a map 
mo, where mo(u) = UNDEF, for all variables u. This boundary condition makes 
sense, because before executing any program statements there are no definitions 
for any variables. 

In general, let f, be the transfer function of statement s ,  and let m and m' 
represent data-flow values such that m' = f (m). We shall describe f, in terms 
of the relationship between m and m'. 

1. If s is not an assignment statement, then f, is simply the identity function. 

2. If s is an assignment to variable x, then m' (u) = m(u), for all variables 
u # x, provided one of the following conditions holds: 

(a) If the right-hand-side (RHS) of the statement s is a constant c,  then 
ml(x) = c. 

(b) If the RHS is of the form y + r , theng 

m(y) + m(r) if m(y) and m(r)  are constant values 
ml(x) = NAC if either m(y) or m(z) is NAC 

UNDEF otherwise 

(c) If the RHS is any other expression (e.g. a function call or assignment 
through a pointer), then ml(x) = NAC. 

9 ~ s  usual, + represents a generic operator, not necessarily addition. 



9.4. CONSTANT PROPAGATION 

9.4.4 Monotonicity of the Constant-Propagation 
Framework 

Let us show that the constant propagation framework is monotone. First, we 
can consider the effect of a function f, on a single variable. In all but case 2(b), 
f s  either does not change the value of m(x), or it changes the map to return a 
constant or NAC. In these cases, f, must surely be monotone. 

For case 2(b), the effect of f s  is tabulated in Fig 9.26. The first and second 
columns represent the possible input values of y and z ;  the last represents the 
output value of x. The values are ordered from the greatest to the smallest in 
each column or subcolumn. To show that the function is monotone, we check 
that for each possible input value of y, the value of x does not get bigger as the 
value of z gets smaller. For example, in the case where y has a constant value 
cl,  as the value of z varies from UNDEF to c2 to NAC, the value of x varies from 
UNDEF, to cl + c2, and then to NAC, respectively. We can repeat this procedure 
for all the possible values of y. Because of symmetry, we do not even need to 
repeat the procedure for the second operand before we conclude that the output 
value cannot get larger as the input gets smaller. 

I UNDEF 1 1  UNDEF 

UNDEF UNDEF 

C l  

I UNDEF 11 NAC 

NAC I C2 1 1  NAC 

Figure 9.26: The constant-propagation transfer function for x = y+z 

I NAC 

9.4.5 Nondistributivity of the Constant-Propagation 
Framework 

NAC 

The constant-propagation framework as defined is monotone but not distribu- 
tive. That is, the iterative solution MFP is safe but may be smaller than the 
MOP solution. An example will prove that the framework is not distributive. 

Example 9.26 : In the program in Fig. 9.27, x and y are set to 2 and 3 in block 
B1, and to 3 and 2, respectively, in block B2. We know that regardless of which 
path is taken, the value of z at  the end of block B3 is 5. The iterative algorithm 
does not discover this fact, however. Rather, it applies the meet operator at 
the entry of B3, getting NAC'S as the values of x and y.  Since adding two NAC'S 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

Figure 9.27: An example demonstrating that the const ant propagation frame- 
work is not distributive 

yields a NAC, the output produced by Algorithm 9.25 is that x = NAC at  the exit 
of the program. This result is safe, but imprecise. Algorithm 9.25 is imprecise 
because it does not keep track of the correlation that whenever x is 2, y is 3, 
and vice versa. It is possible, but significantly more expensive, to use a more 
complex framework that tracks all the possible equalities that hold among pairs 
of expressions involving the variables in the program; this approach is discussed 
in Exercise 9.4.2. 

Theoretically, we can attribute this loss of precision to the nondistributivity 
of the constant propagation framework. Let f l ,  f 2 ,  and f 3  be the transfer 
functions representing blocks B1, B2 and B3, respectively. As shown in Fig 9.28, 

rendering the framework nondistributive. 

Figure 9.28: Example of nondistributive transfer functions 

m(z> 
UNDEF 

UNDEF 

UNDEF 

UNDEF 

NAC 

5 
5 
5 

m(y) 
UNDEF 

3 
2 

NAC 

NAC 

3 
2 

NAC 

m 
m0 

fl (ma) 
f 2  b 0 )  

fl(m0) A f 2 ( m 0 )  

f3(fl (m0) A fi(m0)) 

f 3 ( f l  (m0>> 

f 3  ( f 2  (mo>> 
f 3 ( f l ( m o ) ) A f 3 ( f 2 ( m 0 ) )  

m(x> 
UNDEF 

2 
3 

NAC 

N AC 

2 
3 

NAC 



9.4. CONSTANT PROPAGATION 

9.4.6 Interpretation of the Results 

The value UNDEF is used in the iterative algorithm for two purposes: to initialize 
the ENTRY node and to initialize the interior points of the program before the 
iterations. The meaning is slightly different in the two cases. The first says that 
variables are undefined at the beginning of the program execution; the second 
says that for lack of information at the beginning of the iterative process, we 
approximate the solution with the top element UNDEF. At the end of the 
iterative process, the variables at the exit of the ENTRY node will still hold the 
UNDEF value, since OUT[ENTRY] never changes. 

It is possible that UNDEF'S may show up at some other program points. 
When they do, it means that no definitions have been observed for that variable 
along any of the paths leading up to that program point. Notice that with the 
way we define the meet operator, as long as there exists a path that defines a 
variable reaching a program point, the variable will not have an UNDEF value. 
If all the definitions reaching a program point have the same constant value, 
the variable is considered a constant even though it may not be defined along 
some program path. 

By assuming that the program is correct, the algorithm can find more con- 
stants than it otherwise would. That is, the algorithm conveniently chooses 
some values for those possibly undefined variables in order to make the pro- 
gram more efficient. This change is legal in most programming languages, since 
undefined variables are allowed to take on any value. If the language semantics 
requires that all undefined variables be given some specific value, then we must 
change our problem formulation accordingly. And if instead we are interested in 
finding possibly undefined variables in a program, we can formulate a different 
data-flow analysis to provide that result (see Exercise 9.4.1). 

Example 9.27 : In Fig. 9.29, the values of x are 10 and UNDEF at  the exit of 
basic blocks B2 and BS, respectively. Since UNDEF A 10 = 10, the value of x is 
10 on entry to block B4. Thus, block B5, where x is used, can be optimized 
by replacing x by 10. Had the path executed been B1 -+ B3 --+ B4 -+ B5, the 
value of x reaching basic block B5 would have been undefined. So, it appears 
incorrect to replace the use of x by 10. 

However, if it is impossible for predicate Q to be false while Q' is true, 
then this execution path never occurs. While the programmer may be aware 
of that fact, it may well be beyond the capability of any data-flow analysis to 
determine. Thus, if we assume that the program is correct and that all the 
variables are defined before they are used, it is indeed correct that the value 
of x at  the beginning of basic block B5 can only be 10. And if the program 
is incorrect to begin with, then choosing 10 as the value of x cannot be worse 
than allowing x to assume some random value. 

9.4.7 Exercises for Section 9.4 

! Exercise 9.4.1 : Suppose we wish to detect all possibility of a variable being 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

Figure 9.29: Meet of UNDEF and a constant 

uninitialized along any path to a point where it is used. How would you modify 
the framework of this section to detect such situations? 

! ! Exercise 9.4.2 : An interesting and powerful data-flow-analysis framework is 
obtained by imagining the domain V to be all possible partitions of expressions, 
so that two expressions are in the same class if and only if they are certain to 
have the same value along any path to the point in question. To avoid having 
to list an infinity of expressions, we can represent V by listing only the minimal 
pairs of equivalent expressions. For example, if we execute the statements 

then the minimal set of equivalences is { a  - b, c r a + d}. From these follow 
other equivalences, such as c E b + d and a + e = b + e, but there is no need to 
list these explicitly. 

a) What is the appropriate meet operator for this framework? 

b) Give a data structure to represent domain values and an algorithm to 
implement the meet operator. 

c) What are the appropriate functions to associate with statements? Explain 
the effect that a statement such as a = b+c should have on a partition of 
expressions (i.e., on a value in V) . 

d) Is this framework monotone? Distributive? 



9.5. PARTIAL-RED UNDANCY ELIMINATION 

9.5 Part ial-Redundancy Elimination 

In this section, we consider in detail how to minimize the number of expression 
evaluations. That is, we want to consider all possible execution sequences in 
a flow graph, and look at  the nqmber of times an expression such as x + y is 
evaluated. By moving around the places where x + y is evaluated and keeping 
the result in a temporary variable when necessary, we often can reduce the 
number of evaluations of this expression along many of the execution paths, 
while not increasing that number along any path. Note that the number of 
different places in the flow graph where x + y is evaluated may increase, but 
that is relatively unimportant, as long as the number of evaluations of the 
expression x + y is reduced. 

Applying the code transformation developed here improves the performance 
of the resulting code, since, as we shall see, an operation is never applied unless 
it absolutely has to be. Every optimizing compiler implements something like 
the transformation described here, even if it uses a less "aggressive" algorithm 
than the one of this section. However, there is another motivation for discussing 
the problem. Finding the right place or places in the flow graph at which 
to evaluate each expression requires four different kinds of data-flow analyses. 
Thus, the study of "partial-redundancy elimination," as minimizing the number 
of expression evaluations is called, will enhance our understanding of the role 
data-flow analysis plays in a compiler. 

Redundancy in programs exists in several forms. As discussed in Section 
9.1.4, it may exist in the form of common subexpressions, where several evalua- 
tions of the expression produce the same value. It may also exist in the form of 
a loop-invariant expression that evaluates to the same value in every iteration 
of the loop. Redundancy may also be partial, if it is found along some of the 
paths, but not necessarily along all paths. Common subexpressions and loop- 
invariant expressions can be viewed as special cases of partial redundancy; thus 
a single partial-redundancy-elimination algorithm can be devised to eliminate 
all the various forms of redundancy. 

In the following, we first discuss the different forms of redundancy, in order 
to build up our intuition about the problem. We then describe the generalized 
redundancy-elimination problem, and finally we present the algorithm. This 
algorithm is particularly interesting, because it involves solving multiple data- 
flow problems, in both the forward and backward directions. 

9.5.1 The Sources of Redundancy 

Figure 9.30 illustrates the three forms of redundancy: common subexpressions, 
loop-invariant expressions, and partially redundant expressions. The figure 
shows the code both before and after each optimization. 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

Figure 9.30: Examples of (a) global common subexpression, (b) loop-invariant 
code motion, (c) partial-redundancy elimination. 

Global Common Subexpressions 

In Fig. 9.30(a), the expression b + c computed in block B4 is redundant; it has 
already been evaluated by the time the flow of control reaches B4 regardless of 
the path taken to get there. As we observe in this example, the value of the 
expression may be different on different paths. We can optimize the code by 
storing the result of the computations of b + c in blocks B2 and B3 in the same 
temporary variable, say t,  and then assigning the value of t to the variable e in 
block B4, instead of reevaluating the expression. Had there been an assignment 
to either b or c after the last computation of b + c but before block B4, the 
expression in block B4 would not be redundant. 

Formally, we say that an expression b + c is (fully) redundant at point p, if 
it is an available expression, in the sense of Section 9.2.6, at that point. That 
is, the expression b + c has been computed along all paths reaching p, and the 
variables b and c were not redefined after the last expression was evaluated. 
The latter condition is necessary, because even though the expression b + c is 
textually executed before reaching the point p, the value of b + c computed at 



9.5. PARTIAL-RED UNDANCY ELIMINATION 641 

Finding "Deep" Common Subexpressions 

Using available-expressions analysis to identify redundant expressions only 
works for expressions that are textually identical. For example, an appli- 
cation of common-subexpression elimination will recognize that t I in the 
code fragment 

t l = b + c ;  a = t l + d ;  

has the same value as does t 2  in 

t 2 = b + c ;  e = t 2 + d ;  

as long as the variables b and c have not been redefined in between. It 
does not, however, recognize that a and e are also the same. It is possi- 
ble to find such "deep" common subexpressions by re-applying common 
subexpression elimination until no new common subexpressions are found 
on one round. It is also possible to use the framework of Exercise 9.4.2 to 
catch deep common subexpressions. 

point p would have been different, because the operands might have changed. 

Loop-Invariant Expressions 

Fig. 9.30(b) shows an example of a loop-invariant expression. The expression 
b + c is loap invariant assuming neither the variable b nor c is redefined within 
the loop. We can optimize the program by replacing all the re-executions in 
a loop by a single calculation outside the loop. We assign the computation to 
a temporary variable, say t,  and then replace the expression in the loop by t. 
There is one more point we need to consider when performing "code motion" 
optimizations such as this. We should not execute any instruction that would 
not have executed without the optimization. For example, if it is possible to 
exit the loop without executing the loop-invariant instruction at all, then we 
should not move the instruction out of the loop. There are two reasons. 

1. If the instruction raises an exception, then executing it may throw an 
exception that would not have happened in the original program. 

2. When the loop exits early, the "optimized" program takes more time than 
the original program. 

To ensure that loop-invariant expressions in while-loops can be optimized, 
compilers typically represent the statement 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

while c ( 

s;  
3 

in the same way as the statement 

if c ( 
repeat 

s;  
until not c; 

3 

In this way, loop-invariant expressions can be placed just prior to the repeat- 
until construct. 

Unlike common-subexpression elimination, where a redundant expression 
computation is simply dropped, loop-invariant-expression elimination requires 
an expression from inside the loop to move outside the loop. Thus, this opti- 
mization is generally known as "loop-invariant code motion." Loop-invariant 
code motion may need to be repeated, because once a variable is determined to 
to have a loop-invariant value, expressions using that variable may also become 
loop-invariant . 

Partially Redundant Expressions 

An example of a partially redundant expression is shown in Fig. 9.30(c). The 
expression b + c in block B4 is redundant on the path B1 -+ B2 + B4, but not 
on the path B1 -+ B3 -+ B4. We can eliminate the redundancy on the former 
path by placing a computation of b + c in block B3. All the results of b + c are 
written into a temporary variable t ,  and the calculation in block B4 is replaced 
with t. Thus, like loop-invariant code motion, partial-redundancy elimination 
requires the placement of new expression computations. 

9.5.2 Can All Redundancy Be Eliminated? 

Is it possible to eliminate all redundant computations along every path? The 
answer is "no," unless we are allowed to change the flow graph by creating new 
blocks. 

Example 9.28 : In the example shown in Fig. 9.31 (a), the expression of b + c 
is computed redundantly in block B4 if the program follows the execution path 
B1 -+ B2 -+ B4. However, we cannot simply move the computation of b + c to 
block B3, because doing so would create an extra computation of b + c when 
the path B1 -+ B3 -+ B5 is taken. 

What we would like to do is to insert the computation of b + c only along 
the edge from block B3 to block Bq. We can do so by placing the instruction 
in a new black, say, B6, and making the flow of control from B3 go through B6 
before it reaches B4. The transformation is shown in Fig. 9.31(b). 



9.5. PARTIAL-RED UNDANCY ELIMINATION 

Figure 9.31: B3 + B4 is a critical edge 

We define a critical edge of a flow graph to be any edge leading from a 
node with more than one successor to a node with more than one predecessor. 
By introducing new blocks along critical edges, we can always find a block to 
accommodate the desired expression placement. For instance, the edge from 
B3 to B4 in Fig. 9.31(a) is critical, because B3 has two successors, and B4 has 
two predecessors. 

Adding blocks may not be sufficient to allow the elimination of all redundant 
computations. As shown in Example 9.29, we may need to duplicate code so 
as to isolate the path where redundancy is found. 

Example 9.29 : In the example shown in Figure 9.32(a), the expression of b + c 
is computed redundantly along the path B1 + B2 + B4 += B6. We would like 
to remove the redundant computation of b + c from block B6 in this path and 
compute the expression only along the path B1 + B3 + B4 += B6. However, 
there is no single program point or edge in the source program that corresponds 
uniquely to the latter path. To create such a program point, we can duplicate 
the pair of blocks B4 and B6, with one pair reached through B2 and the other 
reached through BS, as shown in Figure 9.32(b). The result of b + c is saved in 
variable t in block B2, and moved to variable d in Bi, the copy of B6 reached 
from B2. 

Since the number of paths is exponential in the number of conditional 
branches in the program, eliminating all redundant expressions can greatly 
increase the size of the optimized code. We therefore restrict our discussion 
of redundancy-elimination techniques to those that may introduce additional 
blocks but that do not duplicate portions of the control flow graph. 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

Figure 9.32: Code duplication to eliminate redundancies 

9.5.3 The Lazy-Code-Motion Problem 

It is desirable for programs optimized with a partial-redundancy-elimination 
algorithm to have the following properties: 

1. All redundant computations of expressions that can be eliminated without 
code duplication are eliminated. 

2. The optimized program does not perform any computation that is not in 
the original program execution. 

3. Expressions are computed at the latest possible time. 

The last property is important because the values of expressions found to be 
redundant are usually held in registers until they are used. Computing a value 
as late as possible minimizes its lifetime - the duration between the time the 
value is defined and the time it is last used, which in turn minimizes its usage of 
a register. We refer to the optimization of eliminating partial redundancy with 
the goal of delaying the computations as much as possible as lazy code motion. 

To build up our intuition of the problem, we first discuss how to reason about 
partial redundancy of a single expression along a single path. For convenience, 
we assume for the rest of the discussion that every statement is a basic block 
of its own. 



9.5. PARTIAL-RED UNDANCY ELIMINATION 

Full Redundancy 

An expression e in block B is redundant if along all paths reaching B ,  e has 
been evaluated and the operands of e have not been redefined subsequently. 
Let S be the set of blocks, each containing expression e, that renders e in B 
redundant. The set of edges leaving the blocks in S must necessarily form a 
cutset ,  which if removed, disconnects block B from the entry of the program. 
Moreover, no operands of e are redefined along the paths that lead from the 
blocks in S to B. 

Partial Redundancy 

If an expression e in block B is only partially redundant, the lazy-code-motion 
algorithm attempts to render e fully redundant in B by placing additional copies 
of the expressions in the flow graph. If the attempt is successful, the optimized 
flow graph will also have a set of basic blocks S, each containing expression e, 
and whose outgoing edges are a cutset between the entry and B. Like the fully 
redundant case, no operands of e are redefined along the paths that lead from 
the blocks in S to B. 

9.5.4 Anticipation of Expressions 

There is an additional constraint imposed on inserted expressions to ensure 
that no extra operations are executed. Copies of an expression must be placed 
only at program points where the expression is anticipated. We say that an 
expression b + c is anticipated at  point p if all paths leading from the point p 
eventually compute the value of the expression b + c from the values of b and c 
that are available at that point. 

Let us now examine what it takes to eliminate partial redundancy along an 
acyclic path B1 -+ B2 -+ . . . -+ B,. Suppose expression e is evaluated only in 
blocks B1 and B,, and that the operands of e are not redefined in blocks along 
the path. There are incoming edges that join the path and there are outgoing 
edges that exit the path. We see that e is n o t  anticipated at the entry of block 
Bi if and only if there exists an outgoing edge leaving block Bj , i 5 j < n, that 
leads to an execution path that does not use the value of e. Thus, anticipation 
limits how early an expression can be inserted. 

We can create a cutset that includes the edge BiWl -+ Bi and that renders 
e redundant in B, if e is either available or anticipated at the entry of Bi. If e 
is anticipated but not available at the entry of Bi, we must place a copy of the 
expression e along the incoming edge. 

We have a choice of where to place the copies of the expression, since there 
are usually several cutsets in the flow graph that satisfy all the requirements. 
In the above, computation is introduced along the incoming edges to the path 
of interest and so the expression is computed as close to the use as possible, 
without introducing redundancy. Note that these introduced operations may 
themselves be partially redundant with other instances of the same expression 



646 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

in the program. Such partial redundancy may be eliminated by moving these 
computations further up. 

In summary, anticipation of expressions limits how early an expression can 
be placed; you cannot place an expression so early that it is not anticipated 
where you place it. The earlier an expression is placed, the more redundancy 
can be removed, and among all solutions that eliminate the same redundancies, 
the one that computes the expressions the latest minimizes the lifetimes of the 
registers holding the values of the expressions involved. 

9.5.5 The Lazy-Code-Motion Algorithm 

This discussion thus motivates a four-step algorithm. The first step uses an- 
ticipation to determine where expressions can be placed; the second step finds 
the earliest cutset, among those that eliminate as many redundant operations 
as possible without duplicating code and without introducing any unwanted 
computations. This step places the computations at  program points where the 
values of their results are first anticipated. The third step then pushes the 
cutset down to the point where any further delay would alter the semantics of 
the program or introduce redundancy. The fourth and final step is a simple 
pass to clean up the code by removing assignments to temporary variables that 
are used only once. Each step is accomplished with a data-flow pass: the first 
and fourth are backward-flow problems, the second and third are forward-flow 
problems. 

Algorithm Overview 

1. Find all the expressions anticipated at each program point using a back- 
ward data-flow pass. 

The second step places the computation where the values of the expres- 
sions are first anticipated along some path. After we have placed copies 
of an expression where the expression is first anticipated, the expression 
would be available at program point p if it has been anticipated along all 
paths reaching p. Availability can be solved using a forward data-flow 
pass. If we wish to place the expressions at  the earliest possible posi- 
tions, we can simply find those program points where the expressions are 
anticipated but are not available. 

3. Executing an expression as soon as it is anticipated may produce a value 
long before it is used. An expression is postponable at  a program point if 
the expression has been anticipated and has yet to be used along any path 
reaching the program point. Postponable expressions are found using a 
forward data-flow pass. We place expressions at those program points 
where they can no longer be postponed. 

4. A simple, final backward data-flow pass is used to eliminate assignments 
to temporary variables that are used only once in the program. 



9.5. PARTIA L-RED UNDANCY ELIMINATION 

Preprocessing Steps 

We now present the full lazy-code-motion algorithm. To keep the algorithm 
simple, we assume that initially every statement is in a basic block of its own, 
and we only introduce new computations of expressions at the beginnings of 
blocks. To ensure that this simplification does not reduce the effectiveness of 
the technique, we insert a new block between the source and the destination of 
an edge if the destination has more than one predecessor. Doing so obviously 
also takes care of all critical edges in the program. 

We abstract the semantics of each block B with two sets: e- use^ is the set 
of expressions computed in B and e-killB is the set of expressions killed, that 
is, the set of expressions any of whose operands are defined in B. Example 9.30 
will be used throughout the discussion of the four data-flow analyses whose 
definitions are summarized in Fig. 9.34. 

Example 9.30 : In the flow graph in Fig. 9.33(a), the expression b + c appears 
three times. Because the block Bg is part of a loop, the expression may be 
computed many times. The computation in block Bg is not only loop invariafit; 
it is also a redundant expression, since its value already has been used in block 
B7. For this example, we need to compute b+c only twice, once in block B5 and 
once along the path after B2 and before B7. The lazy code motion algorithm 
will place the expression computations at the beginning of blocks B4 and B5. 

Anticipated Expressions 

Recall that an expression b + c is anticipated at a program point p if all paths 
leading from point p eventually compute the value of the expression b + c from 
the values of b and c that are available at that point. 

In Fig. 9.33(a), all the blocks anticipating b + c on entry are shown as lightly 
shaded boxes. The expression b + c is anticipated in blocks BQ, B4, B5, B6, B7, 
and Bg. It is not anticipated on entry to block B2, because the value of c is 
recomputed within the block, and therefore the value of b + c that would be 
computed at the beginning of B2 is not used along any path. The expression 
b+c is not anticipated on entry to B1, because it is unnecessary along the branch 
from B1 to Bz (although it would be used along the path B1 -+ B5 -+ B6). 
Similarly, the expression is not anticipated at the beginning of B8, because of 
the branch from B8 to Bll.  The anticipation of an expression may oscillate 
along a path, as illustrated by B7 -+ B8 -+ B9. 

The data-flow equations for the anticipated-expressions problem are shown 
in Fig 9.34(a). The analysis is a backward pass. An anticipated expression at 
the exit of a block B is an anticipated expression on entry only if it is not in the 
e- kill^ set. Also a block B generates as new uses the set of e-uses expressions. 
At the exit of the program, none of the expressions are anticipated. Since we 
are interested in finding expressions that are anticipated along every subsequent 



648 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

4 e = t I \ postponable 

Figure 9.33: Flow graph of Example 9.30 

path, the meet operator is set intersection. Consequently, the interior points 
must be initialized to the universal set U ,  as was discussed for the available- 
expressions problem in Section 9.2.6. 

Available Expressions 

At the end of this second step, copies of an expression will be placed at program 
points where the expression is first anticipated. If that is the case, an expression 
will be avazlable at program point p if it is anticipated along all paths reaching 
p. This problem is similar to available-expressions described in Section 9.2.6. 
The transfer function used here is slightly different though. An expression is 
available on exit from a block if it is 



9.5. PARTIA L-RED UNDANCY ELIMINATION 

Direction I Backwards ( Forwards 

(b) Available Expressions 

Sets of expressions Domain 

(a) Anticipated Expressions 

Sets of expressions 

Transfer 

function 

Boundary 

Meet (A) 

Equations 

f~ (4 = 
e-useg u ( x  - e - k d B )  

Initialization 

f~ (4 = 
(anticzpated[B].in U x) - e-kdlB 

I N [ E X I T ]  = 0 
n 
I N [ B ]  = f B  (ouTIB]) 

I N [ B ]  = U I OUT[B] = U 

Domain 

Direction 

Transfer 

I 

Meet (A) I n I u 

OUT[ENTRY] = 0 
n 
o u ~ [ B ]  = f B (IN [ B ] )  

function 

Boundary 

(c) Postponable Expressions 

Sets of expressions 

Forwards 

f~ (2)  = 

earliest[B] = anticipated[B] .in - available[B] .in 

latest[B] = (earliest[B] U postponable[B] .in) n 

(e-useg ( ~ S , ~ U ~ ~ [ B ]  (earliest [ S ]  U postponable[~] . i n ) ) )  

(d) Used Expressions 

Sets of expressions 

Backwards 

~ B ( x >  = 
(earliest[B] U x )  - e- use^ 

OUT[ENTRY] = 0 

Equations 

Initialization 

Figure 9.34: Four data-flow passes in partial-redundancy elimination 

(e-useB U x )  - la tes t[B])  

I N [ E X I T ]  = 0 

OUT[B] = fi3 ( I N  [B])  

INPI = Ap,pred(B)  OUT[PI 

OUT[B] = U 

I N [ B ]  = ~ B ( o u T [ B ] )  

OUTPI = /\S,succ(B) I N S ]  

I N [ B ]  = 0 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

Completing the Square 

Anticipated expressions (also called "very busy expressions" elsewhere) is a 
type of data-flow analysis we have not seen previously. While we have seen 
backwards-flowing frameworks such as live-variable analysis (Sect. 9.2.5), 
and we have seen frameworks where the meet is intersection such as avail- 
able expressions (Sect. 9.2.6), this is the first example of a useful analysis 
that has both properties. Almost all analyses we use can be placed in one 
of four groups, depending on whether they flow forwards or backwards, 
and depending on whether they use union or intersection for the meet. 
Notice also that the union analyses always involve asking about whether 
there exists a path along which something is true, while the intersection 
analyses ask whether something is true along all paths. 

1. Either 

(a) Available, or 

(b) In the set of anticipated expressions upon entry (i.e., it could be 
made available if we chose to compute it here), 

and 

2. Not killed in the block. 

The data-flow equations for available expressions are shown in Fig 9.34(b). 
To avoid confusing the meaning of IN, we refer to the result of an earlier analysis 
by appending "[B] .in" to the name of the earlier analysis. 

With the earliest placement strategy, the set of expressions placed at block 
B,  i.e., earliest[B], is defined as the set of anticipated expressions that are not 
yet available. That is, 

Example 9.31 : The expression b + c in the flow graph in Figure 9.35 is not 
anticipated at the entry of block B3 but is anticipated at the entry of block 
B4. It is, however, not necessary to compute the expression b + c in block B4, 
because the expression is already available due to block B2. 

Example 9.32 : Shown with dark shadows in Fig. 9.33(a) are the blocks for 
which expression b + c is not available; they are B1, B2, B3, and B5. The 
early-placement positions are represented by the lightly shaded boxes with dark 
shadows, and are thus blocks B3 and B5. Note, for instance, that b + c is 
considered available on entry to B4, because there is a path B1 + Bz -+ B3 --+ 
B4 along which b + c is anticipated at least once - at  B3 in this case - and 
since the beginning of B3, neither b nor c was recomputed. 



9.5. PARTIAL-RED UNDANCY ELIMINATION 

Figure 9.35: Flow graph for Example 9.31 illustrating the use of availability 

Postponable Expressions 

The third step postpones the computation of expressions as much as possible 
while preserving the original program semantics and minimizing redundancy. 
Example 9.33 illustrates the importance of this step. 

Example 9.33 : In the flow graph shown in Figure 9.36, the expression b + c 
is computed twice along the path B1 -+ B5 -+ B6 -+ B7. The expression b + c 
is anticipated even at the beginning of block B1. If we compute the expression 
as soon as it is anticipated, we would have computed the expression b + c in B1. 
The result would have to be saved from the beginning, through the execution 
of the loop comprising blocks Bq and B3, until it is used in block B7. Instead 
we can delay the computation of expression b + c until the beginning of B5 and 
until the flow of control is about to transition from B4 to B7. 

Formally, an expression x + y is postponable to a program point p if an early 
placement of x + y is encountered along every path from the entry node to p, 
and there is no subsequent use of x i- y after the last such placement. 

Example 9.34: Let us again consider expression b + c in Fig. 9.33. The two 
earliest points for b + c are B3 and B5; note that these are the two blocks that 
are both lightly and darkly shaded in Fig. 9.33(a), indicating that b + c is both 
anticipated and not available for these blocks, and only these blocks. We cannot 
postpone b + c from B5 to  B6, because b + c is used in B5. We can postpone it 
from B3 to B4, however. 

But we cannot postpone b + c from B4 to B7. The reason is that, although 
b + c is not used in B4, placing its computation at B7 instead would lead to a 



CHAPTER 9. MACHINEINDEPENDENT OPTIMIZATIONS 

Figure 9.36: Flow graph for Example 9.33 to illustrate the need for postponing 
an expression 

redundant computation of b + c along the path B5 -+ B6 -+ B7. AS we shall 
see, B4 is one of the latest places we can compute b + c. 

The data-flow equations for the postponable-expressions problem are shown 
in Fig 9.34(c). The analysis is a forward pass. We cannot "postpone" an 
expression to the entry of the program, so OUT[ENTRY] = 0. An expression 
is postponable to the exit of block B if it is not used in the block, and either 
it is postponable to the entry of B or it is in earl ies t[B] .  An expression is 
not postponable to the entry of a block unless all its predecessors include the 
expression in their postponable sets at their exits. Thus, the meet operator is 
set intersection, and the interior points must be initialized to the top element 
of the semilattice - the universal set. 

Roughly speaking, an expression is placed at the frontier where an expression 
transitions from being postponable to not being postponable. More specifically, 
an expression e may be placed at the beginning of a block B only if the expres- 
sion is in B's earliest or postponable set upon entry. In addition, B is in the 
postponement frontier of e if one of the following holds: 

1. e is not in postponable[B].out. In other words, e is in e- use^. 

2. e cannot be postponed to one of its successors. In other words, there 
exists a successor of B such that e is not in the earliest or postponable set 
upon entry to that successor. 

Expression e can be placed at the front of block B in either of the above 
scenarios because of the new blocks introduced by the preprocessing step in the 
algorithm. 



9.5. PARTIA L-RED UNDANCY ELIMINATION 653 

Example 9.35 : Fig. 9.33(b) shows the result of the analysis. The light-shaded 
boxes represent the blocks whose earliest set includes b + c. The dark shadows 
indicate those that include b + c in their postponable set. The latest placements 
of the expressions are thus the entries of blocks B4 and B5, since 

1. b + c is in the postponable set of B4 but not B7, and 

2. B5's earliest set includes b + c and it uses b + c. 

The expression is stored into the temporary variable t in blocks B4 and B5, and 
t is used in place of b + c everywhere else, as shown in the figure. 

Used Expressions 

Finally, a backward pass is used to determine if the temporary variables in- 
troduced are used beyond the block they are in. We say that an expression is 
used at point p if there exists a path leading from p that uses the expression 
before the value is reevaluated. This analysis is essentially liveness analysis (for 
expressions, rather than for variables). 

The data-flow equations for the used expressions problem are shown in 
Fig 9.34(d). The analysis is a backward pass. A used expression at the exit 
of a block B is a used expression on entry only if it is not in the latest set. 
A block generates, as new uses, the set of expressions in e- use^. At the exit 
of the program, none of the expressions are used. Since we are interested in 
finding expressions that are used by any subsequent path, the meet operator is 
set union. Thus, the interior points must be initialized with the top element of 
the semilattice - the empty set. 

Putting it All Together 

All the steps of the algorithm are summarized in Algorithm 9.36. 

Algorithm 9.36 : Lazy code motion. 

INPUT: A flow graph for which e- use^ and e-killB have been computed for 
each block B. 

OUTPUT: A modified flow graph satisfying the four lazy code motion conditions 
in Section 9.5.3. 

METHOD: 

1. Insert an empty block along all edges entering a block with more than 
one predecessor. 

2. Find anticipated[B] .in for all blocks B ,  as defined in Fig. 9.34(a). 

3. Find available[B] .in for all blocks B as defined in Fig. 9.34(b). 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

4. Compute the earliest placements for all blocks B: 

earliest[B] = anticipated[B].in - available[B].in 

5. Find postponable[B] .in for all blocks B as defined in Fig. 9.34(c). 

6. Compute the latest placements for all blocks B: 

Note that 1 denotes complementation with respect to the set of all ex- 
pressions computed by the program. 

7. Find used[B].out for all blocks B ,  as defined in Fig. 9.34(d). 

8. For each expression, say x+ y, computed by the program, do the following: 

(a) Create a new temporary, say t, for x + y. 

(b) For all blocks B such that x + y is in latest [B] n used[B] .out, add 
t = x+y at the beginning of B. 

(c) For all blocks B such that x + y is in 

replace every original x + y by t. 

Summary 

Partial-redundancy elimination finds many different forms of redundant opera- 
tions in one unified algorithm. This algorithm illustrates how multiple data-flow 
problems can be used to find optimal expression placement. 

1. The placement constraints are provided by the anticipated-expressions 
analysis, which is a backwards data-flow analysis with a set-intersection 
meet operator, as it determines if expressions are used subsequent to each 
program point on all paths. 

2. The earliest placement of an expression is given by program points where 
the expression is anticipated but is not available. Available expressions 
are found with a forwards data-flow analysis with a set-intersection meet 
operator that computes if an expression has been anticipated before each 
program point along all paths. 



9.6. LOOPSINFLOW GRAPHS 655 

3. The latest placement of an expression is given by program points where 
an expression can no longer be postponed. Expressions are postponable 
a t  a program point if for all paths reaching the program point, no use of 
the expression has been encountered. Postponable expressions are found 
with a forwards data-flow analysis with a set-intersection meet operator. 

4. Temporary assignments are eliminated unless they are used by some path 
subsequently. We find used expressions with a backwards data-flow anal- 
ysis, this time with a set-union meet operator. 

9.5.6 Exercises for Section 9.5 

Exercise 9.5.1 : For the flow graph in Fig. 9.37: 

a) Compute anticipated for the beginning and end of each block. 

b) Compute available for the beginning and end of each block. 

c) Compute earliest for each block. 

d) Compute postponable for the beginning and end of each block. 

e) Compute used for the beginning and end of each block. 

f) Compute latest for each block. 

g) Introduce temporary variable t ;  show where it is computed and where it 
is used. 

Exercise 9.5.2 : Repeat Exercise 9.5.1 for the flow graph of Fig. 9.10 (see the 
exercises to Section 9.1). You may limit your analysis to the expressions a + b, 
c - a ,  and b * d. 

!! Exercise 9.5.3 : The concepts discussed in this section can also be applied to  
eliminate partially dead code. A definition of a variable is partially dead if the 
variable is live on some paths and not others. We can optimize the program 
execution by only performing the definition along paths where the variable 
is live. Unlike partial-redundancy elimination, where expressions are moved 
before the original, the new definitions are placed after the original. Develop 
an algorithm to  move partially dead code, so expressions are evaluated only 
where they will eventually be used. 

9.6 Loops in Flow Graphs 

In our discussion so far, loops have not been handled differently; they have been 
treated just like any other kind of control flow. However, loops are important 
because programs spend most of their time executing them, and optimizations 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

ENTRY Y 

+ 
EXIT 

Figure 9.37: Flow graph for Exercise 9.5.1 

that improve the performance of loops can have a significant impact. Thus, it 
is essential that we identify loops and treat them specially. 

Loops also affect the running time of program analyses. If a program does 
not contain any loops, we can obtain the answers to data-flow problems by 
making just one pass through the program. For example, a forward data-flow 
problem can be solved by visiting all the nodes once, in topological order. 

In this section, we introduce the following concepts: dominators, dept h-first 
ordering, back edges, graph depth, and reducibility. Each of these is needed 
for our subsequent discussions on finding loops and the speed of convergence of 
iterative data-flow analysis. 

9.6.1 Dominators 

We say node d of a flow graph dominates node n,  written d dona n,  if every path 
from the entry node of the flow graph to n goes through d. Note that under 
this definition, every node dominates itself. 

Example 9.37 : Consider the flow graph of Fig. 9.38, with entry node 1. The 
entry node dominates every node (this statement is true for every flow graph). 
Node 2 dominates only itself, since control can reach any other node along a path 
that begins with 1 -+ 3. Node 3 dominates all but 1 and 2. Node 4 dominates 



9.6. LOOPS IN FLOW GRAPHS 657 

all but 1, 2 and 3, since all paths from 1 must begin with 1 --+ 2 -+ 3 --+ 4 or 
1 --+ 3 --+ 4. Nodes 5 and 6 dominate only themselves, since flow of control can 
skip around either by going through the other. Finally, 7 dominates 7, 8, 9, 
and 10; 8 dominates 8, 9, and 10; 9 and 10 dominate only themselves. 

Figure 9.38: A flow graph 

A useful way of presenting dominator information is in a tree, called the 
dominator tree, in which the entry node is the root, and each node d dominates 
only its descendants in the tree. For example, Fig. 9.39 shows the dominator 
tree for the flow graph of Fig. 9.38. 

Figure 9.39: Dominator tree for flow graph of Fig. 9.38 

The existence of dominator trees follows from a property of dominators: 
each node n has a unique immediate dominator m that is the last dominator 
of n on any path from the entry node to n. In terms of the dom relation, the 



658 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

immediate dominator m has that property that if d # n and d dom n ,  then 
d dom m. 

We shall give a simple algorithm for computing the dominators of every 
node n in a flow graph, based on the principle that if pl , pz, . . . , p k  are all the 
predecessors of n ,  and d f n,  then d dom n if and only if d dom pi for each i. 
This problem can be formulated as a forward data-flow analysis. The data-flow 
values are sets of basic blocks. A node's set of dominators, other than itself, is 
the intersection of the dominators of all its predecessors; thus the meet operator 
is set intersection. The transfer function for block B simply adds B itself to  the 
set of input nodes. The boundary condition is that the ENTRY node dominates 
itself. Finally, the initialization of the interior nodes is the universal set, that 
is, the set of all nodes. 

Algorit hm 9.38 : Finding dominators. 

INPUT: A flow graph G with set of nodes N ,  set of edges E and entry node 
ENTRY. 

OUTPUT: D(n),  the set of nodes that dominate node n ,  for all nodes n in N .  

METHOD: Find the solution to  the data-flow problem whose parameters are 
shown in Fig. 9.40. The basic blocks are the nodes. D(n)  =  OUT[^] for all n in 
N .  

Finding dominators using this data-flow algorithm is efficient. Nodes in the 
graph need to be visited only a few times, as we shall see in Section 9.6.7. 

Domain 

Boundary I OUT[ENTRY] = {ENTRY} 

Dominators 

The power set of N 

Direction 

Transfer function 

Initialization OUT[B] = N 

Forwards 

fB(x) = x U {B) 

Figure 9.40: A data-flow algorithfn for computing dominators 

Example 9.39 : Let us return to  the flow graph of Fig. 9.38, and suppose 
the for-loop of lines (4) through (6) in Fig. 9.23 visits the nodes in numerical 
order. Let D(n)  be the set of nodes in  OUT[^]. Since 1 is the entry node, 
D(l) was assigned {I) at line (1). Node 2 has only 1 for a predecessor, so 



9.6. LOOPS IN FLOW GRAPHS 659 

Properties of the dorn Relation 

A key observation about dominators is that if we take any acyclic path 
from the entry to  node n,  then all the dominators of n appear along this 
path, and moreover, they must appear in the same order along any such 
path. To see why, suppose there were one acyclic path PI to  n along which 
dominators a and b appeared in that order and another path P2 to  n ,  along 
which b preceded a. Then we could follow PI to  a and P2 to  n ,  thereby 
avoiding b altogether. Thus, b would not really dominate a. 

This reasoning allows us to  prove that dorn is transitive: if a dorn b 
and b dorn c, then a dorn c. Also, dorn is antisymmetric: it is never possible 
that both a dorn b and b dorn a hold, if a # b. Moreover, if a and b are 
two dominators of n ,  then either a dorn b or b dorn a must hold. Finally, it 
follows that each node n except the entry must have a unique immediate 
dominator - the dominator that appears closest to  n along any acyclic 
path from the entry to  n. 

D(2) = (2) U D(1). Thus, D(2) is set to (1, 2). Then node 3, with predecessors 
1, 2, 4, and 8, is considered. Since all the interior nodes are initialized with the 
universal set N, 

D(3) = 13) U ({1) n {I, 2) n {I, 2 , .  . . ,101 n {I, 2, .  . . , lo}) = {1,3} 

The remaining calculations are shown in Fig. 9.41. Since these values do not 
change in the second iteration through the outer loop of lines (3) through (6) 
in Fig. 9.23(a), they are the final answers to  the dominator problem. 

Figure 9.41: Completion of the dominator calculation for Example 9.39 



660 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

9.6.2 Depth-First Ordering 

As introduced in Section 2.3.4, a depth-first search of a graph visits all the 
nodes in the graph once, by starting a t  the entry node and visiting the nodes 
as far away from the entry node as quickly as possible. The route of the search 
in a depth-first search forms a depth-first spanning tree (DFST). Recall from 
Section 2.3.4 that a preorder traversal visits a node before visiting any of its 
children, which it then visits recursively in left-to-right order. Also, a postorder 
traversal visits a node's children, recursively in left-to-right order, before visiting 
the node itself. 

There is one more variant ordering that is important for flow-graph analysis: 
a depth-first ordering is the reverse of a postorder traversal. That is, in a depth- 
first ordering, we visit a node, then traverse its rightmost child, the child to  its 
left, and so on. However, before we build the tree for the flow graph, we have 
choices as to which successor of a node becomes the rightmost child in the tree, 
which node becomes the next child, and so on. Before we give the algorithm 
for depth-first ordering, let us consider an example. 

Example 9.40 : One possible depth-first presentation of the flow graph in 
Fig. 9.38 is illustrated in Fig. 9.42. Solid edges form the tree; dashed edges are 
the other edges of the flow graph. A depth-first traversal of the tree is given 
by: 1 --+ 3 --+ 4 -+ 6 --+ 7 -  8 --+ 10, then back to 8, then to  9. We go back to 8 
once more, retreating to  7, 6, and 4, and then forward to  5. We retreat from 5 
back to 4, then back to 3 and 1. From I we go to 2, then retreat from 2, back 
to 1, and we have traversed the entire tree. 

The preorder sequence for the traversal is thus 

The postorder sequence for the traversal of the tree in Fig. 9.42 is 

The depth-first ordering, which is the reverse of the postorder sequence, is 

We now give an algorithm that finds a depth-first spanning tree and a depth- 
first ordering of a graph. It is this algorithm that finds the DFST in Fig. 9.42 
from Fig. 9.38. 

Algorithm 9.41 : Depth-first spanning tree and depth-first ordering. 

INPUT: A flow graph G. 

OUTPUT: A DFST T of G and an ordering of the nodes of G. 



9.6. LOOPS IN FLOW GRAPHS 

Figure 9.42: A depth-first presentation of the flow graph in Fig. 9.38 

METHOD: We use the recursive procedure search(n) of Fig. 9.43. The algo- 
rithm initializes all nodes of G to "~nv i s i t ed ,~~  then calls search(no), where no 
is the entry. When it calls search(n), it first marks n "visited" to  avoid adding 
n to  the tree twice. It uses c to count from the number of nodes of G down to 
1, assigning depth-first numbers dfn[n] to  nodes n as we go. The set of edges 
T forms the depth-first spanning tree for G. 

Example 9.42: For the flow graph in Fig. 9.42, Algorithm 9.41 sets c to  10 
and begins the search by calling search(1). The rest of the execution sequence 
is shownin Fig. 9.44. 

9.6.3 Edges in a Depth-First Spanning Tree 

When we construct a DFST for a flow graph, the edges of the flow graph fall 
into three categories. 

1. There are edges, called advancing edges, that go from a node m to a proper 
descendant of m in the tree. All edges in the DFST itself are advancing 
edges. There are no other advancing edges in Fig. 9.42, but, for example, 
if 4 -+ 8 were an edge, it would be in this category. 

2. There are edges that go from a node m to an ancestor of m in the tree 
(possibly to  m itself). These edges we shall term retreating edges. For 
example, 4 + 3, 7 + 4, 10 + 7 and 9 + 1 are the retreating edges in 
Fig. 9.42. 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

void search(n) { 
mark n "visited" ; 
for (each successor s of n) 

if (s is "unvisited") { 
add edge n -+ s to T ;  
search(s) ; 

main() { 
T  = 0;  /* set of edges */ 
for (each node n of G) 

mark n "unvisited" ; 
c = number of nodes of G; 
search(no) ; 

} 

Figure 9.43: Depth-first search algorithm 

3. There are edges m -+ n such that neither m nor n is an ancestor of the 
other in the DFST. Edges 2 -+ 3 and 5 -+ 7 are the only such examples 
in Fig. 9.42. We call these edges cross edges. An important property of 
cross edges is that if we draw the DFST so children of a node are drawn 
from left to right in the order in which they were added to the tree, then 
all cross edges travel from right to left. 

It should be noted that m -+ n is a retreating edge if and only if dfn[m] 2 
dfn[n]. To see why, note that if m is a descendant of n in the DFST, then 
search(m) terminates before search(n), so dfn[m] 2 dfn[n]. Conversely, if 
dfn[m] 2 dfn[n], then search(m) terminates before search(n), or m = n. But 
search(n) must have begun before search(m) if there is an edge m -+ n, or else 
the fact that n is a successor of m would have made n a descendant of m in the 
DFST. Thus the time search(m) is active is a subinterval of the time search(n) 
is active, from which it follows that n is an ancestor of m in the DFST. 

9.6.4 Back Edges and Reducibility 

A back edge is an edge a -+ b whose head b dominates its tail a. For any 
flow graph, every back edge is retreating, but not every retreating edge is a 
back edge. A flow graph is said to be reducible if all its retreating edges in 
any depth-first spanning tree are also back edges. In other words, if a graph 
is reducible, then all the DFST's have the same set of retreating edges, and 



9.6. LOOPS IN FLOW GRAPHS 

Call search(1) 

Call search(3) 
Call search(4) 

Call search(6) 
Call search(7) 

Call search(8) 

Call search(l0) 

Return to  search(8) 
Call search(9) 

Return to  search(8) 

Return to search(7) 

Return to  search(6) 

Return to  search(4) 

Call search(5) 

Return to  search(4) 

Return to  search(3) 
Return to  search(1) 
Call search(2) 
Return to  search(1) 

Node 1 has two successors. Suppose s = 3 is consid- 
ered first; add edge 1 -+ 3 to  T .  
Add edge 3 -+ 4 to T. 
Node 4 has two successors, 4 and 6. Suppose s = 6 is 
considered first; add edge 4 -+ 6 to  T .  
Add 6 -+ 7 to T .  
Node 7 has two successors, 4 and 8. But 4 is already 
marked "visited" by search(4), so do nothing when 
s = 4. For s = 8, add edge 7 -+ 8 to  T .  
Node 8 has two successors, 9 and 10. Suppose s = 10 
is considered first; add edge 8 -+ 10. 
10 has a successor, 7 ,  but 7 is already marked 
"visited." Thus, search(l0) completes by setting 
dfn[lO] = 10 and c = 9. 
Set s = 9 and add edge 8 -+ 9 to T .  
The only successor of 9, node 1, is already "visited," 
so set dfn[9] = 9 and c = 8. 
The last successor of 8, node 3,  is "visited," so do 
nothing for s = 3. At this point, all successors of 8 
have been considered, so set dfn[8] = 8 and c = 7. 
All of 7's successors have been considered, so set 
dfn[7] = 7 and c = 6. 
Similarly, 6's successors have been considered, so set 
dfn[6] = 6 and c = 5. 
Successor 3 of 4 has been "visited," but 5 has not, so 
add 4 -+ 5 to the tree. 
Successor 7 of 5 has been "visited," thus set dfn[5] = 5 
and c = 4. 
All successors of 4 have been considered, set dfn[4] = 4 
and c = 3. 
Set dfn[3] = 3 and c = 2. 
2 has not been visited yet, so add 1 -+ 2 to  T .  
Set dfn[2] = 2, c = 1. 
Set dfn[l] = 1 and c = 0.  

Figure 9.44: Execution of Algorithm 9.41 on the flow graph in Fig. 9.43 



664 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

Why Are Back Edges Retreating Edges? 

Suppose a -+ b is a back edge; i.e., its head dominates its tail. The 
sequence of calls of the function search in Fig. 9.43 that lead to  node a 
must be a path in the flow graph. This path must, of course, include any 
dominator of a.  It follows that a call to  search(b) must be open when 
search(a) is called. Therefore b is already in the tree when a is added to 
the tree, and a is added as a descendant of b. Therefore, a -+ b must be a 
retreating edge. 

those are exactly the back edges in the graph. If the graph is nonreducible 
(not reducible), however, all the back edges are retreating edges in any DFST, 
but each DFST may have additional retreating edges that are not back edges. 
These retreating edges may be different from one DFST to another. Thus, if 
we remove all the back edges of a flow graph and the remaining graph is cyclic, 
then the graph is nonreducible, and conversely. 

Flow graphs that occur in practice are almost always reducible. Exclusive 
use of structured flow-of-control statements such as if-t hen-else, while-do, con- 
tinue, and break statements produces programs whose flow graphs are always 
reducible. Even programs written using goto statements often turn out to  be 
reducible, as the programmer logically thinks in terms of loops and branches. 

Example 9.43 : The flow graph of Fig. 9.38 is reducible. The retreating edges 
in the graph are all back edges; that is, their heads dominate their respective 
tails. 

Example 9.44 : Consider the flow graph of Fig. 9.45, whose initial node is 1. 
Node 1 dominates nodes 2 and 3, but 2 does not dominate 3, nor vice-versa. 
Thus, this flow graph has no back edges, since no head of any edge dominates its 
tail. There are two possible depth-first spanning trees, depending on whether 
we choose to  call search(2) or search(3) first, from search(1). In the first case, 
edge 3 -+ 2 is a retreating edge but not a back edge; in the second case, 2 -+ 3 
is the retreating-but-not-back edge. Intuitively, the reason this flow graph is 
not reducible is that the cycle 2-3 can be entered at two different places, nodes 
2 a n d 3 .  

Figure 9.45: The canonical nonreducible flow graph 



9.6. LOOPS IN FLOW GRAPHS 

9.6.5 Depth of a Flow Graph 

Given a depth-first spanning tree for the graph, the depth is the largest number 
of retreating edges on any cycle-free path. We can prove the depth is never 
greater than what one would intuitively call the depth of loop nesting in the 
flow graph. If a flow graph is reducible, we may replace "retreating" by "back" 
in the definition of "depth," since the retreating edges in any DFST are exactly 
the back edges. The notion of depth then becomes independent of the DFST 
actually chosen, and we may truly speak of the "depth of a flow graph," rather 
than the depth of a flow graph in connection with one of its depth-first spanning 
trees. 

Example 9.45 : In Fig. 9.42, the depth is 3, since there is a path 

with three retreating edges, but no cycle-free path with four or more retreating 
edges. It is a coincidence that the "deepest" path here has only retreating 
edges; in general we may have a mixture of retreating, advancing, and cross 
edges in a deepest path. 

9.6.6 Natural Loops 

Loops can be specified in a source program in many different ways: they can be 
written as for-loops, while-loops, or repeat-loops; they can even be defined using 
labels and goto statements. From a program-analysis point of view, it does not 
matter how the loops appear in the source code. What matters is whether they 
have the properties that enable easy optimization. In particular, we care about 
whether a loop has a single-entry node; if it does, compiler analyses can assume 
certain initial conditions to hold at  the beginning of each iteration through the 
loop. This opportunity motivates the need for the definition of a "natural loop." 

A natural  loop is defined by two essential properties. 

1. It must have a single-entry node, called the header. This entry node 
dominates all nodes in the loop, or it would not be the sole entry to the 
loop. 

2. There must be a back edge that enters the loop header. Otherwise, it is 
not possible for the flow of control to return to the header directly from 
the "loop" ; i.e., there really is no loop. 

Given a back edge n + d, we define the natural  loop of t he  edge to be d 
plus the set of nodes that can reach n without going through d. Node d is the 
header of the loop. 

Algorithm 9.46 : Constructing the natural loop of a back edge. 

INPUT: A flow graph G and a back edge n + d. 



666 CHAPTER 9. MA CHINE-INDEPENDENT OPTIMIZATIONS 

OUTPUT: The set loop consisting of all nodes in the natural loop of n --+ d. 

METHOD: Let loop be {n, d}. Mark d as "visited," so that the search does not 
reach beyond d. Perform a depth-first search on the reverse control-flow graph 
starting with node n. Insert all the nodes visited in this search into loop. This 
procedure finds all the nodes that reach n without going through d. C1 

Example 9.47 : In Fig. 9.38, there are five back edges, those whose heads 
dominate their tails: 10 -+ 7, 7 --+ 4, 4 --+ 3, 8 --+ 3 and 9 --+ 1. Note that 
these are exactly the edges that one would think of as forming loops in the flow 
graph. 

Back edge 10 -+ 7 has natural loop {7,8,10}, since 8 and 10 are the only 
nodes that can reach 10 without going through 7. Back edge 7 -+ 4 has a 
natural loop consisting of {4,5,6,7,8,10} and therefore contains the loop of 
10 -+ 7. We thus assume the latter is an inner loop contained inside the former. 

The natural loops of back edges 4 -+ 3 and 8 -+ 3 have the same header, 
node 3, and they also happen to have the same set of nodes: {3,4,5,6,7,8,10}. 
We shall therefore combine these two loops as one. This loop contains the two 
smaller loops discovered earlier. 

Finally, the edge 9 --+ 1 has as its natural loop the entire flow graph, and 
therefore is the outermost loop. In this example, the four loops are nested 
within one another. It is typical, however, to have two loops, neither of which 
is a subset of the other. 

In reducible flow graphs, since all retreating edges are back edges, we can 
associate a natural loop with each retreating edge. That statement does not 
hold for nonreducible graphs. For instance, the nonreducible flow graph in 
Fig. 9.45 has a cycle consisting of nodes 2 and 3. Neither of the edges in the 
cycle is a back edge, so this cycle does not fit the definition of a natural loop. 
We do not identify the cycle as a natural loop, and it is not optimized as such. 
This situation is acceptable, because our loop analyses can be made simpler by 
assuming that all loops have single-entry nodes, and nonreducible programs are 
rare in practice anyway. 

By considering only natural loops as "loops," we have the useful property 
that unless two loops have the same header, they are either disjoint or one is 
nested within the other. Thus, we have a natural notion of innermost loops: 
loops that contain no other loops. 

When two natural loops have the same header, as in Fig. 9.46, it is hard to 
tell which is the inner loop. Thus, we shall assume that when two natural loops 
have the same header, and neither is properly contained within the other, they 
are combined and treated as a single loop. 

Example 9.48: The natural loops of the back edges 3 --+ 1 and 4 -+ 1 in 
Fig. 9.46 are {I, 2,3} and {I, 2,4}, respectively. We shall combine them into a 
single loop, {1,2,3,4). 

However, were there another back edge 2 -+ 1 in Fig. 9.46, its natural 
loop would be {I, 21, a third loop with header 1. This set of nodes is properly 



9.6. LOOPS IN FLOW GRAPHS 

Figure 9.46: Two loops with the same header 

contained within {I, 2,3,4}, so it would not be combined with the other natural 
loops, but rather treated as an inner loop, nested within. 

9.6.7 Speed of Convergence of Iterative Data-Flow 
Algorit hrns 

We are now ready to discuss the speed of convergence of iterative algorithms. 
As discussed in Section 9.3.3, the maximum number of iterations the algorithm 
may take is the product of the height of the lattice and the number of nodes 
in the flow graph. For many data-flow analyses, it is possible to order the 
evaluation such that the algorithm converges in a much smaller number of 
iterations. The property of interest is whether all events of significance at  a 
node will be propagated to that node along some acyclic path. Among the 
data-flow analyses discussed so far, reaching definitions, available expressions 
and live variables have this property, but constant propagation does not. More 
specifically: 

If a definition d is in IN[B], then there is some acyclic path from the block 
containing d to B such that d is in the IN'S and OUT'S all along that path. 

If an expression x + y is not available at the entrance to block B ,  then 
there is some acyclic path that demonstrates that either the path is from 
the entry node and includes no statement that kills or generates x + y, or 
the path is from a block that kills x + y and along the path there is no 
subsequent generation of x + y. 

If x is live on exit from block B, then there is an acyclic path from B to 
a use of x, along which there are no definitions of x. 

We should check that in each of these cases, paths with cycles add nothing. For 
example, if a use of x is reached from the end of block B along a path with a 
cycle, we can eliminate that cycle to find a shorter path along which the use of 
x is still reached from B. 

In contrast, constant propagation does not have this property. Consider a 
simple program that has one loop containing a basic block with statements 



668 CHAPTER 9. MA CHINE-INDEPENDENT OPTIMIZATIONS 

The first time the basic block is visited, c is found to have constant value 1, but 
both a and b are undefined. Visiting the basic block the second time, we find 
that b and c have constant values 1. It takes three visits of the basic block for 
the constant value 1 assigned to c to  reach a. 

If all useful information propagates along acyclic paths, we have an opportu- 
nity to  tailor the order in which we visit nodes in iterative data-flow algorithms, 
so that after relatively few passes through the nodes we can be sure information 
has passed along all the acyclic paths. 

Recall from Section 9.6.3 that if a -+ b is an edge, then the depth-first 
number of b is less than that of a only when the edge is a retreating edge. For 
forward data-flow problems, it is desirable to  visit the nodes according to the 
depth-first ordering. Specifically, we modify the algorithm in Fig. 9.23(a) by 
replacing line (4), which visits the basic blocks in the flow graph with 

for (each block B other than ENTRY, in depth-first order) { 

Example 9.49 : Suppose we have a path along which a definition d propagates, 
such as 

where integers represent the depth-first numbers of the blocks along the path. 
Then the first time through the loop of lines (4) through (6) in the algorithm in 
Fig. 9.23(a), d will propagate from  OUT[^] to  IN[^] to   OUT[^], and so on, up to  
 OUT[^^]. It will not reach 1~ [16 ]  on that round, because as 16 precedes 35, we 
had already computed 1 ~ [ 1 6 ]  by the time d was put in  OUT[^^]. However, the 
next time we run through the loop of lines (4) through (6), when we compute 
1~[16] ,  d will be included because it is in  OUT[^^]. Definition d will also propa- 
gate to   OUT[^^], 1~[23] ,  and so on, up to   OUT[^^], where it must wait because 
 IN[^] was already computed on this round. On the third pass, d travels to   IN[^], 
 OUT[^], 1~[10] ,   OUT[^^], and 1~[17] ,  so after three passes we establish that d 
reaches block 17. 

It should not be hard to  extract the general principle from this example. If 
we use depth-first order in Fig. 9.23(a), then the number of passes needed to 
propagate any reaching definition along any acyclic path is no more than one 
greater than the number of edges along that path that go from a higher num- 
bered block to a lower numbered block. Those edges are exactly the retreating 
edges, so the number of passes needed is one plus the depth. Of course Algo- 
rithm 9.11 does not detect the fact that all definitions have reached wherever 
they can reach, until one more pass has yielded no changes. Therefore, the 
upper bound on the number of passes taken by that algorithm with depth-first 



9.6. LOOPSINFLOW GRAPHS 669 

A Reason for Nonreducible Flow Graphs 

There is one place where we cannot generally expect a flow graph to be 
reducible. If we reverse the edges of a program flow graph, as we did 
in Algorithm 9.46 to find natural loops, then we may not get a reducible 
flow graph. The intuitive reason is that, while typical programs have loops 
with single entries, those loops sometimes have several exits, which become 
entries when we reverse the edges. 

block ordering is actually two plus the depth. A study1' has shown that typical 
flow graphs have an average depth around 2.75. Thus, the algorithm converges 
very quickly. 

In the case of backward-flow problems, like live variables, we visit the nodes 
in the reverse of the depth-first order. Thus, we may propagate a use of a 
variable in block 17 backwards along the path 

in one pass to  IN[^], where we must wait for the next pass in order to reach 
 OUT[^^]. On the second pass it reaches 1~[16],  and on the third pass it goes 
from  OUT[^^] to  OUT[^]. 

In general, one-plus-the-depth passes suffice to carry the use of a variable 
backward, along any acyclic path. However, we must choose the reverse of 
depth-first order to visit the nodes in a pass, because then, uses propagate 
along any decreasing sequence in a single pass. 

The bound described so far is an upper bound on all problems where cyclic 
paths add no information to the analysis. In special problems such as domi- 
nators, the algorithm converges even faster. In the case where the input flow 
graph is reducible, the correct set of dominators for each node is obtained in 
the first iteration of a data-flow algorithm that visits the nodes in depth-first 
ordering. If we do not know that the input is reducible ahead of time, it takes 
an extra iteration to determine that convergence has occurred. 

9.6.8 Exercises for Section 9.6 

Exercise 9.6.1: For the flow graph of Fig. 9.10 (see the exercises for Sec- 
tion 9.1): 

i. Compute the dominator relation. 

ii. Find the immediate dominator of each node. 

'OD. E. Knuth, "An empirical study of FORTRAN programs," Software - Practice and 
Experience 1:2 (1971), pp. 105-133. 



670 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

iii. Construct the dominator tree. 

iu. Find one depth-first ordering for the flow graph. 

u. Indicate the advancing, retreating, cross, and tree edges for your answer 
to iu. 

ui. Is the flow graph reducible? 

uii. Compute the depth of the flow graph. 

uiii. Find the natural loops of the flow graph. 

Exercise 9.6.2 : Repeat Exercise 9.6.1 on the following flow graphs: 

a) Fig. 9.3. 

b) Fig. 8.9. 

c) Your flow graph from Exercise 8.4.1. 

d) Your flow graph from Exercise 8.4.2. 

! Exercise 9.6.3 : Prove the following about the dom relation: 

a) If a d o m  b and b dorn c, then a dorn c (transitivity). 

b) It is never possible that both a d o m  b and b d o m  a hold, if a # b (anti- 
symmetry) . 

c) If a and b are two dominators of n,  then either a dorn b or b d o m  a must 
hold. 

d) Each node n except the entry has a unique immediate dominator - the 
dominator that appears closest to n along any acyclic path from the entry 
to n. 

! Exercise 9.6.4 : Figure 9.42 is one depth-first presentation of the flow graph of 
Fig. 9.38. How many other depth-first presentations of this flow graph are there? 
Remember, order of children matters in distinguishing depth-first presentations. 

!! Exercise 9.6.5 : Prove that a flow graph is reducible if and only if when we 
remove all the back edges (those whose heads dominate their tails), the resulting 
flow graph is acyclic. 

! Exercise 9.6.6: A complete flow graph on n nodes has arcs i -+ j between 
any two nodes i and j (in both directions). For what values of n is this graph 
reducible? 

! Exercise 9.6.7 : A complete, acyclic flow graph on n nodes 1,2, . . . , n has arcs 
i -+ j for all nodes i and j such that i < j. Node 1 is the entry. 



9.6. LOOPS IN FLOW GRAPHS 

a) For what values of n is this graph reducible? 

b) Does your answer to (a) change if you add self-loops i --+ i for all nodes 
i? 

! Exercise 9.6.8 : The natural loop of a back edge n + h was defined to be h 
plus the set of nodes that can reach n without going through h. Show that h 
dominates all the nodes in the natural loop of n +- h. 

!! Exercise 9.6.9 : We claimed that the flow graph of Fig. 9.45 is nonreducible. 
If the arcs were replaced by paths of disjoint nodes (except for the endpoints, 
of course), then the flow graph would still be nonreducible. In fact, node 1 
need not be the entry; it can be any node reachable from the entry along a 
path whose intermediate nodes are not part of any of the four explicitly shown 
paths. Prove the converse: that every nonreducible flow graph has a subgraph 
like Fig. 9.45, but with arcs possibly replaced by node-disjoint paths and node 1 
being any node reachable from the entry by a path that is node-disjoint from 
the four other paths. 

! ! Exercise 9.6.10 : Show that every depth-first presentation for every nonre- 
ducible flow graph has a retreating edge that is not a back edge. 

!! Exercise 9.6.11 : Show that if the following condition 

f (a) /I g(a) /I a 5 f (s(a)) 

holds for all functions f and g, and value a ,  then the general iterative algorithm, 
Algorithm 9.25, with iteration following a depth-first ordering, converges within 
2-plus-the-depth passes. 

! Exercise 9.6.12 : Find a nonreducible flow graph with two different DFST's 
that have different depths. 

! Exercise 9.6.13 : Prove the following: 

a) If a definition d is in IN[B], then there is some acyclic path from the block 
containing d to B such that d is in the IN'S and OUT'S all along that path. 

b) If an expression x + y is not available at the entrance to block B ,  then 
there is some acyclic path that demonstrates that fact; either the path 
is from the entry node and includes no statement that kills or generates 
x + y, or the path is from a block that kills x + y and along the path there 
is no subsequent generation of x + y. 

c) If x is live on exit from block B ,  then there is an acyclic path from B to 
a use of x, along which there are no definitions of x. 



672 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

9.7 Region-Based Analysis 

The iterative data-flow analysis algorithm we have discussed so far is just one 
approach to solving data-flow problems. Here we discuss another approach 
called region-based analysis. Recall that in the iterative-analysis approach, we 
create transfer functions for basic blocks, then find the fixedpoint solution by 
repeated passes over the blocks. Instead of creating transfer functions just for 
individual blocks, a region-based analysis finds transfer functions that summa- 
rize the execution of progressively larger regions of the program. Ultimately, 
transfer funchions for entire procedures are constructed and then applied, to get 
the desired data-flow values directly. 

While a data-flow framework using an iterative algorithm is specified by 
a semilattice of data-flow values and a family of transfer functions closed un- 
der composition, region-based analysis requires more elements. A region-based 
framework includes both a semilattice of data-flow values and a semilattice 
of transfer functions that must possess a meet operator, a composition oper- 
ator, and a closure operator. We shall see what all these elements entail in 
Section 9.7.4. 

A region-based analysis is particularly useful for data-flow problems where 
paths that have cycles may change the data-flow values. The closure operator 
allows the effect of a loop to be summarized more effectively than does iterative 
analysis. The technique is also useful for interprocedural analysis, where trans- 
fer functions associated with a procedure call may be treated like the transfer 
functions associated with basic blocks. 

For simplicity, we shall consider only forward data-flow problems in this 
section. We first illustrate how region-based analysis works by using the familiar 
example of reaching definitions. In Section 9.8 we show a more compelling use 
of this technique, when we study the analysis of induction variables. 

9.7.1 Regions 

In region-based analysis, a program is viewed as a hierarchy of regions, which 
are (roughly) portions of a flow graph that have only one point of entry. We 
should find this concept of viewing code as a hierarchy of regions intuitive, 
because a block-structured procedure is naturally organized as a hierarchy of 
regions. Each statement in a block-structured program is a region, as control 
flow can only enter at the beginning of a statement. Each level of statement 
nesting corresponds to a level in the region hierarchy. 

Formally, a region of a flow graph is a collection of nodes N and edges E 
such that 

1. There is a header h in N that dominates all the nodes in N. 

2. If some node m can reach a node n in N without going through h, then 
m is also in N. 



9.7. REGION-BASED ANALYSIS 673 

3. E is the set of all the control flow edges between nodes n l  and n2 in N, 
except (possibly) for some that enter h. 

Example 9.50: Clearly a natural loop is a region, but a region does not 
necessarily have a back edge and need not contain any cycles. For example, in 
Fig. 9.47, nodes B1 and B2, together with the edge B1 -+ B2, form a region; so 
do nodes B1, B2, and B3 with edges B1 -+ B2, B2 -+ B3, and B1 -+ B3. 

However, the subgraph with nodes B2 and B3 with edge B2 + BS does not 
form a region, because control may enter the subgraph at both nodes B2 and 
B3. More precisely, neither B2 nor Bg dominates the other, so condition (1) for 
a region is violated. Even if we picked, say, B2 to be the "header," we would 
violate condition (2), since we can reach B3 from B1 without going through B2, 
and B1 is not in the "region." 

Figure 9.47: Examples of regions 

9.7.2 Region Hierarchies for Reducible Flow Graphs 

In what follows, we shall assume the flow graph is reducible. If occasionally we 
must deal with nonreducible flow graphs, then we can use a technique called 
"node splitting" that will be discussed in Section 9.7.6. 

To construct a hierarchy of regions, we identify the natural loops. Recall 
from Section 9.6.6 that in a reducible flow graph, any two natural loops are 
either disjoint or one is nested within the other. The process of "parsing" a 
reducible flow graph into its hierarchy of loops begins with every block as a 
region by itself. We call these regions leaf regions. Then, we order the natural 
loops from the inside out, i.e., starting with the innermost loops. To process a 
loop, we replace the entire loop by a node in two steps: 

1. First, the body of the loop L (all nodes and edges except the back edges to 
the header) is replaced by a node representing a region R. Edges to the 
header of L now enter the node for R. An edge from any exit of loop L is 
replaced by an edge from R to the same destination. However, if the edge 
is a back edge, then it becomes a loop on R. We call R a body region. 



674 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

2. Next, we construct a region R' that represents the entire natural loop L. 
We call R' a loop region. The only difference between R and R' is that 
the latter includes the back edges to the header of loop L. Put another 
way, when R' replaces R in the flow graph, all we have to do is remove 
the edge from R to itself. 

We proceed this way, reducing larger and larger loops to single nodes, first with 
a looping edge and then without. Since loops of a reducible flow graph are 
nested or disjoint, the loop region's node can represent all the nodes of the 
natural loop in the series of flow graphs that are constructed by this reduction 
process. 

Eventually, all natural loops are reduced to single nodes. At that point, 
the flow graph may be reduced to a single node, or there may be several nodes 
remaining, with no loops; i.e., the reduced flow graph is an acyclic graph of 
more than one node. In the former case we are done constructing the region 
hierarchy, while in the latter case, we construct one more body region for the 
entire flow graph. 

Example 9.5 1 : Consider the control flow graph in Fig. 9.48(a). There is one 
back edge in this flow graph, which leads from B4 to B2. The hierarchy of 
regions is shown in Fig. 9.48(b); the edges shown are the edges in the region 
flow graphs. There are altogether 8 regions: 

1. Regions R1, . . . , R5 are leaf regions representing blocks B1 through B5, 
respectively. Every block is also an exit block in its region. 

2. Body region Re represents the body of the only loop in the flow graph; it 
consists of regions R2, R3, and R4 and three interregion edges: B2 -+ B3, 
B2 -+ B4, and B3 -+ B4. It has two exit blocks, B3 and B4, since they 
both have outgoing edges not contained in the region. Figure 9.49(a) 
shows the flow graph with R6 reduced to a single node. Notice that 
although the edges R3 -+ R5 and R4 -+ R5 have both been replaced by 
edge Rs --+ R5, it is important to remember that the latter edge represents 
the two former edges, since we shall have to propagate transfer functions 
across this edge eventually, and we need to know that what comes out of 
both blocks B3 and B4 will reach the header of R5. 

3. Loop region R7 represents the entire natural loop. It includes one subre- 
gion, R6, and one back edge B4 + B2. It has also two exit nodes, again 
BS and B4. Figure 9.49(b) shows the flow graph after the entire natural 
loop is reduced to R7. 

4. Finally, body region Rs is the top region. It includes three regions, R1, 
R7, R5 and three interregion edges, B1 -+ B2, B3 -+ B5, and B4 -+ B5. 
When we reduce the flow graph to R8, it becomes a single node. Since 
there are no back edges to its header, B1, there is no need for a final step 
reducing this body region to a loop region. 



9.7. REGION-BASED ANALYSIS 

r*-i B ,  (EXIT) 

Figure 9.48: (a) An example flow graph for the reaching definitions problem 
and (b) Its region hierarchy 



676 CHAPTER 9. MACHIRE-INDEPENDENT OPTIMIZATIONS 

(a) After reducing to (b) After reducing to 
a body region a loop region 

Figure 9.49: Steps in the reduction of the flow graph of Fig. 9.47 to a single 
region 

To summarize the process of decomposing reducible flow graphs hierarchi- 
cally, we offer the following algorithm. 

Algorithm 9.52 : Constructing a bottom-up order of regions of a reducible 
flow graph. 

INPUT: A reducible flow graph G. 

OUTPUT: A list of regions of G that can be used in region-based data-flow 
problems. 

METHOD: 

1. Begin the list with all the leaf regions consisting of single blocks of G, in 
any order. 

2. Repeatedly choose a natural loop L such that if there are any natural 
loops contained within L, then these loops have had their body and loop 
regions added to the list already. Add first the region consisting of the 
body of L (i.e., L without the back edges to the header of L), and then 
the loop region of L. 

3. If the entire flow graph is not itself a natural loop, add at the end of the 
list the region consisting of the entire flow graph. 

9.7.3 Overview of a Region-Based Analysis 

For each region R, and for each subregion R' within R, we compute a transfer 
function fR,INIRl) that summarizes the effect of executing all possible paths 



9.7. REGION-BASED ANALYSIS 677 

Where "Reducibless Comes From 

We now see why reducible flow graphs were given that name. While we 
shall not prove this fact, the definition of "reducible flow graph7' used in 
this book, involving the back edges of the graph, is equivalent to  several 
definitions in which we mechanically reduce the flow graph to a single 
node. The process of collapsing natural loops described in Section 9.7.2 
is one of them. Another interesting definition is that the reducible flow 
graphs are all and only those graphs that can be reduced to a single node 
by the following two transformations: 

TI :  Remove an edge from a node to itself. 

T2: If node n has a single predecessor m, and n is not the entry of the 
flow graph, combine rn and n. 

leading from the entry of R to the entry of R', while staying within R. We say 
that a block B within R is an exit block of region R if it has an outgoing edge to  
some block outside R. We also compute a transfer function for each exit block 
B of R, denoted fR,OUTIBI, that summarizes the effect of executing all possible 
paths within R,  leading from the entry of R to  the exit of B. 

We then proceed up the region hierarchy, computing transfer functions for 
progressively larger regions. We begin with regions that are single blocks, where 
fB,INIBl is just the identity function and fB,OUTIB] is the transfer function for 
the block B itself. As we move up the hierarchy, 

If R is a body region, then the edges belonging to R form an acyclic 
graph on the subregions of R. We may proceed to compute the transfer 
functions in a topological order of the subregions. 

If R is a loop region, then we only need to account for the effect of the 
back edges to  the header of R. 

Eventually, we reach the top of the hierarchy and compute the transfer 
functions for region R,, that is the entire flow graph. How we perform each of 
these computations will be seen in Algorithm 9.53. 

The next step is to  compute the data-flow values at the entry and exit of 
each block. We process the regions in the reverse order, starting with region 
R,, and working our way down the hierarchy. For each region, we compute the 
data-flow values at the entry. For region R,, we apply fR,,INIRl (IN[ENTRY]) 

to  get the data-flow values at the entry of the subregions R in R,,. We repeat 
until we reach the basic blocks at the leaves of the region hierarchy. 



678 CHAPTER 9. MACHPNE-INDEPENDENT OPTIMIZATIONS 

9.7.4 Necessary Assumptions About Transfer Functions 

In order for region-based analysis to work, we need to make certain assumptions 
about properties of the set of transfer functions in the framework. Specifically, 
we need three primitive operations on transfer functions: composition, meet 
and closure; only the first is required for data-flow frameworks that use the 
iterative algorithm. 

Composition 

The transfer function of a sequence of nodes can be derived by composing the 
functions representing the individual nodes. Let fl and f2 be transfer functions 
of nodes nl and n2. The effect of executing n l  followed by n2 is represented 
by f2 0 fl.  Function composition has been discussed in Section 9.2.2, and an 
example using reaching definitions was shown in Section 9.2.4. To review, let 
geni and killi be the gen and kill sets for fi. Then: 

Thus, the gen and kill sets for f2 0 fl are gen2 U (genl - kill2) and killl U kill2, 
respectively. The same idea works for any transfer function of the gen-kill form. 
Other transfer functions may also be closed, but we have to consider each case 
separately. 

Meet 

Here, the transfer functions themselves are values of a semilattice with a meet 
operator Af . The meet of two transfer functions fl and f2 ,  f l  Af f 2 ,  is defined 
by (fl Af f2)(x) = fl (x) A fi (x), where A is the meet operator for data-flow 
values. The meet operator on transfer functions is used to combine the effect 
of alternative paths of execution with the same end points. Where it is not am- 
biguous, from now on, we shall refer to the meet operator of transfer functions 
also as A. For the reaching-definitions framework, we have 

That is, the gen and kill sets for f l  A f2 are gent U gen2 and killl n kill2, 
respectively. Again, the same argument applies to any set of gen-kill transfer 
functions. 



9.7. REGION-BASED ANALYSIS 

Closure 

If f represents the transfer function of a cycle, then f represents the effect of 
going around the cycle n times. In the case where the number of iterations is 
not known, we have to assume that the loop may be executed 0 or more times. 
We represent the transfer function of such a loop by f *, the closure of f ,  which 
is defined by 

Note that f 0  must be the identity transfer function, since it represents the 
effect of going zero times around the loop, i.e., starting at the entry and not 
moving. If we let I represent the identity transfer furiction, then we can write 

Suppose the transfer function f in a reaching definitions framework has a 
gen set and a kill set. Then, 

f2(4 = f ( f  ( X I )  
= (gen  U ( (gen  U ( x  - ki l l ) )  - kill)  

= gen U ( x  - kill)  

f3(0 = f ( f 2 ( x ) )  
= gen U ( x  - kill)  

and so on: any f n ( x )  is gen U ( x  - kill) .  That is, going around a loop doesn't 
affect the transfer function, if it is of the gen-kill form. Thus, 

f * ( x )  = I A  f l ( x )  A  f 2 ( x )  A . . .  
= x u (gen  U ( x  - ki l l ) )  

= gen U x  

That is, the gen and kill sets for f *  are gen and 0, respectively. Intuitively, 
since we might not go around a loop at all, anything in x will reach the entry 
to the loop. In all subsequent iterations, the reaching definitions include those 
in the gen set. 



680 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

9.7.5 An Algorithm for Region-Based Analysis 

The following algorithm solves a forward data-flow-analysis problem on a re- 
ducible flow graph, according to some framework that satisfies the assumptions 
of Section 9.7.4. Recall that fR,INIR/J and fR,OUTIBJ refer to transfer functions 
that transform data-flow values at the entry to region R into the correct value 
at the entry of subregion R' and the exit of the exit block B ,  respectively. 

Algorithm 9.53 : Region-based analysis. 

INPUT: A data-flow framework with the properties outlined in Section 9.7.4 
and a reducible flow graph G. 

OUTPUT: Data-flow values IN[B] for each block B of G. 

METHOD: 

1. Use Algorithm 9.52 to construct the bottom-up sequence of regions of G, 
say R1, R2, .  . . , R,, where R, is the topmost region. 

2. Perform the bottom-up analysis to compute the transfer functions sum- 
marizing the effect of executing a region. For each region R1, R2, . . . , R,, 
in the bottom-up order, do the following: 

(a) If R is a leaf region corresponding to block B ,  let fR,INIBl = I, and 
fR,OUTIBl = fB,  the transfer function associated with block B.  

(b) If R is a body region, perform the computation of Fig. 9.50(a). 

(c) If R is a loop region, perform the computation of Fig. 9.50(b). 

3. Perform the top-down pass to find the data-flow values at the beginning 
of each region. 

(a) IN[R,] = IN[ENTRY]. 

(b) For each region R in {Rl, . . . R,-l), in the top-down order, compute 
INIR] = f ~ '  ,IN[R] (IN[R']) 7 

where R' is the immediate enclosing region of R. 

Let us first look at the details of how the bottom-up analysis works. In 
line (1) of Fig. 9.50(a) we visit the subregions of a body region, in some topolog- 
ical order. Line (2) computes the transfer function representing all the possible 
paths from the header of R to the header of S; then in lines (3) and (4) we com- 
pute the transfer functions representing all the possible paths from the header 
of R to the exits of R - that is, to the exits of all blocks that have successors 
outside S. Notice that all the predecessors B' in R must be in regions that 
precede S in the topological order constructed at line (1). Thus, fR,OUTIBll  

will have been computed already, in line (4) of a previous iteration through the 
outer loop. 



9.7. REGION-BASED ANALYSIS 681 

For loop regions, we perform the steps of lines (1) through (4) in Fig. 9.50(b) 
Line (2) computes the effect of going around the loop body region S zero or 
more times. Lines (3) and (4) compute the effect at the exits of the loop after 
one or more iterations. 

In the top-down pass of the algorithm, step 3(a) first assigns the boundary 
condition to  the input of the top-most region. Then if R is immediately con- 
tained in R', we can simply apply the transfer function f R t , I N I R l  to the data-flow 
value IN[R'] to compute IN[R]. 

1) for (each subregion S immediately contained in R,  in 
topological order) { 

2) ~R,IN[SI  = Apredecessors B in R of the header of S ~R,OUT[BI  ; 
/* if S is the header of region R,  then fR,IN(SI is the 

meet over nothing, which is the identity function */ 
3 for (each exit block B in S) 

(a) Constructing transfer functions for a body region R 

1) let S be the body region immediately nested within R; that is, 
S is R without back edges from R to the header of R; 

2, ~R, IN[SI  = (Apredecessors B in R of the header of S ~S,OUT[BI)  * ; 
3) for (each exit block B in R) 

(b) Constructing transfer functions for a loop region R' 

Figure 9.50: Details of region-based data-flow computations 

Example 9.54 : Let us apply Algorithm 9.53 to find reaching definitions in the 
flow graph in Fig. 9.48(a). Step 1 constructs the bottom-up order in which the 
regions are visited; this order will be the numerical order of their subscripts, 
R l ,R2 , . . .  ,Rn.  

The values of the gen and kill sets for the five blocks are summarized below: 

Remember the simplified rules for gen- kill transfer functions, from Section 
9.7.4: 



682 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

To take the meet of transfer functions, take the union of the gen's and 
the intersection of the kill's. 

To compose transfer functions, take the union of both the gen's and the 
kill's. However, as an exception, an expression that is generated by the 
first function, not generated by the second, but killed by the second is not 
in the gen of the result. 

To take the closure of a transfer function, retain its gen and replace the 
kill by 0. 

The first five regions R1, . . . , R5 are blocks Bl , . . . , B5, respectively. For 
1 < i 5 5, fR i , INIBi l  is the identity function, and f R i , o u ~ [ ~ i l  is the transfer 
function for block Bi : 

Figure 9.51: Computing transfer functions for the flow graph in Fig. 9.48(a), 
using region-based analysis 

The rest of the transfer functions constructed in Step 2 of Algorithm 9.50 
are summarized in Fig. 9.51. Region R6, consisting of regions Rp , Rg , and R*, 



9.7. REGION-BASED ANALYSIS 683 

represents the loop body and thus does not include the back edge B4 + B2. The 
order of processing these regions will be the only topological order: Rz , R3, R4. 
First, R2 has no predecessors within R6; remember that the edge B4 -+ B2 goes 
outside R6. Thus, fR6,1N[B21 is the identity function," and fR6,0UT[B21 is the 
transfer function for block B2 itself. 

The header of region B3 has one predecessor within R6, namely Rz. The 
transfer function to its entry is simply the transfer function to the exit of Bz,  
fR6,0UT[B2],  which has already been computed. We compose this function 
with the transfer function of B3 within its own region to compute the transfer 
function to the exit of B3. 

Last, for the transfer function to the entry of R4, we must compute 

because both B2 and B3 are predecessors of B4, the header of R4. This transfer 
function is composed with the transfer function fR470UT[Brl to get the desired 
function fR670UT[B41.  Notice, for example, that d3 is not killed in this transfer 
function, because the path B2 -+ B4 does not redefine variable a. 

Now, consider loop region R7. It contains only one subregion R6 which 
represents its loop body. Since there is only one back edge, B4 + B2, to the 
header of R6, the transfer function representing the execution of the loop body 
0 or more times is just f ~ 6 7 0 U T [ B , 1 :  the gen set is {d4,d5,d6) and the kill 
set is 0. There are two exits out of region R7, blocks B3 and B4. Thus, this 
transfer function is composed with each of the transfer functions of R6 to get 
the corresponding transfer functions of R7. Notice, for instance, how d6 is in 
the gen set for fR7,B3 because of paths like B2 + B4 + B2 -+ B3, or even 
B2 -+ BS + B4 3 B 2  -+ B3. 

Finally, consider R8, the entire flow graph. Its subregions are R1, R7, and 
R5, which we shall consider in that topological order. As before, the transfer 
function fR8,1N[BlI  is simply the identity function, and the transfer function 

~ R ~ , o u T [ B ~ ]  is just fR1 , O U T [ B ~ ]  which in turn is f ~ l  

The header of R7, which is B2, has only one predecessor, B1, so the transfer 
function to its entry is simply the transfer function out of B1 in region Rg. 
We compose f R s 7 ~ u ~ [ B 1 1  with the transfer functions to the exits of B3 and B4 
within R7 to obtain their corresponding transfer functions within Rg . Lastly, we 
consider R5. Its header, B5, has two predecessors within Rg, namely B3 and B4. 
Therefore, we compute fRs , O U T [ B ~ ]  A , O U T [ B ~ ]  get fR8 , I N [ B ~ ]  - Since the 
transfer function of block B5 is the identity function, fR8,0UT[B51 = fR8,1N[B51. 

Step 3 computes the actual reaching definitions from the transfer functions. 
In step 3(a), IN[R~]  = 0 since there are no reaching definitions at  the beginning 
of the program. Figure 9.52 shows how step 3(b) computes the rest of the 
data-flow values. The step starts with the subregions of R8. Since the transfer 
function from the start of Rg to the start of each of its subregion has been 

"strictly speaking, we mean f R 6 , ~ ~ [ R 2 1 ,  but when a region like R2 is a single block, it is 
often clearer if we use the block name rather than the region name in this context. 



684 CHAPTER 9. MACHTNE-INDEPENDENT OPTIMIZATIONS 

computed, a single application of the transfer function finds the data-flow value 
at the start each subregion. We repeat the steps until we get the data-flow 
values of the leaf regions, which are simply the individual basic blocks. Note 
that the data-flow values shown in Figure 9.52 are exactly what we would get 
had we applied iterative data-flow analysis to the same flow graph, as must be 
the case, of course. 

Figure 9.52: Final steps of region-based flow analysis 

9.7.6 Handling Nonreducible Flow Graphs 

If nonreducible flow graphs are expected to be common for the programs to be 
processed by a compiler or other program-processing software, then we recom- 
mend using an iterative rather than a hierarchy-based approach to data-flow 
analysis. However, if we need only to be prepared for the occasional nonre- 
ducible flow graph, then the following "node-splitting " technique is adequate. 

Construct regions from natural loops to the extent possible. If the flow graph 
is nonreducible, we shall find that the resulting graph of regions has cycles, but 
no back edges, so we cannot parse the graph any further. A typical situation 
is suggested in Fig. 9.53(a), which has the same structure as the nonreducible 
flow graph of Fig. 9.45, but the nodes in Fig. 9.53 may actually be complex 
regions, as suggested by the smaller nodes within. 

We pick some region R that has more than one predecessor and is not the 
header of the entire flow graph. If R has k predecessors, make k copies of the 
entire flow graph R, and connect each predecessor of R's header to a different 
copy of R. Remember that only the header of a region could possibly have a 
predecessor outside that region. It turns out, although we shall not prove it, 
that such node splitting results in a reduction by at least one in the number of 
regions, after new back edges are identified and their regions constructed. The 
resulting graph may still not be reducible, but by alternating a splitting phase 
with a phase where new natural loops are identified and collapsed to regions, 
we eventually are left with a single region; i.e., the flow graph has been reduced. 



9.7. REGION-BASED ANALYSIS 

Figure 9.53: Duplicating a region to make a nonreducible flow graph become 
reducible 

Example 9.55 : The splitting shown in Fig. 9.53(b) has turned the edge 
RZb -+ R3 into a back edge, since R3 now dominates R2b. These two regions 
may thus be combined into one. The resulting three regions - R1, R2, and 
the new region - form an acyclic graph, and therefore may be combined into 
a single body region. We thus have reduced the entire flow graph to a single 
region. In general, additional splits may be necessary, and in the worst case, 
the total number of basic blocks could become exponential in the number of 
blocks in the original flow graph. 

We must also think about how the result of the data-flow analysis on the 
split flow graph relates to the answer we desire for the original flow graph. 
There are two approaches we might consider. 

1. Splitting regions may be beneficial for the optimization process, and we 
can simply revise the flow graph to have copies of certain blocks. Since 
each duplicated block is entered along only a subset of the paths that 
reached the original, the data-flow values at these duplicated blocks will 
tend to contain more specific information than was available at the orig- 
inal. For instance, fewer definitions may reach each of the duplicated 
blocks that reach the original block. 

2. If we wish to retain the original flow graph, with no splitting, then after 
analyzing the split flow graph, we look at  each split block B ,  and its 
corresponding set of blocks B1, B2, . . . , Bk. We may compute IN[B] = 
IN[B~]  A IN [B2] A . . A IN [Bk], and similarly for the OUT'S. 



686 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

9.7.7 Exercises for Section 9.7 

Exercise 9.7.1 : For the flow graph of Fig. 9.10 (see the exercises for Section 
9.1): 

i. Find all the possible regions. You may, however, omit from the list the 
regions consisting of a single node and no edges. 

ii. Give the set of nested regions constructed by Algorithm 9.52. 

iii. Give a TI-T2 reduction of the flow graph as described in the box on "Where 
'Reducible' Comes From" in Section 9.7.2. 

Exercise 9.7.2 : Repeat Exercise 9.7.1 on the following flow graphs: 

a) Fig. 9.3. 

b) Fig. 8.9. 

c) Your flow graph from Exercise 8.4.1. 

d) Your flow graph from Exercise 8.4.2. 

Exercise 9.7.3 : Prove that every natural loop is a region. 

!! Exercise 9.7.4: Show that a flow graph is reducible if and only it can be 
transformed to a single node using: 

a) The operations Tl and T2 described in the box in Section 9.7.2. 

b) The region definition introduced in Section 9.7.2. 

! Exercise 9.7.5 : Show that when you apply node splitting to a nonreducible 
flow graph, and then perform TI-T2 reduction on the resulting split graph, you 
wind up with strictly fewer nodes than you started with. 

! Exercise 9.7.6 : What happens if you apply node-splitting and TI-T2 reduc- 
tion alternately, to reduce a complete directed graph of n nodes? 

9.8 Symbolic Analysis 

We shall use symbolic analysis in this section to illustrate the use of region- 
based analysis. In this analysis, we track the values of variables in programs 
symbolically as expressions of input variables and other variables, which we 
call reference variables. Expressing variables in terms of the same set of ref- 
erence variables draws out their relationships. Symbolic analysis can be used 
for a range of purposes such as optimization, parallelization, and analyses for 
program underst anding. 



9.8. SYMBOLIC ANALYSIS 

Figure 9.54: An example program motivating symbolic analysis 

Example 9.56 : Consider the simple example program in Fig. 9.54. Here, we 
use x as the sole reference variable. Symbolic analysis will find that y has the 
value x - 1 and x has the value x - 2 after their respective assignment statements 
in lines (2) and (3). This information is useful, for example, in determining that 
the two assignments in lines (4) and (5) write to different memory locations and 
can thus be executed in parallel. Furthermore, we can tell that the condition 
z > x is never true, thus allowing the optimizer to remove the conditional 
statement in lines (6) and (7) all together. 

9.8.1 Affine Expressions of Reference Variables 

Since we cannot create succinct and closed-form symbolic expressions for all 
values computed, we choose an abstract domain and approximate the compu- 
tations with the most precise expressions within the domain. We have already 
seen an example of this strategy before: constant propagation. In constant 
propagation, our abstract domain consists of the constants, an UNDEF symbol 
if we have not yet determined if the value is a constant, and a special NAC 

symbol that is used whenever a variable is found not to be a constant. 
The symbolic analysis we present here expresses values as aJgine expressions 

of reference variables whenever possible. An expression is affine with respect to 
variables vl, uz, . . . , u, if it can be expressed as co + clul + . - + cnun, where 
CO, CI,  . . . , Cn are constants. Such expressions are informally known as linear 
expressions. Strictly speaking, an affine expression is linear only if co is zero. 
We are interested in affine expressions because they are often used to index 
arrays in loops-such information is useful for optimizations and parallelization. 
Much more will be said about this topic in Chapter 11. 

Induction Variables 

Instead of using program variables as reference variables, an affine expression 
can also be written in terms of the count of iterations through the loop. Vari- 
ables whose values can be expressed as cli + co, where i is the count of iterations 
through the closest enclosing loop, are known as induction variables. 

Example 9.57 : Consider the code fragment 



688 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

f o r  (m = 10; m < 20; m++) 
( x = m*3; A[xl = 0; ) 

Suppose we introduce for the loop a variable, say i,  representing the number of 
iterations executed. The value i is 0 in the first iteration of the loop, 1 in the 
second, and so on. We can express variable m as an affine expression of i ,  namely 
m = i + 10. Variable x, which is 3m, takes on values 30,33, . . . ,57 during 
successive iterations of the loop. Thus, x has the affine expression x = 30 + 3i. 
We conclude that both m and x are induction variables of this loop. 

Expressing variables as affine expressions of loop indexes makes the series 
of values being computed explicit and enables several transformations. The 
series of values taken on by an induction variable can be computed with addi- 
tions rather than multiplications. This transformation is known as "strength 
reduction" and was introduced in Sections 8.7 and 9.1. For instance, we can 
eliminate the multiplication x=m*3 from the loop of Example 9.57 by rewriting 
the loop as 

x = 27; 
f o r  (m = 10; m < 20; m++) 

( x = x+3; A[x] = 0; ) 

In addition, notice that the locations assigned 0 in that loop, &A + 30, &A + 
33, . . . , &A+ 57, are also affine expressions of the loop index. In fact, this series 
of integers is the only one that needs to be computed; we need neither m nor 
x. The code above can be replaced simply by: 

f o r  (x = &A+30; x <= &A+57; x = x+3) 
*x = 0; 

Besides speeding up the computation, symbolic analysis is also useful for 
parallelization. When the array indexes in a loop are affine expressions of loop 
indexes, we can reason about relations of data accessed across the iterations. 
For example, we can tell that the locations written are different in each itera- 
tion and therefore all the iterations in the loop can be executed in parallel on 
different processors. Such information is used in Chapters 10 and 11 to extract 
parallelism from sequential programs. 

Other Reference Variables 

If a variable is not a linear function of the reference variables already chosen, 
we have the option of treating its value as reference for future operations. For 
example, consider the code fragment: 



9.8. SYMBOLIC ANALYSIS 689 

While the value held by a after the function call cannot itself be expressed 
as a linear function of any reference variables, it can be used as reference for 
subsequent statements. For example, using a as a reference variable, we can 
discover that c is one larger than b a t  the end of the program. 

1) a = 0 ;  

2) f o r  (f = l o o ;  f  ( 2 0 0 ;  f++) { 
3) a = a + l ;  
4) b  = 10 * a; 

5 > c  = 0;  
6) f o r  (g = 10; g  < 20; g++) { 
7) d = b + c ;  
8) c = c + l ;  

} 
1 

Figure 9.55: Source code for Example 9.58 

Exarnple 9.58 : Our running example for this section is based on the source 
code shown in Fig. 9.55. The inner and outer loops are easy to  understand, 
since f and g are not modified except as required by the for-loops. It is thus 
possible to  replace f and g by reference variables i and j that count the number 
of iterations of the outer and inner loops, respectively. That is, we can let 
f = i + 99 and g = j + 9, and substitute for f and g throughout. When 
translating to  intermediate code, we can take advantage of the fact that each 
loop iterates at least once, and so postpone the test for i 5 100 and j 5 10 to 
the ends of the loops. Figure 9.56 shows the flow graph for the code of Fig. 9.55, 
after introducing i and j and treating the for-loops as if they were repeat-loops. 

It turns out that a ,  b, c, and d are all induction variables. The sequences of 
values assigned to the variables in each line of the code are shown in Figure 9.57. 
As we shall see, it is possible to  discover the affine expressions for these variables, 
in terms of the reference variables i and j .  That is, a t  line (4) a = i, at line (7) 
d = l O i + j - 1 ,  a n d a t  line (8), c =  j .  

9.8.2 Data-Flow Problem Formulation 

This analysis finds affine expressions of reference variables introduced (1) to 
count the number of iterations executed in each loop, and (2) to  hold values 
at the entry of regions where necessary. This analysis also finds induction 
variables, loop invariants, as well as constants, as degenerate affine expressions. 
Note that this analysis cannot find all constants because it only tracks affine 
expressions of reference variables. 



690 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

Figure 9.56: Flow graph and its region hierarchy for Example 9.58 

Data-Flow Values: Symbolic Maps 

The domain of data-flow values for this analysis is symbolic maps, which are 
functions that map each variable in the program to a value. The value is either 
an affine function of reference values, or the special symbol NAA to represent 
a non-affine expression. If there is only one variable, the bottom value of the 
semilattice is a map that sends the variable to NAA. The semilattice for n 
variables is simply the product of the individual semilattices. We use mNAA to 
denote the bottom of the semilattice which maps all variables to NAA. We can 
define the symbolic map that sends all variables to an unknown value to be the 
top data-flow value, as we did for constant propagation. However, we do not 
need top values in region-based analysis. 

Example 9.59 : The symbolic maps associated with each block for the code 
in Example 9.58 are shown in Figure 9.58. We shall see later how these maps 
are discovered; they are the result of doing region-based data-flow analysis on 
the flow graph of Fig. 9.56. 



9.8. SYMBOLIC ANALYSIS 

Figure 9.57: Sequence of values seen in program points in Example 9.58. 

NAA I NAA 

i = 100 
j = I , . . .  , l o  
100 
1000 
1000.. . ,1009 
1 . . . 1 0  

NAA 

1Oi 
1 Oi 
1Oi 
1 Oi 

1Oi - 10 

1 5 i 5 100 
j = 1 ,... ,10 
i 
1Oi 
lOi,. . . ,10i + 9 
1 . . . 1 0  

NAA 

0 
j - 1 

i = 2  
j = 1 , . . .  ,10 
2 
20 
20,. . . ,29 
I , . . .  , l o  

- 

NAA 

NAA 

NAA 

NAA 

NAA 

lOi + j - 1 
IOi + j - 1 

l O i + j  - 11 

i = l  
j = I , . . .  , I 0  

10 
' 10,.  . . ,19 
I , . . .  , I 0  

line 

3 
7 
8 

Figure 9.58: Symbolic maps of the program in Example 9.58. 

var 
2 a 1  

b 
d 
c 

The symbolic map associated with the entry of the program is m,,,. At 
the exit of B1, the value of a is set to 0. Upon entry to  block B2 , a has value 
0 in the first iteration and increments by one in each subsequent iteration of 
the outer loop. Thus a has value i - 1 at  the entry of the ith iteration and 
value i a t  the end. The symbolic map at the entry of B2 maps variables b, c, d 
to  NAA, because the variables have unknown values on entry to  the inner loop. 
Their values depend on the number of iterations of the outer loop, so far. The 
symbolic map on exit from B2 reflects the assignment statements to a ,  b, and 
c in that block. The rest of the symbolic maps can be deduced in a similar 
manner. Once we have established the validity of the maps in Fig. 9.58, we can 
replace each of the assignments to a ,  b, c, and d in Fig. 9.55 by the appropriate 
affine expressions. That is, we can replace Fig. 9.55 by the code in Fig. 9.59. 

Transfer Function of a St at ement 

The transfer functions in this data-flow problem send symbolic maps to  sym- 
bolic maps. To compute the transfer function of an assignment statement, we 
interpret the semantics of the statement and determine if the assigned vari- 
able can be expressed as an affine expression of the values on the right of the 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

1) a = 0; 

2) f o r  (i = 1; i <= 100; i++) { 
3) a = i; 
4) b = lO*i; 
5 > c = 0;  
6) f o r  (j = 1; j <= 10; j++) { 
7 )  d = 10*i + j -1; 
8) c = j; 

Figure 9.59: The code of Fig. 9.55 with assignments replaced by affine expres- 
sions of the reference variables i and j 

Cautions Regarding Transfer Functions on Value 
Maps 

A subtlety in the way we define the transfer functions on symbolic maps 
is that we have options regarding how the effects of a computation are 
expressed. When m is the map for the input of a transfer function, m(x) 
is really just "whatever value variable x happens to have on entry". We 
try very hard to express the result of the transfer function as an affine 
expression of values that are described by the input map. 

You should observe the proper interpretation of expressions like 
f (m) (x), where f is a transfer function, m a map, and x a variable. As 
is conventional in mathematics, we apply functions from the left, meaning 
that we first compute f (m), which is a map. Since a map is a function, 
we may then apply it to variable x to produce a value. 

assignment. The values of all other variables remain unchanged. 
The transfer function of statement s, denoted f,, is defined as follows: 

1. If s is not an assignment statement, then f, is the identity function. 

2 .  If s is an assignment statement to variable x, then 

m ( 4  for all variables u # x 
co + cl m(y) + c2m (x) if x is assigned co + CI y + C ~ Z ,  

= i (el = 0, or m(y) # NAA) , and 
(c, = 0, or m(x) # NAA) 

NAA otherwise. 



9.8. SYMBOLIC ANALYSIS 693 

The expression co + clm(y) + c2m(z) is intended to represent all the possible 
forms of expressions involving arbitrary variables y and z that may appear on 
the right side of an assignment to x and that give x a value that is an afine 
transformation on prior values of variables. These expressions are: co, co + y, 
co - y, y + x, x - y, cl * y, and y/(l/cl).  Note that in many cases, one or more 
of CO, c1, and c2 are 0. 

Example 9.60 : If the assignment is x=y+z, then co = 0 and cl = c2 = 1. If 
the assignment is x=y/5, then co = ca = 0, and cl = 115. 

Composition of Transfer Functions 

To compute fi 0 f17 where fl and f2  are defined in terms of input map m, 
we substitute the value of m(vi) in the definition of f2  with the definition of 
fl (m) (Vi). w e  replace all operations on NAA values with NAA. That is, 

1. If f2(m) (v) = NAA, then (f2 0 f l)  (m) (v) = NAA. 

2. If f2(m)(v) = co + xi cim(vi), then 

if f l  (m) (Vi) = NAA for some i # 0, Ci # 0 

= { c (m) ( v )  otherwise 

Example 9.61 : The transfer functions of the blocks in Example 9.58 can be 
computed by composing the transfer functions of their constituent statements. 
These transfer functions are defined in Fig. 9.60. 

Figure 9.60: Transfer Functions of Example 9.58 

Solution to Data-Flow Problem 

We use the notation IN;,j[B3] and OUTi,j[B3] to refer to the input and output 
data-flow values of block B3 in iteration j of the inner loop and iteration i of 
the outer loop. For the other blocks, we use I N ~ [ B ~ ]  and O U T ~ [ B ~ ]  to refer 
to these values in the ith iteration of the outer loop. Also, we can see that 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

OUT[B~] = f~ (IN[B~]),  for all Bk 
OUT[B~] 2 1Nl[B2] 

ou~ i [B2]  > 1~i,l[B3], l < i < l O  
ou~i, j - l [B3] 2 1Nij[B3], 1 < i  < 100, 2 < j < 10 

OUT~,IO[&] 2 I N ~ [ B ~ ] ,  2 < i 5 100 
OUTi-l[B4] > INI[BZ], 1 < i < 100 

Figure 9.61: Constraints satisfied on each iteration of the nested loops 

the symbolic maps shown in Fig. 9.58 satisfy the constraints imposed by the 
transfer functions, listed in Fig. 9.61. 

The first constraint says that the output map of a basic block is obtained 
by applying the block's transfer function to the input map. The rest of the 
constraints say that the output map of a basic block must be greater than or 
equal to the input map of a successor block in the execution. 

Note that our iterative data-flow algorithm cannot produce the above solu- 
tion because it lacks the concept of expressing data-flow values in terms of the 
number of iterations executed. Region-based analysis can be used to find such 
solutions, as we shall see in the next section. 

9.8.3 Region-Based Symbolic Analysis 

We can extend the region-based analysis described in Section 9.7 to find ex- 
pressions of variables in the ith iteration of a loop. A region-based symbolic 
analysis has a bottom-up pass and a top-down pass, like other region-based al- 
gorithms. The bottom-up pass summarizes the effect of a region with a transfer 
function that sends a symbolic map at the entry to an output symbolic map at 
the exit. In the top-down pass, values of symbolic maps are propagated down 
to the inner regions. 

The difference lies in how we handle loops. In Section 9.7, the effect of a loop 
is summarized with a closure operator. Given a loop with body f, its closure 
f * is defined as an infinite meet of all possible numbers of applications of f .  
However, to find induction variables, we need to determine if a value of a variable 
is an affine function of the number of iterations executed so far. The symbolic 
map must be parameterized by the number of the iteration being executed. 
Furthermore, whenever we know the total number of iterations executed in a 
loop, we can use that number to find the values of induction variables after the 
loop. For instance, in Example 9.58, we claimed that a has the value of i after 
executing the ith iteration. Since the loop has 100 iterations, the value of a 
must be 100 at the end of the loop. 

In what follows, we first define the primitive operators: meet and composi- 
tion of transfer functions for symbolic analysis. Then show how we use them 
to perform region-based analysis of induction variables. 



9.8. SYMBOLIC ANALYSIS 

Meet of Transfer Functions 

When computing the meet of two functions, the value of a variable is NAA unless 
the two functions map the variable to  the same value and the value is not NAA. 

Thus, 

f l  (m>(v> if f l  (m)(v) = f2(m)(v) 
f f = { NAA otherwise 

Parameterized Function Composit ions 

To express a variable as an affine function of a loop index, we need to compute 
the effect of composing a function some given number of times. If the effect of 
one iteration is summarized by transfer function f ,  then the effect of executing 
i  iterations, for some i  > 0, is denoted fi. Note that when i  = 0, f i  = f 0  = I ,  
the identify function. 

Variables in the program are divided into three categories: 

1. I f  f (m)(x) = m(x) + c, where c is a constant, then fi(m)(x) = m(x) + ci 
for every value of i  > 0. We say that x  is a basic induction variable of the 
loop whose body is represented by the transfer function f .  

2. If f(m)(x) = m(x),  then fi(m)(x) = m(x) for all i  > 0. The variable x  
is not modified and it remains unchanged at the end of any number of 
iterations through the loop with transfer function f. We say that x  is a 
sgmbolic constant in the loop. 

3. If f (m) (x)  = co + clm(xl) + . . . + cnm(xn), where each xk is either a basic 
induction variable or a symbolic constant, then for i  > 0, 

We say that x  is also an induction variable, though not a basic one. Note 
that the formula above does not apply if i  = 0. 

4. In all other cases, f "m) (x)  = NAA. 

To find the effect of executing a fixed number of iterations, we simply replace 
i  above by that number. In the case where the number of iterations is unknown, 
the value at the start of the last iteration is given by f * . In this case, the only 
variables whose values can still be expressed in the affine form are the loop- 
invariant variables. 

m (v) if f (m) (v) = m(v) 
f * m v  = { A otherwise 

Example 9.62 : For the innermost loop in Example 9.58, the effect of executing 
i  iterations, i  > 0, is summarized by fh3. From the definition of fs3, we see 
that a and b are symbolic constants, c is a basic induction variable as it is 



696 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

incremented by one every iteration. d is an induction variable because it is an 
affine function the symbolic constant b and basic induction variable c. Thus, 

If we could not tell how many times the loop of block B3 iterated, then we 
could not use f and would have to use f * to express the conditions at the end 
of the loop. In this case, we would have 

A Region-Based Algorithm 

Algorithm 9.63 : Region-based symbolic analysis. 

INPUT: A reducible flow graph G. 

OUTPUT: Symbolic maps IN[B] for each block B of G. 

METHOD: We make the following modifications to Algorithm 9.53. 

1. We change hob we construct the transfer function for a loop region. In 
the original algorithm we use the fR,IN[sl  transfer function to map the 
symbolic map at  the entry of loop region R to a symbolic map at  the 
entry of loop body S after executing an unknown number of iterations. It 
is defined to be the closure of the transfer function representing all paths 
leading back to the entry of the loop, as shown in Fig. 9.50(b). Here we 
define fR,i,INISl to represent the effect of execution from the start of the 
loop region to the entry of the ith iteration. Thus, 

i- 1 

~ R , ~ , I N [ s ]  = ( A f s ,OUT[B])  

predecessors B in R of the header of S 

2. If the number of iterations of a region is known, the summary of the region 
is computed by replacing i with the actual count. 

3. In the top-down pass, we compute fR, i , INIB] to find the symbolic map 
associated with the entry of the ith iteration of a loop. 



9.8. SYMBOLIC ANALYSIS 697 

4. In the case where the input value of a variable m(v) is used on the right- 
hand-side of a symbolic map in region R, and m(v) = NAA upon entry to 
thqregion, we introduce a new reference variable t ,  add assignment t = v 
to the beginning of region R, and all references of m(v) are replaced by t.  
If we did not introduce a reference variable at this point, the NAA value 
held by v would penetrate into inner loops. 

Figure 9.62: Transfer function relations in the bottom-up pass for Example 9.58. 

Exarnple 9.64 : For Example 9.58, we show how the transfer functions for the 
program are computed in the bottom-up pass in Fig. 9.62. Region R5 is the 
inner loop, with body B5. The transfer function representing the path from the 
entry of region R5 to the beginning of the j th  iteration, j 2 1, is f&'. The 
transfer function representing the path to the end of the j th iteration, j 2 1, 
is f i 3  . 

Region Rs consists of blocks B2 and B4,  with loop region R5 in the middle. 
The transfer functions from the entry of B2 and R5 can be computed in the 
same way as in the original algorithm. Transfer function fR6 ,0UT[B31  represents 
the composition of block Ba and the entire execution of the inner loop, since 
f~~ is the identity function. Since the inner loop is known to iterate 10 times, 
we can replace j by 10 to summarize the effect of the inner loop precisely. The 



698 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

Figure 9.63: Transfer functions computed in the bottom-up pass for Exam- 
ple 8.58 

f 
fR5,j,IN[Bs] 

f ~ ~ ,  ~ , o u T [ B ~ ]  

~ R ~ , I N [ B ~ ]  

f ~ e  , I N [ R ~ ]  

~ R ~ , o u T [ B ~ ~  

~ R ~ , ~ , I N [ R B ]  

~ R ~ , ~ , o u T [ B ~ ]  

~ R ~ , I N [ B ~ ~  

fR8 ,IN[R?I 

fR8 , O U T [ B ~ ]  

rest of the transfer functions can be computed in a similar manner. The actual 
transfer functions computed are shown in Fig. 9.63. 

The symbolic map at the entry of the program is simply rn,,,. We use the 
top-down pass to compute the symbolic map to the entry to successively nested 
regions until we find all the symbolic maps for every basic block. We start by 
computing the data-flow values for block B1 in region R8: 

Descending down to regions R7 and Rs, we get 

f (m) ( a )  
m(a) 
m(a) 

m(a) 
m(a) + 1 
m(a) + 
m(a) f - l 
m(a) + 

m(a) 
0 
loo 

Finally, in region Rs, we get 

Not surprisingly, these equations produce the results we showed in Fig. 9.58. 

f (4 (b)  
db) 
4) 

4 4  
lOm(a) + 10 

+ lo  
NAA 

+ lei 

m ( b )  
m(b) 
1000 

Example 9.58 shows a simple program where every variable used in the 
symbolic map has an affine expression. We use Example 9.65 to illustrate why 
and how we introduce reference variables in Algorithm 9.63. 

f (m) (c> 
m(c) + j - 1 
m(c)+j  

(c)  
0 
lo  
N A A 

lo  

(4 
m(c) 
10 

f (m) (4 
NAA 

m(b)+m(c)+ 
j - 1  

(4 
m(d) 
10m(a) + 9 
NAA 

lOm(a)+ 
1Oi + 9 

m(d) 
m(d) 
1009 



9.8. SYMBOLIC ANALYSIS 

1) f o r  ( i  = 1 ;  i < n;  i++) ( 

2 ) a = i n p u t 0 ;  
3 f o r  ( j  = 1 ;  j < 10; j++) ( 

4) a = a - I ;  
5 > b = j + a ;  
6 ) a = a +  1 ;  

3 
1 

(a) A loop where a fluctuates. 

f o r  ( i  = 1 ;  i < n;  i++) ( 

(b) A reference variable t makes b an induction variable. 

Figure 9.64: The need to introduce reference variables 

Example 9.65 : Consider the simple example in Fig. 9.64(a). Let f j  be the 
transfer function summarizing the effect of executing j iterations of the inner 
loop. Even though the value of a may fluctuate during the execution of the 
loop, we see that b is an induction variable based on the value of a on entry of 
the loop; that is, f j  (m) (b) = m(a) - 1 + j . Because a is assigned an input value, 
the symbolic map upon entry to the inner loop maps a to NAA. We introduce 
a new reference variable t to save the value of a upon entry, and perform the 
substitutions as in Fig. 9.64(b). 

9.8.4 Exercises for Section 9.8 

Exercise 9.8.1 : For the flow graph of Fig. 9.10 (see the exercises for Section 
9.1), give the transfer functions for 

a) Block B2. 

b) Block B4 

c) Block B5. 



700 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

Exercise 9.8.2 : Consider the inner loop of Fig. 9.10, consisting of blocks B3 
and B4. If i represents the number of times around the loop, and f is the 
transfer function for the loop body (i.e., excluding the edge from B4 to B3) 
from the entry of the loop (i.e., the beginning of B3) to  the exit from B4, then 
what is fV Remember that f takes as argument a map m,  and m assigns a 
value to  each of variables a ,  b, d, and e. We denote these values m(a), and so 
on, although we do not know their values. 

! Exercise 9.8.3 : Now consider the outer loop of Fig. 9.10, consisting of blocks 
B2, B3, B4, and B5. Let g be the transfer function for the loop body, from the 
entry of the loop at B2 to its exit at  B5. Let i measure the number of iterations 
of the inner loop of B3 and B4 (which count of iterations we cannot know), and 
let j measure the number of iterations of the outer loop (which we also cannot 
know). What is gj?  

9.9 Summary of Chapter 9 

+ Global Common  Subexpressions: An important optimization is finding 
computations of the same expression in two different basic blocks. If one 
precedes the other, we can store the result the first time it is computed 
and use the stored result on subsequent occurrences. 

O Copy Propagation: A copy statement, u = u, assigns one variable u to  
another, u. In some circumstances, we can replace all uses of u by u, thus 
eliminating both the assignment and u. 

O Code Motion: Another optimization is to  move a computation outside the 
loop in which it appears. This change is only correct if the computation 
produces the same value each time around the loop. 

+ Induction Variables: Many loops have induction variables, variables that 
take on a linear sequence of values each time around the loop. Some of 
these are used only to  count iterations, and they often can be eliminated, 
thus reducing the time it takes to go around the loop. 

+ Data-Flow Analysis: A data-flow analysis schema defines a value at each 
point in the program. Statements of the program have associated transfer 
functions that relate the value before the statement to  the value after. 
Statements with more than one predecessor must have their value defined 
by combining the values a t  the predecessors, using a meet (or confluence) 
operator. 

+ Data-Flow Analysis on  Basic Blocks: Because the propagation of data- 
flow values within a block is usually quite simple, data-flow equations 
are generally set up to  have two variables for each block, called IN and 
OUT, that represent the data-flow values at the beginning and end of the 



9,9. SUMMARY OF CHAPTER 9 70 1 

block, respectively. The transfer functions for the statements in a block 
are composed to get the transfer function for the block as a whole. 

+ Reaching Definitions: The reaching-definitions data-flow framework has 
values that are sets of statements in the program that define values for 
one or more variables. The transfer function for a block kills definitions 
of variables that are definitely redefined in the block and adds ("gener- 
ates") in those definitions of variables that occur within the block. The 
confluence operator is union, since definitions reach a point if they reach 
any predecessor of that point. 

+ Live Variables: Another important data-flow framework computes the 
variables that are live (will be used before redefinition) at each point. 
The framework is similar to reaching definitions, except that the transfer 
function runs backward. A variable is live at  the beginning of a block if 
it is either used before definition in the block or is live at the end of the 
block and not redefined in the block. 

+ Available Expressions: To discover global common subexpressions, we 
determine the available expressions at each point - expressions that have 
been computed and neither of the expression's arguments were redefined 
after the last computation. The data-flow framework is similar to reaching 
definitions, but the confluence operator is intersection rather than union. 

+ Abstraction of Data-Flow Problems: Common data-flow problems, such 
as those already mentioned, can be expressed in a common mathematical 
structure. The values are members of a semilattice, whose meet is the 
confluence operator. Transfer functions map lattice elements to lattice 
elements. The set of allowed transfer functions must be closed under 
composition and include the identity function. 

+ Monotone Frameworks: A semilattice has a 5 relation defined by a 5 b 
if and only if a A b = a. Monotone frameworks have the property that 
each transfer function preserves the 5 relationship; that is, a 5 b implies 
f (a) 5 f (b ) ,  for all lattice elements a and b and transfer function f .  

+ Distributive Frameworks: These frameworks satisfy the condition that 
f ( a ~  b) = f (a) A f (b), for all lattice elements a and b and transfer function 
f . It can be shown that the distributive condition implies the monotone 
condition. 

+ Iterative Solution to  Abstract Frameworks: All monotone data-flow frame- 
works can be solved by an iterative algorithm, in which the IN and 
OUT values for each block are initialized appropriately (depending on 
the framework), and new values for these variables are repeatedly com- 
puted by applying the transfer and confluence operations. This solution 
is always safe (optimizations that it suggests will not change what the 



CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

program does), but the solution is certain to be the best possible only if 
the framework is distributive. 

+ The Constant Propagation Framework: While the basic frameworks such 
as reaching definitions are distributive, there are interesting monotone- 
but-not-distributive frameworks as well. One involves propagating con- 
stants by using a semilattice whose elements are mappings from the pro- 
gram variables to constants, plus two special values that represent "no 
information" and "definitely not a constant ." 

+ Partial-Redundancy Elimination: Many useful optimizations, such as code 
motion and global common-subexpression elimination, can be generalized 
to a single problem called partial-redundancy elimination. Expressions 
that are needed, but are available along only some of the paths to a 
point, are computed only along the paths where they are not available. 
The correct application of this idea requires the solution to a sequence of 
four different data-flow problems plus other operations. 

+ Dominators: A node in a flow graph dominates another if every path to 
the latter must go through the former. A proper dominator is a dominator 
other than the node itself. Each node except the entry node has an imme- 
diate dominator - that one of its proper dominators that is dominated 
by all the other proper dominators. 

+ Depth-First Ordering of Flow Graphs: If we perform a depth-first search 
of a flow graph, starting at its entry, we produce a depth-first spanning 
tree. The depth-first order of the nodes is the reverse of a postorder 
traversal of this tree. 

+ Classification of Edges: When we construct a depth-first spanning tree, 
all the edges of the flow graph can be divided into three groups: advanc- 
ing edges (those that go from ancestor to proper descendant), retreating 
edges (those from descendant to ancestor) and cross edges (others). An 
important property is that all the cross edges go from right to left in the 
tree. Another important property is that of these edges, only the retreat- 
ing edges have a head lower than its tail in the depth-first order (reverse 
postorder). 

+ Back Edges: A back edge is one whose head dominates its tail. Every 
back edge is a retreating edge, regardless of which depth-first spanning 
tree for its flow graph is chosen. 

+ Reducible Flow Graphs: If every retreating edge is a back edge, regardless 
of which depth-first spanning tree is chosen, then the flow graph is said to 
be reducible. The vast majority of flow graphs are reducible; those whose 
only control-flow statements are the usual loop-forming and branching 
statements are certainly reducible. 



9.10. REFERENCES FOR CHAPTER 9 703 

+ Natural Loops: A natural loop is a set of nodes with a header node that 
dominates all the nodes in the set and has at  least one back edge entering 
that node. Given any back edge, we can construct its natural loop by 
taking the head of the edge plus all nodes that can reach the tail of the 
edge without going through the head. Two natural loops with different 
headers are either disjoint or one is completely contained in the other; 
this fact lets us talk about a hierarchy of nested loops, as long as "loops" 
are taken to be natural loops. 

+ Depth-First Order Makes the Iterative Algorithm Eficient:  The iterative 
algorithm requires few passes, as long as propagation of information along 
acyclic paths is sufficient; i.e., cycles add nothing. If we visit nodes in 
depth-first order, any data-flow framework that propagates information 
forward, e.g., reaching definitions, will converge in no more than 2 plus 
the largest number of retreating edges on any acyclic path. The same 
holds for backward-propagating frameworks, like live variables, if we visit 
in the reverse of depth-first order (i.e., in postorder). 

+ Regions: Regions are sets of nodes and edges with a header h that domi- 
nates all nodes in the region. The predecessors of any node other than h 
in the region must also be in the region. The edges of the region are all 
that go between nodes of the region, with the possible exception of some 
or all that enter the header. 

+ Regions and Reducible Flow Graphs: Reducible flow graphs can be parsed 
into a hierarchy of regions. These regions are either loop regions, which 
include all the edges into the header, or body regions that have no edges 
into the header. 

+ Region-Based Data-Flow Analysis: An alternative to the iterative ap- 
proach to data-flow analysis is to work up and down the region hierarchy, 
computing transfer functions from the header of each region to each node 
in that region. 

+ Region-Based Induction Variable Detection: An important application of 
region-based analysis is in a data-flow framework that tries to compute 
formulas for each variable in a loop region whose value is an affine (linear) 
function of the number of times around the loop. 

9.10 References for Chapter 9 

Two early compilers that did extensive code optimization are Alpha [7] and 
Fortran H [16]. The fundamental treatise on techniques for loop optimization 
(e.g., code motion) is [I], although earlier versions of some of these ideas appear 
in [8]. An informally distributed book [4] was influential in disseminating code- 
optimization ideas. 



704 CHAPTER 9. MACHINE-INDEPENDENT OPTIMIZATIONS 

The first description of the iterative algorithm for data-flow analysis is from 
the unpublished technical report of Vyssotsky and Wegner [20]. The scientific 
study of data-flow analysis is said to begin with a pair of papers by Allen [2] 
and Cocke [3]. 

The lattice-theoretic abstraction described here is based on the work of Kil- 
dall [13]. These frameworks assumed distributivity, which many frameworks do 
not satisfy. After a number of such frameworks came to light, the monotonicity 
condition was embedded in the model by [5] and [Ill. 

Partial-redundancy elimination was pioneered by [17]. The lazy-code-mo- 
tion algorithm described in this chapter is based on [14] 

Dominators were first used in the compiler described in [13]. However, the 
idea dates back to [18]. 

The notion of reducible flow graphs comes from [2]. The structure of these 
flow graphs, as presented here, is from [9] and [lo]. [12] and [15] first connected 
reducibility of flow graphs to the common nested control-flow structures, which 
explains why this class of flow graphs is so common. 

The definition of reducibility by TI-T2 reduction, as used in region-based 
analysis, is from [19]. The region-based approach was first used in a compiler 
described in [2 11. 

The static single-assignment (SSA) form of intermediate representation in- 
troduced in Section 6.1 incorporates both data flow and control flow into its 
representation. SSA facilitates the implementation of many optimizing trans- 
formations from a common framework [6]. 

1. Allen, F. E., "Program optimization," Annual Review in Automatic Pro- 
gramming 5 (1969), pp. 239-307. 

2. Allen, F. E., "Control flow analysis," ACM Sigplan Notices 5:7 (1970), 
pp. 1-19. 

3. Cocke, J., "Global common subexpression elimination," A CM SIGPLAN 
Notices 5:7 (1970), pp. 20-24. 

4. Cocke, J .  and J. T. Schwartz, Programming Languages and Their Com- 
pilers: Preliminary Notes, Courant Institute of Mathematical Sciences, 
New York Univ., New York, 1970. 

5. Cousot, P. and R. Cousot, "Abstract interpretation: a unified lattice 
model for static analysis of programs by construction or approximation of 
fixpoints," Fourth ACM Symposium on Principles of Programming Lan- 
guages (1977), pp. 238-252. 

6. Cytron, R., J .  Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, 
"Efficiently computing static single assignment form and the control de- 
pendence graph," A CM Transactions on Programming Languages and 
Systems 13:4 (1991), pp. 451-490. 



9.10. REFERENCES FOR CHAPTER 9 705 

7. Ershov, A. P., "Alpha - an automatic programming system of high effi- 
ciency," J. ACM 13:l (1966), pp. 17-24. 

8. Gear, C. W., "High speed compilation of efficient object code," Comm. 
ACM 8:8 (1965), pp. 483-488. 

9. Hecht, M. S. and J .  D. Ullman, "Flow graph reducibility," SIAM J. Com- 
puting 1 (1972), pp. 188-202. 

10. Hecht, M. S. and J .  D. Ullman, "Characterizations of reducible flow 
graphs," J. ACM 2 1  (1974), pp. 367-375. 

11. Kam, J .  B. and J .  D. Ullman, "Monotone data flow analysis frameworks," 
Acta Inforrnatica 7:3 (1977), pp. 305-318. 

12. Kasami, T., W. W. Peterson, and N. Tokura, "On the capabilities of while, 
repeat, and exit statements," Comm. ACM 16:8 (1973), pp. 503-512. 

13. Kildall, G., "A unified approach to global program optimization," A CM 
Symposium on Principles of Programming Languages (1973), pp. 194-206. 

14. Knoop, J., "Lazy code motion," Proc. ACM SIGPLAN 1992 conference 
on Programming Language Design and Implementation, pp. 224-234. 

15. Kosaraju, S. R., "Analysis of structured programs," J. Computer and 
System Sciences 9:3 (1974), pp. 232-255. 

16. Lowry, E. S. and C. W. Medlock, "Object code optimization," Comm. 
ACM 12:l (1969), pp. 13-22. 

17. Morel, E. and C. Renvoise, "Global optimization by suppression of partial 
redundancies," Comm. ACM 22 (1979), pp. 96-103. 

18. Prosser, R. T., "Application of boolean matrices to the analysis of flow 
diagrams," AFIPS Eastern Joint Computer Conference (1959), Spartan 
Books, Baltimore MD, pp. 133-138. 

19. Ullman, J .  D., "Fast algorithms for the elimination of common subexpres- 
sions," Acta Inforrnatica 2 (1973), pp. 191-213. 

20. Vyssotsky, V. and P. Wegner, "A graph theoretical Fortran source lan- 
guage analyzer," unpublished technical report, Bell Laboratories, Murray 
Hill NJ,  1963. 

21. Wulf, W. A., R. K. Johnson, C. B. Weinstock, S. 0. Hobbs, and C. M. 
Geschke, The Design of an Optimizing Compiler, Elsevier, New York, 
1975. 





Chapter 10 

Instruct ion-Level 
Parallelism 

Every modern high-performance processor can execute several operations in a 
single clock cycle. The "billion-dollar question" is how fast can a program be 
run on a processor with instruction-level parallelism? The answer depends on: 

1. The potential parallelism in the program. 

2. The available parallelism on the processor. 

3. Our ability to extract parallelism from the original sequential program. 

4. Our ability to find the best parallel schedule given scheduling constraints. 

If all the operations in a program are highly dependent upon one another, 
then no amount of hardware or parallelization techniques can make the program 
run fast in parallel. There has been a lot of research on understanding the 
limits of parallelization. Typical nonnumeric applications have many inherent 
dependences. For example, these programs have many data-dependent branches 
that make it hard even to predict which instructions are to be executed, let alone 
decide which operations can be executed in parallel. Therefore, work in this area 
has focused on relaxing the scheduling constraints, including the introduction 
of new architectural features, rather than the scheduling techniques themselves. 

Numeric applications, such as scientific computing and signal processing, 
tend to have more parallelism. These applications deal with large aggregate 
data structures; operations on distinct elements of the structure are often inde- 
pendent of one another and can be executed in parallel. Additional hardware 
resources can take advantage of such parallelism and are provided in high- 
performance, general-purpose machines and digital signal processors. These 
programs tend to have simple control structures and regular data-access pat- 
terns, and static techniques have been developed to extract the available paral- 
lelism from these programs. Code scheduling for such applications is interesting 



CHAPTER 10. INSTRUCTION-LE VEL PARALLELISM 

and significant, as they offer a large number of independent operations to be 
mapped onto a large number of resources. 

Both parallelism extraction and scheduling for parallel execution can be 
performed either statically in software, or dynamically in hardware. In fact, 
even machines with hardware scheduling can be aided by software scheduling. 
This chapter starts by explaining the fundamental issues in using instruction- 
level parallelism, which is the same regardless of whether the parallelism is 
managed by software or hardware. We then motivate the basic data-dependence 
analyses needed for the extraction of parallelism. These analyses are useful for 
many optimizations other than instruction-level parallelism as we shall see in 
Chapter 11. 

Finally, we present the basic ideas in code scheduling. We describe a tech- 
nique for scheduling basic blocks, a method for handling highly data-dependent 
control flow found in general-purpose programs, and finally a technique called 
software pipelining that is used primarily for scheduling numeric programs. 

0 . 1  Processor Architectures 

When we think of instruction-level parallelism, we usually imagine a processor 
issuing several operations in a single clock cycle. In fact, it is possible for 
a machine to issue just one operation per clock1 and yet achieve instruction- 
level parallelism using the concept of pipelining. In the following, we shall first 
explain pipelining then discuss multiple-instruction issue. 

10.1.1 Instruction Pipelines and Branch Delays 

Practically every processor, be it a high-performance supercomputer or a stan- 
dard machine, uses an ins truct ion pipeline. With an instruction pipeline, a 
new instruction can be fetched every clock while preceding instructions are still 
going through the pipeline. Shown in Fig. 10.1 is a simple 5-stage instruction 
pipeline: it first fetches the instruction (IF), decodes it (ID), executes the op- 
eration (EX), accesses the memory (MEM), and writes back the result (WB). 
The figure shows how instructions i, i + 1, i + 2, i + 3, and i + 4 can execute at 
the same time. Each row corresponds to a clock tick, and each column in the 
figure specifies the stage each instruction occupies at each clock tick. 

If the result from an instruction is available by the time the succeeding in- 
struction needs the data, the processor can issue an instruction every clock. 
Branch instructions are especially problematic because until they are fetched, 
decoded and executed, the processor does not know which instruction will ex- 
ecute next. Many processors speculatively fetch and decode the immediately 
succeeding instructions in case a branch is not taken. When a branch is found 
to be taken, the instruction pipeline is emptied and the branch target is fetched. 

l ~ e  shall refer to a clock "tick" or clock cycle simply as a "clock," when the intent is 
clear. 



10.1. PROCESSOR ARCHITECTURES 

1. IF 
2. ID 
3. EX 
4. MEM 
5. WB 
6. 
7. 
8. 
9. 

IF 
ID IF 
EX ID IF 
MEM EX ID IF 
WB MEM EX ID 

WB MEM EX 
WB MEM 

WB 

Figure 10.1: Five consecutive instructions in a 5-stage instruction pipeline 

Thus, taken branches introduce a delay in the fetch of the branch target and 
introduce "hiccups" in the instruction pipeline. Advanced processors use hard- 
ware to  predict the outcomes of branches based on their execution history and 
to prefetch from the predicted target locations. Branch delays are nonetheless 
observed if branches are mispredicted. 

10.1.2 Pipelined Execution 

Some instructions take several clocks to execute. One common example is the 
memory-load operation. Even when a memory access hits in the cache, it usu- 
ally takes several clocks for the cache to return the data. We say that the 
execution of an instruction is pipelined if succeeding instructions not dependent 
on the result are allowed to proceed. Thus, even if a processor can issue only 
one operation per clock, several operations might be in their execution stages 
at the same time. If the deepest execution pipeline has n stages, potentially 
n operations can be '5n flight" at the same time. Note that not all instruc- 
tions are fully pipelined. While floating-point adds and multiplies often are 
fully pipelined, floating-point divides, being more complex and less frequently 
executed, often are not. 

Most general-purpose processors dynamically detect dependences between 
consecutive instructions and automatically stall the execution of instructions if 
their operands are not available. Some processors, especially those embedded 
in hand-held devices, leave the dependence checking to the software in order to 
keep the hardware simple and power consumption low. In this case, the compiler 
is responsible for inserting "no-op" instructions in the code if necessary to assure 
that the results are available when needed. 



710 CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

10.1.3 Multiple Instruction Issue 

By issuing several operations per clock, processors can keep even more opera- 
tions in flight. The largest number of operations that can be executed simul- 
taneously can be computed by multiplying the instruction issue width by the 
average number of stages in the execution pipeline. 

Like pipelining, parallelism on multiple-issue machines can be managed ei- 
ther by software or hardware. Machines that rely on software to manage their 
parallelism are known as VLIW (Very-Long-Instruction-Word) machines, while 
those that manage their parallelism with hardware are known as superscalar 

machines. VLIW machines, as their name implies, have wider than normal 
instruction words that encode the operations to be issued in a single clock. 
The compiler decides which operations are to be issued in parallel and encodes 
the information in the machine code explicitly. Superscalar machines, on the 
other hand, have a regular instruction set with an ordinary sequential-execution 
semantics. Superscalar machines automatically detect dependences among in- 
structions and issue them as their operands become available. Some processors 
include both VLIW and superscalar functionality. 

Simple hardware schedulers execute instructions in the order in which they 
are fetched. If a scheduler comes across a dependent instruction, it and all 
instructions that follow must wait until the dependences are resolved (i.e., the 
needed results are available). Such machines obviously can benefit from having 
a static scheduler that places independent operations next to each other in the 
order of execution. 

More sophisticated schedulers can execute instructions "out of order." Op- 
erations are independently stalled and not allowed to execute until all the values 
they depend on have been produced. Even these schedulers benefit from static 
scheduling, because hardware schedulers have only a limited space in which to 
buffer operations that must be stalled. Static scheduling can place independent 
operations close together to allow better hardware utilization. More impor- 
tantly, regardless how sophisticated a dynamic scheduler is, it cannot execute 
instructions it has not fetched. When the processor has to take an unexpected 
branch, it can only find parallelism among the newly fetched instructions. The 
compiler can enhance the performance of the dynamic scheduler by ensuring 
that these newly fetched instructions can execute in parallel. 

10.2 Code-Scheduling Constraints 

Code scheduling is a form of program optimization that applies to the machine 
code that is produced by the code generator. Code scheduling is subject to 
three kinds of constraints: 

1. Control-dependence constraints.  All the operations executed in the origi- 
nal program must be executed in the optimized one. 



CODE-SCHED ULING CONSTRAINTS 

2. Data-dependence constraints. The operations in the optimized program 
must produce the same results as the corresponding ones in the original 
program. 

3. Resource constraints. The schedule must not oversubscribe the resources 
on the machine. 

These scheduling constraints guarantee that the optimized program pro- 
duces the same results as the original. However, because code scheduling 
changes the order in which the operations execute, the state of the memory 
at any one point may not match any of the memory states in a sequential ex- 
ecution. This situation is a problem if a program's execution is interrupted 
by, for example, a thrown exception or a user-inserted breakpoint. Optimized 
programs are therefore harder to debug. Note that this problem is not specific 
to code scheduling but applies to all other optimizations, including partial- 
redundancy elimination (Section 9.5) and register allocation (Section 8.8). 

10.2.1 Data Dependence 

It is easy to see that if we change the execution order of two operations that do 
not touch any of the same variables, we cannot possibly affect their results. In 
fact, even if these two operations read the same variable, we can still permute 
their execution. Only if an operation writes to a variable read or written by 
another can changing their execution order alter their results. Such pairs of 
operations are said to share a data dependence, and their relative execution 
order must be preserved. There are three flavors of data dependence: 

1. True dependence: read after write. If a write is followed by a read of the 
same location, the read depends on the value written; such a dependence 
is known as a true dependence. 

Antidependence: write after read. If a read is followed by a write to the 
same location, we say that there is an antidependence from the read to 
the write. The write does not depend on the read per se, but if the write 
happens before the read, then the read operation will pick up the wrong 
value. Antidependence is a byprod~ict of imperative programming, where 
the same memory locations are used to store different values. It is not a 
"true" dependence and potentially can be eliminated by storing the values 
in different locations. 

3. Output dependence: write after write. Two writes to the same location 
share an output dependence. If the dependence is violated, the value of the 
memory location written will have the wrong value after both operations 
are performed. 

Antidependence and output dependences are referred to as storage-related de- 
pendences. These are not "true7' dependences and can be eliminated by using 



CHAPTER 10. INSTRUCTION-LE VEL PARALLELISM 

different locations to store different values. Note that data dependences apply 
to both memory accesses and register accesses. 

10.2.2 Finding Dependences Among Memory Accesses 

To check if two memory accesses share a data dependence, we only need to tell 
if they can refer to the same location; we do not need to know which location is 
being accessed. For example, we can tell that the two accesses *p and (*p)+4 
cannot refer to the same location, even though we may not know what p points 
to. Data dependence is generally undecidable at compile time. The compiler 
must assume that operations may refer to the same location unless it can prove 
otherwise. 

Example 10.1 : Given the code sequence 

unless the compiler knows that p cannot possibly point to a, it must conclude 
that the three operations need to execute serially. There is an output depen- 
dence flowing from statement (I)  to statement (2), and there are two true 
dependences flowing from statements (I) and (2) to statement (3). 

Data-dependence analysis is highly sensitive to the programming language 
used in the program. For type-unsafe languages like C and C++, where a 
pointer can be cast to point to any kind of object, sophisticated analysis is 
necessary to prove independence between any pair of pointer-based memory ac- 
cesses. Even local or global scalar variables can be accessed indirectly unless we 
can prove that their addresses have not been stored anywhere by any instruc- 
tion in the program. In type-safe languages like Java, objects of different types 
are necessarily distinct from each other. Similarly, local primitive variables on 
the stack cannot be aliased with accesses through other names. 

A correct discovery of data dependences requires a number of different forms 
of analysis. We shall focus on the major questions that must be resolved if the 
compiler is to detect all the dependences that exist in a program, and how to 
use this information in code scheduling. Later chapters show how these analyses 
are performed. 

Array Data-Dependence Analysis 

Array data dependence is the problem of disambiguating between the values of 
indexes in array-element accesses. For example, the loop 

for ( i  = 0 ;  i < n ;  i++) 
A [2*il = A [2*i+1] ; 



10.2. CODE-SCHED ULING CONSTRAINTS 

copies odd elements in the array A to the even elements just preceding them. 
Because all the read and written locations in the loop are distinct from each 
other, there are no dependences between the accesses, and all the iterations in 
the loop can execute in parallel. Array data-dependence analysis, often referred 
to  simply as data-dependence analysis, is very important for the optimization 
of numerical applications. This topic will be discussed in detail in Section 11.6. 

Pointer- Alias Analysis 

We say that two pointers are aliased if they can refer to  the same object. 
Pointer-alias analysis is difficult because there are many potentially aliased 
pointers in a program, and they can each point to  an unbounded number of 
dynamic objects over time. To get any precision, pointer-alias analysis must be 
applied across all the functions in a program. This topic is discussed starting 
in Section 12.4. 

Int erprocedural Analysis 

For languages that pass parameters by reference, interprocedural analysis is 
needed to determine if the same variable is passed as two or more different 
arguments. Such aliases can create dependences between seemingly distinct 
parameters. Similarly, global variables can be used as parameters and thus 
create dependences between parameter accesses and global variable accesses. 
Interprocedural analysis, discussed in Chapter 12, is necessary t o  determine 
these aliases. 

10.2.3 Tradeoff Between Register Usage and Parallelism 

In this chapter we shall assume that the machine-independent intermediate rep- 
resentation of the source program uses an unbounded number of pseudoregisters 
to represent variables that can be allocated to  registers. These variables include 
scalar variables in the source program that cannot be referred to by any other 
names, as well as temporary variables that are generated by the compiler to  
hold the partial results in expressions. Unlike memory locations, registers are 
uniquely named. Thus precise data-dependence constraints can be generated 
for register accesses easily. 

The unbounded number of pseudoregisters used in the intermediate repre- 
sentation must eventually be mapped to the small number of physical registers 
available on the target machine. Mapping several pseudoregisters to  the same 
physical register has the unfortunate side effect of creating artificial storage 
dependences that constrain instruction-level parallelism. Conversely, executing 
instructions in parallel creates the need for more storage to  hold the values being 
computed simultaneously. Thus, the goal of minimizing the number of registers 
used conflicts directly with the goal of maximizing instruction-level parallelism. 
Examples 10.2 and 10.3 below illustrate this classic trade-off between storage 
and parallelism. 



CHAPTER 10. INSTRUCTION-LE VEL PARALLELISM 

Hardware Register Renaming 

Instruction-level parallelism was first used in computer architectures as a 
means to speed up ordinary sequential machine code. Compilers at  the 
time were not aware of the instruction-level parallelism in the machine and 
were designed to optimize the use of registers. They deliberately reordered 
instructions to minimize the number of registers used, and as a result, also 
minimized the amount of parallelism available. Example 10.3 illustrates 
how minimizing register usage in the computation of expression trees also 
limits its parallelism. 

There was so little parallelism left in the sequential code that com- 
puter architects invented the concept of hardware register renaming to 
undo the effects of register optimization in compilers. Hardware register 
renaming dynamically changes the assignment of registers as the program 
runs. It interprets the machine code, stores values intended for the same 
register in different internal registers, and updates all their uses to refer 
to the right registers accordingly. 

Since the artificial register-dependence constraints were introduced 
by the compiler in the first place, they can be eliminated by using a 
register-allocation algorithm that is cognizant of instruction-level paral- 
lelism. Hardware register renaming is still useful in the case when a ma- 
chine's instruction set can only refer to a small number of registers. This 
capability allows an implementation of the architecture to map the small 
number of architectural registers in the code to a much larger number of 
internal registers dynamically. 

Example 10.2 : The code below copies the values of variables in locations a 
and c to variables in locations b and d, respectively, using pseudoregisters t1 
and t2 .  

LD t l ,  a // t l  = a 
ST b ,  t l  // b = t1 
LD t 2 ,  c // t 2  = c 
S T d , t 2  / / d  = t 2  

If all the memory locations accessed are known to be distinct from each other, 
then the copies can proceed in parallel. However, if t l  and t 2  are assigned the 
same register so as to minimize the number of registers used, the copies are 
necessarily serialized. 

Example 10.3 : Traditional register-allocation techniques aim to minimize 
the number of registers used when performing a computation. Consider the 
expression 



10.2. CODE-SCHED ULING CONSTRAINTS 

Figure 10.2: Expression tree in Example 10.3 

shown as a syntax tree in Fig. 10.2. It is possible to perform this computation 
using three registers, as illustrated by the machine code in Fig. 10.3. 

LD r l ,  a // r l  = a 
LD r 2 ,  b / /  r 2  = b 
ADD r1, r l ,  r 2  / /  rl = r l + r 2  
LD r 2 ,  c / /  r 2  = c 
ADD r l ,  r l ,  r 2  // r l  = r l + r 2  
LD r 2 ,  d // r 2  = d 
LD r 3 ,  e / /  r 3  = e 
ADD r 2 ,  r 2 ,  r 3  // r 2  = r 2 + r 3  
ADD r1, r1, r 2  / /  r1 = r l + r 2  

Figure 10.3: Machine code for expression of Fig. 10.2 

The reuse of registers, however, serializes the computation. The only oper- 
ations allowed to execute in parallel are the loads of the values in locations a 
and b, and the loads of the values in locations d and e. It thus takes a total of 
7 steps to complete the computation in parallel. 

Had we used different registers for every partial sum, the expression could 
be evaluated in 4 steps, which is the height of the expression tree in Fig. 10.2. 
The parallel computation is suggested by Fig. 10.4. 

Figure 10.4: Parallel evaluation of the expression of Fig. 10.2 



716 CHAPTER 10. INSTRUCTION-LE VEL PARALLELISM 

10.2.4 Phase Ordering Between Register Allocation and 
Code Scheduling 

If registers are allocated before scheduling, the resulting code tends to have 
many storage dependences that limit code scheduling. On the other hand, if 
code is scheduled before register allocation, the schedule created may require 
so many registers that register spzllzng (storing the contents of a register in 
a memory location, so the register can be used for some other purpose) may 
negate the advantages of instruction-level parallelism. Should a compiler allo- 
cate registers first before it schedules the code? Or should it be the other way 
round? Or, do we need to address these two problems at the same time? 

To answer the questions above, we must consider the characteristics of the 
programs being compiled. Many nonnumeric applications do not have that 
much available parallelism. It suffices to dedicate a small number of registers 
for holding temporary results in expressions. We can first apply a coloring 
algorithm, as in Section 8.8.4, to allocate registers for all the nontemporary 
variables, then schedule the code, and finally assign registers to the temporary 
variables. 

This approach does not work for numeric applications where there are many 
more large expressions. We can use a hierarchical approach where code is op- 
timized inside out, starting with the innermost loops. Instructions are first 
scheduled assuming that every pseudoregister will be allocated its own physical 
register. Register allocation is applied after scheduling and spill code is added 
where necessary, and the code is then rescheduled. This process is repeated for 
the code in the outer loops. When several inner loops are considered together 
in a common outer loop, the same variable may have been assigned different 
registers. We can change the register assignment to avoid having to copy the 
values from one register to another. In Section 10.5, we shall discuss the in- 
teraction between register allocation and scheduling further in the context of a 
specific scheduling algorithm. 

10.2.5 Control Dependence 

Scheduling operations within a basic block is relatively easy because all the 
instructions are guaranteed to execute once control flow reaches the beginning 
of the block. Instructions in a basic block can be reordered arbitrarily, as long as 
all the data dependences are satisfied. Unfortunately, basic blocks, especially in 
nonnumeric programs, are typically very small; on average, there are only about 
five instructions in a basic block. In addition, operations in the same block are 
often highly related and thus have little parallelism. Exploiting parallelism 
across basic blocks is therefore crucial. 

An optimized program must execute all the operations in the original pro- 
gram. It can execute more instructions than the original, as long as the extra 
instructions do not change what the program does. Why would executing extra 
instructions speed up a program's execution? If we know that an instruction 



20.2. CODE-SCHEDULING CONSTRAINTS 71 7 

is likely to be executed, and an idle resource is available to  perform the opera- 
tion "for free," we can execute the instruction speculatively. The program runs 
faster when the speculation turns out to  be correct. 

An instruction il is said to  be control-dependent on instruction i z  if the 
outcome of i2 determines whether il is to  be executed. The notion of control 
dependence corresponds to  the concept of nesting levels in block-structured 
programs. Specifically, in the if-else statement 

if (c)  s l ;  e l s e  s2 ;  

sl and s2  are control dependent on c. Similarly, in the while-statement 

while (c)  s ;  

the body s is control dependent on c. 

Example 10.4 : In the code fragment 

the statements b = a*a and d = a+c have no data dependence with any other 
part of the fragment. The statement b = a*a depends on the comparison a > t .  
The statement d = a+c, however, does not depend on the comparison and can 
be executed any time. Assuming that the multiplication a * a does not cause 
any side effects, it can be performed speculatively, as long as b is written only 
after a is found to be greater than t.  

10.2.6 Speculative Execution Support 

Memory loads are one type of instruction that can benefit greatly from specula- 
tive execution. Memory loads are quite common, of course. They have relatively 
long execution latencies, addresses used in the loads are commonly available in 
advance, and the result can be stored in a new temporary variable without 
destroying the value of any other variable. Unfortunately, memory loads can 
raise exceptions if their addresses are illegal, so speculatively accessing illegal 
addresses may cause a correct program to halt unexpectedly. Besides, mispre- 
dicted memory loads can cause extra cache misses and page faults, which are 
extremely costly. 

Example 10.5 : In the fragment 

if (p != n u l l )  
q = *p; 

dereferencing p speculatively will cause this correct program to halt in error if 
p i s n u l l .  El 

Many high-performance processors provide special features to  support spec- 
ulative memory accesses. We mention the most important ones next. 



CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

Prefet ching 

The prefetch instruction was invented to bring data from memory to the cache 
before it is used. A prefetch instruction indicates to the processor that the 
program is likely to use a particular memory word in the near future. If the 
location specified is invalid or if accessing it causes a page fault, the processor 
can simply ignore the operation. Otherwise, the processor will bring the data 
from memory to the cache if it is not already there. 

Poison Bits 

Another architectural feature called poison bits was invented to allow specu- 
lative load of data from memory into the register file. Each register on the 
machine is augmented with a poison bit. If illegal memory is accessed or the 
accessed page is not in memory, the processor does not raise the exception im- 
mediately but instead just sets the poison bit of the destination register. An 
exception is raised only if the contents of the register with a marked poison bit 
are used. 

Predicated Execution 

Because branches are expensive, and mispredicted branches are even more so 
(see Section 10.1), predicated instructions were invented to reduce the number 
of branches in a program. A predicated instruction is like a normal instruction 
but has an extra predicate operand to guard its execution; the instruction is 
executed only if the predicate is found to be true. 

As an example, a conditional move instruction CMOVZ R2 ,R3, R 1  has the 
semantics that the contents of register R3 are moved to register R2 only if 
register R l  is zero. Code such as 

can be implemented with two machine instructions, assuming that a ,  b, c,  and 
d are allocated to registers Rl, R2, R4, R5, respectively, as follows: 

ADD R3, R4, R5 
CMOVZ R2, R3, R l  

This conversion replaces a series of instructions sharing a control dependence 
with instructions sharing only data dependences. These instructions can then 
be combined with adjacent basic blocks to create a larger basic block. More 
importantly, with this code, the processor does not have a chance to mispredict, 
thus guaranteeing that the instruction pipeline will run smoothly. 

Predicated execution does come with a cost. Predicated instructions are 
fetched and decoded, even though they may not be executed in the end. Static 
schedulers must reserve all the resources needed for their execution and ensure 



10.2. CODE-SCHEDULING CONSTRAINTS 

Dynamically Scheduled Machines 

The instruction set of a statically scheduled machine explicitly defines what 
can execute in parallel. However, recall from Section 10.1.2 that some ma- 
chine architectures allow the decision to be made at run time about what 
can be executed in parallel. With dynamic scheduling, the same machine 
code can be run on different members of the same family (machines that 
implement the same instruction set) that have varying amounts of parallel- 
execution support. In fact, machine-code compatibility is one of the major 
advantages of dynamically scheduled machines. 

Static schedulers, implemented in the compiler by software, can help 
dynamic schedulers (implemented in the machine's hardware) better utilize 
machine resources. To build a static scheduler for a dynamically sched- 
uled machine, we can use almost the same scheduling algorithm as for 
statically scheduled machines except that no-op instructions left in the 
schedule need not be generated explicitly. The matter is discussed further 
in Section 10.4.7. 

that all the potential data dependences are satisfied. Predicated execution 
should not be used aggressively unless the machine has many more resources 
than can possibly be used otherwise. 

10.2.7 A Basic Machine Model 

Many machines can be represented using the following simple model. A machine 
M = (R, T), consists of: 

1. A set of operation types T, such as loads, stores, arithmetic operations, 
and so on. 

2. A vector R = [r l ,  ra, . . . ]  representing hardware resources, where ri is the 
number of units available of the ith kind of resource. Examples of typical 
resource types include: memory access units, ALU's, and floating-point 
functional units. 

Each operation has a set of input operands, a set of output operands, and a 
resource requirement. Associated with each input operand is an input latency 
indicating when the input value must be available (relative to  the start of the 
operation). Typical input operands have zero latency, meaning that the values 
are needed immediately, at  the clock when the operation is issued. Similarly, 
associated with each output operand is an output latency, which indicates when 
the result is available, relative to the start of the operation. 

Resource usage for each machine operation type t is modeled by a two- 
dimensional resource-reservation table, RTt. The width of the table is the 



720 CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

number of kinds of resources in the machine, and its length is the duration 
over which resources are used by the operation. Entry RTt[i, j] is the number 
of units of the j th resource used by an operation of type t,  i clocks after it is 
issued. For notational simplicity, we assume RTt[i, j] = 0 if i refers to a nonex- 
istent entry in the table (i.e., i is greater than the number of clocks it takes 
to execute the operation). Of course, for any t,  i ,  and j, RTt [i, j] must be less 
than or equal to R[j] , the number of resources of type j that the machine has. 

Typical machine operations occupy only one unit of resource at  the time 
an operation is issued. Some operations may use more than one functional 
unit. For example, a multiply-and-add operation may use a multiplier in the 
first clock and an adder in the second. Some operations, such as a divide, may 
need to occupy a resource for several clocks. Fully pipelined operations are 
those that can be issued every clock, even though their results are not available 
until some number of clocks later. We need not model the resources of every 
stage of a pipeline explicitly; one single unit to represent the first stage will do. 
Any operation occupying the first stage of a pipeline is guaranteed the right to 
proceed to subsequent stages in subsequent clocks. 

Figure 10.5: A sequence of assignments exhibiting data dependences 

10.2.8 Exercises for Section 10.2 

Exercise 10.2.1 : The assignments in Fig. 10.5 have certain dependences. For 
each of the following pairs of statements, classify the dependence as (i) true de- 
pendence, (ii) antidependence, (iii) output dependence, or (iv) no dependence 
(i.e., the instructions can appear in either order): 

a) Statements (I) and (4). 

b) Statements (3) and (5). 

c) Statements (1) and (6). 

d) Statements (3) and (6). 

e) Statements (4) and (6). 

Exercise 10.2.2 : Evaluate the expression ((u+v) + (w + x)) + (y + t) exactly as 
parenthesized (i.e., do not use the commutative or associative laws to reorder the 



20.3. BASIC-BLOCK SCHEDULING 72 1 

additions). Give register-level machine code to  provide the maximum possible 
parallelism. 

Exercise 10.2.3 : Repeat Exercise 10.2.2 for the following expressions: 

b) (u + (v + w)) + (x + (y + z ) ) .  

If instead of maximizing the parallelism, we minimized the number of registers, 
how many steps would the computation take? How many steps do we save by 
using maximal parallelism? 

Exercise 10.2.4 : The expression of Exercise 10.2.2 can be executed by the 
sequence of instructions shown in Fig. 10.6. If we have as much parallelism as 
we need, how many steps are needed to execute the instructions? 

LD rl, u / /  rl = u 
LD r2, v / /  r2 = v 
ADD rl, rl, r2 // rl = rl + r2 
LD r2, w // r2 = w 
LD r3, x // r3 = x 
ADD r2, r2, r3 // r2 = r2 + r3 
ADD rl, rl, r2 // rl = rl + r2 
LD r2, y // r2 = y 
LD r3, z // r3 = z 
ADD r2, r2, r3 // r2 = r2 + r3 
ADD rl, rl, r2 // rl = r1 + r2 

Figure 10.6: Minimal-register implementation of an arithmetic expression 

! Exercise 10.2.5 : Translate the code fragment discussed in Example 10.4, 
using the CMOVZ conditional copy instruction of Section 10.2.6. What are the 
data dependences in your machine code? 

10.3 Basic-Block Scheduling 
We are now ready to start talking about code-scheduling algorithms. We start 
with the easiest problem: scheduling operations in a basic block consisting of 
machine instructions. Solving this problem optimally is NP-complete. But in 
practice, a typical basic block has only a small number of highly constrained 
operations, so simple scheduling techniques suffice. We shall introduce a simple 
but highly effective algorithm, called list scheduling, for this problem. 



722 CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

10.3.1 Data-Dependence Graphs 

We represent each basic block of machine instructions by a data-dependence 
graph, G = (N, E), having a set of nodes N representing the operations in the 
machine instructions in the block and a set of directed edges E representing 
the data-dependence constraints among the operations. The nodes and edges 
of G are constructed as follows: 

1. Each operation n in N has a resource-reservation table RT,, whose value 
is simply the resource-reservation table associated with the operation type 
of n. 

2. Each edge e in E is labeled with delay d, indicating that the destination 
node must be issued no earlier than d, clocks after the source node is 
issued. Suppose operation n l  is followed by operation n2, and the same 
location is accessed by both, with latencies l1 and 12 respectively. That 
is, the location's value is produced ll clocks after the first instruction 
begins, and the value is needed by the second instruction l2 clocks after 
that instruction begins (note ll = 1 and 12 = 0 is typical). Then, there is 
an edge n l  -+ nz in E labeled with delay ll - 12. 

Example 10.6 : Consider a simple machine that can execute two operations 
every clock. The first must be either a branch operation or an ALU operation 
of the form: 

OP d s t ,  s r c l ,  s r c2  

The second must be a load or store operation of the form: 

LD d s t  , addr 
ST addr ,  s r c  

The load operation (LD) is fully pipelined and takes two clocks. However, 
a load can be followed immediately by a store ST that writes to  the memory 
location read. All other operations complete in one clock. 

Shown in Fig. 10.7 is the dependence graph of an example of a basic block 
and its resources requirement. We might imagine that R 1  is a stack pointer, used 
to  access data on the stack with offsets such as 0 or 12. The first instruction 
loads register R2, and the value loaded is not available until two clocks later. 
This observation explains the label 2 on the edges from the first instruction to  
the second and fifth instructions, each of which needs the value of R2. Similarly, 
there is a delay of 2 on the edge from the third instruction to  the fourth; the 
value loaded into R3 is needed by the fourth instruction, and not available until 
two clocks after the third begins. 

Since we do not know how the values of R 1  and R7 relate, we have to  consider 
the possibility that an address like 8 (RI) is the same as the address 0 (R7). That 



10.3. BASIC-BLOCK SCHEDULING 

data 
dependences 

resource- 
reservation 

tables 

alu mem 

Figure 10.7: Data-dependence graph for Example 10.6 

is, the last instruction may be storing into the same address that the third 
instruction loads from. The machine model we are using allows us to  store into 
a location one clock after we load from that location, even though the value to  
be loaded will not appear in a register until one clock later. This observation 
explains the label 1 on the edge from the third instruction to  the last. The 
same reasoning explains the edges and labels from the first instruction to  the 
last. The other edges with label 1 are explained by a dependence or possible 
dependence conditioned on the value of R7. 

10.3.2 List Scheduling of Basic Blocks 

The simplest approach to scheduling basic blocks involves visiting each node of 
the data-dependence graph in "prioritized topological order." Since there can 
be no cycles in a data-dependence graph, there is always at least one topological 
order for the nodes. However, among the possible topological orders, some may 
be preferable to  others. We discuss in Section 10.3.3 some of the strategies for 



724 CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

Pictorial Resource-Reservation Tables 

It is frequently useful to  visualize a resource-reservation table for an oper- 
ation by a grid of solid and open squares. Each column corresponds to  one 
of the resources of the machine, and each row corresponds to  one of the 
clocks during which the operation executes. Assuming that the operation 
never needs more than one unit of any one resource, we may represent 1's 
by solid squares, and 0's by open squares. In addition, if the operation 
is fully pipelined, then we only need to indicate the resources used at the 
first row, and the resource-reservation table becomes a single row. 

This representation is used, for instance, in Example 10.6. In Fig. 10.7 
we see resource-reservation tables as rows. The two addition operations 
require the "alu" resource, while the loads and stores require the "mem" 
resource. 

picking a topological order, but for the moment, we just assume that there is 
some algorithm for picking a preferred order. 

The list-scheduling algorithm we shall describe next visits the nodes in the 
chosen prioritized topological order. The nodes may or may not wind up being 
scheduled in the same order as they are visited. But the instructions are placed 
in the schedule as early as possible, so there is a tendency for instructions to  
be scheduled in approximately the order visited. 

In more detail, the algorithm computes the earliest time slot in which each 
node can be executed, according to its data-dependence constraints with the 
previously scheduled nodes. Next, the resources needed by the node are checked 
against a resource-reservation table that collects all the resources committed so 
far. The node is scheduled in the earliest time slot that has sufficient resources. 

Algorithm 10.7 : List scheduling a basic block. 

INPUT: A machine-resource vector R = [rl , r2, . . . 1, where ri is the number 
of units available of the ith kind of resource, and a data-dependence graph 
G = (N, E). Each operation n in N is labeled with its resource-reservation 
table RT,; each edge e = nl -+ n2 in E is labeled with de indicating that nz 
must execute no earlier than de clocks after nl .  

OUTPUT: A schedule S that maps the operations in N into time slots in which 
the operations can be initiated satisfying all the data and resources constraints. 

METHOD: Execute the program in Fig. 10.8. A discussion of what the "prior- 
itized topological order" might be follows in Section 10.3.3. 



10.3. BASIC-BLOCK SCHEDULING 

R T  = an empty reservation table; 
for (each n in N in prioritized topological order) { 

s = maxe=,-+n in E(S(P) + d e ) ;  

/* Find the earliest time this instruction could begin, 
given when its predecessors started. */ 

while (there exists i such that RT[s + i] + RTn[i] > R) 
s = s + l ;  

/* Delay the instruction further until the needed 
resources are available. */ 

S(n)  = s ;  
for (all i) 

R T  [S + i] = R T  [S + i] + RTn [i] 

Figure 10.8: A list scheduling algorithm 

10.3.3 Prioritized Topological Orders 

List scheduling does not backtrack; it schedules each node once and only once. 
It uses a heuristic priority function to  choose among the nodes that are ready 
to be scheduled next. Here are some observations about possible prioritized 
orderings of the nodes: 

Without resource constraints, the shortest schedule is given by the critical 
path, the longest path through the data-dependence graph. A metric 
useful as a priority function is the height of the node, which is the length 
of a longest path in the graph originating from the node. 

On the other hand, if all operations are independent, then the length 
of the schedule is constrained by the resources available. The critical 
resource is the one with the largest ratio of uses to the number of units 
of that resource available. Operations using more critical resources may 
be given higher priority. 

Finally, we can use the source ordering to break ties between operations; 
the operation that shows up earlier in the source program should be sched- 
uled first. 

Example 10.8 : For the data-dependence graph in Fig. 10.7, the critical path, 
including the time to execute the last instruction, is 6 clocks. That is, the 
critical path is the last five nodes, from the load of R 3  to  the store of R7 .  The 
total of the delays on the edges along this path is 5, to  which we add 1 for the 
clock needed for the last instruction. 

Using the height as the priority function, Algorithm 10.7 finds an optimal 
schedule as shown in Fig. 10.9. Notice that we schedule the load of R 3  first, 
since it has the greatest height. The add of R 3  and R 4  has the resources to  be 



CHAPTER 20. INSTRUCTION-LEVEL PARALLELISM 

schedule 
resource- 

reservation 
table 

ADD R3,R3,R4 

ADD R3,R3,R2 

alu mem 

LD R3,8(R1) 

LD R2,O(R1) 

ST 4(Rl),R2 

ST 12(Rl),R3 

ST O(R7),R7 

Figure 10.9: Result of applying list scheduling to the example in Fig. 10.7 

scheduled at the second clock, but the delay of 2 for a load forces us to wait 
until the third clock to schedule this add. That is, we cannot be sure that R3 
will have its needed value until the beginning of clock 3. 

1) LD Ri, a LD Ri, a LD Ri, a 
2) LD R2, b LD R2, b LD R2, b 
3) SUB R3, Rl, R2 SUB Ri, Ri, R2 SUB R3, Rl, R2 
4) ADD R2, Rl, R2 ADD R2, Ri, R2 ADD R4, R1, R2 
5) ST a, R3 ST a, R1 ST a, R3 
6) ST b, R2 ST b, R2 ST b, R4 

Figure 10.10: Machine code for Exercise 10.3.1 

10.3.4 Exercises for Section 10.3 

Exercise 10.3.1 : For each of the code fragments of Fig. 10.10, draw the data- 
dependence graph. 

Exercise 10.3.2 : Assume a machine with one ALU resource (for the ADD 
and SUB operations) and one MEM resource (for the LD and ST operations). 
Assume that all operations require one clock, except for the LD, which requires 
two. However, as in Example 10.6, a ST on the same memory location can 
commence one clock after a LD on that location commences. Find a shortest 
schedule for each of the fragments in Fig. 10.10. 



10.4. GLOBAL CODE SCHEDULING 

Exercise 10.3.3 : Repeat Exercise 10.3.2 assuming: 

i. The machine has one ALU resource and two MEM resources. 

ii. The machine has two ALU resources and one MEM resource. 

iii. The machine has two ALU resources and two MEM resources. 

1) LD R1, a 
2) ST b ,  R 1  
3) LD R2, c 
4) ST c ,  R 1  
5) LD Ri,  d 
6) ST d ,  R2 
7) S T a ,  R 1  

Figure 10.11: Machine code for Exercise 10.3.4 

Exercise 10.3.4 : Assuming the machine model of Example 10.6 (as in Exer- 
cise 10.3.2): 

a) Draw the data dependence graph for the code of Fig. 10.11. 

b) What are all the critical paths in your graph from part (a)? 

! c) Assuming unlimited MEM resources, what are all the possible schedules 
for the seven instructions? 

10.4 Global Code Scheduling 

For a machine with a moderate amount of instruction-level parallelism, sched- 
ules created by compacting individual basic blocks tend to leave many resources 
idle. In order to  make better use of machine resources, it is necessary to  con- 
sider code-generation strategies that move instructions from one basic block 
to another. Strategies that consider more than one basic block at a time are 
referred to  as global scheduling algorithms. To do global scheduling correctly, 
we must consider not only data dependences but also control dependences. We 
must ensure that 

1. All instructions in the original program are executed in the optimized 
program, and 

2. While the optimized program may execute extra instructions specula- 
tively, these instructions must not have any unwanted side effects. 



728 CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

10.4.1 Primitive Code Motion 

Let us first study the issues involved in moving operations around by way of a 
simple example. 

Example 10.9: Suppose we have a machine that can execute any two oper- 
ations in a single clock. Every operation executes with a delay of one clock, 
except for the load operation, which has a latency of two clocks. For simplicity, 
we assume that all memory accesses in the example are valid and will hit in the 
cache. Figure 10.12(a) shows a simple flow graph with three basic blocks. The 
code is expanded into machine operations in Figure 10.12(b). All the instruc- 
tions in each basic block must execute serially because of data dependences; in 
fact, a no-op instruction has to be inserted in every basic block. 

Assume that the addresses of variables a ,  b, c,  d, and e are distinct and that 
those addresses are stored in registers R 1  through R5, respectively. The com- 
putations from different basic blocks therefore share no data dependences. We 
observe that all the operations in block B3 are executed regardless of whether 
the branch is taken, and can therefore be executed in parallel with operations 
from block B1. We cannot move operations from B1 down to B3, because they 
are needed to determine the outcome of the branch. 

Operations in block B2 are control-dependent on the test in block B1. We 
can perform the load from B2 speculatively in block B1 for free and shave two 
clocks from the execution time whenever the branch is taken. 

Stores should not be performed speculatively because they overwrite the 
old value in a memory location. It is possible, however, to  delay a store op- 
eration. We cannot simply place the store operation from block B2 in block 
B3, because it should only be executed if the flow of control passes through 
block B2. However, we can place the store operation in a duplicated copy of 
BS. Figure 10.12(c) shows such an optimized schedule. The optimized code 
executes in 4 clocks, which is the same as the time it takes to  execute B3 alone. 

Example 10.9 shows that it is possible to  move operations up and down 
an execution path. Every pair of basic blocks in this example has a different 
"dominance relation," and thus the considerations of when and how instructions 
can be moved between each pair are different. As discussed in Section 9.6.1, 
a block B is said to  dominate block B' if every path from the entry of the 
control-flow graph to B' goes through B .  Similarly, a block B postdominates 
block B' if every path from B' to the exit of the graph goes through B.  When 
B dominates B' and B' postdominates B ,  we say that B and B' are control 
equivalent, meaning that one is executed when and only when the other is. For 
the example in Fig. 10.12, assuming B1 is the entry and B3 the exit, 

1. B1 and B3 are control equivalent: B1 dominates B3 and B3 postdominates 
B1, 

2. B1 dominates Bz but B2 does not postdominate B1, and 



10.4. GLOBAL CODE SCHEDULING 

(a) Source program 

(b) Locally scheduled machne code 

LD R6,O(R1), LD R8,O(R4) 
LD R7,O(R2) 
ADD R8,R8,R8, BEQZ R6,L 

4: . I  ST IB1 O(R5),R8 ST O(R5),R8, ST O(R3),R7 I B3 ' 

(c) Globally scheduled machine code 

Figure 10.12: Flow graphs before and after global scheduling in Example 10.9 



CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

3. B2 does not dominate B3 but B3 postdominates B2. 

It is also possible for a pair of blocks along a path to share neither a dominance 
nor post dominance relation. 

10.4.2 Upward Code Motion 

We now examine carefully what it means to move an operation up a path. 
Suppose we wish to move an operation from block src up a control-flow path to 
block dst. We assume that such a move does not violate any data dependences 
and that it makes paths through dst and src run faster. If dst dominates src, 
and src postdominates dst, then the operation moved is executed once and only 
once, when it should. 

If src does not postdominate dst 

Then there exists a path that passes through dst that does not reach src. An 
extra operation would have been executed in this case. This code motion is 
illegal unless the operation moved has no unwanted side effects. If the moved 
operation executes "for free" (i.e., it uses only resources that otherwise would 
be idle), then this move has no cost. It is beneficial only if the control flow 
reaches src. 

If dst does not dominate src 

Then there exists a path that reaches src without first going through dst. We 
need to insert copies of the moved operation along such paths. We know how 
to achieve exactly that from our discussion of partial redundancy elimination 
in Section 9.5. We place copies of the operation along basic blocks that form a 
cut set separating the entry block from src. At each place where the operation 
is inserted, the following constraints must be satisfied: 

1. The operands of the operation must hold the same values as in the original, 

2. The result does not overwrite a value that is still needed, and 

3. It itself is not subsequently overwritten bef~re  reaching src. 

These copies render the original instruction in src fully redundant, and it thus 
can be eliminated. 

We refer to the extra copies of the operation as compensation code. As dis- 
cussed in Section 9.5, basic blocks can be inserted along critical edges to create 
places for holding such copies. The compensation code can potentially make 
some paths run slower. Thus, this code motion improves program execution 
only if the optimized paths are executed more frequently than the nonopti- 
mized ones. 



10.4. GLOBAL CODE SCHEDULING 

10.4.3 Downward Code Motion 

Suppose we are interested in moving an operation from block src down a control- 
flow path to  block dst. We can reason about such code motion in the same way 
as above. 

If src does not dominate dst 

Then there exists a path that reaches dst without first visiting src. Again, an 
extra operation will be executed in this case. Unfortunately, downward code 
motion is often applied to  writes, which have the side effects of overwriting old 
values. We can get around this problem by replicating the basic blocks along 
the paths from src to  dst, and placing the operation only in the new copy of 
dst. Another approach, if available, is to use predicated instructions. We guard 
the operation moved with the predicate that guards the src block. Note that 
the predicated instruction must be scheduled only in a block dominated by 
the computation of the predicate, because the predicate would not be available 
otherwise. 

If &st does not postdominate src 

As in the discussion above, compensation code needs to  be inserted so that the 
operation moved is executed on all paths not visiting dst. This transformation 
is again analogous to  partial redundancy elimination, except that the copies are 
placed below the src block in a cut set that separates src from the exit. 

Summary of Upward and Downward Code Motion 

From this discussion, we see that there is a range of possible global code mo- 
tions which vary in terms of benefit, cost, and implementation complexity. Fig- 
ure 10.13 shows a summary of these various code motions; the lines correspond 
to the following four cases: 

Figure 10.13: Summary of code motions 

1 
2 
3 
4 

1. Moving instructions between control-equivalent blocks is simplest and 
most cost effective. No extra operations are ever executed and no com- 
pensation code is needed. 

up: src postdom dst 
down: src dom dst 

Yes 
no 
Yes 
no 

dst dom src 
dst postdom src 

Yes 
Yes 
no 
no 

speculation 
code dup. 

no 
Yes 
no 
Yes 

compensation 
code 
no 
no 
Yes 
Yes 



732 CHAPTER 10. INSTRUCTION-LE VEL PARALLELISM 

2. Extra operations may be executed if the source does not postdominate 
(dominate) the destination in upward (downward) code motion. This 
code motion is beneficial if the extra operations can be executed for free, 
and the path passing through the source block is executed. 

3. Compensation code is needed if the destination does not dominate (post- 
dominate) the source in upward (downward) code motion. The paths with 
the compensation code may be slowed down, so it is important that the 
optimized paths are more frequently executed. 

4. The last case combines the disadvantages of the second and third case: 
extra operations may be executed and compensation code is needed. 

10.4.4 Updating Data Dependences 

As illustrated by Example 10.10 below, code motion can change the data- 
dependence relations between operations. Thus data dependences must be 
updated after each code movement. 

Example 10.10 : For the flow graph shown in Fig. 10.14, either assignment to  
x can be moved up to the top block, since all the dependences in the original 
program are preserved with this transformation. However, once we have moved 
one assignment up, we cannot move the other. More specifically, we see that 
variable x is not live on exit in the top block before the code motion, but it is 
live after the motion. If a variable is live a t  a program point, then we cannot 
move speculative definitions to  the variable above that program point. 

Figure 10.14: Example illustrating the change in data dependences due to  code 
motion. 

10.4.5 Global Scheduling Algorithms 

We saw in the last section that code motion can benefit some paths while 
hurting the performance of others. The good news is that instructions are not 
all created equal. In fact, it is well established that over 90% of a program's 
execution time is spent on less than 10% of the code. Thus, we should aim to 



10.4. GLOBAL CODE SCHEDULING 

make the frequently executed paths run faster while possibly making the less 
frequent paths run slower. 

There are a number of techniques a compiler can use to  estimate execution 
frequencies. It  is reasonable to  assume that instructions in the innermost loops 
are executed more often than code in outer loops, and that branches that go 
backward are more likely to  be taken than not taken. Also, branch statements 
found to guard program exits or exception-handling routines are unlikely to  be 
taken. The best frequency estimates, however, come from dynamic profiling. In 
this technique, programs are instrumented to record the outcomes of conditional 
branches as they run. The programs are then run on representative inputs to  
determine how they are likely to  behave in general. The results obtained from 
this technique have been found to be quite accurate. Such information can be 
fed back to the compiler to  use in its optimizations. 

Region-Based Scheduling 

We now describe a straightforward global scheduler that supports the two eas- 
iest forms of code motion: 

1. Moving operations up to  control-equivalent basic blocks, and 

2. Moving operations speculatively up one branch to a dominating predeces- 
sor. 

Recall from Section 9.7.1 that a region is a subset of a control-flow graph that 
can be reached only through one entry block. We may represent any procedure 
as a hierarchy of regions. The entire procedure constitutes the top-level region, 
nested in it are subregions representing the natural loops in the function. We 
assume that the control-flow graph is reducible. 

Algorithm 10.11 : Region-based scheduling. 

INPUT: A control-flow graph and a machine-resource description. 

OUTPUT: A schedule S mapping each instruction to a basic block and a time 
slot. 

METHOD: Execute the program in Fig. 10.15. Some shorthand terminology 
should be apparent: Contro lEquiu(B) is the set of blocks that are control- 
equivalent to  block B, and DorninatedSucc applied to a set of blocks is the set 
of blocks that are successors of a t  least one block in the set and are dominated 
by all. 

Code scheduling in Algorithm 10.11 proceeds from the innermost regions 
to the outermost. When scheduling a region, each nested subregion is treated 
as a black box; instructions are not allowed to move in or out of a subregion. 
They can, however, move around a subregion, provided their data and control 
dependences are satisfied. 



734 CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

for (each region R in topological order, so that inner regions 
are processed before outer regions) { 

compute data dependences; 
for (each basic block B of R in prioritized topological order) { 

CandBEocks = ControEEquiv(B) U 
DominatedSucc( ControlEquiv(B)) ; 

CandInsts = ready instructions in CandBlocks; 
for (t = 0,1 , .  . . until all instructions from B are scheduled) { 

for (each instruction n in CandInsts in priority order) 
if (n has no resource conflicts at time t )  { 

S(n)  = (B,  t ) ;  
update resource commitments; 
update data dependences; 

I 
update CandInsts; 

I 
I 

1 

Figure 10.15: A region-based global scheduling algorithm 

All control and dependence edges flowing back to the header of the region are 
ignored, so the resulting control-flow and data-dependence graphs are acyclic. 
The basic blocks in each region are visited in topological order. This ordering 
guarantees that a basic block is not scheduled until all the instructions it de- 
pends on have been scheduled. Instructions to  be scheduled in a basic block B 
are drawn from all the blocks that are control-equivalent to B (including B),  
as well as their immediate successors that are dominated by B. 

A list-scheduling algorithm is used to create the schedule for each basic 
block. The algorithm keeps a list of candidate instructions, CandInsts, which 
contains all the instructions in the candidate blocks whose predecessors all have 
been scheduled. It creates the schedule clock-by-clock. For each clock, it checks 
each instruction from the CandInsts in priority order and schedules it in that 
clock if resources permit. Algorithm 10.11 then updates CandInsts and repeats 
the process, until all instructions from B are scheduled. 

The priority order of instructions in CandInsts uses a priority function sim- 
ilar to  that discussed in Section 10.3. We make one important modification, 
however. We give instructions from blocks that are control equivalent to  B 
higher priority than those from the successor blocks. The reason is that in- 
structions in the latter category are only speculatively executed in block B. 



10.4. GLOBAL CODE SCHEDULING 

Loop Unrolling 

In region-based scheduling, the boundary of a loop iteration is a barrier to  code 
motion. Operations from one iteration cannot overlap with those from another. 
One simple but highly effective technique to mitigate this problem is to  unroll 
the loop a small number of times before code scheduling. A for-loop such as 

f o r  ( i  = 0 ;  i < N ;  i++)  ( 
S ( i )  ; 

can be written as in Fig. 10.16(a). Similarly, a repeat-loop such as 

r e p e a t  

s ;  
u n t i l  C; 

can be written as in Fig. 10.16(b). Unrolling creates more instructions in the 
loop body, permitting global scheduling algorithms to find more parallelism. 

f o r  ( i  = 0 ;  i + 4  < N ;  i+=4) ( 
S ( i )  ; 
S ( i + l )  ; 
S (i+2) ; 
S ( i+3)  ; 

> 
f o r  ( ; i < N ;  i++)  ( 

S ( i )  ; 
> 

(a) Unrolling a for-loop. 

r e p e a t  ( 

s ;  
i f  (C) break;  

s ;  
i f  (C) break;  

s ;  
i f  (C) break;  

s ;  
3 u n t i l  C; 

(b) Unrolling a repeat-loop. 

Figure 10.16: Unrolled loops 



CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

Neighborhood Compiiction 

Algorithm 10.11 only supports the first two forms of code motion described in 
Section 10.4.1. Code motions that require the introduction of compensation 
code can sometimes be useful. One way to support such code motions is to 
follow the region-based scheduling with a simple pass. In this pass, we can 
examine each pair of basic blocks that are executed one after the other, and 
check if any operation can be moved up or down between them to improve 
the execution time of those blocks. If such a pair is found, we check if the 
instruction to be moved needs to be duplicated along other paths. The code 
motion is made if it results in an expected net gain. 

This simple extension can be quite effective in improving the performance of 
loops. For instance, it can move an operation at the beginning of one iteration 
to the end of the preceding iteration, while also moving the operation from the 
first iteration out of the loop. This optimization is particularly attractive for 
tight loops, which are loops that execute only a few instructions per iteration. 
However, the impact of this technique is limited by the fact that each code- 
motion decision is made locally and independently. 

10.4.6 Advanced Code Motion Techniques 

If our target machine is statically scheduled and has plenty of instruction-level 
parallelism, we may need a more aggressive algorithm. Here is a high-level 
description of further extensions: 

1. To facilitate the extensions below, we can add new basic blocks along 
control-flow edges originating from blocks with more than one predecessor. 
These basic blocks will be eliminated at the end of code scheduling if they 
are empty. A useful heuristic is to move instructions out of a basic block 
that is nearly empty, so that the block can be eliminated completely. 

2. In Algorithm 10.11, the code to be executed in each basic block is sched- 
uled once and for all as each block is visited. This simple approach suffices 
because the algorithm can only move operations up to dominating blocks. 
To allow motions that require the addition of compensation code, we take 
a slightly different approach. When we visit block L(,  we only schedule 
instructions from B and all its control-equivalent blocks. We first try to 
place these instructions in predecessor blocks, which have already been 
visited and for which a partial schedule already exists. We try to find 
a destination block that would lead to an improvement on a frequently 
executed path and then place copies of the instruction on other paths to 
guarantee correctness. If the instructions cannot be moved up, they are 
scheduled in the current basic block as before. 

3. Implementing downward code motion is harder in an algorithm that visits 
basic blocks in topological order, since the target blocks have yet to be 



10.4. GLOBAL CODE SCHEDULING 737 

scheduled. However, there are relatively fewer opportunities for such code 
motion anyway. We move all operations that 

(a) can be moved, and 

(b) cannot be executed for free in their native block. 

This simple strategy works well if the target machine is rich with many 
unused hardware resources. 

10.4.7 Interaction with Dynamic Schedulers 

A dynamic scheduler has the advantage that it can create new schedules ac- 
cording to the run-time conditions, without having to encode all these possible 
schedules ahead of time. If a target machine has a dynamic scheduler, the static 
scheduler's primary function is to  ensure that instructions with high latency are 
fetched early so that the dynamic scheduler can issue them as early as possible. 

Cache misses are a class of unpredictable events that can make a big differ- 
ence to  the performance of a program. If data-prefetch instructions are avail- 
able, the static scheduler can help the dynamic scheduler significantly by placing 
these prefetch instructions early enough that the data will be in the cache by 
the time they are needed. If prefetch instructions are not available, it is useful 
for a compiler to estimate which operations are likely to  miss and try to issue 
them early. 

If dynamic scheduling is not available on the target machine, the static 
scheduler must be conservative and separate every data-dependent pair of op- 
erations by the minimum delay. If dynamic scheduling is available, however, the 
compiler only needs to place the data-dependent operations in the correct order 
to ensure program correctness. For best performance, the compiler should as- 
sign long delays to  dependences that are likely to occur and short ones to  those 
that are not likely. 

Branch misprediction is an important cause of loss in performance. Because 
of the long misprediction penalty, instructions on rarely executed paths can still 
have a significant effect on the total execution time. Higher priority should be 
given to such instructions to reduce the cost of misprediction. 

10.4.8 Exercises for Section 10.4 

Exercise 10.4.1 : Show how to unroll the generic while-loop 

while (C) 
s ;  

! Exercise 10.4.2 : Consider the code fragment: 

if (x == 0 )  a = b; 
else a = c; 
d = a; 



CHAPTER 10. INSTRUCTION-LE VEL PARALLELISM 

Assume a machine that uses the delay model of Example 10.6 (loads take two 
clocks, all other instructions take one clock). Also assume that the machine 
can execute any two instructions at once. Find a shortest possible execution 
of this fragment. Do not forget to consider which register is best used for each 
of the copy steps. Also, remember to exploit the information given by register 
descriptors as was described in Section 8.6, to avoid unnecessary loads and 
stores. 

10.5 Software Pipelining 

As discussed in the introduction of this chapter, numerical applications tend 
to have much parallelism. In particular, they often have loops whose iterations 
are completely independent of one another. These loops, known as do-all loops, 
are particularly attractive from a parallelization perspective because their iter- 
ations can be executed in parallel to achieve a speed-up linear in the number 
of iterations in the loop. Do-all loops with many iterations have enough par- 
allelism to saturate all the resources on a processor. It  is up to the scheduler 
to take full advantage of the available parallelism. This section describes an al- 
gorithm, known as software pipelining, that schedules an entire loop at  a time, 
taking full advantage of the parallelism across iterations. 

10.5.1 Introduction 

We shall use the do-all loop in Example 10.12 throughout this section to explain 
software pipelining. We first show that scheduling across iterations is of great 
importance, because there is relatively little parallelism among operations in 
a single iteration. Next, we show that loop unrolling improves performance 
by overlapping the computation of unrolled iterations. However, the boundary 
of the unrolled loop still poses as a barrier to code motion, and unrolling still 
leaves a lot of performance "on the table." The technique of software pipelining, 
on the other hand, overlaps a number of consecutive iterations continually until 
it runs out of iterations. This technique allows software pipelining to produce 
highly efficient and compact code. 

Example 10.12 : Here is a typical do-all loop: 

f o r  (i = 0; i < n; i++) 
D [ i ]  = A[i]*B[i]  + c; 

Iterations in the above loop write to different memory locations, which are 
themselves distinct from any of the locations read. Therefore, there are no 
memory dependences between the iterations, and all iterations can proceed in 
parallel. 

We adopt the following model as our target machine throughout this section. 
In this model 



10.5. SOFTWARE PIPELINING 739 

The machine can issue in a single clock: one load, one store, one arithmetic 
operation, and one branch operation. 

The machine has a loop-back operation of the form 

which decrements register R and, unless the result is 0, branches to loca- 
tion L. 

Memory operations have an auto-increment addressing mode, denoted by 
++ after the register. The register is automatically incremented to  point 
to  the next consecutive address after each access. 

The arithmetic operations are fully pipelined; they can be initiated every 
clock but their results are not available until 2 clocks later. All other 
instructions have a single-clock latency. 

If iterations are scheduled one at a time, the best schedule we can get on 
our machine model is shown in Fig. 10.17. Some assumptions about the layout 
of the data also also indicated in that figure: registers R1,  R 2 ,  and R 3  hold the 
addresses of the beginnings of arrays A, B, and D, register R 4  holds the constant 
c, and register R I O  holds the value n - 1, which has been computed outside the 
loop. The computation is mostly serial, taking a total of 7 clocks; only the 
loop-back instruction is overlapped with the last operation in the iteration. 

// R 1 ,  R 2 ,  R 3 = & A y  &By &D 
/ R 4  = c 
/ /  R I O  = n-1 

L :  LD R 5 ,  O ( R l + + )  
LD R 6 ,  O(R2++) 
MUL R 7 ,  R 5 ,  R 6  

noP 
ADD R 8 ,  R 7 ,  R 4  

noP 
ST 0 (R3++) , R 8  BL R 1 0 ,  L 

Figure 10.17: Locally scheduled code for Example 10.12 

In general, we get better hardware utilization by unrolling several iterations 
of a loop. However, doing so also increases the code size, which in turn can 
have a negative impact on overall performance. Thus, we have to  compromise, 
picking a number of times to unroll a loop that gets most of the performance im- 
provement, yet doesn't expand the code too much. The next example illustrates 
the tradeoff. 



740 CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

Example 10.13 : While hardly any parallelism can be found in each iteration 
of the loop in Example 10.12, there is plenty of parallelism across the iterations. 
Loop unrolling places several iterations of the loop in one large basic block, 
and a simple list-scheduling algorithm can be used to schedule the operations 
to  execute in parallel. If we unroll the loop in our example four times and 
apply Algorithm 10.7 to  the code, we can get the schedule shown in Fig. 10.18. 
(For simplicity, we ignore the details of register allocation for now). The loop 
executes in 13 clocks, or one iteration every 3.25 clocks. 

A loop unrolled k times takes a t  least 2k + 5 clocks, achieving a throughput 
of one iteration every 2 + 5/k clocks. Thus, the more iterations we unroll, the 
faster the loop runs. As n -+ oo, a fully unrolled loop can execute on average an 
iteration every two clocks. However, the more iterations we unroll, the larger 
the code gets. We certainly cannot afford to unroll all the iterations in a loop. 
Unrolling the loop 4 times produces code with 13 instructions, or 163% of the 
optimum; unrolling the loop 8 times produces code with 21 instructions, or 
131% of the optimum. Conversely, if we wish to  operate at,  say, only 110% of 
the optimum, we need to unroll the loop 25 times, which would result in code 
with55instructions. 

10.5.2 Software Pipelining of Loops 

Software pipelining provides a convenient way of getting optimal resource usage 
and compact code at the same time. Let us illustrate the idea with our running 
example. 

Example 10.14 : In Fig. 10.19 is the code from Example 10.12 unrolled five 
times. (Again we leave out the consideration of register usage.) Shown in row i 
are all the operations issued at clock i; shown in column j are all the operations 
from iteration j. Note that every iteration has the same schedule relative to its 
beginning, and also note that every iteration is initiated two clocks after the 
preceding one. It  is easy to  see that this schedule satisfies all the resource and 
dat a-dependence constraints. 

We observe that the operations executed a t  clocks 7 and 8 are the same 
as those executed a t  clocks 9 and 10. Clocks 7 and 8 execute operations from 
the first four iterations in the original program. Clocks 9 and 10 also execute 
operations from four iterations, this time from iterations 2 t o  5. In fact, we 
can keep executing this same pair of multi-operation instructions to  get the 
effect of retiring the oldest iteration and adding a new one, until we run out of 
iterations. 

Such dynamic behavior can be encoded succinctly with the code shown in 
Fig. 10.20, if we assume that the loop has at least 4 iterations. Each row in 
the figure corresponds to  one machine instruction. Lines 7 and 8 form a 2-clock 
loop, which is executed n - 3 times, where n is the number of iterations in the 
original loop. [7 



20.5. SOFTWARE PIPELINING 

L: LD 
LD 

LD 
MUL LD 

MUL LD 
ADD LD 

ADD LD 
ST MUL LD 

ST MUL 
ADD 

ADD 
ST 

ST BL (L) 

Figure 10.18: Unrolled code for Example 10.12 

Clock j = l  j = 2  j = 3  j = 4  j = 5  
1 LD 
2 LD 
3 MUL LD 
4 LD 
5 MUL LD 
6 ADD LD 
7 MUL LD 
8 ST ADD LD 
9 MUL LD 

10 ST ADD LD 
11 MUL 
12 ST ADD 
13 
14 ST ADD 
15 
16 ST 

Figure 10.19: Five unrolled iterations of the code in Example 10.12 



CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

1) LD 
2) LD 
3) MUL LD 
4, LD 
5 > MUL LD 
6) ADD LD 
7) L: MUL LD 

8) ST ADD LD BL (L) 
9) MUL 

10) ST ADD 
11) 
12) ST ADD 
13) 
14) ST 

Figure 10.20: Software-pipelined code for Example 10.12 

The technique described above is called software pipelining, because it is the 
software analog of a technique used for scheduling hardware pipelines. We can 
think of the schedule executed by each iteration in this example as an 8-stage 
pipeline. A new iteration can be started on the pipeline every 2 clocks. At 
the beginning, there is only one iteration in the pipeline. As the first iteration 
proceeds to stage three, the second iteration starts to execute in the first pipeline 
stage. 

By clock 7, the pipeline is fully filled with the first four iterations. In the 
steady state, four consecutive iterations are executing at the same time. A new 
iteration is started as the oldest iteration in the pipeline retires. When we run 
out of iterations, the pipeline drains, and all the iterations in the pipeline run 
to completion. The sequence of instructions used to fill the pipeline, lines 1 
through 6 in our example, is called the prolog; lines 7 and 8 are the steady state; 
and the sequence of instructions used to drain the pipeline, lines 9 through 14, 
is called the epilog. 

For this example, we know that the loop cannot be run at a rate faster 
than 2 clocks per iteration, since the machine can only issue one read every 
clock, and there are two reads in each iteration. The software-pipelined loop 
above executes in 2n + 6 clocks, where n is the number of iterations in the 
original loop. As n -+ ca, the throughput of the loop approaches the rate of 
one iteration every two clocks. Thus, software scheduling, unlike unrolling, can 
potentially encode the optimal schedule with a very compact code sequence. 

Note that the schedule adopted for each individual iteration is not the 
shortest possible. Comparison with the locally optimized schedule shown in 
Fig. 10.17 shows that a delay is introduced before the ADD operation. The delay 
is placed strategically so that the schedule can be initiated every two clocks 
without resource conflicts. Had we stuck with the locally compacted schedule, 



10.5. SOFTWARE PIPELINING 743 

the initiation interval would have to be lengthened to 4 clocks to avoid resource 
conflicts, and the throughput rate would be halved. This example illustrates 
an important principle in pipeline scheduling: the schedule must be chosen 
carefully in order to optimize the throughput. A locally compacted schedule, 
while minimizing the time to complete an iteration, may result in suboptimal 
throughput when pipelined. 

10.5.3 Register Allocation and Code Generation 

Let us begin by discussing register allocation for the software-pipelined loop in 
Example 10.14. 

Example 10.15 : In Example 10.14, the result of the multiply operation in 
the first iteration is produced at clock 3 and used at  clock 6. Between these 
clock cycles, a new result is generated by the multiply operation in the second 
iteration at clock 5; this value is used at clock 8. The results from these two 
iterations must be held in different registers to prevent them from interfering 
with each othet. Since interference occurs only between adjacent pairs of itera- 
tions, it can be avoided with the use of two registers, one for the odd iterations 
and one for the even iterations. Since the code for odd iterations is different 
from that for the even iterations, the size of the steady-state loop is doubled. 
This code can be used to execute any loop that has an odd number of iterations 
greater than or equal to 5. 

i f  (N >= 5)  
N2 = 3 + 2 * f loor  ( (N-3) /2) ; 

e l s e  
N2 = 0; 

for  ( i  = 0; i < N2; i++) 
D [ i ]  = A [ i ] *  B [ i ]  + c; 

for  ( i  = N2; i < N; i++) 
D [ i ]  = A [ i ] *  B [ i ]  + c; 

Figure 10.21: Source-level unrolling of the loop from Example 10.12 

To handle loops that have fewer than 5 iterations and loops with an even 
number of iterations, we generate the code whose source-level equivalent is 
shown in Fig. 10.21. The first loop is pipelined, as seen in the machine-level 
equivalent of Fig. 10.22. The second loop of Fig. 10.21 need not be optimized, 
since it can iterate at  most four times. 

10.5.4 Do-Across Loops 

Software pipelining can also be applied to loops whose iterations share data 
dependences. Such loops are known as do-across loops. 



744 CHAPTER 10. INSTRUCTION-LE VEL PARALLELISM 

MUL R7,R5,R6 

MUL R9,R5,R6 
ADD R8,R7,R4 
MUL R7,R5,R6 
ADD R8 ,R9 ,R4 ST 0 (R3++) ,R8 
MUL R9,R5,R6 
ADD R8 ,R7 ,R4 ST 0 (R3++) ,R8 BL R1O , L  
MUL R7,R5,R6 
ADD R8 ,R9 ,R4 ST 0 (R3++) ,R8 

ADD R8 ,R7 ,R4 ST 0 (R3++) ,R8 

Figure 10.22: Code after software pipelining and register allocation in Exam- 
ple 10.15 

Example 10.16 : The code 

for (i = 0; i < n ;  i++) ( 
sum = sum + A [ i l  ; 
B [ i ]  = A C i ]  * b;  

> 

has a data dependence between consecutive iterations, because the previous 
value of sum is added to A[i] to create a new value of sum. It is possible to execute 
the summation in O(1og n) time if the machine can deliver sufficient parallelism, 
but for the sake of this discussion, we simply assume that all the sequential 
dependences must be obeyed, and that the additions must be performed in the 
original sequential order. Because our assumed machine model takes two clocks 
to complete an ADD, the loop cannot execute faster than one iteration every two 
clocks. Giving the machine more adders or multipliers will not make this loop 
run any faster. The throughput of do-across loops like this one is limited by 
the chain of dependences across iterations. 

The best locally compacted schedule for each iteration is shown in Fig. 
10.23 (a), and the software-pipelined code is in Fig. 10.23(b). This software- 
pipelined loop starts an iteration every two clocks, and thus operates at the 
optimal rate. 



10.5. SOFT WARE PIPELINING 

/ /  R l  = &A; R 2  = &B 
/ /  R 3  = sum 
/ /  R 4  = b 
/ /  R l O  = n-l 

L :  LD R 5 ,  O(R1++) 
MUL R 6 ,  R 5 ,  R 4  
ADD R 3 ,  R 3 ,  R 4  
S T  R 6 ,  O(R2++)  BL R 1 0 ,  L  

(a) The best locally compacted schedule. 

/ /  R 1  = &A; R 2  = &B 
/ /  R 3  = sum 
// R 4  = b 
/ /  R 1 0  = n - 2  

LD R 5 ,  O ( R l + + )  
MUL R 6 ,  R 5 ,  R 4  

L :  ADD R 3 ,  R 3 ,  R 4  
S T  R 6 ,  O(R2++)  

LD R 5 ,  O ( R l + + )  
MUL R 6 ,  R 5 ,  R 4  BL R l O ,  L  
ADD R 3 ,  R 3 ,  R 4  
ST R 6 ,  O(R2++) 

(b) The software-pipelined version. 

Figure 10.23: Software-pipelining of a do-across loop 

10.5.5 Goals and Constraints of Software Pipelining 

The primary goal of software pipelining is to  maximize the throughput of a 
long-running loop. A secondary goal is to keep the size of the code generated 
reasonably small. In other words, the software-pipelined loop should have a 
small steady state of the pipeline. We can achieve a small steady state by 
requiring that the relative schedule of each iteration be the same, and that the 
iterations be initiated a t  a constant interval. Since the throughput of the loop is 
simply the inverse of the initiation interval, the objective of software pipelining 
is to  minimize this interval. 

A software-pipeline schedule for a data-dependence graph G = (N, E) can 
be specified by 

1. An initiation interval T and 

2. A relative schedule S that specifies, for each operation, when that opera- 
tion is executed relative to the start of the iteration to which it belongs. 



746 CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

Thus, an operation n in the ith iteration, counting from 0, is executed at clock 
i x T + S(n) . Like all the other scheduling problems, software pipelining has two 
kinds of constraints: resources and data dependences. We discuss each kind in 
detail below. 

Modular Resource Reservation 

Let a machine's resources be represented by R = [rl, r a ,  . . . I ,  where ri is the 
number of units of the ith kind of resource available. If an iteration of a loop 
requires ni units of resource i, then the average initiation interval of a pipelined 
loop is at least maxi(ni/ri) clock cycles. Software pipelining requires that the 
initiation intervals between any pair of iterations have a constant value. Thus, 
the initiation interval must have at least maxi bi/ril clocks. If maxi(ni/ri) is 
less than 1, it is useful to unroll the source code a small number of times. 

Example 10.17 : Let us return to our software-pipelined loop shown in Fig. 
10.20. Recall that the target machine can issue one load, one arithmetic op- 
eration, one store, and one loop-back branch per clock. Since the loop has 
two loads, two arithmetic operations, and one store operation, the minimum 
initiation interval based on resource constraints is 2 clocks. 

Iteration 1 
Ld Alu St 

Iteration 2 
Ld Alu St 

Iteration 3 
Ld Alu St 

Iteration 4 Steady state 
Ld Alu St Ld Alu St 

Figure 10.24: Resource requirements of four consecutive iterations from the 
code in Example 10.13 

Figure 10.24 shows the resource requirements of four consecutive iterations 
across time. More resources are used as more iterations get initiated, culmi- 



10.5. SOFTWARE PIPELINING 747 

nating in maximum resource commitment in the steady state. Let R T  be the 
resource-reservation table representing the commitment of one iteration, and let 
RTs represent the commitment of the steady state. RTs combines the commit- 
ment from four consecutive iterations started T clocks apart. The commitment 
of row 0 in the table RTs corresponds to the sum of the resources committed in 
R T  [0], R T  [2], RT[4], and R T  [6]. Similarly, the commitment of row 1 in the ta- 
ble corresponds to the sum of the resources committed in RT[l],  RT[3], RT[5], 
and RT[7]. That is, the resources committed in the ith row in the steady state 
are given by 

RTs [i] = R T  [t]. 
{ t  I ( t  mod 2)=2) 

We refer to the resource-reservation table representing the steady state as the 
modular resource-reservation table of the pipelined loop. 

To check if the software-pipeline schedule has any resource conflicts, we can 
simply check the commitment of the modular resource-reservation table. Surely, 
if the commitment in the steady state can be satisfied, so can the commitments 
in the prolog and epilog, the portions of code before and after the steady-state 
loop. 

In general, given an initiation interval T and a resource-reservation table of 
an iteration RT, the pipelined schedule has no resource conflicts on a machine 
with resource vector R if and only if RTs[i] 5 R for all i = O , 1 , .  . . , T - 1. 

Data-Dependence Constraints 

Data dependences in software pipelining are different from those we have en- 
countered so far because they can form cycles. An operation may depend on 
the result of the same operation from a previous iteration. It is no longer ade- 
quate to label a dependence edge by just the delay; we also need to distinguish 
between instances of the same operation in different iterations. We label a de- 
pendence edge nl -+ n2 with label (6, d) if operation n 2  in iteration i must be 
delayed by at  least d clocks after the execution of operation nl in iteration i - 6. 
Let S, a function from the nodes of the data-dependence graph to integers, be 
the software pipeline schedule, and let T be the initiation interval target. Then 

The iteration difference, 6, must be nonnegative. Moreover, given a cycle of 
data-dependence edges, at least one of the edges has a positive iteration differ- 
ence. 

Example 10.18 : Consider the following loop, and suppose we do not know 
the values of p and q: 

f o r  (i = 0 ;  i < n; i++) 
* (p++) = * (q++) + c ;  



CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

We must assume that any pair of * (p++) and * (q++) accesses may refer to 
the same memory location. Thus, all the reads and writes must execute in 
the original sequential order. Assuming that the target machine has the same 
characteristics as that described in Example 10.13, the data-dependence edges 
for this code are as shown in Fig. 10.25. Note, however, that we ignore the 
loop-control instructions that would have to be present, either computing and 
testing i ,  or doing the test based on the value of R1 or R2. 

Figure 10.25: Data-dependence graph for Example 10.18 

The iteration difference between related operations can be greater than one, 
as shown in the following example: 

for (i = 2; i < n; i++)  
A [ i ]  = B [ i ]  + A[i-21 

Here the value written in iteration i is used two iterations later. The dependence 
edge between the store of A[i] and the load of A[i - 21 thus has a difference of 
2 iterations. 

The presence of data-dependence cycles in a loop imposes yet another limit 
on its execution throughput. For example, the data-dependence cycle in Fig. 
10.25 imposes a delay of 4 clock ticks between load operations from consecutive 
iterations. That is, loops cannot execute at  a rate faster than one iteration 
every 4 clocks. 

The initiation interval of a pipelined loop is no smaller than 

ma* ["einc::] 
c a cycle in G Ce in , 

clocks. 
In summary, the initiation interval of each software-pipelined loop is bound- 

ed by the resource usage in each iteration. Namely, the initiation interval must 
be no smaller than the ratio of units needed of each resource and the units 



10.5. SOFTWARE PIPELINING 749 

available on the machine. In addition, if the loops have data-dependence cycles, 
then the initiation interval is further constrained by the sum of the delays in 
the cycle divided by the sum of the iteration differences. The largest of these 
quantities defines a lower bound on the initiation interval. 

10.5.6 A Software-Pipelining Algorithm 

The goal of software pipelining is to find a schedule with the smallest possible 
initiation interval. The problem is NP-complete, and can be formulated as an 
integer-linear-programming problem. We have shown that if we know what the 
minimum initiation interval is, the scheduling algorithm can avoid resource con- 
flicts by using the modular resource-reservation table in placing each operation. 
But we do not know what the minimum initiation interval is until we can find 
a schedule. How do we resolve this circularity? 

We know that the initiation interval must be greater than the bound com- 
puted from a loop's resource requirement and dependence cycles as discussed 
above. If we can find a schedule meeting this bound, we have found the opti- 
mal schedule. If we fail to find such a schedule, we can try again with larger 
initiation intervals until a schedule is found. Note that if heuristics, rather than 
exhaustive search, are used, this process may not find the optimal schedule. 

Whether we can find a schedule near the lower bound depends on properties 
of the data-dependence graph and the architecture of the target machine. We 
can easily find the optimal schedule if the dependence graph is acyclic and 
if every machine instruction needs only one unit of one resource. It is also 
easy to find a schedule close to  the lower bound if there are more hardware 
resources than can be used by graphs with dependence cycles. For such cases, 
it is advisable to start with the lower bound as the initial initiation-interval 
target, then keep increasing the target by just one clock with each scheduling 
attempt. Another possibility is to find the initiation interval using a binary 
search. We can use as an upper bound on the initiation interval the length of 
the schedule for one iteration produced by list scheduling. 

10.5.7 Scheduling Acyclic Data-Dependence Graphs 

For simplicity, we assume for now that the loop to be software pipelined contains 
only one basic block. This assumption will be relaxed in Section 10.5.11. 

Algorithm 10.19 : Software pipelining an acyclic dependence graph. 

INPUT: A machine-resource vector R = [rl , r2, . . . 1, where ri is the number 
of units available of the ith kind of resource, and a data-dependence graph 
G = (N, E). Each operation n in N is labeled with its resource-reservation 
table RT,; each edge e = nl  + n2 in E is labeled with (be, de) indicating that 
n2 must execute no earlier than de clocks after node n l  from the Seth preceding 
iteration. 

OUTPUT: A software-pipelined schedule S and an initiation interval T .  



CHAPTER 10. INSTRUCTION-LE VEL PARALLELISM 

METHOD: Execute the program in Fig. 10.26. 17 

To = max 1 En,i RTn (i, j )  1 . 
7 

3 rJ' 

for (T = To, To + 1, .  . . , until all nodes in N are scheduled) { 
R T  = an empty reservation table with T rows; 
for (each n in N in prioritized topological order) { 

SO = maXe=p-+n in E (S(P) + de) ; 
for ( s = s o , s o + l ,  . . .  , s o + T - 1 )  

if (NodeScheduled (RT, T, n, s) break; 
if (n cannot be scheduled in RT) break; 

1 
I 

1 

NodeScheduled (RT, T, n, s) { 
RT' = RT; 
for (each row i in RTn) 

RTr[(s + i) mod T] = RTf[(s + i) mod T] + RTn[i]; 
if (for all i ,  RT1(i) 5 R) { 

RT = RT'; 
S(n) = s ;  
r e tu rn  t rue ;  

I- 
else r e tu rn  false; 

Figure 10.26: Software-pipelining algorithm for acyclic graphs 

Algorithm 10.19 software pipelines acyclic data-dependence graphs. The 
algorithm first finds a bound on the initiation interval, To, based on the re- 
source requirements of the operations in the graph. It then attempts to find 
a software-pipelined schedule starting with To as the target initiation interval. 
The algorithm repeats with increasingly larger initiation intervals if it fails to 
find a schedule. 

The algorithm uses a list-scheduling approach in each attempt. It uses a 
modular resource-reservation RT to keep track of the resource commitment in 
the steady state. Operations are scheduled in topological order so that the 
data dependences can always be satisfied by delaying operations. To schedule 
an operation, it first finds a lower bound so according to the data-dependence 
constraints. It then invokes NodeScheduled to check for possible resource con- 
flicts in the steady state. If there is a resource conflict, the algorithm tries to 
schedule the operation in the next clock. If the operation is found to conflict for 



10.5. SOFTWARE PIPELINING 75 1 

T consecutive clocks, because of the modular nature of resource-conflict detec- 
tion, further attempts are guaranteed to  be futile. At that point, the algorithm 
considers the attempt a failure, and another initiation interval is tried. 

The heuristics of scheduling operations as soon as possible tends to  minimize 
the length of the schedule for an iteration. Scheduling an instruction as early 
as possible, however, can lengthen the lifetimes of some variables. For example, 
loads of data tend to be scheduled early, sometimes long before they are used. 
One simple heuristic is to schedule the dependence graph backwards because 
there are usually more loads than stores. 

10.5.8 Scheduling Cyclic Dependence Graphs 

Dependence cycles complicate software pipelining significantly. When schedul- 
ing operations in an acyclic graph in topological order, data dependences with 
scheduled operations can impose only a lower bound on the placement of each 
operation. As a result, it is always possible to satisfy the data-dependence con- 
straints by delaying operations. The concept of "topological order" does not 
apply to  cyclic graphs. In fact, given a pair of operations sharing a cycle, plac- 
ing one operation will impose both a lower and upper bound on the placement 
of the second. 

Let nl and n2 be two operations in a dependence cycle, S be a software- 
pipeline schedule, and T be the initiation interval for the schedule. A depen- 
dence edge nl + n2 with label ( S l ,  d l )  imposes the following constraint on 
S(nl )  and S(n2):  

(81 x T )  +S(n2) - S(n1) 2 dl. 

Similarly, a dependence edge (n l ,  n2)  with label ( S 2 ,  d 2 )  imposes constraint 

( 6 2  x T )  + S ( w )  - S(n2) > d2. 

Thus, 

S(n1) + dl  - (61 x T )  5 S(n2) 2 S(n1) - d2 + ( 6 2  x T ) .  

A strongly connected component (SCC) in a graph is a set of nodes where 
every node in the component can be reached by every other node in the compo- 
nent. Scheduling one node in an SCC will bound the time of every other node 
in the component both from above and from below. Transitively, if there exists 
a path p leading from nl to  n2, then 

S ( n 2 )  - S(nl)  2 C ( d e  - (6,  x T ) )  

Observe that 



752 CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

Around any cycle, the sum of the 6's must be positive. If it were 0 or 
negative, then it would say that an operation in the cycle either had to 
precede itself or be executed at the same clock for all iterations. 

The schedule of operations within an iteration is the same for all iterations; 
that requirement is essentially the meaning of a "software pipeline." As 
a result, the sum of the delays (second components of edge labels in a 
data-dependence graph) around a cycle is a lower bound on the initiation 
interval T. 

When we combine these two points, we see that for any feasible initiation inter- 
val T ,  the value of the right side of Equation (10.1) must be negative or zero. 
As a result, the strongest constraints on the placement of nodes is obtained 
from the simple paths - those paths that contain no cycles. 

Thus, for each feasible T ,  computing the transitive effect of data depen- 
dences on each pair of nodes is equivalent to finding the length of the longest 
simple path from the first node to the second. Moreover, since cycles cannot 
increase the length of a path, we can use a simple dynamic-programming al- 
gorithm to find the longest paths without the "simple-path" requirement, and 
be sure that the resulting lengths will also be the lengths of the longest simple 
paths (see Exercise 10.5.7). 

Figure 10.27: Dependence graph and resource requirement in Example 10.20 

Example 10.20 : Figure 10.27 shows a data-dependence graph with four nodes 
a ,  b, c, d. Attached to each node is its resource-reservation table; attached to 
each edge is its iteration difference and delay. Assume for this example that the 
target machine has one unit of each kind of resource. Since there are three uses 
of the first resource and two of the second, the initiation interval must be no less 
than 3 clocks. There are two SCC's in this graph: the first is a trivial component 
consisting of the node a alone, and the second consists of nodes b, c, and d. The 
longest cycle, b, c, d, b, has a total delay of 3 clocks connecting nodes that are 
1 iteration apart. Thus, the lower bound on the initiation interval provided by 
data-dependence cycle constraints is also 3 clocks. 



10.5. SOFT WARE PIPELINING 753 

Placing any of b, c, or d in a schedule constrains all the other nodes in the 
component. Let T be the initiation interval. Figure 10.28 shows the transitive 
dependences. Part (a) shows the delay and the iteration difference 6, for each 
edge. The delay is represented directly, but 6 is represented by "adding" to  the 
delay the value -ST. 

Figure 10.28(b) shows the length of the longest simple path between two 
nodes, when such a path exists; its entries are the sums of the expressions given 
by Fig. 10.28(a), for each edge along the path. Then, in (c) and (d) , we see the 
expressions of (b) with the two relevant values of T ,  that is, 3 and 4, substituted 
for T. The difference between the schedule of two nodes S(n2)  - S(nl )  must 
be no less than the value given in entry (nl , n2) in each of the tables (c) or (d) , 
depending on the value of T chosen. 

For instance, consider the entry in Fig. 10.28 for the longest (simple) path 
from c to  b, which is 2 - T .  The longest simple path from c to  b is c + d + b. 
The total delay is 2 along this path, and the sum of the 6's is 1, representing the 
fact that the iteration number must increase by 1. Since T is the time by which 
each iteration follows the previous, the clock at which b must be scheduled is 
a t  least 2 - T clocks after the clock at which c is scheduled. Since T is a t  least 
3, we are really saying that b may be scheduled T - 2 clocks before c, or later 
than that clock, but not earlier. 

Notice that considering nonsimple paths from c to b does not produce a 
stronger constraint. We can add to the path c -+ d -+ b any number of iterations 
of the cycle involving d and b. If we add k such cycles, we get a path length 
of 2 - T + k (3 - T) , since the total delay along the path is 3, and the sum of 
the 6's is 1. Since T 2 3, this length can never exceed 2 - T ;  i.e., the strongest 
lower bound on the clock of b relative to  the clock of c is 2 - T ,  the bound we 
get by considering the longest simple path. 

For example, from entries (b, c) and (c, b), we see that 

That is, 

Put  equivalently, c must be scheduled one clock after b. If T = 4, however, 

That is, c is scheduled one or two clocks after b. 
Given the all-points longest path information, we can easily compute the 

range where it is legal to place a node due to  data dependences. We see that 
there is no slack in the case when T = 3, and the slack increases as T increases. 



CHAPTER 10. INSTRUCTION-LE VEL PARALLELISM 

a b c d  

a  

b  

C 

d  

a b c d  

(a) Original edges. (b) Longest simple paths. 

a b c d  

a  

b  

C 

d  

a b c d  

(c) Longest simple paths (T=3). (d) Longest simple paths (T=4). 

Figure 10.28: Transitive dependences in Example 10.20 

Algorit hrn 10.2 1 : Software pipelining. 

INPUT: A machine-resource vector R = [rl , r2, . . . 1, where ri is the number 
of units available of the ith kind of resource, and a data-dependence graph 
G = (N, E). Each operation n in N is labeled with its resource-reservation 
table RT,; each edge e = n l  -+ n2 in E is labeled with (S,, d,) indicating that 
n2 must execute no earlier than d, clocks after node n l  from the Seth preceding 
iteration. 

OUTPUT: A software-pipelined schedule S and an initiation interval T. 

METHOD: Execute the program in Fig. 10.29. 

Algorithm 10.21 has a high-level structure similar to  that of Algorithm 10.19, 
which only handles acyclic graphs. The minimum initiation interval in this case 
is bounded not just by resource requirements, but also by the data-dependence 
cycles in the graph. The graph is scheduled one strongly connected component 
at a time. By treating each strongly connected component as a unit, edges be- 
tween strongly connected components necessarily form an acyclic graph. While 
the top-level loop in Algorithm 10.19 schedules nodes in the graph in topological 
order, the top-level loop in Algorithm 10.21 schedules strongly connected com- 
ponents in topological order. As before, if the algorithm fails to  schedule all the 
components, then a larger initiation interval is tried. Note that Algorithm 10.21 
behaves exactly like Algorithm 10.19 if given an acyclic data-dependence graph. 

Algorithm 10.21 computes two more sets of edges: E' is the set of all edges 
whose iteration difference is 0, E* is the all-points longest-path edges. That is, 



10.5. SOFTWARE PIPELINING 

. . 

To = ma. (my  1 En,; RTn(i, I )  1 , max 1". in c :r 1). 
rj c acyclein G Ce ,, , 

for  ( T  = To, To + 1 , .  . . or until all SCC's in G are scheduled) { 
R T  = an empty reservation table with T rows; 
E* = AllPairsLongestPath(G, T ) ;  
for (each SCC C in G in prioritized topological order) { 

for (all n in C )  
SO (12) = maxe=p+n in E* ,p scheduled (S(p) + de); 

first = some n such that so(n) is a minimum; 
so = so (first); 
for  (s  = so; s < so + T ;  s = s + 1) 

if (SccScheduled (RT, T,  C, first, s)) break ;  
if ( C  cannot be scheduled in RT) break ;  

} 
1 

1 

SccScheduled(RT, T,  c,  first, s )  { 
RT' = RT; 
if (not Nodescheduled (RT', T,first, s))  r e t u r n  false; 
for  (each remaining n in c in prioritized 

topological order of edges in El) { 
S1 = maxe=nl+n in E* ,nl in c,nl scheduled S(nl)  + de - (6, X T )  ; 
Su = mine=n+nl in E*,nl in c,nl scheduled S(n') - de + (be x T); 
for (s = sl; 5 min(su,sl + T  - I ) ;  s = s +  1) 

if NodeScheduled(RT', T,  n ,  s )  b reak ;  
if (n  cannot be scheduled in RT') r e t u r n  false; 

} 
R T  = RT'; 
r e t u r n  t r ue ;  

} 

Figure 10.29: A software-pipelining algorithm for cyclic dependence graphs 



756 CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

for each pair of nodes (p, n), there is an edge e in E* whose associated distance 
d, is the length of the longest simple path from p to  n, provided that there is at  
least one path from p to  n. E* is computed for each value of T, the initiation- 
interval target. It is also possible to  perform this computation just once with 
a symbolic value of T and then substitute for T in each iteration, as we did in 
Example 10.20. 

Algorithm 10.21 uses backtracking. If it fails to schedule a SCC, it tries to  
reschedule the entire SCC a clock later. These scheduling attempts continue for 
up to T clocks. Backtracking is important because, as shown in Example 10.20, 
the placement of the first node in an SCC can fully dictate the schedule of all 
other nodes. If the schedule happens not to fit with the schedule created thus 
far, the attempt fails. 

To schedule a SCC, the algorithm determines the earliest time each node 
in the component can be scheduled satisfying the transitive data dependences 
in E*. It  then picks the one with the earliest start time as the first node 
to schedule. The algorithm then invokes SccScheduled to  try to  schedule the 
component a t  the earliest start time. The algorithm makes at most T attempts 
with successively greater start times. If it fails, then the algorithm tries another 
initiation interval. 

The SccScheduled algorithm resembles Algorithm 10.19, but has three major 
differences. 

1. The goal of SccScheduled is to  schedule the strongly connected component 
at the given time slot s.  If the first node of the strongly connected com- 
ponent cannot be scheduled at s ,  SccScheduled returns false. The main 
function can invoke SccScheduled again with a later time slot if that is 
desired. 

2. The nodes in the strongly connected component are scheduled in topolog- 
ical order, based on the edges in El. Because the iteration differences on 
all the edges in El are 0, these edges do not cross any iteration boundaries 
and cannot form cycles. (Edges that cross iteration boundaries are known 
as loop carried). Only loop-carried dependences place upper bounds on 
where operations can be scheduled. So, this scheduling order, along with 
the strategy of scheduling each operation as early as possible, maximizes 
the ranges in which subsequent nodes can be scheduled. 

3. For strongly connected components, dependences impose both a lower and 
upper bound on the range in which a node can be scheduled. SccSched- 
uled computes these ranges and uses them to further limit the scheduling 
attempts. 

Example 10.22 : Let us apply Algorithm 10.21 to the cyclic data-dependence 
graph in Example 10.20. The algorithm first computes that the bound on the 
initiation interval for this example is 3 clocks. We note that it is not possible 
to  meet this lower bound. When the initiation interval T is 3, the transitive 



10.5. SOFTWARE PIPELINING 757 

dependences in Fig. 10.28 dictate that S ( d )  - S ( b )  = 2. Scheduling nodes b  
and d two clocks apart will produce a conflict in a modular resource-reservation 
table of length 3. 

Figure 10.30: Behavior of Algorithm 10.21 on Example 10.20 

Figure 10.30 shows how Algorithm 10.21 behaves with this example. It first 
tries to  find a schedule with a 3-clock initiation interval. The attempt starts by 
scheduling nodes a and b  as early as possible. However, once node b  is placed in 
clock 2, node c can only be placed a t  clock 3, which conflicts with the resource 
usage of node a. That is, a and c both need the first resource a t  clocks that 
have a remainder of 0 modulo 3. 

The algorithm backtracks and tries to  schedule the strongly connected com- 
ponent {b, c, d) a clock later. This time node b  is scheduled at clock 3, and node 
c is scheduled successfully a t  clock 4. Node d, however, cannot be scheduled in 



758 CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

clock 5. That is, both b and d need the second resource a t  clocks that have a 
remainder of 0 modulo 3. Note that it is just a coincidence that the two con- 
flicts discovered so far are a t  clocks with a remainder of 0 modulo 3; the conflict 
might have occurred at clocks with remainder 1 or 2 in another example. 

The algorithm repeats by delaying the start of the SCC {b, c,  d} by one 
more clock. But, as discussed earlier, this SCC can never be scheduled with an 
initiation interval of 3 clocks, so the attempt is bound to fail. At this point, 
the algorithm gives up and tries to find a schedule with an initiation interval 
of 4 clocks. The algorithm eventually finds the optimal schedule on its sixth 
attempt. 

10.5.9 Improvements to the Pipelining Algorithms 

Algorithm 10.21 is a rather simple algorithm, although it has been found to 
work well on actual machine targets. The important elements in this algorithm 
are 

1. The use of a modular resource-reservation table to  check for resource 
conflicts in the steady state. 

2. The need to compute the transitive dependence relations to  find the legal 
range in which a node can be scheduled in the presence of dependence 
cycles. 

3. ~ a c k t r a c k i n ~  is useful, and nodes on critical cycles (cycles that place the 
highest lower bound on the initiation interval T) must be rescheduled 
together because there is no slack between them. 

There are many ways to  improve Algorithm 10.21. For instance, the al- 
gorithm takes a while to  realize that a bclock initiation interval is infeasible 
for the simple Example 10.22. We can schedule the strongly connected com- 
ponents independently first to determine if the initiation interval is feasible for 
each component. 

We can also modify the order in which the nodes are scheduled. The order 
used in Algorithm 10.21 has a few disadvantages. First, because nontrivial 
SCC's are harder to  schedule, it is desirable to  schedule them first. Second, some 
of the registers may have unnecessarily long lifetimes. It  is desirable to  pull the 
definitions closer to  the uses. One possibility is to  start with scheduling strongly 
connected components with critical cycles first, then extend the schedule on 
both ends. 

10.5.10 Modular Variable Expansion 

A scalar variable is said to  be privatixable in a loop if its live range falls within 
an iteration of the loop. In other words, a privatizable variable must not be live 
upon either entry or exit of any iteration. These variables are so named because 



10.5. SOFTWARE PIPELINING 759 

Are There Alternatives to Heuristics? 

We can formulate the problem of simultaneously finding an optimal 
software pipeline schedule and register assignment as an integer-linear- 
programming problem. While many integer linear programs can be solved 
quickly, some of them can take an exorbitant amount of time. To use an 
integer-linear-programming solver in a compiler, we must be able to  abort 
the procedure if it does not complete within some preset limit. 

Such an approach has been tried on a target machine (the SGI R8000) 
empirically, and it was found that the solver could find the optimal solution 
for a large percentage of the programs in the experiment within a reason- 
able amount of time. It turned out that the schedules produced using a 
heuristic approach were also close to optimal. The results suggest that,  
a t  least for that machine, it does not make sense to use the integer-linear- 
programming approach, especially from a software engineering perspec- 
tive. Because the integer-linear solver may not finish, it is still necessary 
to  implement some kind of a heuristic scheduler in the compiler. Once 
such a heuristic scheduler is in place, there is little incentive to  implement 
a scheduler based on integer programming techniques as well. 

different processors executing different iterations in a loop can have their own 
private copies and thus not interfere with one another. 

Variable expansion refers to the transformation of converting a privatizable 
scalar variable into an array and having the ith iteration of the loop read and 
write the ith element. This transformation eliminates the antidependence con- 
straints between reads in one iteration and writes in the subsequent iterations, 
as well as output dependences between writes from different iterations. If all 
loop-carried dependences can be eliminated, all the iterations in the loop can 
be executed in parallel. 

Eliminating loop-carried dependences, and thus eliminating cycles in the 
data-dependence graph, can greatly improve the effectiveness of software pipe- 
lining. As illustrated by Example 10.15, we need not expand a privatizable 
variable fully by the number of iterations in the loop. Only a small number of 
iterations can be executing at a time, and privatizable variables may simultane- 
ously be live in an even smaller number of iterations. The same storage can thus 
be reused to hold variables with nonoverlapping lifetimes. More specifically, if 
the lifetime of a register is 1 clocks, and the initiation interval is T, then only 
q = values can be live a t  any one point. We can allocate q registers to  the 
variable, with the variable in the ith iteration using the (i mod q)th register. 
We refer to  this transformation as modular variable expansion. 

Algorithm 10.23 : Software pipelining with modular variable expansion. 

INPUT: A data-dependence graph and a machine-resource description. 



CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

OUTPUT: Two loops, one software pipelined and one unpipelined. 

METHOD: 

1. Remove the loop-carried antidependences and output dependences asso- 
ciated with privatizable variables from the data-dependence graph. 

2. Software-pipeline the resulting dependence graph using Algorithm 10.21. 
Let T be the initiation interval for which a schedule is found, and L be 
the length of the schedule for one iteration. 

3. From the resulting schedule, compute q,, the minimum number of regis- 
ters needed by each privatizable variable v. Let Q = max, q,. 

4. Generate two loops: a software-pipelined loop and an unpipelined loop. 
The software-pipelined loop has 

copies of the iterations, placed T clocks apart. It has a prolog with 

instructions, a steady state with Q T  instructions, and an epilog of L - T 
instructions. Insert a loop-back instruction that branches from the bottom 
of the steady state to  the top of the steady state. 

The number of registers assigned to privatizable variable v is 

q, if Q mod q, = 0 
otherwise 

The variable v in iteration i uses the (i mod q:)th register assigned. 

Let n be the variable representing the number of iterations in the source 
loop. The software-pipelined loop is executed if 

The number of times the loop-back branch is taken is 

Thus, the number of source iterations executed by the software-pipelined 
loop is 

[$I---l+Qnl i f n 2  [ $ l + Q - I  
otherwise 

The number of iterations executed by the unpipelined loop is ns = n - n 2 .  



10.5. SOFTWARE PIPELINING 

Example 10.24 : For the software-pipelined loop in Fig. 10.22, L = 8, T = 2, 
and Q = 2. The software-pipelined loop has 7 copies of the iterations, with the 
prolog, steady state, and epilog having 6, 4, and 6 instructions, respectively. 
Let n be the number of iterations in the source loop. The software-pipelined 
loop is executed if n 2 5, in which case the loop-back branch is taken 

times, and the software-pipelined loop is responsible for 

of the iterations in the source loop. 

Modular expansion increases the size of the steady state by a factor of 
Q. Despite this increase, the code generated by Algorithm 10.23 is still fairly 
compact. In the worst case, the software-pipelined loop would take three times 
as many instructions as that of the schedule for one iteration. Roughly, together 
with the extra loop generated to handle the left-over iterations, the total code 
size is about four times the original. This technique is usually applied to  tight 
inner loops, so this increase is reasonable. 

Algorithm 10.23 minimizes code expansion at the expense of using more 
registers. We can reduce register usage by generating more code. We can use 
the minimum q, registers for each variable v if we use a steady state with 

instructions. Here, LCMu represents the operation of taking the least common 
multzple of all the qu 's, as v ranges over all the privatizable variables (i.e., the 
smallest integer that is an integer multiple of all the q,'s). Unfortunately, the 
least common multiple can be quite large even for a few small qu7s. 

10.5.11 Conditional Statements 

If predicated instructions are available, we can convert control-dependent in- 
structions into predicated ones. Predicated instructions can be software-pipe- 
lined like any other operations. However, if there is a large amount of data- 
dependent control flow within the loop body, scheduling techniques described 
in Section 10.4 may be more appropriate. 

If a machine does not have predicated instructions, we can use the concept 
of hierarchical reduction, described below, to handle a small amount of data- 
dependent control flow. Like Algorithm 10.11, in hierarchical reduction the 
control constructs in the loop are scheduled inside-out, starting with the most 



CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

deeply nested structures. As each construct is scheduled, the entire construct is 
reduced to a single node representing all the scheduling constraints of its com- 
ponents with respect to the other parts of the program. This node can then be 
scheduled as if it were a simple node within the surrounding control construct. 
The scheduling process is complete when the entire program is reduced to a 
single node. 

In the case of a conditional statement with "then" and "else" branches, we 
schedule each of the branches independently. Then: 

1. The constraints of the entire conditional statement are conservatively 
taken to be the union of the constraints from both branches. 

2. Its resource usage is the maximum of the resources used in each branch. 

3. Its precedence constraints are the union of those in each branch, obtained 
by pretending that both branches are executed. 

This node can then be scheduled like any other node. Two sets of code, cor- 
responding to the two branches, are generated. Any code scheduled in parallel 
with the conditional statement is duplicated in both branches. If multiple con- 
ditional statements are overlapped, separate code must be generated for each 
combination of branches executed in parallel. 

10.5.12 Hardware Support for Software Pipelining 

Specialized hardware support has been proposed for minimizing the size of 
software-pipelined code. The rotating register file in the Itanium architecture is 
one such example. A rotating register file has a base register, which is added to 
the register number specified in the code to derive the actual register accessed. 
We can get different iterations in a loop to use different registers simply by 
changing the contents of the base register at  the boundary of each iteration. 
The Itanium architecture also has extensive predicated instruction support. Not 
only can predication be used to convert control dependence to data dependence 
but it also can be used to avoid generating the prologs and epilogs. The body 
of a software-pipelined loop contains a superset of the instructiolns issued in the 
prolog and epilog. We can simply generate the code for the steady state and 
use predication appropriately to suppress the extra operations to get the effects 
of having a prolog and an epilog. 

While Itanium's hardware support improves the density of software-pipe- 
lined code, we must also realize that the support is not cheap. Since software 
pipelining is a technique intended for tight innermost loops, pipelined loops tend 
to be small anyway. Specialized support for software pipelining is warranted 
principally for machines that are intended to execute many software-pipelined 
loops and in situations where it is very important to minimize code size. 



10.5. SOFTWARE PIPELINING 

1) L: LD R 1 ,  a ( R 9 )  
2) ST b ( R 9 )  , R 1  
3 LD R 2 ,  c ( R 9 )  
4, ADD R 3 ,  R 1 ,  R 2  
5) ST c ( R 9 ) ,  R 3  
6) SUB R 4 ,  R 1 ,  R 2  
7 )  ST b (R9)  , R 4  
8) BL R 9 ,  L 

Figure 10.31: Machine code for Exercise 10.5.2 

10.5.13 Exercises for Section 10.5 

Exercise 10.5.1 : In Example 10.20 we showed how to establish the bounds 
on the relative clocks at which b and c are scheduled. Compute the bounds for 
each of five other pairs of nodes (i) for general T (ii) for T = 3 (iii) for T = 4. 

Exercise 10.5.2 : In Fig. 10.31 is the body of a loop. Addresses such as a ( R 9 )  
are intended to be memory locations, where a is a constant, and R 9  is the register 
that counts iterations through the loop. You may assume that each iteration 
of the loop accesses different locations, because R 9  has a different value. Using 
the machine model of Example 10.12, schedule the loop of Fig. 10.31 in the 
following ways: 

a) Keeping each iteration as tight as possible (i.e., only introduce one nop af- 
ter each arithmetic operation), unroll the loop twice. Schedule the second 
iteration to  commence at the earliest possible moment without violat- 
ing the constraint that the machine can only do one load, one store, one 
arithmetic operation, and one branch at any clock. 

b) Repeat part (a), but unroll the loop three times. Again, start each itera- 
tion as soon as you can, subject to  the machine constraints. 

! c) Construct fully pipelined code subject to the machine constraints. In this 
part, you can introduce extra nop's if needed, but you must start a new 
iteration every two clock ticks. 

Exercise 10.5.3 : A certain loop requires 5 loads, 7 stores, and 8 arithmetic 
operations. What is the minimum initiation interval for a software pipelining 
of this loop on a machine that executes each operation in one clock tick, and 
has resources enough to do, in one clock tick: 

a) 3 loads, 4 stores, and 5 arithmetic operations. 

b) 3 loads, 3 stores, and 3 arithmetic operations. 



764 CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

! Exercise 10.5.4 : Using the machine model of Example 10.12, Find the min- 
imum initiation interval and a uniform schedule for the iterations, for the fol- 
lowing loop: 

f o r  (i = 1; i < n ;  i + + )  ( 
A [ i ]  = B [ i - 1 1  + 1; 
B [ i l  = A[i -11  + 2 ;  

> 
Remember that the counting of iterations is handled by auto-increment of reg- 
isters, and no operations are needed solely for the counting associated with the 
for-loop. 

! Exercise 10.5.5 : Prove that Algorithm 10.19, in the special case where every 
operation requires only one unit of one resource, can always find a software- 
pipeline schedule meeting the lower bound. 

! Exercise 10.5.6 : Suppose we have a cyclic data-dependence graph with nodes 
a ,  b, c, and d. There are edges from a to  b and from c to  d with label (0 , l )  
and there are edges from b to c and from d to a with label (1 , l ) .  There are no 
other edges. 

a) Draw the cyclic dependence graph. 

b) Compute the table of longest simple paths among the nodes. 

c) Show the lengths of the longest simple paths if the initiation interval T is 
2. 

d) Repeat (c) if T = 3. 

e) For T = 3, what are the constraints on the relative times that each of the 
instructions represented by a ,  b, c, and d may be scheduled? 

! Exercise 10.5.7 : Give an O(n3) algorithm to find the length of the longest 
simple path in an n-node graph, on the assumption that no cycle has a positive 
length. Hint: Adapt Floyd's algorithm for shortest paths (see, e.g., A. V. Aho 
and J. D. Ullman, Foundations of Computer Science, Computer Science Press, 
New York, 1992). 

!! Exercise 10.5.8: Suppose we have a machine with three instruction types, 
which we'll call A, B, and C.  All instructions require one clock tick, and the 
machine can execute one instruction of each type at each clock. Suppose a loop 
consists of six instructions, two of each type. Then it is possible to  execute 
the loop in a software pipeline with an initiation interval of two. However, 
some sequences of the six instructions require insertion of one delay, and some 
require insertion of two delays. Of the 90 possible sequences of two A's, two 
B's and two Cis, how many require no delay? How many require one delay? 



10.6. SUMMARY O F  CHAPTER 10 

H i n t :  There is symmetry among the three instruction types so two sequences 
that can be transformed into one another by permuting the names A, B ,  and 
C must require the same number of delays. For example, ABBCAC must be 
the same as BCCABA. 

10.6 Summary of Chapter 10 

+ Architectural Issues: Optimized code scheduling takes advantage of fea- 
tures of modern computer architectures. Such machines often allow pipe- 
lined execution, where several instructions are in different stages of exe- 
cution at the same time. Some machines also allow several instructions 
to  begin execution at the same time. 

+ Data Dependences: When scheduling instructions, we must be aware of 
the effect instructions have on each memory location and register. True 
data dependences occur when one instruction must read a location after 
another has written it. Antidependences occur when there is a write after 
a read, and output dependences occur when there are two writes to  the 
same location. 

+ Eliminating Dependences: By using additional locations to  store data, 
antidependences and output dependences can be eliminated. Only true 
dependences cannot be eliminated and must surely be respected when the 
code is scheduled. 

+ Data-Dependence Graphs for Basic Blocks: These graphs represent the 
timing constraints among the statements of a basic block. Nodes corre- 
spond to the statements. An edge from n to rn labeled d says that the 
instruction rn must start at  least d clock cycles after instruction n starts. 

+ Prioritized Topological Orders: The data-dependence graph for a basic 
block is always acyclic, and there usually are many topological orders 
consistent with the graph. One of several heuristics can be used to  select 
a preferred topological order for a given graph, e.g., choose nodes with 
the longest critical path first. 

+ List  Scheduling: Given a prioritized topological order for a data-depend- 
ence graph, we may consider the nodes in that order. Schedule each node 
at the earliest clock cycle that is consistent with the timing constraints im- 
plied by the graph edges, the schedules of all previously scheduled nodes, 
and the resource constraints of the machine. 

+ Interblock Code Motion:  Under some circumstances it is possible to move 
statements from the block in which they appear to a predecessor or suc- 
cessor block. The advantage is that there may be opportunities to  execute 
instructions in parallel at  the new location that do not exist at  the orig- 
inal location. If there is not a dominance relation between the old and 



CHAPTER 10. INSTRUCTION-LEVEL PARALLELISM 

new locations, it may be necessary to  insert compensation code along 
certain paths, in order to  make sure that exactly the same sequence of 
instructions is executed, regardless of the flow of control. 

+ Do-All Loops: A do-all loop has no dependences across iterations, so any 
iterations may be executed in parallel. 

+ Software Pipelining of Do-All Loops: Software pipelining is a technique 
for exploiting the ability of a machine to execute several instructions at 
once. We schedule iterations of the loop to begin a t  small intervals, per- 
haps placing no-op instructions in the iterations to  avoid conflicts between 
iterations for the machine's resources. The result is that the loop can be 
executed quickly, with a preamble, a coda, and (usually) a tiny inner loop. 

+ Do-Across Loops: Most loops have data dependences from each iteration 
to  later iterations. These are called do-across loops. 

+ Data-Dependence Graphs for Do-Across Loops: To represent the depen- 
dences among instructions of a do-across loop requires that the edges be 
labeled by a pair of values: the required delay (as for graphs representing 
basic blocks) and the number of iterations that elapse between the two 
instructions that have a dependence. 

+ List Scheduling of Loops: To schedule a loop, we must choose the one 
schedule for all the iterations, and also choose the initiation interval at 
which successive iterations commence. The algorithm involves deriving 
the constraints on the relative schedules of the various instructions in the 
loop by finding the length of the longest acyclic paths between the two 
nodes. These lengths have the initiation interval as a parameter, and thus 
put a lower bound on the initiation interval. 

10.7 References for Chapter 10 

For a more in-depth discussion on processor architecture and design, we recom- 
mend Hennessy and Patterson [5]. 

The concept of data dependence was first discussed in Kuck, Muraoka, and 
Chen [6] and Lamport [8] in the context of compiling code for multiprocessors 
and vector machines. 

Instruction scheduling was first used in scheduling horizontal microcode 
([2, 3, 11, and 121). Fisher's work on microcode compaction led him to pro- 
pose the concept of a VLIW machine, where compilers directly can control the 
parallel execution of operations [3]. Gross and Hennessy [4] used instruction 
scheduling to  handle the delayed branches in the first MIPS RISC instruction 
set. This chapter's algorithm is based on Bernstein and Rodeh's [I] more gen- 
eral treatment of scheduling of operations for machines with instruction-level 
parallelism. 



10.7. REFERENCES FOR CHAPTER 10 767 

The basic idea behind software pipelining was first developed by Pate1 and 
Davidson [9] for scheduling hardware pipelines. Software pipelining was first 
used by Rau and Glaeser [lo] to  compile for a machine with specialized hardware 
designed to support software pipelining. The algorithm described here is based 
on Lam [7], which assumes no specialized hardware support. 

I .  Bernstein, D. and M. Rodeh, "Global instruction scheduling for super- 
scalar machines," Proc. ACM SIGPLAN 1991 Conference on Program- 
ming Language Design and Implementation, pp. 241-255. 

2. Dasgupta, S., "The organization of microprogram stores," Computing 
Surveys 11: l  (1979), pp. 39-65. 

3. Fisher, J. A., "Trace scheduling: a technique for global microcode com- 
paction," IEEE Trans. on Computers C-30:7 (1981), pp. 478-490. 

4. Gross, T .  R. and Hennessy, J. L., "Optimizing delayed branches," Proc. 
15th Annual Workshop on Microprogramming (1982), pp. 114-120. 

5 .  Hennessy, J. L. and D. A. Patterson, Computer Architecture: A Quanti- 
tative Approach, Third Edition, Morgan Kaufman, San Francisco, 2003. 

6. Kuck, D., Y. Muraoka, and S. Chen, "On the number of operations 
simultaneously executable in Fortran-like programs and their resulting 
speedup," IEEE Transactions on Computers C-21:12 (1972), pp. 1293- 
1310. 

7. Lam, M. S., "Software pipelining: an effective scheduling technique for 
VLIW machines," Proc. ACM SIGPLAN 1988 Conference on Program- 
ming Language Design and Implementation, pp. 318-328. 

8. Lamport, L., "The parallel execution of DO loops," Comm. ACM 17:2 
(1974), pp. 83-93. 

9. Patel, J. H. and E. S. Davidson, "Improving the throughput of a pipeline 
by insertion of delays," Proc. Third Annual Symposium on Computer Ar- 
chitecture (1976), pp. 159-164. 

10. Rau, B. R. and C. D. Glaeser, "Some scheduling techniques and an 
easily schedulable horizontal architecture for high performance scientific 
computing," Proc. 14th Annual Workshop on Microprogramming (1981), 
pp. 183-198. 

11. Tokoro, M., E. Tamura, and T.  Takizuka, "Optimization of micropro- 
grams," IEEE Trans. on Computers C-30:7 (1981), pp. 491-504. 

12. Wood, G., "Global optimization of microprograms through modular con- 
trol constructs," Proc. 12th Annual Workshop in Microprogramming 
(1979), pp. 1-6. 





Chapter 11 

Optimizing for Parallelism 
and Locality 

This chapter shows how a compiler can enhance parallelism and locality in com- 
putationally intensive programs involving arrays to speed up target programs 
running on multiprocessor systems. Many scientific, engineering, and commer- 
cial applications have an insatiable need for computational cycles. Examples 
include weather prediction, protein-folding for designing drugs, fluid-dynamics 
for designing aeropropulsion systems, and quantum chromodynamics for study- 
ing the strong interactions in high-energy physics. 

One way to  speed up a computation is to use parallelism. Unfortunately, it 
is not easy to develop software that can take advantage of parallel machines. 
Dividing the computation into units that can execute on different processors in 
parallel is already hard enough; yet that by itself does not guarantee a speedup. 
We must also minimize interprocessor communication, because communication 
overhead can easily make the parallel code run even slower than the sequential 
execution! 

Minimizing communication can be thought of as a special case of improving 
a program's data locality. In general, we say that a program has good data 
locality if a processor often accesses the same data it has used recently. Surely 
if a processor on a parallel machine has good locality, it does not need to com- 
municate with other processors frequently. Thus, parallelism and data locality 
need to be considered hand-in-hand. Data locality, by itself, is also important 
for the performance of individual processors. Modern processors have one or 
more level of caches in the memory hierarchy; a memory access can take tens of 
machine cycles whereas a cache hit would only take a few cycles. If a program 
does not have good data locality and misses in the cache often, its performance 
will suffer. 

Another reason why parallelism and locality are treated together in this same 
chapter is that they share the same theory. If we know how to optimize for data 
locality, we know where the parallelism is. You will see in this chapter that the 



770 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

program model we used for data-flow analysis in Chapter 9 is inadequate for 
parallelization and locality optimization. The reason is that work on data-flow 
analysis assumes we don't distinguish among the ways a given statement is 
reached, and in fact these Chapter 9 techniques take advantage of the fact that 
we don't distinguish among different executions of the same statement, e.g., in 
a loop. To parallelize a code, we need to reason about the dependences among 
different dynamic executions of the same statement to determine if they can be 
executed on different processors simultaneously. 

This chapter focuses on techniques for optimizing the class of numerical 
applications that use arrays as data structures and access them with simple 
regular patterns. More specifically, we study programs that have af ine array 
accesses with respect to  surrounding loop indexes. For example, if i and j are 
the index variables of surrounding loops, then Z[i][j] and Z[i][i + j] are affine 
accesses. A function of one or more variables, i l  , ia, . . . , in is a f ine  if it can 
be expressed as a sum of a constant, plus constant multiples of the variables, 
i.e., co + clxl + ~ 2 x 2  + . . + cnxn, where co, e l , .  . . , c, are constants. Affine 
functions are usually known as linear functions, although strictly speaking, 
linear functions do not have the co term. 

Here is a simple example of a loop in this domain: 

for (i = 0; i < 10; i++) ( 
ZCi l  = 0; 

Because iterations of the loop write to different locations, different processors 
can execute different iterations concurrently. On the other hand, if there is 
another statement Z C j l  = I being executed, we need to worry about whether 
i could ever be the same as j ,  and if so, in which order do we execute those 
instances of the two statements that share a common value of the array index. 

Knowing which iterations can refer to  the same memory location is impor- 
tant. This knowledge lets us specify the data dependences that must be honored 
when scheduling code for both uniprocessors and multiprocessors. Our objective 
is to  find a schedule that honors all the data dependences such that operations 
that access the same location and cache lines are performed close together if 
possible, and on the same processor in the case of multiprocessors. 

The theory we present in this chapter is grounded in linear algebra and 
integer programming techniques. We model iterations in an n-deep loop nest 
as an n-dimensional polyhedron, whose boundaries are specified by the bounds 
of the loops in the code. Affine functions map each iteration to  the array 
locations it accesses. We can use integer linear programming to determine if 
there exist two iterations that can refer to  the same location. 

The set of code transformations we discuss here fall into two categories: 
af ine p a r t i t i o n i n g  and blocking. Affine partitioning splits up the polyhedra 
of iterations into components, to  be executed either on different machines or 
one-by-one sequentially. On the other hand, blocking creates a hierarchy of 
iterations. Suppose we are given a loop that sweeps through an array row-by- 



1 1 . 2 .  BASIC CONCEPTS 

row. We may instead subdivide the array into blocks and visit all elements in a 
block before moving to the next. The resulting code will consist of outer loops 
traversing the blocks, and then inner loops to sweep the elements within each 
block. Linear algebra techniques are used to determine both the best affine 
partitions and the best blocking schemes. 

In the following, we first start with an overview of the concepts in parallel 
computation and locality optimization in Section 11.1. Then, Section 11.2 is 
an extended concrete example - matrix multiplication - that shows how loop 
transformations that reorder the computation inside a loop can improve both 
locality and the effectiveness of parallelization. 

Sections 11.3 to Sections 11.6 present the preliminary information necessary 
for loop transformations. Section 11.3 shows how we model the individual 
iterations in a loop nest; Section 11.4 shows how we model array index functions 
that map each loop iteration to the array locations accessed by the iteration; 
Section 11.5 shows how to determine which iterations in a loop refer to the same 
array location or the same cache line using standard linear algebra algorithms; 
and Section 11.6 shows how to find all the data dependences among array 
references in a program. 

The rest of the chapter applies these preliminaries in coming up with the 
optimizations. Section 11.7 first looks at the simpler problem of finding par- 
allelism that requires no synchronization. To find the best affine partitioning, 
we simply find the solution to the constraint that operations that share a data 
dependence must be assigned to the same processor. 

Well, not too many programs can be parallelized without requiring any 
synchronization. Thus, in Sections 11.8 through 11.9.9, we consider the general 
case of finding parallelism that requires synchronization. We introduce the 
concept of pipelining, show how to find the affine partitioning that maximizes 
the degree of pipelining allowed by a program. We show how to  optimize for 
locality in Section 11.10. Finally, we discuss how affine transforms are useful 
for optimizing for other forms of parallelism. 

11.1 Basic Concepts 

This section introduces the basic concepts related to parallelization and local- 
ity optimization. If operations can be executed in parallel, they also can be 
reordered for other goals such as locality. Conversely, if data dependences in 
a program dictate that instructions in a program must execute serially, there 
is obviously no parallelism, nor is there any opportunity to reorder instruc- 
tions to improve locality. Thus parallelization analysis also finds the available 
opportunities for code motion to improve data locality. 

To minimize communication in parallel code, we group together all related 
operations and assign them to the same processor. The resulting code must 
therefore have data locality. One crude approach to getting good data locality 
on a uniprocessor is to have the processor execute the code assigned to each 



772 CHAPTER 11.  OPTIMIZING FOR PARALLELISM AND LOCALITY 

processor in succession. 
In this introduction, we start by presenting an overview of parallel computer 

architectures. We then show the basic concepts in parallelization, the kind of 
transformations that can make a big difference, as well as the concepts useful 
for parallelization. We then discuss how similar considerations can be used to 
optimize locality. Finally, we introduce informally the mat hematical concepts 
used in this chapter. 

11.1.1 Multiprocessors 

The most popular parallel machine architecture is the symmetric multiproces- 
sor (SMP). High-performance personal computers often have two processors, 
and many server machines have four, eight, and some even tens of processors. 
Moreover, as it has become feasible for several high-performance processors to 
fit on a single chip, multiprocessors have become even more widely used. 

Processors on a symmetric multiprocessor share the same address space. To 
communicate, a processor can simply write to a memory location, which is then 
read by any other processor. Symmetric multiprocessors are so named because 
all processors can access all of the memory in the system with a uniform access 
time. Fig. 11.1 shows the high-level architecture of a multiprocessor. The 
processors may have their own first-level, second-level, and in some cases, even 
a third-level cache. The highest-level caches are connected to physical memory 
through typically a shared bus. 

Cache Cache 
First-level 
Cache 1 Cache 

Bus 

Memory 

Figure 11.1 : The symmetric multi-processor architecture 

Symmetric multiprocessors use a coherent cache protocol to hide the presence 
of caches from the programmer. Under such a protocol, several processors are 



11.1. BASIC CONCEPTS 

allowed to  keep copies of the same cache line1 at the same time, provided that 
they are only reading the data. When a processor wishes to  write to  a cache 
line, copies from all other caches are removed. When a processor requests data 
not found in its cache, the request goes out on the shared bus, and the data 
will be fetched either from memory or from the cache of another processor. 

The time taken for one processor to communicate with another is about 
twice the cost of a memory access. The data, in units of cache lines, must 
first be written from the first processor's cache to memory, and then fetched 
from the memory to the cache of the second processor. You may think that 
interprocessor communication is relatively cheap, since it is only about twice as 
slow as a memory access. However, you must remember that memory accesses 
are very expensive when compared to cache hits-they can be a hundred times 
slower. This analysis brings home the similarity between efficient parallelization 
and locality analysis. For a processor to perform well, either on its own or in 
the context of a multiprocessor, it must find most of the data it operates on in 
its cache. 

In the early 2000's, the design of symmetric multiprocessors no longer scaled 
beyond tens of processors, because the shared bus, or any other kind of inter- 
connect for that matter, could not operate at speed with the increasing number 
of processors. To make processor designs scalable, architects introduced yet an- 
other level in the memory hierarchy. Instead of having memory that is equally 
far away for each processor, they distributed the memories so that each pro- 
cessor could access its local memory quickly as shown in Fig. 11.2. Remote 
memories thus constituted the next level of the memory hierarchy; they are 
collectively bigger but also take longer to access. Analogous to the principle in 
memory-hierarchy design that fast stores are necessarily small, machines that 
support fast interprocessor communication necessarily have a small number of 
processors. 

There are two variants of a parallel machine with distributed memories: 
NUMA (nonuniform memory access) machines and message-passing machines. 
NUMA architectures provide a shared address space t o  the software, allowing 
processors to communicate by reading and writing shared memory. On message- 
passing machines, however, processors have disjoint address spaces, and proces- 
sors communicate by sending messages to  each other. Note that even though it 
is simpler to  write code for shared memory machines, the software must have 
good locality for either type of machine to  perform well. 

1 1.1.2 Parallelism in Applications 

We use two high-level metrics to estimate how well a parallel application will 
perform: parallelism coverage which is the percentage of the computation that 
runs in parallel, granularity of parallelism, which is the amount of computation 
that each processor can execute without synchronizing or communicating with 
others. One particularly attractive target of parallelization is loops: a loop may 

'You may wish to review the discussion of caches and cache lines in Section 7.4. 



774 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

Cache Cache Cache 

I Bus or other Interconnect 

Processor u 
Cache 

Cache 

Memory Q 
Figure 11.2: Distributed memory machines 

have many iterations, and if they are independent of each other, we have found 
a great source of parallelism. 

Amdahl's Law 

The significance of parallelism coverage is succinctly captured by Amdahl's Law. 
Amdahl's Law states that, if f is the fraction of the code parallelized, and if 
the parallelized version runs on a p-processor machine with no communication 
or parallelization overhead, the speedup is 

For example, if half of the computation remains sequential, the computation can 
only double in speed, regardless of how many processors we use. The speedup 
achievable is a factor of 1.6 if we have 4 processors. Even if the parallelism 
coverage is 90%, we get at most a factor of 3 speed up on 4 processors, and a 
factor of 10 on an unlimited number of processors. 

Granularity of Parallelism 

It is ideal if the entire computation of an application can be partitioned into 
many independent coarse-grain tasks because we can simply assign the differ- 
ent tasks to different processors. One such example is the SET1 (Search for 
Extra-Terrestrial Intelligence) project, which is an experiment that uses home 
computers connected over the Internet to analyze different portions of radio 
telescope data in parallel. Each unit of work, requiring only a small amount 



11.1. BASIC CONCEPTS 

of input and generating a small amount of output, can be performed indepen- 
dently of all others. As a result, such a computation runs well on machines over 
the Internet, which has relatively high communication latency (delay) and low 
bandwidth. 

Most applications require more communication and interaction between pro- 
cessors, yet still allow coarse-grained parallelism. Consider, for example, the 
web server responsible for serving a large number of mostly independent re- 
quests out of a common database. We can run the application on a multi- 
processor, with a thread implementing the database and a number of other 
threads servicing user requests. Other examples include drug design or airfoil 
simulation, where the results of many different parameters can be evaluated 
independently. Sometimes the evaluation of even just one set of parameters in 
a simulation takes so long that it is desirable to speed it up with paralleliza- 
tion. As the granularity of available parallelism in an application decreases, 
better interprocessor communication support and more programming effort are 
needed. 

Many long-running scientific and engineering applications, with their simple 
control structures and large data sets, can be more readily parallelized at a finer 
grain than the applications mentioned above. Thus, this chapter is devoted pri- 
marily to techniques that apply to numerical applications, and in particular, to 
programs that spend most of their time manipulating data in multidimensional 
arrays. We shall examine this class of programs next. 

11.1.3 Loop-Level Parallelism 

Loops are the main target for parallelization, especially in applications using 
arrays. Long running applications tend to have large arrays, which lead to 
loops that have many iterations, one for each element in the array. It is not 
uncommon to find loops whose iterations are independent of one another. We 
can divide the large number of iterations of such loops among the processors. 
If the amount of work performed in each iteration is roughly the same, simply 
dividing the iterations evenly across processors will achieve maximum paral- 
lelism. Example 11.1 is an extremely simple example showing how we can take 
advantage of loop-level parallelism. 

Example 11.1 : The loop 

for (i = 0; i < n; i++) ( 
Z [il = X [i] - Y [i] ; 
Z Cil = Z [i] * Z [i] ; 

1 
computes the square of diferences between elements in vectors X and Y and 
stores it into 2. The loop is parallelizable because each iteration accesses a 
different set of data. We can execute the loop on a computer with M processors 
by giving each processor an unique ID p = 0,1 , .  . . , M - 1 and having each 
processor execute the same code: 



776 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

Task-Level Parallelism 

It is possible to  find parallelism outside of iterations in a loop. For example, 
we can assign two different function invocations, or two independent loops, 
to  two processors. This form of parallelism is known as task parallelism. 
The task level is not as attractive a source of parallelism as is the loop 
level. The reason is that the number of independent tasks is a constant 
for each program and does not scale with the size of the data, as does the 
number of iterations of a typical loop. Moreover, the tasks generally are 
not of equal size, so it is hard to  keep all the processors busy all the time. 

b = ceil(n/M) ; 
for (i = b*p; i < min(n,b*(p+l)) ; i++) ( 

Z[il = X[il - YCil; 
Z [i] = Z [il * Z [il ; 

3 

We divide the iterations in the loop evenly among the processors; the pth 
processor is given the pth swath of iterations to execute. Note that the number 
of iterations may not be divisible by M, so we assure that the last processor 
does not execute past the bound of the original laop by introducing a minimum 
operation. 17 

The parallel code shown in Example 11.1 is an SPMD (Single Program 
Multiple Data) program. The same code is executed by all processors, but it 
is parameterized by an identifier unique to  each processor, so different proces- 
sors can take different actions. Typically one processor, known as the master, 
executes all the serial part of the computation. The master processor, upon 
reaching a parallelized section of the code, wakes up all the slave processors. 
All the processors execute the parallelized regions of the code. At the end 
of each parallelized region of code, all the processors participate in a barrier 
synchronization. Any operation executed before a processor enters a synchro- 
nization barrier is guaranteed to  be completed before any other processors are 
allowed to leave the barrier and execute operations that come after the barrier. 

If we parallelize only little loops like those in Example 11.1, then the re- 
sulting code is likely to  have low parallelism coverage and relatively fine-grain 
parallelism. We prefer to  parallelize the outermost loops in a program, as that 
yields the coarsest granularity of parallelism. Consider, for example, the appli- 
cation of a two-dimensional FFT transformation that operates on an n x n data 
set. Such a program performs n FFT's on the rows of the data, then another 
n FFT's on the columns. It is preferable to  assign each of the n independent 
FFT's to  one processor each, rather than trying to  use several processors to  
collaborate on one FFT. The code is easier to  write, the parallelism coverage 



11.1. BASIC CONCEPTS 

for the algorithm is loo%, and the code has good data locality as it requires no 
communication at all while computing an FFT. 

Many applications do not have large outermost loops that are parallelizable. 
The execution time of these applications, however, is often dominated by time- 
consuming kernels, which may have hundreds of lines of code consisting of 
loops with different nesting levels. It is sometimes possible to  take the kernel, 
reorganize its computation and partition it into mostly independent units by 
focusing on its locality. 

11.1.4 Data Locality 
There are two somewhat different notions of data locality that need to be con- 
sidered when parallelizing programs. Temporal locality occurs when the same 
data is used several times within a short time period. Spatial locality occurs 
when different data elements that are located near to each other are used within 
a short period of time. An important form of spatial locality occurs when all 
the elements that appear on one cache line are used together. The reason is 
that as soon as one element from a cache line is needed, all the elements in the 
same line are brought to  the cache and will probably still be there if they are 
used soon. The effect of this spatial locality is that cache misses are minimized, 
with a resulting important speedup of the program. 

Kernels can often be written in many semantically equivalent ways but with 
widely varying data localities and performances. Example 11.2 shows an alter- 
native way of expressing the computation in Example 11.1. 

Example 11.2 : Like Example 11.1 the following also finds the squares of 
differences between elements in vectors X and Y. 

f o r  (i = 0; i < n;  i + + )  
Z [il = X [i] - Y [i] ; 

f o r  (i = 0; i < n ;  i + + )  
Z C i l  = Z C i ]  * Z [ i ]  ; 

The first loop finds the differences, the second finds the squares. Code like this 
appears often in real programs, because that is how we can optimize a program 
for vector machines, which are supercomputers which have instructions that 
perform simple arithmetic operations on vectors a t  a time. We see that the 
bodies of the two loops here are fused as one in Example 11.1. 

Given that the two programs perform the same computation, which performs 
better? The fused loop in Example 11.1 has better performance because it has 
better data locality. Each difference is squared immediately, as soon as it is 
produced; in fact, we can hold the difference in a register, square it, and write 
the result just once into the memory location Z[ i ] .  In contrast, the code in 
Example 11.1 fetches Z[ i ]  once, and writes it twice. Moreover, if the size of 
the array is larger than the cache, Z[ i ]  needs to  be refetched from memory the 
second time it is used in this example. Thus, this code can run significantly 
slower. 



778 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

f o r  ( j  = 0 ;  j  < n ;  j++) 
f o r  ( i  = 0 ;  i < n ;  i++) 

Z [ i , j l  = 0 ;  

(a) Zeroing an array column-by-column. 

f o r  ( i  = 0 ;  i < n ;  i++) 
f o r  ( j  = 0;  j  < n ;  j++) 

Z [ i , j l  = 0 ;  

(b) Zeroing an array row-by-row. 

b  = c e i l  (n/M) ; 
f o r  ( i  = b*p; i < min(n,b*(p+l)) ;  i++)  

f o r  ( j  = 0;  j  < n;  j++) 
z [ i , j l  = 0 ;  

(c) Zeroing an array row-by-row in parallel. 

Figure 11.3: Sequential and parallel code for zeroing an array 

Example 11.3 : Suppose we want to set array 2, stored in row-major order 
(recall Section 6.4.3), to all zeros. Fig. 11.3(a) and (b) sweeps through the 
array column-by-column and row-by-row, respectively. We can transpose the 
loops in Fig. 11.3(a) to arrive at Fig. 11.3(b). In terms of spatial locality, it is 
preferable to zero out the array row-by-row since all the words in a cache line 
are zeroed consecutively. In the column-by-column approach, even though each 
cache line is reused by consecutive iterations of the outer loop, cache lines will 
be thrown out before reuse if the size of a colum is greater than the size of the 
cache. For best performance, we parallelize the outer loop of Fig. 11.3(b) in a 
manner similar to that used in Example 11.1. 

The two examples above illustrate several important characteristics associ- 
ated with numeric applications operating on arrays: 

Array code often has many parallelizable loops. 

When loops have parallelism, their iterations can be executed in arbitrary 
order; they can be reordered to improve data locality drastically. 

As we create large units of parallel computation that are independent of 
each other, executing these serially tends to produce good data locality. 

11 .I .5 Introduction to Affine Transform Theory 

Writing correct and efficient sequential programs is difficult; writing parallel 
programs that are correct and efficient is even harder. The level of difficulty 



1 1 . 2 .  BASIC CONCEPTS 

increases as the granularity of parallelism exploited decreases. As we see above, 
programmers must pay attention to data locality to get high performance. Fur- 
thermore, the task of taking an existing sequential program and parallelizing it 
is extremely hard. It is hard to catch all the dependences in the program, es- 
pecially if it is not a program with which we are familiar. Debugging a parallel 
program is harder yet, because errors can be nondeterministic. 

Ideally, a parallelizing compiler automatically translates ordinary sequential 
programs into efficient parallel programs and optimizes the locality of these 
programs. Unfortunately, compilers without high-level knowledge about the 
application, can only preserve the semantics of the original algorithm, which 
may not be amenable to parallelization. Furthermore, programmers may have 
made arbitrary choices that limit the program's parallelism. 

Successes in parallelization and locality optimizations have been demon- 
strated for Fortran numeric applications that operate on arrays with affine 
accesses. Without pointers and pointer arithmetic, Fortran is easier to ana- 
lyze. Note that not all applications have affine accesses; most notably, many 
numeric applications operate on sparse matrices whose elements are accessed 
indirectly through another array. This chapter focuses on the parallelization 
and optimizations of kernels, consisting of mostly tens of lines. 

As illustrated by Examples 11.2 and 11.3, parallelization and locality op- 
timization require that we reason about the different instances of a loop and 
their relations with each other. This situation is very different from data-flow 
analysis, where we combine information associated with all instances together. 

For the problem of optimizing loops with array accesses, we use three kinds 
of spaces. Each space can be thought of as points on a grid of one or more 
dimensions. 

1. The iteration space is the set of the dynamic execution instances in a 
computation, that is, the set of combinations of values taken on by the 
loop indexes. 

2. The data space is the set of array elements accessed. 

3. The processor space is the set of processors in the system. Normally, 
these processors are assigned integer numbers or vectors of integers to 
distinguish among them. 

Given as input are a sequential order in which the iterations are executed and 
affine array-access functions (e.g., X [ i ,  j + I]) that specify which instances in 
the iteration space access which elements in the data space. 

The output of the optimization, again represented as affine functions, defines 
what each processor does and when. To specify what each processor does, 
we use an affine function to assign instances in the original iteration space to 
processors. To specify when, we use an affine function to map instances in the 
iteration space to a new ordering. The schedule is derived by analyzing the 
array-access functions for data dependences and reuse patterns. 



780 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

The following example will illustrate the three spaces - iteration, data, 
and processor. It will also introduce informally the important concepts and 
issues that need to be addressed in using these spaces to parallelize code. The 
concepts each will be covered in detail in later sections. 

Example 11.4 : Figure 11.4 illustrates the different spaces and their relations 
used in the following program: 

f l o a t  Z [I001 ; 
f o r  ( i  = 0 ;  i < 10; i++)  

Z [i+IOl = Z [i] ; 

The three spaces and the mappings among them are as follows: 

Region of data accessed 

Data space 

Iteration space 

Affine array 
index functions 

Affine partitioning 

Figure 11.4: Iteration, data, and processor space for Example 11.4 

1. Iteration Space: The iteration space is the set of iterations, whose ID'S 
are given by the values held by the loop index variables. A d-deep loop 
nest(i.e., d nested loops) has d index variables, and is thus modeled by 

> .  

a d-dimensional space. The space of iterations is bounded by the lower 
and upper bounds of the loop indexes. The loop of this example defines a 
one-dimensional space of 10 iterations, labeled by the loop index values: 
i = O , l ,  . . .  ,9. 

2. Data Space: The data space is given directly by the array declarations. 
In this example, elements in the array are indexed by a = 0,1, . . . ,99. 
Even though all arrays are linearized in a program's address space, we 
treat n-dimensional arrays as n-dimensional spaces, and assume that the 
individual indexes stay within their bounds. In this example, the array is 
one-dimensional anyway. 



11.1. BASIC CONCEPTS 78 1 

3. Processor Space: We pretend that there are an unbounded number of 
virtual processors in the system as our initial parallelization target. The 
processors are organized in a multidimensional space, one dimension for 
each loop in the nest we wish to parallelize. After parallelization, if we 
have fewer physical processors than virtual processors, we divide the vir- 
tual processors into even blocks, and assign a block each to a processor. 
In this example, we need only ten processors, one for each iteration of 
the loop. We assume in Fig. 11.4 that processors are organized in a one- 
dimensional space and numbered 0 ,1 , .  . . , 9 ,  with loop iteration i assigned 
to processor i. If there were, say, only five processors, we could assign it- 
erations 0 and 1 to processor 0, iterations 2 and 3 to processor 1, and 
so on. Since iterations are independent, it doesn't matter how we do the 
assignment, as long as each of the five processors gets two iterations. 

4. Avgine Array-Index Function: Each array access in the code specifies a 
mapping from an iteration in the iteration space to  an array element in 
the data space. The access function is affine if it involves multiplying the 
loop index variables by constants and adding constants. Both the array 
index functions i + 10, and i are affine. From the access function, we can 
tell the dimension of the data accessed. In this case, since each index 
function has one loop variable, the space of accessed array elements is one 
dimensional. 

5 .  Avgine Partitioning: We parallelize a loop by using an affine function to 
assign iterations in an iteration space to  processors in the processor space. 
In our example, we simply assign iteration i to  processor i .  We can also 
specify a new execution order with affine functions. If we wish to execute 
the loop above sequentially, but in reverse, we can specify the ordering 
function succinctly with an affine expression 10 - i .  Thus, iteration 9 is 
the 1st iteration to  execute and so on. 

6. Region of Data Accessed: To find the best affine partitioning, it useful to 
know the region of data accessed by an iteration. We can get the region of 
data accessed by combining the iteration space information with the array 
index function. In this case, the array access Z[i + 101 touches the region 
{a 1 10 5 a < 20) and the access Z[i] touches the region {a10 < a < 10). 

7. Data Dependence: To determine if the loop is parallelizable, we ask if there 
is a data dependence that crosses the boundary of each iteration. For this 
example, we first consider the dependences of the write accesses in the 
loop. Since the access function Z[i + 101 maps different iterations to  differ- 
ent array locations, there are no dependences regarding the order in which 
the various iterations write values to the array. Is there a dependence be- 
tween the read and write accesses? Since only Z[10], Z[1 ll, . . . ,2[19] are 
written (by the access Z[i + lo]), and only Z[O], Z[1], . . . ,Z[9] are read 
(by the access Z[i]) , there can be no dependencies regarding the relative 
order of a read and a write. Therefore, this loop is parallelizable. That 



782 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

is, each iteration of the loop is independent of all other iterations, and we 
can execute the iterations in parallel, or in any order we choose. Notice, 
however, that if we made a small change, say by increasing the upper 
limit on loop index i to  10 or more, then there would be dependencies, 
as some elements of array Z would be written on one iteration and then 
read 10 iterations later. In that case, the loop could not be parallelized 
completely, and we would have to  think carefully about how iterations 
were partitioned among processors and how we ordered iterations. 

Formulating the problem in terms of multidimensional spaces and affine 
mappings between these spaces lets us use standard mathematical techniques 
to solve the parallelization and locality optimization problem generally. For 
example, the region of data accessed can be found by the elimination of variables 
using the Fourier-Motzkin elimination algorithm. Data dependence is shown to 
be equivalent to  the problem of integer linear programming. Finally, finding 
the affine partitioning corresponds to  solving a set of linear constraints. Don't 
worry if you are not familiar with these concepts, as they will be explained 
starting in Section 11.3. 

11.2 Matrix Multiply: An In-Depth Example 

We shall introduce many of the techniques used by parallel compilers in an ex- 
tended example. In this section, we explore the familiar matrix-multiplication 
algorithm to show that it is nontrivial to  optimize even a simple and easily 
parallelizable program. We shall see how rewriting the code can improve data 
locality; that is, processors are able to  do their work with far less communica- 
tion (with global memory or with other processors, depending on the architec- 
ture) than if the straightforward program is chosen. We shall also discuss how 
cognizance of the existence of cache lines that hold several consecutive data ele- 
ments can improve the running time of programs such as matrix multiplication. 

11.2.1 The Matrix-Multiplication Algorithm 

In Fig. 11.5 we see a typical matrix-multiplication program.2 It takes two n x n 
matrices, X and Y, and produces their product in a third n x n matrix 2. 
Recall that Zij - the element of matrix Z in row i and column j - must 
become CF=, x i k y k i .  

The code of Fig. 11.5 generates n2 results, each of which is an inner product - - 

between one row and one column of the two matrix operands. Clearly, the 

2 ~ n  pseudocode programs in this chapter, we shall generally use C syntax, but to make 
multidimensional array accesses - the central issue for most of the chapter - easier to read, 
we shall use Fortran-style array references, that is, Z[ i ,  j ]  instead of Z [ i ] [ j ] .  



11.2. MATRIX MULTIPLY: AN IN-DEPTH EXAMPLE 

f o r  ( i  = 0 ;  i < n;  i + + )  
f o r  ( j  = 0 ;  j < n ;  j++)  ( 

Z [ i , j l  = 0.0 ;  
f o r  (k = 0;  k  < n ;  k++) 

Z [ i , j l  = Z [ i , j l  + ~ [ i , k l * Y [ k , j l ;  
3 

Figure 11.5: The basic matrix-multiplication algorithm 

calculations of each of the elements of Z are independent and can be executed 
in parallel. 

The larger n is, the more times the algorithm touches each element. That is, 
there are 3n2 locations among the three matrices, but the algorithm performs 
n3 operations, each of which multiplies an element of X by an element of Y 
and adds the product to an element of Z. Thus, the algorithm is computation- 
intensive and memory accesses should not, in principle, constitute a bottleneck. 

Serial Execution of the Matrix Multiplication 

Let us first consider how this program behaves when run sequentially on a 
uniprocessor. The innermost loop reads and writes the same element of Z ,  and 
uses a row of X and a column of Y. Z[i, j ]  can easily be stored in a register 
and requires no memory accesses. Assume, without loss of generality, that the 
matrix is laid out in row-major order, and that c is the number of array elements 
in a cache line. 

Figure 11.6: The data access pattern in matrix multiply 

Figure 11.6 suggests the access pattern as we execute one iteration of the 
outer loop of Fig. 11.5. In particular, the picture shows the first iteration, with 
i = 0. Each time we move from one element of the first row of X to the next, 



784 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

we visit each element in a single column of Y. We see in Fig. 11.6 the assumed 
organization of the matrices into cache lines. That is, each small rectangle 
represents a cache line holding four array elements (i.e., c = 4 and n = 12 in 
the picture). 

Accessing X puts little burden on the cache. One row of X is spread among 
only n/c cache lines. Assuming these all fit in the cache, only n/c cache misses 
occur for a fixed value of index i ,  and the total number of misses for all of X is 
n2/c, the minimum possible (we assume n is divisible by c, for convenience). 

However, while using one row of X ,  the matrix-multiplication algorithm 
accesses all the elements of Y, column by column. That is, when j = 0, the 
inner loop brings to the cache the entire first column of Y. Notice that the 
elements of that column are stored among n different cache lines. If the cache 
is big enough (or n small enough) to hold n cache lines, and no other uses of 
the cache force some of these cache lines to be expelled, then the column for 
j = 0 will still be in the cache when we need the second column of Y. In that 
case, there will not be another n cache misses reading Y, until j = c, at  which 
time we need to bring into the cache an entirely different set of cache lines for 
Y. Thus, to complete the first iteration of the outer loop (with i = 0) requires 
between n2/c and n2 cache misses, depending on whether columns of cache lines 
can survive from one iteration of the second loop to the next. 

Moreover, as we complete the outer loop, for i = 1,2, and so on, we may 
have many additional cache misses as we read Y, or none at all. If the cache is 
big enough that all n2/c cache lines holding Y can reside together in the cache, 
then we need no more cache misses. The total number of cache misses is thus 
2n2/c, half for X and half for Y. However, if the cache can hold one column of 
Y but not all of Y, then we need to bring all of Y into cache again, each time 
we perform an iteration of the outer loop. That is, the number of cache misses 
is n2/c + n3/c; the first term is for X and the second is for Y. Worst, if we 
cannot even hold one column of Y in the cache, then we have n2 cache misses 
per iteration of the outer loop and a total of n2/c + n3 cache misses. 

Row- by-Row Parallelizat ion 

Now, let us consider how we could use some number of processors, say p proces- 
sors, to speed up the execution of Fig. 11.5. An obvious approach to parallelizing 
matrix multiplication is to assign different rows of Z to different processors. A 
processor is responsible for n/p consecutive rows (we assume n is divisible by 
p, for convenience). With this division of labor, each processor needs to access 
n l p  rows of matrices X and 2, but the entire Y matrix. One processor will 
compute n2/p elements of 2, performing n3/p multiply-and-add operations to 
do so. 

While the computation time thus decreases in proportion to p, the commu- 
nication cost actually rises in proportion to p. That is, each of p processors 
has to read n2lp  elements of X, but all n2 elements of Y. The total number 
of cache lines that must be delivered to the caches of the p processors is at last 



11.2. MATRIX MULTIPLY: AN IN-DEPTH EXAMPLE 

n2/c + p n 2 / ~ ;  the two terms are for delivering X and copies of Y,  respectively. 
As p approaches n ,  the computation time becomes O(n2) while the communi- 
cation cost is O(n3). That is, the bus on which data is moved between memory 
and the processors' caches becomes the bottleneck. Thus, with the proposed 
data layout, using a large number of processors to  share the computation can 
actually slow down the computation, rather than speed it up. 

11.2.2 Optimizations 

The matrix-multiplication algorithm of Fig. 11.5 shows that even though an 
algorithm may reuse the same data, it may have poor data locality. A reuse 
of data results in a cache hit only if the reuse happens soon enough, before 
the data is displaced from the cache. In this case, n2 multiply-add operations 
separate the reuse of the same data element in matrix Y, so locality is poor. 
In fact, n operations separate the reuse of the same cache line in Y. In addi- 
tion, on a multiprocessor, reuse may result in a cache hit only if the data is 
reused by the same processor. When we considered a parallel implementation 
in Section 11.2.1, we saw that elements of Y had to be used by every processor. 
Thus, the reuse of Y is not turned into locality. 

Changing Data Layout 

One way to improve the locality of a program is to change the layout of its data 
structures. For example, storing Y in column-major order would have improved 
the reuse of cache lines for matrix Y. The applicability of this approach is 
limited, because the same matrix normally is used in different operations. If Y 
played the role of X in another matrix multiplication, then it would suffer from 
being stored in column-major order, since the first matrix in a multiplication 
is better stored in row-major order. 

Blocking 

It is sometimes possible to change the execution order of the instructions to 
improve data locality. The technique of interchanging loops, however, does not 
improve the matrix-multiplication routine. Suppose the routine were written 
to  generate a column of matrix Z at a time, instead of a row at a time. That 
is, make the j-loop the outer loop and the i-loop the second loop. Assuming 
matrices are still stored in row-major order, matrix Y enjoys better spatial and 
temporal locality, but only a t  the expense of matrix X. 

Blocking is another way of reordering iterations in a loop that can greatly 
improve the locality of a program. Instead of computing the result a row or 
a column at a time, we divide the matrix up into submatrices, or blocks, as 
suggested by Fig. 11.7, and we order operations so an entire block is used over 
a short period of time. Typically, the blocks are squares with a side of length 
B. If B evenly divides n ,  then all the blocks are square. If B does not evenly 



786 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

divide n, then the blocks on the lower and right edges will have one or both 
sides of length less than B. 

-n b 

- B e  

Figure 11.7: A matrix divided into blocks of side B 

Figure 11.8 shows a version of the basic matrix-multiplication algorithm 
where all three matrices have been blocked into squares of side B. As in 
Fig. 11.5, Z is assumed to have been initialized to all 0's. We assume that 
B divides n; if not, then we need to modify line (4) so the upper limit is 
min(ii + B,  n), and similarly for lines (5) and (6). 

1 f o r  ( i i  = 0 ;  ii < n ;  ii = i i+B) 

2) f o r  ( j j  = 0 ;  j j  < n ;  j j  = j j+B) 
3 f o r  (kk = 0 ;  kk < n ;  kk = kk+B) 
4) f o r  ( i  = i i ;  i < i i+B;  i++)  
5 1 f o r  ( j  = j j ;  j < j j+B;  j++) 
6 f o r  (k = kk; k  < kk+B; k++) 
7 Z [ i , j ]  = Z [ i , j ]  + X[i,k]*Y[k,jl ;  

Figure 11.8: Matrix multiplication with blocking 

The outer three loops, lines (I)  through (3), use indexes ii, jj, and kk, which 
are always incremented by B ,  and therefore always mark the left or upper edge 
of some blocks. With fixed values of ii, j j, and kk, lines (4) through (7) enable 
the blocks with upper-left corners X[ii, kk] and Y[kk, jj] to make all possible 
contributions to the block with upper-left corner Z[ii, j j ] .  

If we pick B properly, we can significantly decrease the number of cache 
misses, compared with the basic algorithm, when all of X, Y, or Z cannot fit 
in the cache. Choose B such that it is possible to fit one block from each of the 
matrices in the cache. Because of the order of the loops, we actually need each 



2 2.2. MATRIX MULTIPLY: AN IN-DEPTH EXAMPLE 787 

Another View of Block-Based Matrix Multiplication 

We can imagine that the matrices X ,  Y,  and Z of Fig. 11.8 are not n x n 
matrices of floating-point numbers, but rather (n/B) x (n/B) matrices 
whose elements are themselves B x B matrices of floating-point numbers. 
Lines (1) through (3) of Fig. 11.8 are then like the three loops of the 
basic algorithm in Fig. 11.5, but with n / B  as the size of the matrices, 
rather than n.  We can then think of lines (4) through (7) of Fig. 11.8 
as implementing a single multiply-and-add operation of Fig. 11.5. Notice 
that in this operation, the single multiply step is a matrix-multiply step, 
and it uses the basic algorithm of Fig. 11.5 on the floating-point numbers 
that are elements of the two matrices involved. The matrix addition is 
element-wise addition of floating-point numbers. 

block of Z in cache only once, so (as in the analysis of the basic algorithm in 
Section 11.2.1) we shall not count the cache misses due to  Z. 

To bring a block of X or Y to the cache takes B ~ / C  cache misses; recall c 
is the number of elements in a cache line. However, with fixed blocks from X 
and Y, we perform B3 multiply-and-add operations in lines (4) through (7) of 
Fig. 11.8. Since the entire matrix-multiplication requires n3 multiply-and-add 
operations, the number of times we need to bring a pair of blocks to the cache 
is n3/B3. As we require 2 ~ ~ / c  cache misses each time we do, the total number 
of cache misses is 2n3/Bc. 

It is interesting to compare this figure 2n3/Bc with the estimates given in 
Section 11.2.1. There, we said that if entire matrices can fit in the cache, then 
0(n2/c)  cache misses suffice. However, in that case, we can pick B = n ,  i.e., 
make each matrix be a single block. We again get O(n2/c) as our estimate of 
cache misses. On the other hand, we observed that if entire matrices will not 
fit in cache, we require O(n3/c) cache misses, or even O(n3) cache misses. In 
that case, assuming that we can still pick a significantly large B (e.g., B could 
be 200, and we could still fit three blocks of 8-byte numbers in a one-megabyte 
cache), there is a great advantage to  using blocking in matrix multiplication. 

The blocking technique can be reapplied for each level of the memory hi- 
erarchy. For example, we may wish to  optimize register usage by holding the 
operands of a 2 x 2 matrix multiplication in registers. We choose successively 
bigger block sizes for the different levels of caches and physical memory. 

Similarly, we can distribute blocks between processors to  minimize data traf- 
fic. Experiments showed that such optimizations can improve the performance 
of a uniprocessor by a factor of 3, and the speed up on a multiprocessor is close 
to  linear with respect to  the number of processors used. 



788 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

11.2.3 Cache Interference 

Unfortunately, there is somewhat more to the story of cache utilization. Most 
caches are not fully associative (see Section 7.4.2). In a direct-mapped cache, 
if n is a multiple of the cache size, then all the elements in the same row of 
an n x n array will be competing for the same cache location. In that case, 
bringing in the second element of a column will throw away the cache line of 
the first, even though the cache has the capacity to  keep both of these lines at 
the same time. This situation is referred to as cache interference. 

There are various solutions to  this problem. The first is to  rearrange the 
data once and for all so that the data accessed is laid out in consecutive data 
locations. The second is to  embed the n x n array in a larger m x n array where 
m is chosen to minimize the interference problem. Third, in some cases we can 
choose a block size that is guaranteed to avoid interference. 

11.2.4 Exercises for Section 11.2 

Exercise 11.2.1 : The block-based matrix-multiplication algorithm of Fig. 
11.8 does not have the initialization of the matrix Z to  zero, as the code of 
Fig. 11.5 does. Add the steps that initialize Z to all zeros in Fig. 11.8. 

11.3 Iteration Spaces 

The motivation for this study is to  exploit the techniques that,  in simple settings 
like matrix multiplication as in Section 11.2, were quite straightforward. In the 
more general setting, the same techniques apply, but they are far less intuitive. 
But by applying some linear algebra, we can make everything work in the 
general setting. 

As discussed in Section 11.1.5, there are three kinds of spaces in our trans- 
formation model: iteration space, data space, and processor space. Here we 
start with the iteration space. The iteration space of a loop nest is defined to 
be all the combinations of loop-index values in the nest. 

Often, the iteration space is rectangular, as in the matrix-multiplication 
example of Fig. 11.5. There, each of the nested loops had a lower bound of 0 
and an upper bound of n - 1. However, in more complicated, but still quite 
realistic, loop nests, the upper and/or lower bounds on one loop index can 
depend on the values of the indexes of the outer loops. We shall see an example 
shortly. 

11.3.1 Constructing Iteration Spaces from Loop Nests 

To begin, let us describe the sort of loop nests that can be handled by the 
techniques to  be developed. Each loop has a single loop index, which we assume 
is incremented by 1 at each iteration. That assumption is without loss of 
generality, since if the incrementation is by integer c > 1, we can always replace 



11.3. ITERATION SPACES 789 

uses of the index i by uses of ci + a  for some positive or negative constant a ,  and 
then increment i by 1 in the loop. The bounds of the loop should be written as 
affine expressions of outer loop indices. 

Example 11.5 : Consider the loop 

f o r  ( i  = 2 ;  i <= 100; i = i+3)  
Z [ i l  = 0 ;  

which increments i by 3 each time around the loop. The effect is to  set to  0 each 
of the elements 2[2], Z[5], Z[8], . . . , Z[98]. We can get the same effect with: 

f o r  ( j  = 0 ;  j <= 32; j++) 
Z[3*j+2] = 0 ;  

That is, we substitute 3 j  + 2 for i .  The lower limit i = 2 becomes j = 0 (just 
solve 3 j  + 2 = 2 for j), and the upper limit i 5 100 becomes J' 5 32 (simplify 
3 j  + 2 5 100 to get j 5 32.67 and round down because j has to  be an integer). 

Typically, we shall use for-loops in loop nests. A while-loop or repeat-loop 
can be replaced by a for-loop if there is an index and upper and lower bounds 
for the index, as would be the case in something like the loop of Fig. 11.9(a). 
A for-loop like f o r  (i=O; i<lOO; i++)  serves exactly the same purpose. 

However, some while- or repeat-loops have no obvious limit. For example, 
Fig. 11.9(b) may or may not terminate, but there is no way to tell what condition 
on i in the unseen body of the loop causes the loop to break. Figure 11.9(c) 
is another problem case. Variable n might be a parameter of a function, for 
example. We know the loop iterates n times, but we don't know what n is at  
compile time, and in fact we may expect that different executions of the loop 
will execute different numbers of times. In cases like (b) and (c), we must treat 
the upper limit on i as infinity. 

A d-deep loop nest can be modeled by a d-dimensional space. The dimen- 
sions are ordered, with the kth dimension representing the kth nested loop, 
counting from the outermost loop, inward. A point (xl,  xa, . . . , xd) in this 
space represents values for all the loop indexes; the outermost loop index has 
value X I ,  the second loop index has value 2 2 ,  and so on. The innermost loop 
index has value xd. 

But not all points in this space represent combinations of indexes that ac- 
tually occur during execution of the loop nest. As an affine function of outer 
loop indices, each lower and upper loop bound defines an inequality dividing 
the iteration space into two half spaces: those that are iterations in the loop 
(the positive half space), and those that are not (the negative half space). The 
conjunction (logical AND) of all the linear equalities represents the intersection 
of the positive half spaces, which defines a convex polyhedron, which we call the 
i teration space for the loop nest. A convex polyhedron has the property that if 



790 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

i = 0; 
while (i<100) ( 

<some statements not involving i> 
i = i+1; 

> 
(a) A while-loop with obvious limits. 

i = 0; 
while (1) ( 

(some statements> 
i = i+1; 

1 

(b) It is unclear when or if this loop terminates. 

i = 0; 
while (i<n) ( 

(some statements not involving i or n> 
i = i+1; 

1 

(c) We don't know the value of n, so we don't 
know when this loop terminates. 

Figure 11.9: Some while-loops 

two points are in the polyhedron, all points on the line between them are also in 
the polyhedron. All the iterations in the loop are represented by the points with 
integer coordinates found within the polyhedron described by the loop-bound 
inequalities. And conversely, all integer points within the polyhedron represent 
iterations of the loop nest at some time. 

Figure 11.10: A 2-dimensional loop nest 

Example 11.6 : Consider the 2-dimensional loop nest in Fig. 11.10. We can 
model this two-deep loop nest by the 2-dimensional polyhedron shown in Fig. 
11.11. The two axes represent the values of the loop indexes i and j .  Index i 
can take on any integral value between 0 and 5; index j can take on any integral 
value such that i 5 j 5 7. 



11.3. ITERATION SPACES 

Figure 11.11: The iteration space of Example 11.6 

Iteration Spaces and Array-Accesses 

In the code of Fig. 11.10, the iteration space is also the portion of the array 
A that the code accesses. That sort of access, where the array indexes are 
also loop indexes in some order, is very common. However, we should not 
confuse the space of iterations, whose dimensions are loop indexes, with 
the data space. If we had used in Fig. 11.10 an array access like A[2*i, i +  j] 
instead of A[i, j], the difference would have been apparent. 

11.3.2 Execution Order for Loop Nests 

A sequential execution of a loop nest sweeps through iterations in its iteration 
space in an ascending lexicographic order. A vector i = [io, i l  , . . . , in] is lexi- 
cographically less t h a n  another vector i' = [ih, i i ,  . . . , i i ,] ,  written i 4 i t ,  if and 
only if there exists an m < min(n, n') such that [io, i l  , . . . , i,] = [ib, i i  , . . . , i k ]  
and im+l < ik,,. Note that m = 0 is possible, and in fact common. 

Example 11.7 : With i as the outer loop, the iterations in the loop nest in 
Example 11.6 are executed in the order shown in Fig. 11.12. 

11.3.3 Matrix Formulation of Inequalities 

The iterations in a d-deep loop can be represented mathematically as 

{ i in  .Zd I B i + b  2 0 )  (1 1.1) 



792 CHAPTER 11. OPTIMIZING FOR PARALLELISMAND LOCALITY 

Figure 11.12: Iteration order for loop nest of Fig. 11.10 

Here, 

1. 2, as is conventional in mathematics, represents the set of integers - 
positive, negative, and zero, 

2. B is a d x d integer matrix, 

3. b is an integer vector of length d, and 

4. 0 is a vector of d 0's. 

Example 1 1.8 : We can write the inequalities of Example 11.6 as in Fig. 11.13. 
That is, the range of i is described by i > 0 and i 5 5; the range of j is 
described by j > i and j 5 7. We need to put each of these inequalities in 
the form ui + vj + w > 0. Then, [u, v] becomes a row of the matrix B in the 
inequality (1 1. I), and w becomes the corresponding component of the vector 
b. For instance, i 2 0 is of this form, with u = 1, v = 0, and w = 0. This 
inequality is represented by the first row of B and top element of b in Fig. 11.13. 

Figure 11.13: Matrix-vector multiplication and a vector inequality represents 
the inequalities defining an iteration space 

As another example, the inequality i 5 5 is equivalent to  (- l ) i  + (0) j +5 2 0, 
and is represented by the second row of B and b in Fig. 11.13. Also, j > i 
becomes (-l)i + (1) j  + 0 2 0 and is represented by the third row. Finally, j 5 7 
becomes (0)i + ( - l ) j  + 7 2 0 and is the last row of the matrix and vector. 



11 -3. ITERATION SPACES 793 

Manipulating Inequalities 

To convert inequalities, as in Example 11.8, we can perform transforma- 
tions much as we do for equalities, e.g., adding or subtracting from both 
sides, or multiplying both sides by a constant. The only special rule we 
must remember is that when we multiply both sides by a negative number, 
we have to  reverse the direction of the inequality. Thus, i 5 5, multiplied 
by -1, becomes -i 2 -5. Adding 5 to  both sides, gives -i + 5 2 0, which 
is essentially the second row of Fig. 11.13. 

11.3.4 Incorporating Symbolic Constants 

Sometimes, we need to optimize a loop nest that involves certain variables that 
are loop-invariant for all the loops in the nest. We call such variables symbolic 
constants, but to  describe the boundaries of an iteration space we need to treat 
them as variables and create an entry for them in the vector of loop indexes, 
i.e., the vector i in the general formulation of inequalities (11.1). 

Example 11.9 : Consider the simple loop: 

for ( i =  0; i < = n ;  i++) ( 

This loop defines a one-dimensional iteration space, with index i ,  bounded by 
i 2 0 and i 5 n. Since n is a symbolic constant, we need to include it as a 
variable, giving us a vector of loop indexes [i, n]. In matrix-vector form, this 
iteration space is defined by 

Notice that,  although the vector of array indexes has two dimensions, only the 
first of these, representing i ,  is part of the output - the set of points lying with 
the iteration space. 

11.3.5 Controlling the Order of Execution 

The linear inequalities extracted from the lower and upper bounds of a loop 
body define a set of iterations over a convex polyhedron. As such, the represen- 
tation assumes no execution ordering between iterations within the iteration 
space. The original program imposes one sequential order on the iterations, 
which is the lexicographic order with respect to  the loop index variables ordered 
from the outermost to  the innermost. However, the iterations in the space can 
be executed in any order as long as their data dependences are honored (i.e., 



794 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

the order in which writes and reads of any array element are performed by the 
various assignment statements inside the loop nest do not change). 

The problem of how we choose an ordering that honors the data dependences 
and optimizes for data locality and parallelism is hard and is dealt with later 
starting from Section 11.7. Here we assume that a legal and desirable ordering 
is given, and show how to generate code that enforce the ordering. Let us start 
by showing an alternative ordering for Example 11.6. 

Example 11.10 : There are no dependences between iterations i~ the program 
in Example 11.6. We can therefore execute the iterations in arbitrary order, 
sequentially or concurrently. Since iteration [i, j] accesses element Z[j, i] in 
the code, the original program visits the array in the order of Fig. 11.14(a). 
To improve spatial locality, we prefer to visit contiguous words in the array 
consecutively, as in Fig. 11.14(b). 

This access pattern is obtained if we execute the iterations in the order 
shown in Fig. 11.14(c). That is, instead of sweeping the iteration space in 
Fig. 11.11 horizontally, we sweep the iteration space vertically, so j becomes 
the index of the outer loop. The code that executes the iterations in the above 
order is 

f o r  ( j  = 0 ;  j  <= 7; j++) 
f o r  (i = 0 ;  i <= min(5 , j ) ;  i++)  

Z [ j , i ]  = 0 ;  

Given a convex polyhedron and an ordering of the index variables, how do 
we generate the loop bounds that sweep through the space in lexicographic 
order of the variables? In the example above, the constraint i 5 j shows up as 
a lower bound for index j in the inner loop in the original program, but as an 
upper bound for index i,  again in the inner loop, in the transformed program. 

The bounds of the outermost loop, expressed as linear combinations of sym- 
bolic constants and constants, define the range of all the possible values it can 
take on. The bounds for inner loop variables are expressed as linear combi- 
nations of outer loop index variables, symbolic constants and constants. They 
define the range the variable can take on for each combination of values in outer 
loop variables. 

Projection 

Geometrically speaking, we can find the loop bounds of the outer loop index 
in a two-deep loop nest by projecting the convex polyhedron representing the 
iteration space onto the outer dimension of the space. The projection of a 
polyhedron on a lower-dimensional space is intuitively the shadow cast by the 
object onto that space. The projection of the two-dimensional iteration space in 
Fig. 11.11 onto the i axis is the vertical line from 0 to 5 ;  and the projection onto 



11.3. ITERATION SPACES 

(a) Original access order 

(b) Preferred order of access. 

(c) Preferred order of iterations. 

Figure 11.14: Reordering the accesses and iterations for a loop nest 



796 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

the j axis is the horizontal line from 0 to 7. When we project a 3-dimensional 
object along the x axis onto a 2-dimensional x and y plane, we eliminate variable 
x, losing the height of the individual points and simply record the 2-dimensional 
footprint of the object in the x-y plane. 

Loop bound generation is only one of the many uses of projection. Projection 
can be defined formally as follows. Let S be an n-dimensional polyhedron. 
The projection of S onto the first m of its dimensions is the set of points 
(xl,  22,. . . , xm) such that for some x,+l, xm+2,. . . , x,, vector [XI ,  $ 2 , .  . . , x,] 
is in S. We can compute projection using Fourier-Motxkin elimination, as 
follows: 

Algorit hrn 11.11 : Fourier-Motzkin elimination. 

INPUT: A polyhedron S with variables XI ,  x2, . . . , x,. That is, S is a set of 
linear constraints involving the variables xi. One given variable x, is specified 
to be the variable to be eliminated. 

OUTPUT: A polyhedron St with variables 21,. . . , xm-1, x,+l,. . . ,a, (i.e., all 
the variables of S except for x,) that is the projection of S onto dimensions 
other than the mth. 

METHOD: Let C be all the constraints in S involving x,. Do the following: 

1. For every pair of a lower bound and an upper bound on x, in C,  such as 

create the new constraint 

Note that cl and cz are integers, but L and U may be expressions with 
variables other than x,. 

2. If integers cl and c2 have a common factor, divide both sides by that 
factor. 

3. If the new constraint is not satisfiable, then there is no solution to S; i.e., 
the polyhedra S and St are both empty spaces. 

4. St is the set of constraints S - C,  plus all the constraints generated in 
step 2. 

Note, incidentally, that if x, has u lower bounds and v upper bounds, elimi- 
nating x, produces up to uv inequalities, but no more. 

The constraints added in step (1) of Algorithm 11.11 correspond to the im- 
plications of constraints C on the remaining variables in the system. Therefore, 
there is a solution in St if and only if there exists at least one corresponding 



11.3. ITERATION SPACES 797 

solution in S.  Given a solution in S' the range of the corresponding x, can 
be found by replacing all variables but x, in the constraints C by their actual 
values. 

Example 11.12 : Consider the inequalities defining the iteration space in Fig. 
11.11. Suppose we wish to  use Fourier-Motzkin elimination to  project the two- 
dimensional space away from the i dimension and onto the j dimension. There 
is one lower bound on i: 0 < i and two upper bounds: i 5 j and i 5 5. This 
generates two constraints: 0 < j and 0 < 5. The latter is trivially true and 
can be ignored. The former gives the lower bound on j, and the original upper 
bound j 5 7 gives the upper bound. 

Loop-Bounds Generation 

Now that we have defined Fourier-Motzkin elimination, the algorithm to gen- 
erate the loop bounds to  iterate over a convex polyhedron (Algorithm 11.13) is 
straightforward. We compute the loop bounds in order, from the innermost to  
the outer loops. All the inequalities involving the innermost loop index vari- 
ables are written as the variable's lower or upper bounds. We then project 
away the dimension representing the innermost loop and obtain a polyhedron 
with one fewer dimension. We repeat until the bounds for all the loop index 
variables are found. 

Algorithm 11 .I3 : Computing bounds for a given order of variables. 

INPUT: A convex polyhedron S over variables ul, . . . , u, 

OUTPUT: A set of lower bounds Li and upper bounds Ui for each Ui, expressed 
only in terms of the vj's, for j < i. 

METHOD: The algorithm is described in Fig. 11.15. 17 

Example 11.14 : We apply Algorithm 11.13 to  generate the loop bounds that 
sweep the the iteration space of Fig. 11.11 vertically. The variables are ordered 
j ,  i. The algorithm generates these bounds: 

We need to satisfy all the constraints, thus the bound on i is min(5, j ) .  There 
are no redundancies in this example. 



798 CHAPTER 2 1 .  OPTIMIZING FOR PARALLELISM AND LOCALITY 

S, = S ;  /* Use Algorithm 11.11 to find the bounds */ 
for ( i = n ; i > l ; i - - )  { 

L,, = all the lower bounds on ui in Si; 
U,, = all the upper bounds on ui in Si; 

= Constraints returned by applying Algorithm 11.11 
to eliminate ui from the constraints Si; 

1 
/* Remove redundancies */ 
st = 0; 
for ( i = l ; i < n ; i + + )  { 

Remove any bounds in L,, and U,, implied by St; 
Add the remaining constraints of L,, and U,; on U i  to S'; 

} 

Figure 11.15: Code to express variable bounds with respect to a given variable 
ordering 

Figure 11.16: Diagonalwise ordering of the iteration space of Fig. 11.11 

11.3.6 Changing Axes 

Note that sweeping the iteration space horizontally and vertically, as discussed 
above, are just two of the most common ways of visiting the iteration space. 
There are many other possibilities; for example, we can sweep the iteration space 
in Example 11.6 diagonal by diagonal, as discussed below in Example 11.15. 

Example 11.15 : We can sweep the iteration space shown in Fig. 11.11 diag- 
onally using the order shown in Fig. 11.16. The difference between the coordi- 
nates j and i  in each diagonal is a constant, starting with 0  and ending with 
7. Thus, we define a new variable k  = j - i  and sweep through the iteration 
space in lexicographic order with respect to k  and j .  Substituting i = j - k in 
the inequalities we get: 

O <  j - k  5 5  
j - k <  j 5 7  



11.3. ITERATION SPACES 799 

To create the loop bounds for the order described above, we can apply Algo- 
rithm 11.13 to the above set of inequalities with variable ordering k, j. 

From these inequalities, we generate the following code, replacing i by j - k in 
array accesses. 

f o r  (k = 0; k <= 7; k++) 
f o r  (j = k; j <= min(5+ky7); j++) 

Z[j,j-k] = 0; 

In general, we can change the axes of a polyhedron by creating new loop 
index variables that represent affine combinations of the original variables, and 
defining an ordering on those variables. The hard problem lies in choosing the 
right axes to  satisfy the data dependences while achieving the parallelism and 
locality objectives. We discuss this problem starting with Section 11.7. What 
we have established here is that once the axes are chosen, it is straightforward 
to  generate the desired code, as shown in Example 11.15. 

There are many other iteration-traversal orders not handled by this tech- 
nique. For example, we may wish to  visit all the odd rows in an iteration space 
before we visit the even rows. Or, we may want to  start with the iterations in 
the middle of the iteration space and progress to the fringes. For applications 
that have affine access functions, however, the techniques described here cover 
most of the desirable iteration orderings. 

11.3.7 Exercises for Section 11.3 

Exercise 11.3.1 : Convert each of the following loops to a form where the loop 
indexes are each incremented by 1: 

C) f o r  (i=50; i>=lO; i--) X [ i ]  = 0;. 

Exercise 11.3.2 : Draw or describe the iteration spaces for each of the follow- 
ing loop nests: 

a) The loop nest of Fig. 11.17(a) 

b) The loop nest of Fig. 11.17(b). 



800 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

f o r  ( i  = 1 ;  i < 30; i++)  
f o r  ( j  = i + 2 ;  j < 40-i ;  j++) 

X [ i , j ]  = 0 ;  

(a) Loop nest for Exercise 11.3.2(a). 

f o r  ( i  = 10;  i <= 1000; i++)  
f o r  ( j  = i; j < i+lO; j++)  

XCi, j l  = 0 ;  

(b) Loop nest for Exercise 11.3.2(b). 

f o r  (i = 0 ;  i < 100; i++) 
f o r  ( j  = 0 ;  j < l 0 0 + i ;  j++) 

f o r  (k = i + j ;  k < 100-i- j ;  k++) 
X [ i , j , k l  = 0 ;  

(c) Loop nest for Exercise 11.3.2(c). 

Figure 11.17: Loop nests for Exercise 11.3.2 

c) The loop nest of Fig. 11.17(c). 

Exercise 11.3.3 : Write the constraints implied by each of the loop nests of 
Fig. 11.17 in the form of (11.1). That is, give the values of the vectors i and b 
and the matrix B. 

Exercise 11.3.4 : Reverse each of the loop-nesting orders for the nests of Fig. 
11.17. 

Exercise 11.3.5 : Use the Fourier-Motzkin elimination algorithm to eliminate 
i from each of the sets of constraints obtained in Exercise 11.3.3. 

Exercise 11.3.6 : Use the Fourier-Motzkin elimination algorithm to eliminate 
j from each of the sets of constraints obtained in Exercise 11.3.3. 

Exercise 11.3.7 : For each of the loop nests in Fig. 11.17, rewrite the code so 
the axis i is replaced by the major diagonal, i.e., the direction of the axis is 
characterized by i = j. The new axis should correspond to the outermost loop. 

Exercise 11.3.8 : Repeat Exercise 11.3.7 for the following changes of axes: 

a) Replace i by i + j ;  i.e., the direction of the axis is the lines for which i + j 
is a constant. The new axis corresponds to the outermost loop. 

b) Replace j by i - 2j.  The new axis corresponds to the outermost loop. 



11.4. AFFINE ARRAY INDEXES 80 1 

! Exercise 11.3.9 : Let A, B ,  and C be integer constants in the following loop, 
with C > 1 and B > A: 

Rewrite the loop so the incrementation of the loop variable is 1 and the initial- 
ization is to 0, that is, to be of the form 

f o r  ( j  = 0 ;  j <= D; j++) 
Z[E*j + F1 = 0; 

for integers D, E, and F. Express D, E, and F in terms of A, B ,  and C. 

Exercise 11.3.10 : For a generic two-loop nest 

f o r  ( i  = 0; i <= A; i++) 
f o r ( j  = B*i+C; j <= D*i+E; j++) 

with A through E integer constants, write the constraints that define the loop 
nest's iteration space in matrix-vector form, i.e., in the form Bi + b = 0. 

Exercise 11.3.11 : Repeat Exercise 11.3.10 for a generic two-loop nest with 
symbolic integer constants m and n as in 

f o r  ( i  = 0 ;  i <= m ;  i++)  
f o r ( j  = A*i+B; j <= C*i+n; j++) 

As before, A, B ,  and C stand for specific integer constants. Only i ,  j, rn, and 
n should be mentioned in the vector of unknowns. Also, remember that only i 
and j are output variables for the expression. 

11.4 Affine Array Indexes 

The focus of this chapter is on the class of affine array accesses, where each array 
index is expressed as affine expressions of loop indexes and symbolic constants. 
Affine functions provide a succinct mapping from the iteration space to the data 
space, making it easy to determine which iterations map to the same data or 
same cache line. 

Just as the affine upper and lower bounds of a loop can be represented as a 
matrix-vector calculation, we can do the same for affine access functions. Once 
placed in the matrix-vector form, we can apply standard linear algebra to find 
pertinent information such as the dimensions of the data accessed, and which 
iterations refer to the same data. 



802 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

11.4.1 Affine Accesses 

We say that an array access in a loop is afine if 

1. The bounds of the loop are expressed as affine expressions of the sur- 
rounding loop variables and symbolic constants, and 

2. The index for each dimension of the array is also an affine expression of 
surrounding loop variables and symbolic constants. 

Example 11.16 : Suppose i and j are loop index variables bounded by affine 
expressions. Some examples of affine array accesses are Z[i], Z[i + j + 11, Z[O], 
Z[i,i], and 2 [2* i+173* j -  101. If n is a symbolic constant for aloop nest, then 
2[3  * n, n - j] is another example of an affine array access. However, Z[i * j] 
and Z[n * j] are not affine accesses. 

Each affine array access can be described by two matrices and two vectors. 
The first matrix-vector pair is the B and b that describe the iteration space for 
the access, as in the inequality of Equation (11.1). The second pair, which we 
usually refer to as F and f, represent the function(s) of the loop-index variables 
that produce the array index(es) used in the various dimensions of the array 
access. 

Formally, we represent an array access in a loop nest that uses a vector of 
index variables i by the four-tuple F = (F, f ,  B, b); it maps a vector i within 
the bounds 

to the array element location 

Example 11.17 : In Fig. 11.18 are some common array accesses, expressed in 
matrix notation. The two loop indexes are i and j, and these form the vector 
i. Also, X ,  Y, and Z are arrays with 1, 2, and 3 dimensions, respectively. 

The first access, A[i - 11, is represented by a 1 x 2 matrix F and a vector f 
of length 1. Notice that when we perform the matrix-vector multiplication and 
add in the vector f, we are left with a single function, i - 1, which is exactly the 
formula for the access to the one-dimensional array X .  Also notice the third 
access, Y [j, j + 11, which, after matrix-vector multiplication and addition, yields 
a pair of functions, (j, j + 1). These are the indexes of the two dimensions of 
the array access. 

Finally, let us observe the fourth access Y [I,  21. This access is a constant, 
and unsurprisingly the matrix F is all 0's. Thus, the vector of loop indexes, i, 
does not appear in the access function. 



11.4. AFFINE ARRAY INDEXES 

Figure 11.18: Some array accesses and their matrix-vector representations 

11.4.2 Affine and Nonaffine Accesses in Practice 

There are certain common data access patterns found in numerical programs 
that fail to be affine. Programs involving sparse matrices are one important 
example. One popular representation for sparse matrices is to store only the 
nonzero elements in a vector, and auxiliary index arrays are used to mark 
where a row starts and which columns contain nonzeros. Indirect array accesses 
are used in accessing such data. An access of this type, such as X[Y[i]], is a 
nonaffine access to the array X. If the sparsity is regular, as in banded matrices 
having nonzeros only around the diagonal, then dense arrays can be used to 
represent the subregions with nonzero elements. In that case, accesses may be 
affine. 

Another common example of nonaffine accesses is linearized arrays. Pro- 
grammers sometimes use a linear array to store a logically multidimensional 
object. One reason why this is the case is that the dimensions of the array 
may not be known at compile time. An access that would normally look like 
Z[i, j] would be expressed as Z[i * n + j ] ,  which is a quadratic function. We 
can convert the linear access into a multidimensional access if every access can 



804 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

be decomposed into separate dimensions with the guarantee that none of the 
components exceeds its bound. Finally, we note that induction-variable analy- 
ses can be used to convert some nonaffine accesses into affine ones, as shown in 
Example 11.18. 

Example 11.18 : We can rewrite the code 

j = n ;  
f o r  ( i  = 0;  i <= n ;  i++) ( 

ZCjl = 0 ;  
j = j+2; 

3 

j = n ;  
f o r  ( i  = 0 ;  i <= n ;  i++) ( 

ZCn+2*i] = 0;  
3 

to make the access to matrix Z affine. I7 

11.4.3 Exercises for Section 11.4 

Exercise 11.4.1 : For each of the following array accesses, give the vector f 
and the matrix F that describe them. Assume that the vector of indexes i is 
i ,  j , . . . , and that all loop indexes have affine limits. 

11.5 Data Reuse 

From array access functions we derive two kinds of information useful for locality 
optimization and parallelization: 

1. Data reuse: for locality optimization, we wish to identify sets of iterations 
that access the same data or the same cache line. 

2. Data dependence: for correctness of parallelization and locality loop trans- 
formations, we wish to identify all the data dependences in the code. Re- 
call that two (not necessarily distinct) accesses have a data dependence if 
instances of the accesses may refer to the same memory location, and at 
least one of them is a write. 



11.5. DATA REUSE 805 

In many cases, whenever we identify iterations that reuse the same data, there 
are data dependences between them. 

Whenever there is a data dependence, obviously the same data is reused. 
For example, in matrix multiplication, the same element in the output array 
is written O(n) times. The write operations must be executed in the original 
execution ordeq3 there is reuse because we can allocate the same element to a 
register. 

However, not all reuse can be exploited in locality optimizations; here is an 
example illustrating this issue. 

Example 11.19 : Consider the following loop: 

f o r  (i = 0 ;  i < n ;  i++) 
Z [ 7 i + 3 ]  = Z[3i+5] ; 

We observe that the loop writes to a different location at each iteration, so there 
are no reuses or dependences on the different write operations. The loop, how- 
ever, reads locations 5,8,11,14,17,. . . , and writes locations 3,10,17,24,. . . . 
The read and write iterations access the same elements 17, 38, and 59 and so 
on. That is, the integers of the form 17 + 21j for j = 0,1 ,2 , .  . . are all those 
integers that can be written both as 7il = 3 and as 3i2 + 5 ,  for some integers 
il and i2. However, this reuse occurs rarely, and cannot be exploited easily if 
at all. 

Data dependence is different from reuse analysis in that one of the accesses 
sharing a data dependence must be a write access. More importantly, data de- 
pendence needs to be both correct and precise. It needs to find all dependences 
for correctness, and it should not find spurious dependences because they can 
cause unnecessary serialization. 

With data reuse, we only need to find where most of the exploitable reuses 
are. This problem is much simpler, so we take up this topic here in this section 
and tackle data dependences in the next. We simplify reuse analysis by ignoring 
loop bounds, because they seldom change the shape of the reuse. Much of the 
reuse exploitable by affine partitioning resides among instances of the same 
array accesses, and accesses that share the same coeficient matrix  (what we 
have typically called F in the affine index function). As shown above, access 
patterns like 7i + 3 and 3 i  + 5 have no reuse of interest. 

11.5.1 Types of Reuse 

We first start with Example 11.20 to illustrate the different kinds of data reuses. 
In the following, we need to distinguish between the access as an instruction in 

3 ~ h e r e  is a subtle point here. Because of the commutativity of addition, we would get the 
same answer to the sum regardless of the order in which we performed the sum. However, 
this case is very special. In general, it is far too complex for the compiler to determine what 
computation is being performed by a sequence of arithmetic steps followed by writes, and we 
cannot rely on there being any algebraic rules that will help us reorder the steps safely. 



806 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

a program, e.g., x = Z  Ci , j I , from the execution of this instruction many times, 
as we execute the loop nest. For emphasis, we may refer to the statement itself 
as a static access, while the various iterations of the statement as we execute 
its loop nest are called dynamic accesses. 

Reuses can be classified as self versus group. If iterations reusing the same 
data come from the same static access, we refer to the reuse as self reuse; if 
they come from different accesses, we refer to it as group reuse. The reuse is 
temporal if the same exact location is referenced; it is spatial if the same cache 
line is referenced. 

Example 11.20 : Consider the following loop nest: 

float Z  [n] ; 
f o r  (i = 0 ;  i < n; i++) 

f o r  ( j  = 0 ;  j < n ;  j + + )  
Z [ j + l ]  = ( Z [ j l  + Z [ j + l l  + Z [ j + 2 1 ) / 3 ;  

Accesses Z[j], Z[ j  + I], and Z[ j  + 21 each have self-spatial reuse because con- 
secutive iterations of the same access refer to contiguous array elements. Pre- 
sumably contiguous elements are very likely to reside on the same cache line. 
In addition, they all have self-temporal reuse, since the exact elements are used 
over and over again in each iteration in the outer loop. In addition, they all have 
the same coefficient matrix, and thus have group reuse. There is group reuse, 
both temporal and spatial, between the different accesses. Although there are 
4n2 accesses in this code, if the reuse can be exploited, we only need to bring 
in about n/c cache lines into the cache, where c is the number of words in a 
cache line. We drop a factor of n due to self-spatial reuse, a factor of c to due 
to spatial locality, and finally a factor of 4 due to group reuse. 

In the following, we show how we can use linear algebra to extract the reuse 
information from affine array accesses. We are interested in not just finding 
how much potential savings there are, but also which iterations are reusing the 
data so that we can try to move them close together to exploit the reuse. 

11.5.2 SelfReuse 

There can be substantial savings in memory accesses by exploiting self reuse. If 
the data referenced by a static access has k dimensions and the access is nested 
in a loop d deep, for some d > k,  then the same data can be reused nd-k times, 
where n is the number of iterations in each loop. For example, if a 3-deep loop 
nest accesses one column of an array, then there is a potential savings factor 
of n2 accesses. It turns out that the dimensionality of an access corresponds 
to the concept of the rank of the coefficient matrix in the access, and we can 
find which iterations refer to the same location by finding the null space of the 
matrix, as explained below. 



11.5. DATA REUSE 

Rank of a Matrix 

The rank of a matrix F is the largest number of columns (or equivalently, rows) 
of F that are linearly independent. A set of vectors is linearly independent if 
none of the vectors can be written as a linear combination of finitely many other 
vectors in the set. 

Example 11.2 1 : Consider the matrix 

Notice that the second row is the sum of the first and third rows, while the 
fourth row is the third row minus twice the first row. However, the first and 
third rows are linearly independent; neither is a multiple of the other. Thus, 
the rank of the matrix is 2. 

We could also draw this conclusion by examining the columns. The third 
column is twice the second column minus the first column. On the other hand, 
any two columns are linearly independent. Again, we conclude that the rank is 
2. 0 

Example 11.22 : Let us look at  the array accesses in Fig. 11.18. The first 
access, X[i - I], has dimension 1, because the rank of the matrix [I  0] is 1. 
That is, the one row is linearly independent, as is the first column. 

The second access, Y [i, j] , has dimension 2. The reason is that the matrix 

has two independent rows (and therefore two independent columns, of course). 
The third access, Y [j, j + 11, is of dimension 1, because the matrix 

has rank 1. Note that the two rows are identical, so only one is linearly in- 
dependent. Equivalently, the first column is 0 times the second column, so 
the columns are not independent. Intuitively, in a large, square array Y, the 
only elements accessed lie along a one-dimensional line, just above the main 
diagonal. 

The fourth access, Y[1,2] has dimension 0, because a matrix of all 0's has 
rank 0. Note that for such a matrix, we cannot find a linear sum of even one 
row that is nonzero. Finally, the last access, Z[i, i, 2 * i + j], has dimension 2. 
Note that in the mati-ix for this access 



808 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

the last two rows are linearly independent; neither is a multiple of the other. 
However, the first row is a linear "sum" of the other two rows, with both 
coefficients 0. 

Null Space of a Matrix 

A reference in a d-deep loop nest with rank r accesses O(nr) data elements 
in O(nd) iterations, so on average, O(nd-') iterations must refer to the same 
array element. Which iterations access the same data? Suppose an access in 
this loop nest is represented by matrix-vector combination F and f. Let i and 
if be two iterations that refer to the same array element. Then Fi + f = Fif + f .  
Rearranging terms, we get 

There is a well-known concept from linear algebra that characterizes when 
i and if satisfy the above equation. The set of all solutions to the equation 
Fv = 0 is called the null space of F. Thus, two iterations refer to the same 
array element if the difference of their loop-index vectors belongs to the null 
space of matrix F. 

It is easy to see that the null vector, v = 0, always satisfies Fv = 0. That 
is, two iterations surely refer to the same array element if their difference is 
0; in other words, if they are really the same iteration. Also, the null space is 
truly a vector space. That is, if Fvl = 0 and Fv2 = 0, then F(vl + vz) = 0 
and F(cvl) = 0. 

If the matrix F is fully ranked, that is, its rank is d, then the null space of F 
consists of only the null vector. In that case, iterations in a loop nest all refer 
to different data. In general, the dimension of the null space, also known as the 
nullity, is d - r. If d > r ,  then for each element there is a (d - r)-dimensional 
space of iterations that access that element. 

The null space can be represented by its basis vectors. A k-dimensional null 
space is represented by k independent vectors; any vector that can be expressed 
as a linear combination of the basis vectors belongs to the null space. 

Example 11.23 : Let us reconsider the matrix of Example 11.21: 

We determined in that example that the rank of the matrix is 2; thus the nullity 
is 3 - 2 = 1. To find a basis for the null space, which in this case must be a 
single nonzero vector of length 3, we may suppose a vector in the null space to 





810 CHAPTER 2 1 .  OPTIMIZING FOR PARALLELISM AND LOCALITY 

Figure 11.19: Rank and nullity of affine accesses 

ACCESS 

x 13-11 

YCi, jl 

YCj, j+ll 

YC1,21 

i * i + j  

contiguous in C and X[i, j] and X[i + 1, j] are contiguous in Fortran. Without 
loss of generality, in the rest of the chapter, we shall adopt the C (row-major) 
array layout. 

As a first approximation, we consider two array elements to share the same 
cache line if and only if they share the same row in a two-dimensional array. 
More generally, in an array of d dimensions, we take array elements to share 
a cache line if they differ only in the last dimension. Since for a typical array 
and cache, many array elements can fit in one cache line, there is significant 
speedup to be had by accessing an entire row in order, even though, strictly 
speaking, we occasionally have to wait to load a new cache line. 

The trick to discovering and taking advantage of self-spatial reuse is to drop 
the last row from the coefficient matrix F. If the resulting truncated matrix has 
rank that is less than the depth of the loop nest, then we can assure spatial 
locality by making sure that the innermost loop varies only the last coordinate 
of the array. 

Example 11.25 : Consider the last access, Z[ l , i ,  2 * i + j], in Fig. 11.19. If we 

AFFINE EXPRESSION 

[ l  0 1 [ ; ] + [ - 1 1  

[ : ; ] [ ; ] + [ : I  
[ : : : ] [ ; ] + [ : I  
[ : : ] [ ; ] + [ : I  

0 0 

[: ; ] [ : ] + [ : ]  

RANK 

1 

O 

2 

NULL- 
ITY 

1 

0 

1 

o 

BASIS OF 

NULL SPACE 

[:I 

[ b I 
[ : ] , [ : I  



11.5. DATA REUSE 

delete the last row, we are left with the truncated matrix 

The rank of this matrix is evidently 1, and since the loop nest has depth 2, there 
is the opportunity for spatial reuse. In this case, since j is the inner-loop index, 
the inner loop visits contiguous elements of the array Z stored in row-major 
order. Making i the inner-loop index will not yield spatial locality, since as i 
changes, both the second and third dimensions change. 

The general rule for determining whether there is self-spatial reuse is as 
follows. As always, we assume that the loop indexes correspond to columns of 
the coefficient matrix in order, with the outermost loop first, and the innermost 
loop last. Then in order for there to be spatial reuse, the vector [O, 0, . . . ,0,1] 
must be in the null space of the truncated matrix. The reason is that if this 
vector is in the null space, then when we fix all loop indexes but the innermost 
one, we know that all dynamic accesses during one run through the inner loop 
vary in only the last array index. If the array is stored in row-major order, then 
these elements are all near one another, perhaps in the same cache line. 

Example 11.26 : Note that [0, I] (transposed as a column vector) is in the null 
space of the truncated matrix of Example 11.25. Thus, as mentioned there, we 
expect that with j as the inner-loop index, there will be spatial locality. On 
the other hand, if we reverse the order of the loops, so i is the inner loop, then 
the coefficient matrix becomes 

Now, [ O , 1 ]  is not in the null space of this matrix. Rather, the null space is 
generated by the basis vector [I ,  01. Thus, as we suggested in Example 11.25, 
we do not expect spatial locality if i is the inner loop. 

We should observe, however, that the test for [O, 0, . . . ,0,1] being in the 
null space is not quite sufficient to assure spatial locality. For instance, suppose 
the access were not Z [ l , i ,  2 * i + j] but Z [ l , i , 2  * i + 50 * j]. Then, only every 
fiftieth element of Z would be accessed during one run of the inner loop, and 
we would not reuse a cache line unless it were long enough to hold more than 
50 elements. 

11.5.4 Group Reuse 

We compute group reuse only among accesses in a loop sharing the same coef- 
ficient matrix. Given two dynamic accesses Fil + fi and Fi2 + f2, reuse of the 
same data requires that 



812 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

Suppose v is one solution to this equation. Then if w is any vector in the null 
space of F1, w + v is also a solution, and in fact those are all the solutions to 
the equation. 

Example 11.27 : The following 2-deep loop nest 

f o r  (i = 1; i <= n;  i + + )  
f o r  ( j  = 1; j <= n;  j + + )  

Z [ i a j ]  = Z [ i - l a j ] ;  

has two array accesses, Z[i, j] and Z[i - 1, j]. Observe that these two accesses 
are both characterized by the coefficient matrix 

like the second access, Y [i, j] in Fig. 11.19. This matrix has rank 2, so there is 
no self-temporal reuse. 

However, each access exhibits self-spatial reuse. As described in Section 
11.5.3, when we delete the bottom row of the matrix, we are left with only the 
top row, [I,  01, which has rank 1. Since [ O , 1 ]  is in the null space of this truncated 
matrix, we expect spatial reuse. As each incrementation of inner-loop index j 
increases the second array index by one, we in fact do access adjacent array 
elements, and will make maximum use of each cache line. 

Although there is no self-temporal reuse for either access, observe that the 
two references Z[i, j] and Z[i- 1, j] access almost the same set of array elements. 
That is, there is group-temporal reuse because the data read by access Z[i - 1, j] 
is the same as the data written by access Z[i, j], except for the case i = 1. This 
simple pattern applies to the entire iteration space and can be exploited to 
improve data locality in the code. Formally, discounting the loop bounds, the 
two accesses Z[i, j] and Z[i - 1, f refer to the same location in iterations ( i l ,  j l )  
and (i2, j2), respectively, provided 

Rewriting the terms, we get 

That is, jl = j2 and i2 = il + 1. 
Notice that the reuse occurs along the i-axis of the iteration space. That is, 

the iteration (i2, j2) occurs n iterations (of the inner loop) after the iteration 



11.5. DATA REUSE 813 

(il , jl). Thus, many iterations are executed before the data written is reused. 
This data may or may not still be in the cache. If the cache manages to hold 
two consecutive rows of matrix 2, then access Z[i - 1, j] does not miss in the 
cache, and the total number of cache misses for the entire loop nest is n2/c, 
where c is the number of elements per cache line. Otherwise, there will be twice 
as many misses, since both static accesses require a new cache line for each c 
dynamic accesses. 

Example 11.28 : Suppose there are two accesses 

A[ i , j , i+  j] and A [ i + l , j - l , i +  j] 

in a 3-deep loop nest, with indexes i ,  j, and k, from the outer to the inner loop. 
Then two accesses il = [il, jl , kl] and i2 = [i2, j2, k2] reuse the same element 
whenever 

One solution to this equation for a vector v = [il - i2 ,  jl - j2, kl - k2] is 
v = [I,  -1,0]; that is, i l  = i2 + 1, jl = j2 - 1, and kl = k2.4 However, the null 
space of the matrix 

is generated by the basis vector [O,0, 11; that is, the third loop index, k, can be 
arbitrary. Thus, v ,  the solution to the above equation, is any vector [I,  -1, m] 
for some m. Put another way, a dynamic access to A[i, j, i + j], in a loop nest 
with indexes i ,  j, and k, is reused not only by other dynamic accesses A[i, j, i+ j] 
with the same values of i and j and a different value of k, but also by dynamic 
accesses A[i + 1, j - 1, i + j] with loop index values i + 1, j - 1, and any value 
ofk.  

Although we shall not do so here, we can reason about group-spatial reuse 
analogously. As per the discussion of self-spatial reuse, we simply drop the last 
dimension from consideration. 

The extent of reuse is different for the different categories of reuse. Self- 
temporal reuse gives the most benefit: a reference with a k-dimensional null 
space reuses the same data O(nk) times. The extent of self-spatial reuse is 
limited by the length of the cache line. Finally, the extent of group reuse is 
limited by the number of references in a group sharing the reuse. 

4 ~ t  is interesting to observe that, although there is a solution in this case, there would be 
no solution if we changed one of the third components from i + j to i + j + 1. That is, in 
the example as given, both accesses touch those array elements that lie in the 2-dimensional 
subspace S defined by "the third component is the sum of the first two components." If we 
changed i + j to i + j + 1, none of the elements touched by the second access would lie in S ,  
and there would be no reuse at all. 



814 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

11.5.5 Exercises for Section 11.5 

Exercise 11.5.1 : Compute the ranks of each of the matrices in Fig. 11.20. 
Give both a maximal set of linearly dependent columns and a maximal set of 
linearly dependent rows. 

Figure 11.20: Compute the ranks and null spaces of these matrices 

Exercise 11.5.2 : Find a basis for the null space of each matrix in Fig. 11.20. 

Exercise 11.5.3 : Assume that the iteration space has dimensions (variables) 
i ,  j, and k .  For each of the accesses below, describe the subspaces that refer to 
the following single elements of the array: 

! Exercise 11.5.4: Suppose array A is stored in row-major order and accessed 
inside the following loop nest: 

f o r  (i = 0 ;  i < 100; i++) 
f o r  ( j  = 0 ;  j < 100; j++) 

f o r  (k = 0 ;  k < 100; k++) 
<some access t o  A> 

Indicate for each of the following accesses whether it is possible to rewrite the 
loops so that the access to A exhibits self-spatial reuse; that is, entire cache 
lines are used consecutively. Show how to rewrite the loops, if so. Note: the 
rewriting of the loops may involve both reordering and introduction of new 
loop indexes. However, you may not change the layout of the array, e.g., by 
changing it to column-major order. Also note: in general, reordering of loop 
indexes may be legal or illegal, depending on criteria we develop in the next 
section. However, in this case, where the effect of each access is simply to set 
an array element to 0, you do not have to worry about the effect of reordering 
loops as far as the semantics of the program is concerned. 



11.6. ARRAY  DATA-DEPENDENCE ANALYSIS 

Exercise 11.5.5 : In Section 11.5.3 we commented that we get spatial locality 
if the innermost loop varies only as the last coordinate of an array access. 
However, that assertion depended on our assumption that the array was stored 
in row-major order. What condition would assure spatial locality if the array 
were stored in column-major order? 

! Exercise 11.5.6 : In Example 11.28 we observed that the the existence of reuse 
between two similar accesses depended heavily on the particular expressions for 
the coordinates of the array. Generalize our observation there to determine 
for which functions f (i, j )  there is reuse between the accesses A[i, j, i + j ]  and 
A[i -k 1,j - 1, f (i,j)]. 

! Exercise 11.5.7 : In Example 11.27 we suggested that there will be more cache 
misses than necessary if rows of the matrix Z are so long that they do not fit 
in the cache. If that is the case, how could you rewrite the loop nest in order 
to guarantee group-spatial reuse? 

11.6 Array Data-Dependence Analysis 

Parallelization or locality optimizations frequently reorder the operations ex- 
ecuted in the original program. As with all optimizations, operations can be 
reordered only if the reordering does not change the program's output. Since we 
cannot, in general, understand deeply what a program does, code optimization 
generally adopts a simpler, conservative test for when we can be sure that the 
program output is not affected: we check that the operations on any memory 
location are done in the same order in the original and modified programs. In 
the present study, we focus on array accesses, so the array elements are the 
memory locations of concern. 

Two accesses, whether read or write, are clearly independent (can be re- 
ordered) if they refer to two different locations. In addition, read operations 
do not change the memory state and therefore are also independent. Following 
Section 11.5, we say that two accesses are data dependent if they refer to the 
same memory location and at least one of them is a write operation. To be sure 
that the modified program does the same as the original, the relative execu- 
tion ordering between every pair of data-dependent operations in the original 
program must be preserved in the new program. 

Recall from Section 10.2.1 that there are three flavors of data dependence: 

1. True dependence, where a write is followed by a read of the same location. 



816 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

2. Antidependence, where a read is followed by a write to the same location. 

3. Output dependence, which is two writes to the same location. 

In the discussion above, data dependence is defined for dynamic accesses. 
We say that a static access in a program depends on another as long as there 
exists a dynamic instance of the first access that depends on some instance of 
the ~ e c o n d . ~  

It is easy to see how data dependence can be used in parallelization. For 
example, if no data dependences are found in the accesses of a loop, we can 
easily assign each iteration to a different processor. Section 11.7 discusses how 
we use this information systematically in parallelization. 

11.6.1 Definition of Data Dependence of Array Accesses 

Let us consider two static accesses to the same array in possibly different loops. 
The first is represented by access function and bounds F = (F, f ,  B ,  b)  and is 
in a d-deep loop nest; the second is represented by F' = (F', f' , B', b') and is 
in a dl-deep loop nest. These accesses are data dependent if 

1. At least one of them is a write reference and 

2. There exist vectors i in zd and it in zd' such that 

(a) B i  > 0, 

(b) B'i' > 0, and 

(c) F i  + f = F'i' + f'. 
Since a static access normally embodies many dynamic accesses, it is also 

meaningful to ask if its dynamic accesses may refer to the same memory loca- 
tion. To search for dependencies between instances of the same static access, we 
assume 3' = F' and augment the definition above with the additional constraint 
that i # i' to rule out the trivial solution. 

Example 11.29 : Consider the following 1-deep loop nest: 

This loop has two accesses: Z[i - 11 and Z[i]; the first is a read reference and 
the second a write. To find all the data dependences in this program, we need 
to check if the write reference shares a dependence with itself and with the read 
reference: 

5 ~ e c a l l  the difference between static and dynamic accesses. A static access is an array 
reference at a particular location in a program, while a dynamic access is one execution of 
that reference. 



11.6. ARRAY  DATA-DEPENDENCE ANALYSIS 817 

1. Data dependence between Z[i - 11 and Z[i]. Except for the first iteration, 
each iteration reads the value written in the previous iteration. Mathe- 
matically, we know that there is a dependence because there exist integers 
i and i' such that 

1 5 i 5 10, 1 5 i' < 10, and i - 1 = i'. 

There are nine solutions to the above system of constraints: (i = 2, i' = l ) ,  
(i = 3,i' = 2), and so forth. 

2. Data dependence between Z[i] and itself. It is easy to see that different 
iterations in the loop write to different locations; that is, there are no 
data dependencies among the instances of the write reference Z[i]. Math- 
ematically, we know that there does not exist a dependence because there 
do not exist integers i and i' satisfying 

1 5 i 5 10, 1 5 i' 5 10, i = i t ,  and i # it. 

Notice that the third condition, i = i t ,  comes from the requirement that 
Z[i] and Z[il] are the same memory location The contradictory fourth 
condition, i # i t ,  comes from the requirement that the dependence be 
nontrivial - between different dynamic accesses. 

It is not necessary to consider data dependences between the read reference 
Z[i - 11 and itself because any two read accesses are independent. 

11.6.2 Integer Linear Programming 

Data dependence requires finding whether there exist integers that satisfy a 
system consisting of equalities and inequalities. The equalities are derived from 
the matrices and vectors representing the accesses; the inequalities are derived 
from the loop bounds. Equalities can be expressed as inequalities: an equality 
x = y can be replaced by two inequalities, x > y and y > x. 

Thus, data dependence may be phrased as a search for integer solutions that 
satisfy a set of linear inequalities, which is precisely the well-known problem 
of integer linear programming. Integer linear programming is an NP-complete 
problem. While no polynomial algorithm is known, heuristics have been de- 
veloped to solve linear programs involving many variables, and they can be 
quite fast in many cases. Unfortunately, such standard heuristics are inappro- 
priate for data dependence analysis, where the challenge is to solve many small 
and simple integer linear programs rather than large complicated integer linear 
programs. 

The data dependence analysis algorithm consists of three parts: 



818 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

1. Apply the GCD (Greatest Common Divisor) test, which checks if there is 
an integer solution to the equalities, using the theory of linear Diophan- 
tine equations. If there are no integer solutions, then there are no data 
dependences. Otherwise, we use the equalities to substitute for some of 
the variables thereby obtaining simpler inequalities. 

2. Use a set of simple heuristics to handle the large numbers of typical in- 
equalities. 

3. In the rare case where the heuristics do not work, we use a linear integer 
programming solver that uses a branch-and- bound approach based on 
Fourier-Motzkin elimination. 

11.6.3 The GCD Test 

The first subproblem is to check for the existence of integer solutions to the 
equalities. Equations with the stipulation that solutions must be integers are 
known as Diophantine equations. The following example shows how the issue 
of integer solutions arises; it also demonstrates that even though many of our 
examples involve a single loop nest at a time, the data dependence formulation 
applies to accesses in possibly different loops. 

Example 11.30 : Consider the following code fragment: 

f o r  ( i  = I ;  i < 10; i++)  ( 
Z[2*il = . . . ;  

3 
f o r  ( j  = 1 ;  j < 10; j++) C 

~ [ 2 * j + l ]  = . . .; 
1 

The access 2 [ 2  * i] only touches even elements of 2, while access 2 [ 2  * j + 11 
touches only odd elements. Clearly, these two accesses share no data depen- 
dence regardless of the loop bounds. We can execute iterations in the second 
loop before the first, or interleave the iterations. This example is not as con- 
trived as it may look. An example where even and odd numbers are treated 
differently is an array of complex numbers, where the real and imaginary com- 
ponents are laid out side by side. 

To prove the absence of data dependences in this example, we reason as 
follows. Suppose there were integers i and j such that 2[2 * i] and 2[2 * j + 11 
are the same array element. We get the Diophantine equation 

There are no integers i and j that can satisfy the above equation. The proof 
is that if i is an integer, then 2i is even. If j is an integer, then 2 j  is even, so 
2 j  + 1 is odd. No even number is also an odd number. Therefore, the equation 



11.6. ARRAY  DATA-DEPENDENCE ANALYSIS 819 

has no integer solutions, and thus there is no dependence between the read and 
write accesses. 

To describe when there is a solution to a linear Diophantine equation, we 
need the concept of the greatest common divisor (GCD) of two or more integers. 
The GCD of integers a1 , a2, . . . , a,, denoted gcd(al, a2, . . . , a,,), is the largest 
integer that evenly divides all these integers. GCD7s can be computed efficiently 
by the well-known Euclidean algorithm (see the box on the subject). 

Example 11.31 : gcd(24,36,54) = 6, because 2416, 3616, and 5416 each have 
remainder 0, yet any integer larger than 6 must leave a nonzero remainder when 
dividing at least one of 24,36, and 54. For instance, 12 divides 24 and 36 evenly, 
but not 54. 

The importance of the GCD is in the following theorem. 

Theorem 11.32 : The linear Diophantine equation 

has an integer solution for X I ,  2 2 ,  . . . , x, if and only if gcd(a1, az, . . . , a,) di- 
vides c. 

Example 11.33 : We observed in Example 11.30 that the linear Diophantine 
equation 2i = 2 j  + 1 has no solution. We can write this equation as 

Now gcd(2, -2) = 2, and 2 does not divide 1 evenly. Thus, there is no solution. 
For another example, consider the equation 

Since gcd(24,36,54) = 6, and 30/6 = 5, there is a solution in integers for x, y, 
and x. One solution is x = -1, y = 0, and x = 1, but there are an infinity of 
other solutions. 

The first step to  the data dependence problem is to  use a standard method 
such as Gaussian elimination to  solve the given equalities. Every time a linear 
equation is constructed, apply Theorem 11.32 to rule out, if possible, the ex- 
istence of an integer solution. If we can rule out such solutions, then answer 

Otherwise, we use the solution of the equations to  reduce the number of 
variables in the inequalities. 

Example 11.34 : Consider the two equalities 



820 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

The Euclidean Algorithm 

The Euclidean algorithm for finding gcd(a, b) works as follows. First, as- 
sume that a and b are positive integers, and a > b. Note that the GCD of 
negative numbers, or the GCD of a negative and a positive number is the 
same as the GCD of their absolute values, so we can assume all integers 
are positive. 

If a = b, then gcd(a, b) = a. If a > b, let c be the remainder of alb. 
If c = 0, then b evenly divides a,  so gcd(a, b) = b. Otherwise, compute 
gcd(b, c); this result will also be gcd(a, b). 

To compute gcd(al, a2 , . . . , an), for n > 2, use the Euclidean 
algorithm to compute gcd(al,az) = c. Then recursively compute 
gcd(c, as, ad,. . . an). 

Looking at each equality by itself, it appears there might be a solution. For 
the first equality, gcd(1, -2 , l )  = 1 divides 0, and for the second equality, 
gcd(3,2,1) = 1 divides 5. However, if we use the first equality to solve for 
z = 2y - x and substitute for x in the second equality, we get 2x + 4y = 5. 
This Diophantine equation has no solution, since gcd(2,4) = 2 does not divide 
5 evenly. 

11.6.4 Heuristics for Solving Integer Linear Programs 

The data dependence problem requires many simple integer linear programs be 
solved. We now discuss several techniques to handle simple inequalities and a 
technique to take advantage of the similarity found in data dependence analysis. 

Independent-Variables Test 

Many of the integer linear programs from data dependence consist of inequalities 
that involve only one unknown. The programs can be solved simply by testing 
if there are integers between the constant upper bounds and constant lower 
bounds independently. 

Example 11.35 : Consider the nested loop 

f o r  ( i  = 0; i <= 10; i++) 
f o r  ( j  = 0;  j <= 10; j++) 

Z [ i ,  j] = Z[j+lO,i+91 ; 



11.6. ARRAY  DATA-DEPENDENCE ANALYSIS 821 

To find if there is a data dependence between Z[i, j] and Z[ j  + 10, i + 91, we ask 
if there exist integers i ,  j, i t ,  and j' such that 

The GCD test, applied to the two equalities above, will determine that there 
may be an integer solution. The integer solutions to the equalities are expressed 
by 

for any integers tl and t z .  Substituting the variables tl and t2 into the linear 
inequalities, we get 

Thus, combining the lower bounds from the last two inequalities with the upper 
bounds from the first two, we deduce 

Since the lower bound on t2 is greater than its upper bound, there is no integer 
solution, and hence no data dependence. This example shows that even if there 
are equalities involving several variables, the GCD test may still create linear 
inequalities that involve one variable at a time. 

Acyclic Test 

Another simple heuristic is to find if there exists a variable that is bounded 
below or above by a constant. In certain circumstances, we can safely replace 
the variable by the constant; the simplified inequalities have a solution if and 
only if the original inequalities have a solution. Specifically, suppose every lower 
bound on vi is of the form 

while the upper bounds on vi are all of the form 

where cl , ~ 1 ,  . . . , Ci are all nonnegative. Then we can replace variable vi by 
its smallest possible integer value. If there is no such lower bound, we simply 



822 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

replace U i  with -m. Similarly, if every constraint involving ui can be expressed 
in the two forms above, but with the directions of the inequalities reversed, 
then we can replace variable ui with the largest possible integer value, or by m 
if there is no constant upper bound. This step can be repeated to simplify the 
inequalities and in some cases determine if there is a solution. 

Example 1 1.36 : Consider the following inequalities: 

Variable ul is bounded from below by u2 and from above by u3. However, uz 
is bounded from below only by the constant 1, and u3 is bounded from above 
only by the constant 4. Thus, replacing uz by 1 and us by 4 in the inequalities, 
we obtain 

which can now be solved easily with the independent-variables test. CI 

The Loop-Residue Test 

Let us now consider the case where every variable is bounded from below and 
above by other variables. It is commonly the case in data dependence analysis 
that constraints have the form ui 5 uj +c, which can be solved using a simplified 
version of the loop-residue test due to Shostack. A set of these constraints can be 
represented by a directed graph whose nodes are labeled with variables. There 
is an edge from ui to uj labeled c whenever there is a constraint ui 5 uj + c.  

We define the weight of a path to be the sum of the labels of all the edges 
along the path. Each path in the graph represents a combination of the con- 
straints in the system. That is, we can infer that u < u' + c whenever there 
exists a path from u to u' with weight c. A cycle in the graph with weight c 
represents the constraint u 5 u + c for each node u on the cycle. If we can 
find a negatively weighted cycle in the graph, then we can infer u < u,  which is 
impossible. In this case, we can conclude that there is no solution and thus no 
dependence. 

We can also incorporate into the loop-residue test constraints of the form 
c 5 u and u < c for variable u and constant c.  We introduce into the system of 
inequalities a new dummy variable uo, which is added to each constant upper 
and lower bound. Of course, uo must have value 0, but since the loop-residue 
test only looks for cycles, the actual values of the variables never becomes 
significant. To handle constant bounds, we replace 



11.6. ARRAY DATA-DEPENDENCE ANALYSIS 

Example 11.37 : Consider the inequalities 

The constant upper and lower bounds on vl become vo 5 vl - 1 and vl 5 vo + 10; 
the constant bounds on v2 and v3 are handled similarly. Then, converting the 
last constraint to vl 5 v3 - 4, we can create the graph shown in Fig. 11.21. 
The cycle vl , v3, vo, vl has weight - 1, so there is no solution to this set of 
inequalities. 

- 1 

Figure 11.21: Graph for the constraints of Example 11.37 

Memoizat ion 

Often, similar data dependence problems are solved repeatedly, because simple 
access patterns are repeated throughout the program. One important technique 
to speed up data dependence processing is to use memoixation. Memoization 
tabulates the results to the problems as they are generated. The table of stored 
solutions is consulted as each problem is presented; the problem needs to be 
solved only if the result to the problem cannot be found in the table. 

11.6.5 Solving General Integer Linear Programs 

We now describe a general approach to solving the integer linear programming 
problem. The problem is NP-complete; our algorithm uses a branch-and-bound 
approach that can take an exponential amount of time in the worst case. How- 
ever, it is rare that the heuristics of Section 11.6.4 cannot resolve the problem, 
and even if we do need to apply the algorithm of this section, it seldom needs 
to perform the branch-and-bound step. 



824 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

The approach is to first check for the existence of rational solutions to the 
inequalities. This problem is the classical linear-programming problem. If there 
is no rational solution to the inequalities, then the regions of data touched by the 
accesses in question do not overlap, and there surely is no data dependence. If 
there is a rational solution, we first try to prove that there is an integer solution, 
which is commonly the case. Failing that, we then split the polyhedron bounded 
by the inequalities into two smaller problems and recurse. 

Example 11.38 : Consider the following simple loop: 

for (i = 1;  i < 10; i++) 
Z[i] = Z[i+lO] ; 

The elements touched by access Z[i] are Z[l] , . . . , Z[9], while the elements 
touched by Z[i + 101 are Z[11], . . . ,Z[19]. The ranges do not overlap and 
therefore there are no data dependences. More formally, we need to show that 
there are no two dynamic accesses i and i t ,  with 1 5 i 5 9, 1 5 i t  5 9, and 
i = i t  + 10. If there were such integers i and i t ,  then we could substitute i t  + 10 
for i and get the four constraints on it: 1 5 i t  5 9 and 1 5 i t  + 10 5 9. However, 
i t  + 10 < 9 implies i t  5 -1, which contradicts 1 < it. Thus, no such integers i 
and i t  exist. 

Algorithm 11.39 describes how to determine if an integer solution can be 
found for a set of linear inequalities based on the Fourier-Motzkin elimination 
algorithm. 

Algorithm 11.39 : Branch-and-bound solution to integer linear programming 
problems. 

INPUT: A convex polyhedron S, over variables vl, . . . , v,. 

OUTPUT: "yes" if S, has an integer solution, "no" otherwise. 

METHOD: The algorithm is shown in Fig. 11.22. 

Lines (1) through (3) attempt to find a rational solution to the inequalities. 
If there no rational solution, there is no integer solution. If a rational solution 
is found, this means that the inequalities define a nonempty polyhedron. It is 
relatively rare for such a polyhedron not to include any integer solutions - for 
that to happen, the polyhedron must be relatively thin along some dimension 
and fit between integer points. 

Thus, lines (4) through (9) try to check quickly if there is an integer solution. 
Each step of the Fourier-Motzkin elimination algorithm produces a polyhedron 
with one fewer dimension than the previous one. We consider the polyhedra in 
reverse order. We start with the polyhedron with one variable and assign to that 
variable an integer solution roughly in the middle of the range of possible values 
if possible. We then substitute the value for the variable in all other polyhedra, 
decreasing their unknown variables by one. We repeat the same process until 



11.6. ARRAY  DATA-DEPENDENCE ANALYSIS 

apply Algorithm 11.13 to S, to project away variables 
vn, un-l, . . . , v1 in that order; 

let Si be the polyhedron after projecting away U i + l ,  for 
i = n - 1 , n - 2 ,  . . .  ,O; 

if SO is false return "no" ; 
/* There is no rational solution if So, which involves 
only constants, has unsatisfiable constraints */ 

for (i = 1 ; i  < n;i++) { 
if (Si does not include an integer value) break; 
pick ci, an integer in the middle of the range for ui in Si; 
modify Si by replacing vi by ci; 

} 
if (i == n + 1) return "yes"; 
if (i == 1) return "no" ; 
let the lower and upper bounds on ui in Si be 

li and ui, respectively; 
recursively apply this algorithm to S, U {vi < Lli] ) and 

s n  u {ui > [ ~ i l } ;  
if (either returns "yes") return "yes" else return "no" ; 

Figure 11.22: Finding an integer solution in inequalities 

we have processed all the polyhedra, in which case an integer solution is found, 
or we have found a variable for which there is no integer solution. 

If we cannot find an integer value for even the first variable, there is no 
integer solution (line 10). Otherwise, all we know is that there is no integer 
solution including the combination of specific integers we have picked so far, and 
the result is inconclusive. Lines (11) through (13) represent the branch-and- 
bound step. If variable vi is found to have a rational but not integer solution, 
we split the polyhedron into two with the first requiring that ui must be an 
integer smaller than the rational solution found, and the second requiring that 
ui must be an integer greater than the rational solution found. If neither has a 
solution, then there is no dependence. 

11.6.6 Summary 

We have shown that essential pieces of information that a compiler can glean 
from array references are equivalent to certain standard mathematical concepts. 
Given an access function F = (F ,  f ,  B, b): 

I. The dimension of the data region accessed is given by the rank of the 
matrix F. The dimension of the space of accesses to the same location is 
given by the nullity of F. Iterations whose differences belong to the null 
space of F refer to  the same array elements. 



826 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

2. Iterations that share self-temporal reuse of an access are separated by 
vectors in the null space of F .  Self-spatial reuse can be computed similarly 
by asking when two iterations use the same row, rather than the same 
element. Two accesses Fil + fl and Fi2 + f2 share easily exploitable 
locality along the d direction, if d is the particular solution to the equation 
Fd = (fl - fi). In particular, if d is the direction corresponding to the 
innermost loop, i.e., the vector [O, 0, . . . ,0,1], then there is spatial locality 
if the array is stored in row-major form. 

3. The data dependence problem - whether two references can refer to the 
same location - is equivalent to integer linear programming. Two access 
functions share a data dependence if there are integer-valued vectors i 
and i' such that B i  2 0, B'i' 2 0, and F i  + f = F'i' + f'. 

11.6.7 Exercises for Section 11.6 

Exercise 11.6.1 : Find the GCD's of the following sets of integers: 

Exercise 11.6.2 : For the following loop 

f o r  (i = 0;  i < 10; i++) 
A [ i l  = A [ l O - i ]  ; 

indicate all the 

a) True dependences (write followed by read of the same location). 

b) Antidependences (read followed by write to the same location). 

c) Output dependences (write followed by another write to the same loca- 
t ion). 

! Exercise 11.6.3 : In the box on the Euclidean algorithm, we made a number 
of assertions without proof. Prove each of the following: 

a) The Euclidean algorithm as stated always works. In particular, gcd(b, c) = 
gcd(a, b), where c is the nonzero remainder of alb. 

c) gcd(al , a2, . . . , a,) = gcd(gcd(al , a2), as, a4, . . . , a,) for n > 2. 



11.6. ARRAY DATA-DEPENDENCE ANALYSIS 827 

d) The GCD is really a function on sets of integers; i.e., order doesn't matter. 
Show the commutative law for GCD: gcd(a, b) = gcd(b, a). Then, show the 
more difficult statement, the associative law for GCD: gcd(gcd(a, b), c) = 
gcd (a, gcd(b, c)) . Finally, show that together these laws imply that the 
GCD of a set of integers is the same, regardless of the order in which the 
GCD7s of pairs of integers are computed. 

e) If S and T are sets of integers, then gcd(S U T) = gcd(gcd(S), gcd(T)). 

! Exercise 11.6.4: Find another solution to the second Diophantine equation 
in Example 11.33. 

Exercise 11.6.5 : Apply the independent-variables test in the following situa- 
tion. The loop nest is 

f o r  (i=O; i<lOO; i++) 
f o r  (j=O; j(100; j++) 

f o r  (k=O; kclOO; k++) 

and inside the nest is an assignment involving array accesses. Determine if there 
are any data dependences due to each of the following statements: 

d) A[i, j ,k] = A[i+99,k+1OOy j l .  

Exercise 11.6.6 : In the two constraints 

eliminate x by replacing it by a constant lower bound on y. 

Exercise 11.6.7 : Apply the loop-residue test to the following set of con- 
straints: 

Exercise 11.6.8: Apply the loop-residue test to  the following set of con- 
straints: 



828 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

Exercise 11.6.9 : Apply the loop-residue test to the following set of con- 
straints: 

11.7 Finding Synchronization-Free Parallelism 

Having developed the theory of affine array accesses, their reuse of data, and 
the dependences among them, we shall now begin to apply this theory to paral- 
lelization and optimization of real programs. As discussed in Section 11.1.4, it 
is important that we find parallelism while minimizing communication among 
processors. Let us start by studying the problem of parallelizing an application 
without allowing any communication or synchronization between processors at 
all. This constraint may appear to be a purely academic exercise; how often 
can we find programs and routines that have such a form of parallelism? In 
fact, many such programs exist in real life, and the algorithm for solving this 
problem is useful in its own right. In addition, the concepts used to solve this 
problem can be extended to handle synchronization and communication. 

11.7.1 An Introductory Example 

Shown in Fig. 11.23 is an excerpt of a C translation (with Fortran-style array 
accesses retained for clarity) from a 5000-line Fortran multigrid algorithm to 
solve three-dimensional Euler equations. The program spends most its time 
in a small number of routines like the one shown in the figure. It is typical 
of many numerical programs. These often consist of numerous for-loops, with 
different nesting levels, and they have many array accesses, all of which are 
affine expressions of surrounding loop indexes. To keep the example short, we 
have elided lines from the original program with similar characteristics. 

The code of Fig. 11.23 operates on the scalar variable T and a number 
of different arrays with different dimensions. Let us first examine the use of 
variable T. Because each iteration in the loop uses the same variable T, we 
cannot execute the iterations in parallel. However, T is used only as a way 
to hold a common subexpression used twice in the same iteration. In the first 
two of the three loop nests in Fig. 11.23, each iteration of the innermost loop 
writes a value into T and uses the value immediately after twice, in the same 
iteration. We can eliminate the dependences by replacing each use of T by the 
right-hand-side expression in the previous assignment of T ,  without changing 
the semantics of the program. Or, we can replace the scalar T by an array. We 
then have each iteration (j, i)  use its own array element T[j, i]. 

With this modification, the computation of an array element in each as- 
signment statement depends only on other array elements with the same values 
for the last two components ( j  and i, respectively). We can thus group all 



2 2.7. FINDING SYNCHRONIZATION-FREE PARALLELISM 

f o r  (j = 2; j <= jl; j++) 
f o r  (i = 2,  i <= il, i++) ( 

AP[j ,il - - . . . ,  
T = 1.0/(1.0 + AP[j,i]); 
D[2,j,i] = T*AP[j,il; 
DW[l,2, j ,i] = T*DW[l,2, j ,il ; 

1 
f o r  (k = 3; k <= kl-1; k++) 

f o r  (j = 2; j <= jl; j++) 
f o r  (i = 2; i <= il; i++) ( 

AM[j ,il = AP[j,il; 
APCj ,il - - . . . )  
T = . . .  AP[j,i] - AM[j,i]*D[k-l,j,i] ...; 
D[k,j,il =T*AP[j,i]; 
D W ~ l y k Y j y i ~  = T*(DW[I,k,j,i] + DW[I,k-l,j,i]). . . ;  

3 
. a .  

f o r  (k = kl-I; k >= 2; k--) 
f o r  (j = 2;  j <= jl; j++) 

f o r  (i = 2; i <= il; i++) 
DW[l,k,j,il = DW[l,k,j,il + ~[k,j,il*DW[l,k+~,j,il; 

Figure 11.23: Code excerpt of a multigrid algorithm 

operations that operate on the (j, i)th element of all arrays into one computa- 
tion unit, and execute them in the original sequential order. This modification 
produces (jl - 1) x (il - 1) units of computation that are all independent of 
one another. Notice that second and third nests in the source program involve 
a third loop, with index k. However, because there is no dependence between 
dynamic accesses with the same values for j and i, we can safely perform the 
loops on k inside the loops on j and i - that is, within a computation unit. 

Knowing that these computation units are independent enables a number 
of legal transforms on this code. For example, instead of executing the code as 
originally written, a uniprocessor can perform the same computation by execut- 
ing the units of independent operation one unit at a time. The resulting code, 
shown in Fig. 11.24, has improved temporal locality, because results produced 
are consumed immediately. 

The independent units of computation can also be assigned to different 
processors and executed in parallel, without requiring any synchronization or 
communication. Since there are (j 1 - 1) x (il - 1) independent units of com- 
putation, we can utilize at most (jl - 1) x (il - 1) processors. By organizing 
the processors as if they were in a 2-dimensional array, with ID'S (j, i) ,  where 
2 5 j < jl and 2 5 i < il, the SPMD program to be executed by each 
processor is simply the body in the inner loop in Fig. 11.24. 



830 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

f o r  (j = 2; j <= jl; j++) 
f o r  (i = 2; i <= il; i++) ( 

APCj ,il - - . . . )  
TCj ,il = 1.0/(1.0 + AP[j,i]); 
D[2, J 5j-1 = TCj ,il *AP[j ,i] ; 
DW[Iy2, j ,il = TCj ,i]*DW[1,2, j ,i]; 
f o r  (k = 3; k <= kl-I; k++) { 

AMCj ,il = AP[j,i]; 
APIj ,il - - . . . ;  
T[j ,il - 

- ...AP [j,il - AM[j,i]*~[k-l,j,i] ...; 
D[k, j ,il = TCj ,i]*AP[j ,i] ; 
DW[l,k,j,il = T[j,il*(~~[l,k,j,i] + DW[i,k-l,j,i]) . . . ;  

3 
. . .  
f o r  (k = kl-I; k >= 2; k--1 

DW[l,k,j,i] = DW[l,k,j,il + ~[k,j,il*DW[~,k+~,j,il; 
1 

Figure 11.24: Code of Fig. 11.23 transformed to carry outermost parallel loops 

The above example illustrates the basic approach to finding synchronization- 
free parallelism. We first split the computation into as many independent units 
as possible. This partitioning exposes the scheduling choices available. We 
then assign computation units to the processors, depending on the number of 
processors we have. Finally, we generate an SPMD program that is executed 
on each processor. 

11.7.2 Affine Space Partitions 

A loop nest is said to have k degrees of parallelism if it has, within the nest, k 
parallelizable loops - that is, loops such that there are no data dependencies 
between different iterations of the loops. For example, the code in Fig. 11.24 
has 2 degrees of parallelism. It is convenient to assign the operations in a com- 
putation with k degrees of parallelism to a processor array with k dimensions. 

We shall assume initially that each dimension of the processor array has 
as many processors as there are iterations of the corresponding loop. After 
all the independent computation units have been found, we shall map these 
"virtual" processors to the actual processors. In practice, each processor should 
be responsible for a fairly large number of iterations, because otherwise there 
is not enough work to amortize away the overhead of parallelization. 

We break down the program to be parallelized into elementary statements, 
such as 3-address statements. For each statement, we find an a f i n e  space 
partition that maps each dynamic instance of the statement, as identified by its 
loop indexes, to a processor ID. 



11.7. FINDING SYNCHRONIZATION-FREE PARALLELISM 831 

Example 11.40 : As discussed above, the code of Fig. 11.23 has two degrees of 
parallelism. We view the processor array as a &dimensional space. Let (pl , pz )  
be the ID of a processor in the array. The parallelization scheme discussed in 
Section 11.7.1 can be described by simple affine partition functions. All the 
statements in the first loop nest have this same affine partition: 

All the statements in the second and third loop nests have the following same 
affine partition: 

The algorithm to find synchronization-free parallelism consists of three steps: 

1. Find, for each statement in the program, an affine partition that maxi- 
mizes the degree of parallelism. Note that we generally treat the state- 
ment, rather than the single access, as the unit of computation. The same 
affine partition must apply to each access in the statement. This grouping 
of accesses makes sense, since there is almost always dependence among 
accesses of the same statement anyway. 

2. Assign the resulting independent computation units among the processors, 
and choose an interleaving of the steps on each processor. This assignment 
is driven by locality considerations. 

3. Generate an SPMD program to be executed on each processor. 

We shall discuss next how to find the affine partition functions, how to gen- 
erate a sequential program that executes the partitions serially, and how to 
generate an SPMD program that executes each partition on a different pro- 
cessor. After we discuss how parallelism with synchronizations is handled in 
Sections 11.8 through 11.9.9, we return to Step 2 above in Section 11.10 and 
discuss the optimization of locality for uniprocessors and multiprocessors. 

11.7.3 Space-Partition Constraints 

To require no communication, each pair of operations that share a data depen- 
dence must be assigned to the same processor. We refer to these constraints as 
"space-partition constraints." Any mapping that satisfies these constraints cre- 
ates partitions that are independent of one another. Note that such constraints 
can be satisfied by putting all the operations in a single partition. Unfortu- 
nately, that "solution" does not yield any parallelism. Our goal is to create 



832 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

as many independent partitions as possible while satisfying the space-partition 
constraints; that is, operations are not placed on the same processor unless it 
is necessary. 

When we restrict ourselves to affine partitions, then instead of maximizing 
the number of independent units, we may maximize the degree (number of 
dimensions) of parallelism. It is sometimes possible to create more independent 
units if we can use piecewise affine partitions. A piecewise affine partition 
divides instances of a single access into different sets and allows a different 
affine partition for each set. However, we shall not consider such an option 
here. 

Formally, an affine partition of a program is synchronixation free if and only 
if for every two (not necessarily distinct) accesses sharing a dependence, Fl = 
(Fl ,  fl, B l ,  bl)  in statement s l  nested in dl loops, and F2 = (F2, f2, B2, b2) in 
statement 52  nested in d2 loops, the partitions (Cl ,  cl) and (C2, c2) for state- 
ments s l  and s2, respectively, satisfy the following space-partition constraints: 

For all il in zdl and i2 in Zd2 such that 

a) Bli l  + b l  2 0, 

b) B2i2 + b2 2 0, and 

c) F l i l  + f l  = F2i2 +f2, 

it is the case that Clil  + cl = C2i2 + c2. 

The goal of the parallelization algorithm is to find, for each statement, the 
partition with the highest rank that satisfies these constraints. 

Shown in Fig. 11.25 is a diagram illustrating the essence of the space- 
partition constraints. Suppose there are two static accesses in two loop nests 
with index vectors il and i2. These accesses are dependent in the sense that 
they access at least one array element in common, and at least one of them is a 
write. The figure shows particular dynamic accesses in the two loops that hap- 
pen to access the same array element, according to the affine access functions 
Fl il + fl and F2i2 + f2. Synchronization is necessary unless the affine partitions 
for the two static accesses, Cl  il + cl and C2i2 + c2, assign the dynamic accesses 
to the same processor. 

If we choose an affine partition whose rank is the maximum of the ranks of 
all statements, we get the maximum possible parallelism. However, under this 
partitioning some processors may be idle at times, while other processors are 
executing statements whose affine partitions have a smaller rank. This situation 
may be acceptable if the time taken to execute those statements is relatively 
short. Otherwise, we can choose an affine partition whose rank is smaller than 
the maximum possible, as long as that rank is greater than 0. 

We show in Example 11.41 a small program designed to illustrate the power 
of the technique. Real applications are usually much simpler than this, but 
may have boundary conditions resembling some of the issues shown here. We 
shall use this example throughout this chapter to illustrate that programs with 



11.7. FINDING SYNCHRONIZATION-FREE PARALLELISM 

Loops 

Array 

Processor ID 

Figure 11.25: Space-partition constraints 

affine accesses have relatively simple space-partition constraints, that these con- 
straints can be solved using standard linear algebra techniques, and that the 
desired SPMD program can be generated mechanically from the affine parti- 
t ions. 

Example 11.41 : This example shows how we formulate the space-partition 
constraints for the program consisting of the small loop nest with two state- 
ments, s~ and s2, shown in Figure 11.26. 

f o r  ( i  = 1 ;  i <= 100; i++) 
f o r  ( j  = 1 ;  j <= 100; j++) ( 

X [ i , j l  = X C i , j l  + YCi-1, j l ;  /* ( s l )  */ 
Y [ i , j l  = Y [ i , j l  + X [ i , j - I ] ;  /* ( s2 )  */ 

3 

Figure 11.26: A loop nest exhibiting long chains of dependent operations 

We show the data dependences in the program in Figure 11.27. That is, each 
black dot represents an instance of statement sl, and each white dot represents 
an instance of statement s 2 .  The dot located at  coordinates (i, j )  represents the 
instance of the statement that is executed for those values of the loop indexes. 
Note, however, that the instance of s z  is located just below the instance of sl 

for the same (i, j )  pair, so the vertical scale of j is greater than the horizontal 
scale of i. 

Notice that X[i,  j] is written by s l  (i, j ) ,  that is, by the instance of statement 
sl with index values i and j .  It is later read by s2 (i, j + I ) ,  so sl (i, j )  must 



834 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

Figure 11.27: Dependences of the code in Example 11.41 

precede s2 (i, j + I).  This observation explains the vertical arrows from black 
dots to white dots. Similarly, Y[i, j] is written by s2(i, j )  and later read by 
s l  (i + 1, j ) .  Thus, s 2  (i, j )  must precede sl (i + 1, j) ,  which explains the arrows 
from white dots to black. 

It is easy to see from this diagram that this code can be parallelized without 
synchronization by assigning each chain of dependent operations to the same 
processor. However, it is not easy to write the SPMD program that implements 
this mapping scheme. While the loops in the original program have 100 itera- 
tions each, there are 200 chains, with half originating and ending with statement 
sl and the other half originating and ending with ~ 2 .  The lengths of the chains 
vary from 1 to 100 iterations. 

Since there are two statements, we are seeking two affine partitions, one for 
each statement. We only need to express the space-partition constraints for 
one-dimensional affine partitions. These constraints will be used later by the 
solution method that tries to find all the independent one-dimensional affine 
partitions and combine them to get multidimensional affine partitions. We can 
thus represent the affine partition for each statement by a 1 x 2 matrix and a 1 x 1 
vector to translate the vector of indexes [i, j] into a single processor number. 
Let ([Cll C12], [cl]), ([C21 C22], [c2 I), be the one-dimensional affine partitions for 
the statements s l  and s2, respectively. 

We apply six data dependence tests: 

1. Write access X[i, j] and itself in statement s l  , 
2. Write access X[i, f with read access X[i, f in statement s l  , 
3. Write access X[i, j] in statement s l  with read access X[i, j - 11 in state- 

ment 5-2, 



11.7. FINDING SYNCHRONIZATION-FREE PARALLELISM 

4. Write access Y [i, j] and itself in statement s2, 

5. Write access Y [i, j] with read access Y [i, j] in statement s2, 

6. Write access Y [i, j] in statement sz with read access Y [i- I, j] in statement 

We see that the dependence tests are all simple and highly repetitive. The only 
dependences present in this code occur in case (3) between instances of accesses 
X[i,  j] and X[i, j - 11 and in case (6) between Y[i, j ]  and Y[i - 1, j]. 

The space-partition constraints imposed by the data dependence between 
X[i, j] in statement s l  and X[i, j - 11 in statement s2 can be expressed in the 
following terms: 

For all (i, j) and (i', j') such that 

we have 

That is, the first four conditions say that (i, j )  and (i', j') lie within the itera- 
tion space of the loop nest, and the last two conditions say that the dynamic 
accesses X[i, j] and X [i, j - I] touch the same array element. We can derive 
the space-partition constraint for accesses Y[i - I ,  j] in statement s2 and Y[i, j] 
in statement s l  in a similar manner. 

11.7.4 Solving Space-Partition Constraints 

Once the space-partition constraints have been extracted, standard linear alge- 
bra techniques can be used to find the affine partitions satisfying the constraints. 
Let us first show how we find the solution to Example 11.41. 

Example 11.42 : We can find the affine partitions for Example 11.41 with the 
following steps: 

1. Create the space-partition constraints shown in Example 11.41. We use 
the loop bounds in determining the data dependences, but they are not 
used in the rest of the algorithm otherwise. 

2. The unknown variables in the equalities are i ,  i', j ,  j', Cl1, C12, el, C21, 
Cz2, and c2. Reduce the number of unknowns by using the equalities due 
to the access functions: i = i' and j = j' - 1. We do so using Gaussian 
elimination, which reduces the four variables to two: say tl = i = i', and 
t2 = j + 1 = j'. The equality for the partition becomes 



836 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

3. The equation above holds for all combinations of tl and t2.  Thus, it must 
be that 

If we perform the same steps on the constraint between the accesses 
Y[i - 1, j] and Y[i, j], we get 

Simplifying all the constraints together, we obtain the following relation- 
ships: 

4. Find all the independent solutions to the equations involving only un- 
knowns in the coefficient matrix, ignoring the unknowns in the constant 
vectors in this step. There is only one independent choice in the coef- 
ficient matrix, so the affine partitions we seek can have at most a rank 
of one. We keep the partition as simple as possible by setting Cll = 1. 
We cannot assign 0 to Cll because that will create a rank-0 coefficient 
matrix, which maps all iterations to the same processor. It then follows 
that Czl = 1, C22 = -1, C12 = -1. 

5 .  Find the constant terms. We know that the difference between the con- 
stant terms, c2 - cl, must be -1. We get to pick the actual values, 
however. To keep the partitions simple, we pick c2 = 0; thus cl = -1. 

Let p be the ID of the processor executing iteration (i, j). In terms of p, the 
affine partition is 

That is, the (i, j ) th iteration of sl is assigned to the processor p = i - j - 1, 
and the (i, j)th iteration of 232 is assigned to processor p = i - j .  

Algorithm 11.43 : Finding a highest-ranked synchronization-free affine par- 
tition for a program. 

INPUT: A program with affine array accesses. 



11.7. FINDING SYNCHRONIZATION-FREE PARALLELISM 

OUTPUT: A partition. 

METHOD: Do the following: 

1. Find all data-dependent pairs of accesses in a program for each pair of 
data-dependent accesses, Fl = (Fl , fl , B l  , bl ) in statement s l  nested in 
dl loops and F2 = (Fa, 4, B2,  b2) in statement s2 nested in d2 loops. 
Let (Cl, cl) and (C2, c2) represent the (currently unknown) partitions of 
statements s l  and s2, respectively. The space-partition constraints state 
that if 

then 

for all il and i2, within their respective loop bounds. We shall generalize 
the domain of iterations to include all il in Zdl and i2 in zd2; that is, the 
bounds are all assumed to be minus infinity to infinity. This assumption 
makes sense, since an affine partition cannot make use of the fact that an 
index variable can take on only a limited set of integer values. 

2. For each pair of dependent accesses, we reduce the number of unknowns 
in the index vectors. 

(a) Note that F i  + f is the same vector as 

That is, by adding an extra component 1 at the bottom of column- 
vector i, we can make the column-vector f be an additional, last 
column of the matrix F. We may thus rewrite the equality of the 
access functions Fl i l  + fi = F2i2 + f2 as 

(b) The above equations will in general have more than one solution. 
However, we may still use Gaussian elimination to solve the equations 
for the components of il and i2 as best we can. That is, eliminate as 
many variables as possible until we are left with only variables that 
cannot be eliminated. The resulting solution for il and i2 will have 
the form 



838 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

where U is an upper-triangular matrix and t is a vector of free vari- 
ables ranging over all integers. 

(c) We may use the same trick as in Step (2a) to rewrite the equality of 
the partitions. Substituting the vector (il, i2, 1) with the result from 
Step (2b), we can write the constraints on the partitions as 

3. Drop the nonpartition variables. The equations above hold for all combi- 
nations of t if 

Rewrite these equations in the form Ax = 0, where x is a vector of all 
the unknown coefficients of the affine partitions. 

4. Find the rank of the affine partition and solve for the coefficient matrices. 
Since the rank of an affine partition is independent of the value of the 
constant terms in the partition, we eliminate all the unknowns that come 
from the constant vectors like cl or c2, thus replacing Ax = 0 by sim- 
plified constraints A'x' = 0. Find the solutions to A'x' = 0, expressing 
them as B, a set of basis vectors spanning the null space of A'. 

5 .  Find the constant terms. Derive one row of the desired affine partition 
from each basis vector in B, and derive the constant terms using Ax = 0. 

Note that Step 3 ignores the constraints imposed by the loop bounds on 
variables t.  The constraints are only stricter as a result, and the algorithm must 
therefore be safe. That is, we place constraints on the C's and c's assuming 
t is arbitrary. Conceivably, there would be other solutions for the C's and c's 
that are valid only because some values of t are impossible. Not searching for 
these other solutions may cause us to miss an optimization, but cannot cause 
the program to be changed to a program that does something different from 
what the original program does. 

11.7.5 A Simple Code-Generation Algorithm 

Algorithm 11.43 generates affine partitions that split computations into inde- 
pendent partitions. Partitions can be assigned arbitrarily to different proces- 
sors, since they are independent of one another. A processor may be assigned 
more than one partition and can interleave the execution of its partitions, as 
long as operations within each partition, which normally have data dependences, 
are executed sequentially. 



11.7. FINDING SYNCHRONIZATION-FREE PARALLELISM 839 

It is relatively easy to generate a correct program given an affine partition. 
We first introduce Algorithm 11.45, a simple approach to generating code for a 
single processor that executes each of the independent partitions sequentially. 
Such code optimizes temporal locality, since array accesses that have several 
uses are very close in time. Moreover, the code easily can be turned into an 
SPMD program that executes each partition on a different processor. The code 
generated is, unfortunately, inefficient; we shall next discuss optimizations to 
make the code execute efficiently. 

The essential idea is as follows. We are given bounds for the index variables 
of a loop nest, and we have determined, in Algorithm 11.43, a partition for the 
accesses of a particular statement s. Suppose we wish to generate sequential 
code that performs the action of each processor sequentially. We create an 
outermost loop that iterates through the processor IDS. That is, each iteration 
of this loop performs the operations assigned to a particular processor ID. The 
original program is inserted as the loop body of this loop; in addition, a test 
is added to guard each operation in the code to ensure that each processor 
only executes the operations assigned to it. In this way, we guarantee that the 
processor executes all the instructions assigned to it, and does so in the original 
sequential order. 

Example 11.44: Let us generate code that executes the independent parti- 
tions in Example 11.41 sequentially. The original sequential program is from 
Fig. 11.26 is repeated here as Fig. 11.28. 

for ( i  = 1 ;  i <= 100; i++)  
f o r  ( j  = 1 ;  j <= 100; j++) C 

X[i , j ]  = X[i , j ]  + Y[i -1 , j l ;  /* ( s l )  */ 
Y[ i , j l  = Y[ i , j l  + X[i,j-11; /* (s2)  */ 

3 

Figure 11.28: Repeat of Fig. 11.26 

In Example 11.41, the affine partitioning algorithm found one degree of 
parallelism. Thus, the processor space can be represented by a single variable 
p. Recall also from that example that we selected an affine partition that, for 
all values of index variables i and j  with 1 < i 5 100 and 1 < j 5 100, assigned 

1. Instance (i, j )  of statement sl to processor p = i - j  - 1, and 

2. Instance (i, j )  of statement to processor p = i - j .  

We can generate the code in three steps: 

1. For each statement, find all the processor IDS participating in the com- 
putation. We combine the constraints I < i < 100 and 1 5 j < 100 with 
one of the equations p = i - j  - 1 or p = i - j, and project away i and j 
to get the new constraints 



840 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

(a) -100 5 p < 98 if we use the function p = i - j - 1 that we get for 
statement s l ,  and 

(b) -99 5 p 5 99 if we use p = i - j from statement sz. 

2. Find all the processor IDS participating in any of the statements. When 
we take the union of these ranges, we get - 100 5 p < 99; these bounds 
are sufficient to cover all instances of both statements s l  and sz. 

Generate the code to iterate through the computations in each partition 
sequentially. The code, shown in Fig. 11.29, has an outer loop that iterates 
through all the partition IDS participating in the computation (line (I)). 
Each partition goes through the motion of generating the indexes of all 
the iterations in the original sequential program in lines (2) and (3) so 
that it can pick out the iterations the processor p is supposed to execute. 
The tests of lines (4) and (6) make sure that statements s l  and sz are 
executed only when the processor p would execute them. 

The generated code, while correct, is extremely inefficient. First, even 
though each processor executes computation from at most 99 iterations, it gen- 
erates loop indexes for 100 x 100 iterations, an order of magnitude more than 
necessary. Second, each addition in the innermost loop is guarded by a test, 
creating another constant factor of overhead. These two kinds of inefficiencies 
are dealt with in Sections 11.7.6 and 11.7.7, respectively. 

I )  f o r  (p = -100; p <= 99; p++) 
2 ) f o r  ( i  = 1 ;  i <= 100; i++) 
3 ) f o r  ( j  = I ;  j <= 100; j++) ( 
4) i f  (p == i - j - I )  
5 X[ i , j l  = X[ i , j l  + YCi-1,jl ;  /* ( s l )  */ 
6 if (p == i - j )  
7 Y[ i , j l  = X[i,j-11 + YCi , j l ;  /* (s2)  */ 
8 > > 

Figure 11.29: A simple rewriting of Fig. 11.28 that iterates over processor space 

Although the code of Fig. 11.29 appears designed to execute on a unipro- 
cessor, we could take the inner loops, lines (2) through (8) , and execute them 
on 200 different processors, each of which had a different value for p, from -100 
to 99. Or, we could partition the responsibility for the inner loops among any 
number of processors less than 200, as long as we arranged that each processor 
knew what values of p it was responsible for and executed lines (2) through (8) 
for just those values of p. 

Algorithm 11.45: Generating code that executes partitions of a program 
sequentially. 



11.7. FINDING SYNCHRONIZATION-FREE PARALLELISM 841 

INPUT: A program P with affine array accesses. Each statement s in the 
program has associated bounds of the form B,i + b, 2 0, where i is the vector 
of loop indexes for the loop nest in which statement s appears. Also associated 
with statement s is a partition C,i+c, = p where p is an m-dimensional vector 
of variables representing a processor ID; m is the maximum, over all statements 
in program P, of the rank of the partition for that statement. 

OUTPUT: A program equivalent to P but iterating over the processor space 
rather than over loop indexes. 

METHOD: Do the following: 

1. For each statement, use Fourier-Motzkin elimination to project out all the 
loop index variables from the bounds. 

2. Use Algorithm 11.13 to determine bounds on the partition ID'S. 

3. Generate loops, one for each of the m dimensions of processor space. Let 
p = bl ,pa , .  . . ,p,,] be the vector of variables for these loops; that is, 
there is one variable for each dimension of the processor space. Each loop 
variable pi ranges over the union of the partition spaces for all statements 
in the program P. 

Note that the union of the partition spaces is not necessarily convex. To 
keep the algorithm simple, instead of enumerating only those partitions that 
have a nonempty computation to perform, set the lower bound of each pi to 
the minimum of all the lower bounds imposed by all statements and the upper 
bound of each pi to the maximum of all the upper bounds imposed by all 
statements. Some values of p may thereby have no operations. 

The code to be executed by each partition is the original sequential pro- 
gram. However, every statement is guarded by a predicate so that only those 
operations belonging to the partition are executed. 

An example of Algorithm 11.45 will follow shortly. Bear in mind, however, 
that we are still far from the optimal code for typical examples. 

11.7.6 Eliminating Empty Iterations 

We now discuss the first of the two transformations necessary to generate ef- 
ficient SPMD code. The code executed by each processor cycles through all 
the iterations in the original program and picks out the operations that it is 
supposed to execute. If the code has k degrees of parallelism, the effect is that 
each processor performs k orders of magnitude more work. The purpose of the 
first transformation is to tighten the bounds of the loops to eliminate all the 
empty iterations. 

We begin by considering the statements in the program one at  a time. A 
statement's iteration space to be executed by each partition is the original itera- 
tion space plus the constraint imposed by the affine partition. We can generate 



842 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

tight bounds for each statement by applying Algorithm 11.13 to the new iter- 
ation space; the new index vector is like the original sequential index vector, 
with processor ID'S added as outermost indexes. Recall that the algorithm will 
generate tight bounds for each index in terms of surrounding loop indexes. 

After finding the iteration spaces of the different statements, we combine 
them, loop by loop, making the bounds the union of those for each statement. 
Some loops end up having a single iteration, as illustrated by Example 11.46 
below, and we can simply eliminate the loop and simply set the loop index to 
the value for that iteration. 

Example 11.46 : For the loop of Fig. 11.30(a), Algorithm 11.43 will create 
the affine partition 

Algorithm 11.45 will create the code of Fig. 11.30(b). Applying Algorithm 11.13 
to statement sl produces the bound: p 5 i 5 p, or simply i = p. Similarly, 
the algorithm determines j = p for statement s 2 .  Thus, we get the code of 
Fig. 11.30(c). Copy propagation of variables i and j will eliminate the unnec- 
essary test and produce the code of Fig. 11.30(d). 

We now return to Example 11.44 and illustrate the step to merge multiple 
iteration spaces from different statements together. 

Example 11.47: Let us now tighten the loop bounds of the code in Exam- 
ple 11.44. The iteration space executed by partition p for statement sl is defined 
by the following equalities and inequalities: 

Applying Algorithm 11.13 to the above creates the constraints shown in Fig. 
11.31(a). Algorithm 11.13 generates the constraint p + 2 5 i 5 100 + p + 1 
from i - p - 1 = j and 1 < j 5 100, and tightens the upper bound of p to 98. 
Likewise, the bounds for each of the variables for statement s2 are shown in 
Fig. 11.31(b). 

The iteration spaces for sl and s z  in Fig. 11.31 are similar, but as ex- 
pected from Fig. 11.27, certain limits differ by 1 between the two. The code in 
Fig. 11.32 executes over this union of iteration spaces. For example, for i use 
min(1, p + 1) as the lower bound and max(100,100 + p  + 1) as the upper bound. 
Note that the innermost loop has 2 iterations except that it has only one the 
first and last time it is executed. The overhead in generating loop indexes is 
thus reduced by an order of magnitude. Since the iteration space executed is 
larger than either that of sl and s2, conditionals are still necessary to select 
when these statements are executed. 



11.7. FINDING SYNCHRONIZATION-FREE PARALLELISM 

f o r  ( i = l ;  i<=N; i++)  
Y C i ]  = ZCil;  /*  ( s l )  */ 

f o r  ( j=1 ;  j<=N; j++) 
XCjl = Y C j l ;  /*  (s2) */ 

(a) Initial code. 

f o r  ( p= l ;  p<=N; p++) ( 
f o r  ( i = l ;  i<=N; i++)  

i f  (p == i )  
Y C i l  = Z C i l  ; /* ( s l )  */ 

f o r  ( j = l ;  j<=N; j++) 
i f  (p == j )  

X C j l  = YCjl ; /* (s2)  */ 
1 

(b) Result of applying Algorithm 11.45. 

f o r  ( p= l ;  p<=N; p++) ( 
i = p ;  
i f  (p == i )  

Y Cil = Z C i l  ; /* (sl) */ 
j = p ;  
i f  (p == j  

(c) After applying Algorithm 11.13. 

f o r  (p=1; p < = ~ ;  p++) { 
YCpl = z Cpl ; /* ( s l )  */ 
x Cpl = y  Cpl ; /* (s2)  */  

> 
(d) Final code. 

Figure 11.30: Code for Example 11.46 



844 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

(a) Bounds for statement sl . 

j :  i - p  5 j 5 i - p  
1 5 j - < 100 

(b) Bounds for statement sa. 

Figure 11.31: Tighter bounds on p, i, and j for Fig. 11.29 

11.7.7 Eliminating Tests from Innermost Loops 

The second transformation is to remove conditional tests from the inner loops. 
As seen from the examples above, conditional tests remain if the iteration spaces 
of statements in the loop intersect but not completely. To avoid the need for 
conditional tests, we split the iteration space into subspaces, each of which 
executes the same set of statements. This optimization requires code to be 
duplicated and should only be used to remove conditionals in the inner loops. 

To split an iteration space to reduce tests in inner loops, we apply the 
following steps repeatedly until we remove all the tests in the inner loops: 

1. Select a loop that consists of statements with different bounds. 

2. Split the loop using a condition such that some statement is excluded 
from at least one of its components. We choose the condition from among 
the boundaries of the overlapping different polyhedra. If some statement 
has all its iterations in only one of the half planes of the condition, then 
such a condition is useful. 

3. Generate code for each of these iteration spaces separately. 

Example 11.48 : Let us remove the conditionals from the code of Fig. 11.32. 
Statements sl and sz are mapped to the same set of partition ID'S except for 



11.7. FINDING SYNCHRONIZATION-FREE PARALLELISM 

f o r  (p = -100; p <= 99; p++) 
f o r  (i = rnax(l,p+l) ; i <= min(l00,101+p) ; i++) 

f o r  (j =max(l,i-p-I); j <=min(100,i-p); j++) C 
if (p == i-j-I) 

x[i,j] = X[i,j] + YCi-1,jl; /* ( ~ 1 )  */ 
if (p == i-j) 

Y[i,j] = X[i,j-I] + YCi,jl; /* ( ~ 2 )  */ 
3 

Figure 11.32: Code of Fig. 11.29 improved by tighter loop bounds 

the boundary partitions at either end. Thus, we separate the partition space 
into three subspaces: 

2. -99 5 p < 98, and 

The code for each subspace can then be specialized for the value(s) of p 
contained. Figure 11.33 shows the resulting code for each of the three iteration 
spaces. 

Notice that the first and third spaces do not need loops on i or j ,  because 
for the particular value of p that defines each space, these loops are degenerate; 
they have only one iteration. For example, in space (I),  substituting p = -100 
in the loop bounds restricts i to 1, and subsequently j to 100. The assignments 
to p in spaces (1) and (3) are evidently dead code and can be eliminated. 

Next we split the loop with index i in space (2). Again, the first and last 
iterations of loop index i are different. Thus, we split the loop into three 
subspaces: 

a) max(1,p + 1) 5 i < p + 2, where only sz is executed, 

b) max(1, p +  2) 5 i 5 min(100,lOO + p ) ,  where both sl and s2 are executed, 
and 

c) 101 + p < i 5 min(l0l + p, loo), where only sl is executed. 

The loop nest for space (2) in Fig. 11.33 can thus be written as in Fig. 11.34(a). 
Figure 11.34(b) shows the optimized program. We have substituted Fig. 

11.34(a) for the loop nest in Fig. 11.33. We also propagated out assignments to 
p, i, and j into the array accesses. When optimizing at the intermediate-code 
level, some of these assignments will be identified as common subexpressions 
and re-extracted from the array-access code. 



846 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

/* space (1) */ 
p = -100; 
i = 1 ;  
j = 100; 
x [ i , j ]  = X[i, j ]  + ~ [ i - 1 , j I ;  /* ( ~ 1 )  */ 

/* space (2) */ 
f o r  (p = -99; p <= 98; p++) 

f o r  ( i  = max(l,p+l) ; i <= min(100,101+p) ; i++) 
f o r  ( j  = max(1,i-p-1); j <= min(100,i-p); j++) ( 

i f  (p == i-j-1) 
X[i , j ]  = X[i, j ]  + Y[i-1 , j l ;  /*  (s1) */ 

i f  (p == i - j )  
Y[i , j ]  = X[i,j-11 + ~ [ i , j ] ;  /* (s2) */ 

> 
/* space (3) */ 
p = 99; 
i = 100; 
j = 1 ;  
Y[i , j ]  = X[i,j-11 + Y[i , j l  ; /* ( ~ 2 )  */ 

Figure 11.33: Splitting the iteration space on the value of p 

11.7.8 Source-Code Transforms 

We have seen how we can derive from simple affine partitions for each statement 
programs that are significantly different from the original source. It is not 
apparent from the examples seen so far how affine partitions correlate with 
changes at the source level. This section shows that we can reason about source 
code changes relatively easily by breaking down affine partitions into a series 
of primitive transforms. 

Seven Primitive Affine Transforms 

Every affine partition can be expressed as a series of primitive affine transforms, 
each of which corresponds to a simple change at the source level. There are 
seven kinds of primitive transforms: the first four primitives are illustrated in 
Fig. 11.35, the last three, also known as unimodular transforms, are illustrated 
in Fig. 11.36. 

The figure shows one example for each primitive: a source, an affine parti- 
tion, and the resulting code. We also draw the data dependences for the code 
before and after the transforms. From the data dependence diagrams, we see 
that each primitive corresponds to a simple geometric transform and induces a 
relatively simple code transform. The seven primitives are: 



11.7. FINDING SYNCHRONIZATION-FREE PARALLELISM 847 

/* space (2) */ 
f o r  (p = -99; p <= 98; p++) ( 

/* space (2a) */ 
i f  (p >= 0) ( 

i = p + l ;  
j = 1 ;  
YCi,jl  = X[i,j-11 + YCi , j l ;  /*  (s2)  */ 

J 
/* space (2b) */ 

j = i-p-1; 

XCi,jl  = X C i , j l  + Y C i - 1 , j l ;  /*  ( s l )  */ 
j = i -p ;  

/* space (2c) */ 
i f  (p <= -1) ( 

(a) Splitting space (2) on the value of i. 

/*  space ( I ) ;  p = -100 */ 
X C l ,  1001 = XC1,100l + Y CO, 1001 ; 

/* space (2) */ 
f o r  (p = -99; p <= 98; p++) ( 

i f  (p >= 0) 
YCp+l,ll = XCp+l,Ol + Y[p+ l , l l ;  /* (s2)  */ 

f o r  ( i  = max(l,p+2); i <= min(100,100+p); i++)  ( 
X [i, i-p-11 = X C i ,  i-p-11 + Y [i-1 i-p-11 ; /* ( s l )  */ 
Y [i, i-pl = X [i, i-p-I] + Y [i, i-p] ; /* ( ~ 2 )  */ 

> 
i f  (p <= -1) 

xC101+p, 1001 = XCIOl+p, 1001 + Y C101+p-1,1001; /* ( s l )  */ 
3 
/* space (3) ;  p = 99 */ 
Yr10oy11 = xr100,01 + Y[100,1]; /* (s2)  */ 

(b) Optimized code equivalent to Fig. 11.28. 

Figure 11.34: Code for Example 11.48 



848 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

f o r  ( i=1 ;  i<=N; i++)  
Y [i] = Z t i l  ; /*sl*/ 

f o r  ( j=1 ;  j<=N; j++) 
X[j] = Y [ j ]  ; /*s2*/ 

Fusion 
s1 : p = 2  
S2 : p = j  

f o r  ( p= l ;  p<=N; p++)C 

Y [pl = z Cpl ; 
x Cpl = y Cpl ; 

f o r  (p=l ;  p<=N; p++)( 

Y Cpl = Z Cpl ; 
x Cpl = Y CpI ; 

3 
S1  

S 2  

f o r  ( i = l ;  i<=N; i++) ( 
Y [ i ]  = Z [ i ]  ; /*sl*/  
X [ i ]  = Y Ci-11; /*s2*/ 

f o r  ( i=1 ;  i<=N; i++)  
Y [ i ]  = Z Cil ; /*sl*/  

i f  (N>=l) X C11 =Y COI ; 
f o r  ( p= i ;  p<=N-1; p++)( 

Y Cpl =z Cpl ; 
X [p+ll  =Y Cpl ; 

-, 

Fission 
s1 : i = p  

f o r  ( j = l ;  j<=N; j++) 
~ [ j ]  = YCjl ; / * ~ 2 * /  

Figure 11.35: Primitive affine transforms (I) 

f o r  ( i = l ;  i<=N; i++)  
y[2*i] = ~ [ 2 * i l ;  /*sl*/  

f o r  ( j=1 ;  j<=2N; j++) 
x[jl=YCjI ; /*''*I 

Scaling 
sl : p  = 2 * i  

f o r  ( p= l ;  p<=2*N; p++)C 
i f  (p  mod 2 == 0) 

Y [pl = Z Cpl ; 
x [pl = Y [pl ; 

1 



2 2.7. FINDING SYNCHRONIZATION-FREE PARALLELISM 

Figure 11.36: Primitive affine transforms (11) 

SOURCE CODE 

f o r  (i=O; i>=N; i++) 
Y [ N - i ]  = Z [il ; /*sl*/  

f o r  (j=O; j<=N; j++) 
X[j] = Y [ j ]  ; /*s2*/ 

~ 1  

S 2  

f o r  ( i = l ;  i<=N; i++) 
f o r  (j=O; j<=M; j++) 

Z [ i , j l  = 
Z [ i - I ,  j l  ; 

lxsxr 
f o r  ( i = l ;  i<=N+M-I; i++) 

f o r  (j=max(l,i+N) ; 
j<=min(i,M); j++) 

Z [ i , j l  = 
ZCi-I, j-I] ; 

PARTITION 

Reversal 
s l : p = N - i  

(SZ : P = j )  

Permutation 

I] = [: :I [;I 

Skewing 

TRANSFORMED CODE 

f o r  (p=O; p<=N; p++)( 
Y [pl = Z [N-pl ; 
X Cpl = Y Cpl ; 

1 
S1 

f o r  (p=O; p<=M; p++) 
f o r  (q=l ;  q<=N; i++) 

Z[q,pl = ZCq-Lpl 

IE+ 
f o r  (p=l;  p<=N; p++) 

f o r  (q=l ;  q<=M; q++) 
Z [p,q-pl = 

Z[p-1,q-p-11 



850 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

Unimodular Transforms 

A unimodular transform is represented by just a unimodular coefficient 
matrix and no constant vector. A unimodular matrix is a square matrix 
whose determinant is f 1. The significance of a unimodular transform is 
that it maps an n-dimensional iteration space to another n-dimensional 
polyhedron, where there is a one-to-one correspondence between iterations 
of the two spaces. 

1. Fusion. The fusion transform is characterized by mapping multiple loop 
indexes in the original program to the same loop index. The new loop 
fuses statements from different loops. 

2. Fission. Fission is the inverse of fusion. It maps the same loop index 
for different statements to different loop indexes in the transformed code. 
This splits the original loop into multiple loops. 

3. Re-indexing. Re-indexing shifts the dynamic executions of a statement 
by a constant number of iterations. The affine transform has a constant 
term. 

4. Scaling. Consecutive iterations in the source program are spaced apart by 
a constant factor. The affine transform has a positive nonunit coefficient. 

5 .  Reversal. Execute iterations in a loop in reverse order. Reversal is char- 
acterized by having -1 as a coefficient. 

6. Permutation. Permute the inner and outer loops. The affine transform 
consists of permuted rows of the identity matrix. 

7. Skewing. Iterate through the iteration space in the loops at an angle. The 
affine transform is a unimodular matrix with 1's on the diagonal. 

A Geometric Interpretation of Parallelizat ion 

The affine transforms shown in all but the fission example are derived by apply- 
ing the synchronization-free affine partit ion algorithm to the respective source 
codes. (We shall discuss how fission can parallelize code with synchronization 
in the next section.) In each of the examples, the generated code has an (outer- 
most) parallelizable loop whose iterations can be assigned to different processors 
and no synchronization is necessary. 

These examples illustrate that there is a simple geometric interpret ation 
of how parallelization works. Dependence edges always point from an earlier 
instance to a later instance. So, dependences between separate statements 
not nested in any common loop follows the lexical order; dependences between 



11.7. FINDING SYNCHRONIZATION-FREE PARALLELISM 851 

statements nested in the same loop follows the lexicographic order. Geometri- 
cally, dependences of a two-dimensional loop nest always point within the range 
[0°, 180°), meaning that the angle of the dependence must be below 180°, but 
no less than 0'. 

The affine transforms change the ordering of iterations such that all the 
dependences are found only between operations nested within the same iteration 
of the outermost loop. In other words, there are no dependence edges at  the 
boundaries of iterations in the outermost loop. We can parallelize simple source 
codes by drawing their dependences and finding such transforms geometrically. 

11.7.9 Exercises for Section 11.7 

Exercise 11.7.1 : For the following loop 

f o r  ( i  = 2 ;  i < 100; i++)  
A [i] = A [i-21 ; 

a) What is the largest number of processors that can be used effectively to 
execute this loop? 

b) Rewrite the code with processor p as a parameter. 

c) Set up and find one solution to the space-partition constraints for this 
loop. 

d) What is the affine partition of highest rank for this loop? 

Exercise 11.7.2 : Repeat Exercise 11.7.1 for the loop nests in Fig. 11.37. 

Exercise 11.7.3 : Rewrite the following code 

f o r  ( i  = 0 ;  i < 100; i++)  
A [i] = 2*A [i] ; 

f o r  ( j  = 0 ;  j < 100; j++) 
A [ j ]  = A [ j ]  + I ;  

so it consists of a single loop. Rewrite the loop in terms of a processor number p 
so the code can be partitioned among 100 processors, with iteration p executed 
by processor p. 

Exercise 11.7.4 : In the following code 

f o r  ( i  = 1 ;  i < 100; i++)  
f o r  ( j  = 1 ;  j < 100; j++) 

/* (s) */ A h ,  jl = 
(A[ i - l , j ]  + ~ [ i + l , j ]  + A[i,j-11 + A [ i , j + l l ) / 4 ;  



852 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

f o r  ( i  = 0 ;  i <= 97; i++) 
A [i] = A [i+2] ; 

f o r  ( i  = 1 ;  i <= 100; i++) 
f o r  ( j  = 1 ;  j <= 100; j++) 

f o r  (k = 1 ;  k  <= 100; k++) ( 
A[i , j ,k ]  = A [ i , j , k ]  + B [ i - l , j , k ] ;  
B [ i , j , k ]  = B [ i , j , k ]  + C [ i , j - 1 , k l ;  
C [ i , j , k ]  = C [ i , j  ,k] + A [ i , j  ,k-I ] ;  

3 

f o r  ( i  = 1 ;  i <= 100; i++)  
f o r  ( j  = 1; j <= 100; j++) 

f o r  (k = I ;  k  <= 100; k++) ( 
A [ i ,  j ,k l  = A C i ,  j ,k l  + B[i-I ,  j ,k l  ; 
B [ i , j , k l  = B [ i , j , k l  + A [ i , j - l , k l ;  
C [ i , j , k ]  = C [ i , j , k l  + A[i,j ,k-11 + B [ i , j , k l ;  

3 

Figure 11.37: Code for Exercise 11.7.2 

the only constraints are that the statement s that forms the body of the loop 
nest must execute iterations s(i - 1, j )  and s(i, j - 1) before executing iteration 
s(i, j ) .  Verify that these are the only necessary constraints. Then rewrite the 
code so that the outer loop has index variable p, and on the pth iteration of the 
outer loop, all instances of s(i, j )  such that i + j = p are executed. 

Exercise 11.7.5 : Repeat Exercise 11.7.4, but arrange that on the pth iteration 
of the outer loop, instances of s such that i - j = p are executed. 

! Exercise 11.7.6 : Combine the following loops 

f o r  ( i  = 0 ;  i < 100; i + + )  
A [il = B [il ; 

f o r  ( j  = 98; j >= 0 ;  j  = j -2)  
B[i] = i ;  

into a single loop, preserving all dependencies. 



11.8. SYNCHRONIZATION BETWEEN PARALLEL LOOPS 

Exercise 11.7.7 : Show that the matrix 

is unimodular. Describe the transformation it performs on a two-dimensional 
loop nest. 

Exercise 11.7.8 : Repeat Exercise 11.7.7 on the matrix 

11.8 Synchronization Between Parallel Loops 

Most programs have no parallelism if we do not allow processors to perform any 
synchronizations. But adding even a small constant number of synchronization 
operations to a program can expose more parallelism. We shall first discuss 
parallelism made possible by a constant number of synchronizations in this 
section and the general case, where we embed synchronization operations in 
loops, in the next. 

11.8.1 A Constant Number of Synchronizations 

Programs with no synchronization-free parallelism may contain a sequence of 
loops, some of which are parallelizable if they are considered independently. We 
can parallelize such loops by introducing synchronization barriers before and 
after their execution. Example 11.49 illustrates the point. 

for ( i  = 1; i < n; i++)  
f o r  ( j  = 0; j < n; j++) 

x [ i , j ]  = f  (XCi,jl + X [ i - l , j l ) ;  
for ( i  = 0; i < n; i++) 

for ( j  = I ;  j < n; j++) 
XCi, j l  = g(X[i ,j l  + xCi,j-11); 

Figure 11.38: Two sequential loop nests 

Example 11.49 : In Fig. 11.38 is a program representative of an AD1 (Alter- 
nating Direction Implicit) integration algorithm. There is no synchronization- 
free parallelism. Dependences in the first loop nest require that each processor 
works on a column of array X; however, dependences in the second loop nest 
require that each processor works on a row of array X. For there to be no com- 
munication, the entire array has to reside on the same processor, hence there 



854 CHAPTER 21.  OPTIMIZING FOR PARALLELISM AND LOCALITY 

is no parallelism. We observe, however, that both loops are independently 
parallelizable. 

One way to parallelize the code is to have different processors work on 
different columns of the array in the first loop, synchronize and wait for all 
processors to finish, and then operate on the individual rows. In this way, 
all the computation in the algorithm can be parallelized with the introduction 
of just one synchronization operation. However, we note that while only one 
synchronization is performed, this parallelization requires almost all the data 
in matrix X to be transferred between processors. It is possible to reduce the 
amount of communication by introducing more synchronizations, which we shall 
discuss in Section 11.9.9. CI 

It may appear that this approach is applicable only to programs consisting 
of a sequence of loop nests. However, we can create additional opportunities 
for the optimization through code transforms. We can apply loop fission to 
decompose loops in the original program into several smaller loops, which can 
then be parallelized individually by separating them with barriers. We illustrate 
this technique with Example 11.50. 

Example 11.50 : Consider the following loop: 

f o r  (i=l; i<=n; i + + )  ( 
X [ i ] = Y C i l  + Z C i l ;  /* (sl) */ 
W[A[i ] ]  = X C i ] ;  /* ( ~ 2 )  */ 

3 

Without knowledge of the values in array A, we must assume that the access 
in statement s2 may write to any of the elements of W. Thus, the instances of 
s2 must be executed sequentially in the order they are executed in the original 
program. 

There is no synchronization-free parallelism, and Algorithm 11.43 will sim- 
ply assign all the computation to the same processor. However, at the least, 
instances of statement sl can be executed in parallel. We can parallelize part 
of this code by having different processors perform difference instances of state- 
ment s ~ .  Then, in a separate sequential loop, one processor, say numbered 0, 
executes s 2 ,  as in the SPMD code shown in Fig. 11.39. 

11.8.2 Program-Dependence Graphs 

To find all the parallelism made possible by a constant number of synchroniza- 
tions, we can apply fission to the original program greedily. Break up loops 
into as many separate loops as possible, and then parallelize each loop indepen- 
dently. 

To expose all the opportunities for loop fission, we use the abstraction of a 
program-dependence graph (PDG). A program dependence graph of a program 



11.8. SYNCHRONIZATION BETWEEN PARALLEL LOOPS 

XCpl =Y[pl  + ZCpl; / *  ( s l )  */  
/* synchronizat ion b a r r i e r  */ 
i f  (p == 0) 

f o r  ( i = l ;  i<=n ;  i++)  
W [A [i] 1 = X [il ; /*  (s2)  */ 

Figure 11.39: SPMD code for the loop in Example 11.50, with p being a variable 
holding the processor ID 

is a graph whose nodes are the assignment statements of the program and whose 
edges capture the data dependences, and the directions of the data dependence, 
between statements. An edge from statement sl to statement s 2  exists whenever 
some dynamic instance of sl shares a data dependence with a Eater dynamic 
instance of s2. 

To construct the PDG for a program, we first find the data dependences 
between every pair of (not necessarily distinct) static accesses in every pair 
of (not necessarily distinct) statements. Suppose we determine that there is 
a dependence between access Fl in statement sl and access .F2 in statement 
s 2 .  Recall that an instance of a statement is specified by an index vector 
i = [ i l , i2 , .  . . ,i,] where ik  is the loop index of the kth outermost loop in 
which the statement is embedded. 

1. If there exists a data-dependent pair of instances, il of sl and i2 of s 2 ,  

and il is executed before i2 in the original program, written il -is,,, i2, 
then there is an edge from sl to sa .  

2. Similarly, if there exists a data-dependent pair of instances, il of sl and 
i2 of s 2 ,  and i2 -is,,, i l ,  then there is an edge from s 2  to sl. 

Note that it is possible for a data dependence between two statements sl and 
s2 to generate both an edge from sl to s2 and an edge from s 2  back to sl. 

In the special case where statements sl and s2 are not distinct, il -is,,, i2 if 
and only if il -i i2 (il  is lexicographically less than iz). In the general case, sl 

and s 2  may be different statements, possibly belonging to different loop nests. 

Example 11.51 : For the program of Example 11.50, there are no dependences 
among the instances of statement sl . However, the ith instance of statement 
s2 must follow the ith instance of statement sl. Worse, since the reference 
W[A[i]] may write any element of array W, the ith instance of s z  depends on 
all previous instances of s 2 .  That is, statement s 2  depends on itself. The PDG 
for the program of Example 11.50 is shown in Fig. 11.40. Note that there is 
one cycle in the graph, containing s 2  only. 

The program-dependence graph makes it easy to determine if we can split 
statements in a loop. Statements connected in a cycle in a PDG cannot be 



856 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

Figure 11.40: Program-dependence graph for the program of Example 11.50 

split. If sl -+ s2 is a dependence between two statements in a cycle, then 
some instance of s l  must execute before some instance of s2, and vice versa. 
Note that this mutual dependence occurs only if sl and sa are embedded in 
some common loop. Because of the mutual dependence, we cannot execute all 
instances of one statement before the other, and therefore loop fission is not 
allowed. On the other hand, if the dependence sl -+ s2 is unidirectional, we 
can split up the loop and execute all the instances of sl first, then those of s2. 

f o r  ( i  = 0; i < n ;  i++) { 
Z [i] = Z [il / W Cil ; /* (s1) */ 
f o r  ( j  = i ;  j < n ;  j++) { 

x [ i , j ]  = YCi, j l*YCi, j l ;  /* ( ~ 2 )  */ 
ZCjl = ZCjl + XCi , j l ;  /*  (s3) */ 

3 
1 

(a) A program. 

(b) Its dependence graph. 

Figure 11.41: Program and dependence graph for Example 11.52. 

Example 11.52 : Figure 11.41 (b) shows the program-dependence graph for 
the program of Fig. 11.41(a). Statements sl and ss belong to a cycle in the 
graph and therefore cannot be placed in separate loops. We can, however, split 
statement s2 out and execute all its instances before executing the rest of the 
computation, as in Fig. 11.42. The first loop is parallelizable, but the second 
is not. We can parallelize the first loop by placing barriers before and after its 
parallel execution. 



11.8. SYNCHRONIZATION BETWEEN PARALLEL LOOPS 

f o r  ( i  = 0 ;  i < n ;  i++)  
f o r  ( j  = i ;  j  < n ;  j++)  

X[ i , j ]  = Y C i , j l * Y C i , j l ;  /*  ( ~ 2 )  * /  
f o r  ( i  = 0 ;  i < n ;  i++)  C 

Z [i] = Z [il / W Cil ; /*  ( s l )  */ 
f o r  ( j  = i ;  j  < n;  j++) 

ZCjl = ZCjl + XCi , j l ;  /*  (s3)  */ 
3 

Figure 11.42: Grouping strongly connected components of a loop nest 

11.8.3 Hierarchical Time 

While the relation +,,,, can be very hard to compute in general, there is a 
family of programs to which the optimizations of this section are commonly 
applied, and for which there is a straightforward way to compute dependencies. 
Assume that the program is block structured, consisting of loops and simple 
arithmetic operations and no other control constructs. A statement in the 
program is either an assignment statement, a sequence of statements, or a loop 
construct whose body is a statement. The control structure thus represents a 
hierarchy. At the top of the hierarchy is the node representing the statement of 
the whole program. An assignment statement is a leaf node. If a statement is 
a sequence, then its children are the statements within the sequence, laid out 
from left to right according to their lexical order. If a statement is a loop, then 
its children are the components of the loop body, which is typically a sequence 
of one or more statements. 

so ;  
L l :  f o r  ( i  = 0;  . . .) { 

s1 ;  
L2: f o r  ( j  = 0;  . . .) ( 

s2 ;  
s 3  ; 

1 
L3: f o r  (k = 0;  . . .  ) 

s4  ; 
s 5  ; 

1 

Figure 11.43: A hierarchically structured program 

Example 11.53 : The hierarchical structure of the program in Fig. 11.43 is 
shown in Fig. 11.44. The hierarchical nature of the execution sequence is high- 



858 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

lighted in Fig. 11.45. The single instance of so precedes all other operations, 
because it is the first statement executed. Next, we execute all instructions 
from the first iteration of the outer loop before those in the second iteration 
and so forth. For all dynamic instances whose loop index i has value 0, the 
statements sl , L2, L3, and s5 are executed in lexical order. We can repeat the 
same argument to generate the rest of the execution order. 

Figure 11.44: Hierarchical structure of the program in Example 11.53. 

Figure 11.45: Execution order of the program in Example 11.53. 

We can resolve the ordering of two instances from two different statements in 
a hierarchical manner. If the statements share common loops, we compare the 
values of their common loop indexes, starting with the outermost loop. As soon 
as we find a difference between their index values, the difference determines the 
ordering. Only if the index values for the outer loops are the same do we need 
to compare the indexes of the next inner loop. This process is analogous to 
how we would compare time expressed in terms of hours, minutes and seconds. 
To compare two times, we first compare the hours, and only if they refer to 



11.8. SYNCHRONIZATION BETWEEN PARALLEL LOOPS 

the same hour would we compare the minutes and so forth. If the index values 
are the same for all common loops, then we resolve the order based on their 
relative lexical placement. Thus, the execution order for the simple nested-loop 
programs we have been discussing is often referred to as "hierarchical time." 

Let s l  be a statement nested in a dl-deep loop, and s2 in a d2-deep loop, 
sharing d common (outer) loops; note d < dl and d 5 d2 certainly. Suppose 
i = [il , i2 ,  . . . , idl] is an instance of s l  and j = [jl , j2, . . . , jd2] is an instance of 
s2. 

i -is,,, j if and only if either 

2. [il, iz ,  . . . , id]  = [jl, j2 , .  . . , jd], and s l  appears lexically before s2. 

The predicate [il, i 2 , .  . . , id]  4 [jl, j2 , .  . . , jd] can be written as a disjunction 
of linear inequalities: 

A PDG edge from s l  to s2 exists as long as the data-dependence condition 
and one of the disjunctive clauses can be made true simultaneously. Thus, 
we may need to solve up to d or d + 1 linear integer programs, depending on 
whether s l  appears lexically before s2, to determine the existence of one edge. 

11.8.4 The Parallelization Algorithm 

We now present a simple algorithm that first splits up the computation into as 
many different loops as possible, then parallelizes them independently. 

Algorithm 11.54 : Maximize the degree of parallelism allowed by O(1) syn- 
chronizations. 

INPUT: A program with array accesses. 

OUTPUT: SPMD code with a constant number of synchronization barriers. 

METHOD: 

1. Construct the program-dependence graph and partition the statements 
into strongly connected components (SCC7s). Recall from Section 10.5.8 
that a strongly connected component is a maximal subgraph of the orig- 
inal whose every node in the subgraph can reach every other node. 

2. Transform the code to execute SCC's in a topological order by applying 
fission if necessary. 

3. Apply Algorithm 11.43 to each SCC to find all of its synchronization-free 
parallelism. Barriers are inserted before and after each parallelized SCC. 



860 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

While Algorithm 11.54 finds all degrees of parallelism with O ( 1 )  synchro- 
nizations, it has a number of weaknesses. First, it may introduce unnecessary 
synchronizations. As a matter of fact, if we apply this algorithm to a program 
that can be parallelized without synchronization, the algorithm will parallelize 
each statement independently and introduce a synchronization barrier between 
the parallel loops executing each statement. Second, while there may only be a 
constant number of synchronizations, the parallelization scheme may transfer 
a lot of data among processors with each synchronization. In some cases, the 
cost of communication makes the parallelism too expensive, and we may even 
be better off executing the program sequentially on a uniprocessor. In the fol- 
lowing sections, we shall next take up ways to increase data locality, and thus 
reduce the amount of communication. 

11.8.5 Exercises for Section 11.8 

Exercise 11.8.1 : Apply Algorithm 11.54 to the code of Fig. 11.46. 

f o r  (i=O; i(100; i++) 
A [ i ]  = A [ i l  + X[i l ;  /* ( s l )  */ 

f o r  (i=O; i(100; i++)  
f o r  (j=O; j(100; j++) 

B[ i , j ]  = Y[ i , j l  + A [ i l  + ACjl; /* (s2) */ 

Figure 11.46: Code for Exercise 11.8.1 

Exercise 11 3 . 2  : Apply Algorithm 11.54 to the code of Fig. 11.47. 

f o r  (i=O; i<100; i++) 
A [ i ]  = A [ i ]  + ~ [ i ]  ; /* ( s l )  */ 

f o r  (i=O; i(100; i++)  ( 
B [i] = B [i] + A [ i ]  ; /* (s2) */ 
f o r  (j=O; j(100; j++) 

CCj]  = Y C j l  + BCjl; /* ( ~ 3 )  */ 
3 

Figure 11.47: Code for Exercise 11.8.2 

Exercise 11.8.3 : Apply Algorithm 11.54 to the code of Fig. 11.48. 



f o r  (i=O; i(100; i++) 
A [ i ]  = A [ i ]  + X [ i l  ; /* ( ~ 1 )  */ 

f o r  (i=O; i<100;  i++)  C 
f o r  (j=O; j<lOO; j++) 

B[j] = A [ i ]  + YCjl; /*  (s2) */ 
C [ i ]  = B  [i] + Z [i] ; /*  (s3)  */  
f o r  (j=O; j(100; j++) 

D[ i , j ]  = A [ i ]  + B [ j l ;  /*  (s4)  */ 

Figure 11.48: Code for Exercise 11.8.3 

11.9 Pipelining 

In pipelining, a task is decomposed into a number of stages to be performed on 
different processors. For example, a task computed using a loop of n iterations 
can be structured as a pipeline of n stages. Each stage is assigned to a different 
processor; when one processor is finished with its stage, the results are passed 
as input to the next processor in the pipeline. 

In the following, we start by explaining the concept of pipelining in more 
detail. We then show a real-life numerical algorithm, known as successive over- 
relaxation, to illustrate the conditions under which pipelining can be applied, in 
Section 11.9.2. We then formally define the constraints that need to be solved 
in Section 11.9.6, and describe an algorithm for solving them in Section 11.9.7. 
Programs that have multiple independent solutions to the time-partition con- 
straints are known as having outermost fully permutable loops; such loops can 
be pipelined easily, as discussed in Section 11.9.8. 

11.9.1 What is Pipelining? 

Our initial attempts to parallelize loops partitioned the iterations of a loop nest 
so that two iterations that shared data were assigned to the same processor. 
Pipelining allows processors to share data, but generally does so only in a 
"local," way, with data passed from one processor to another that is adjacent 
in the processor space. Here is a simple example. 

Example 11.55 : Consider the loop: 

f o r  ( i  = 1 ;  i <= m ;  i++)  
f o r  ( j  = 1 ;  j  <= n;  j++) 

X C i l  = X C i ]  + Y[ i , j ] ;  

This code sums up the ith row of Y and adds it to the ith element of X. The 
inner loop, corresponding to the summation, must be performed sequentially 



862 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

Figure 11.49: Pipelined execution of Example 11.55 with m = 4 and n = 3. 

Time 

1 
2 
3 
4 
5 
6 

because of the data dependence;6 however, the different summation tasks are 
independent. We can parallelize this code by having each processor perform 
a separate summation. Processor i accesses row i of Y and updates the ith 
element of X .  

Alternatively, we can structure the processors to execute the summation in a 
pipeline, and derive parallelism by overlapping the execution of the summations, 
as shown in Fig. 11.49. More specifically, each iteration of the inner loop can 
be treated as a stage of a pipeline: stage j takes an element of X generated 
in the previous stage, adds to it an element of Y, and passes the result to the 
next stage. Notice that in this case, each processor accesses a column, instead 
of a row, of Y. If Y is stored in column-major form, there is a gain in locality 
by partitioning according to columns, rather than by rows. 

We can initiate a new task as soon as the first processor is done with the first 
stage of the previous task. At the beginning, the pipeline is empty and only the 
first processor is executing the first stage. After it completes, the results are 
passed to the second processor, while the first processor starts on the second 
task, and so on. In this way, the pipeline gradually fills until all the processors 
are busy. When the first processor finishes with the last task, the pipeline starts 
to drain, with more and more processors becoming idle until the last processor 
finishes the last task. In the steady state, n tasks can be executed concurrently 
in a pipeline of n processors. 17 

It is interesting to contrast pipelining with simple parallelism, where differ- 
ent processors execute different tasks: 

Processors 

Pipelining can only be applied to nests of depth at least two. We can 
treat each iteration of the outer loop as a task and the iterations in the 
inner loop as stages of that task. 

1 
X[l]+=Y[l,l] 
X[2]+=Y[2,1] 
X[3]+=Y[3,1] 
X[4]+=Y[4,1] 

Tasks executed on a pipeline may share dependences. Information per- 
taining to the same stage of each task is held on the same processor; thus 
results generated by the ith stage of a task can be used by the ith stage 

6 ~ e m e m b e r  that we do not take advantage of the assumed commutativity and associativity 
of addition. 

2 

X[l]+=Y[1,2] 
X[2]+=Y[2,2] 
X[3]+=Y[3,2] 
~[4]+=Y[4,2]  

3 

X[l]+=Y[1,3] 
X[2]+=Y[2,3] 
X[3]+=Y[3,3] 
X[4]+=Y[4,3] 



11.9. PIPELINING 863 

of subsequent tasks with no communication cost. Similarly, each input 
data element used by a single stage of different tasks needs to reside only 
on one processor, as illustrated by Example 11.55. 

If the tasks are independent, then simple parallelization has better proces- 
sor utilization because processors can execute all a t  once without having 
to pay for the overhead of filling and draining the pipeline. However, 
as shown in Example 11.55, the pattern of data accesses in a pipelined 
scheme is different from that of simple parallelization. Pipelining may be 
preferable if it reduces communication. 

11 3 . 2  Successive Over-Relaxation (SOR) : An Example 

Successive over-relaxation (SOR) is a technique for accelerating the conver- 
gence of relaxation methods for solving sets of simultaneous linear equations. 
A relatively simple template illustrating its data-access pattern is shown in 
Fig. 11.50(a). Here, the new value of an element in the array depends on the 
values of elements in its neighborhood. Such an operation is performed repeat- 
edly, until some convergence criterion is met. 

f o r  (i = 0; i <= m; i++) 
f o r  ( j  = 0; j <= n;  j++) 

X [ j + l l  = 1/3 * ( X [ j l  + X [ j + l ]  + X [ j + 2 ] )  

(a) Original source. 

(b) Data dependences in the code. 

Figure 11.50: An example of successive over-relaxation (SOR) 

Sbown in Fig. 11.50(b) is a picture of the key data dependences. We do not 
show dependences that can be inferred by the dependences already included in 
the figure. For example, iteration [i, j] depends on iterations [i, j - 11, [i, j - 21 
and so om. It is clear from the dependences that there is no synchronization- 
free parallelism. Since the longest chain of dependences consists of O(m + n) 
edges, by introducing synchronization, we should be able to find one degree of 
parallelism and execute the O(mn) operations in O(m + n) unit time. 



864 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

In particular, we observe that iterations that lie along the 150" diagonals7 in 
Fig. 11.50(b) do not share any dependences. They only depend on the iterations 
that lie along diagonals closer to the origin. Therefore we can parallelize this 
code by executing iterations on each diagonal in order, starting at the origin 
and proceeding outwards. We refer to the iterations along each diagonal as a 
wavefront, and such a parallelization scheme as wavefronting. 

11.9.3 Fully Permutable Loops 

We first introduce the notion of full permutability, a concept useful for pipelining 
and other optimizations. Loops are fully permutable if they can be permuted 
arbitrarily without changing the semantics of the original program. Once loops 
are put in a fully permutable form, we can easily pipeline the code and apply 
transformations such as blocking to improve data locality. 

  he SOR code, as it it written in Fig. 11.50(a), is not fully permutable. 
As shown in Section 11.7.8, permuting two loops means that iterations in the 
original iteration space are executed column by column instead of row by row. 
For instance, the original computation in iteration [2,3] would execute before 
that of [1,4], violating the dependences shown in Fig. 11.50(b). 

We can, however, transform the code to make it fully permutable. Applying 
the affine transform 

to the code yields the code shown in Fig. 11.51(a). This transformed code 
is fully permutable, and its permuted version is shown in Fig. 11.51(c). We 
also show the iteration space and data dependences of these two programs in 
Fig. 11.51(b) and (d), respectively. From the figure, we can easily see that this 
ordering preserves the relative ordering between every data-dependent pair of 
accesses. 

When we permute loops, we change the set of operations executed in each 
iteration of the outermost loop drastically. The fact that we have this degree 
of freedom in scheduling means that there is a lot of slack in the ordering 
of operations in the program. Slack in scheduling means opportunities for 
parallelization. We show later in this section that if a loop has k outermost 
fully permutable loops, by introducing just 0 ( n )  synchronizations, we can get 
O(k - 1) degrees of parallelism (n is the number of iterations in a loop). 

11.9.4 Pipelining Fully Permutable Loops 

A loop with k outermost fully permutable loops can be structured as a pipeline 
with O(k - 1) dimensions. In the SOR example, k = 2, so we can structure the 
processors as a linear pipeline. 

7~.e . ,  the sequences of points formed by repeatedly moving down 1 and right 2. 



f o r  ( i  = 0; i <= m; i++)  
f o r  ( j  = i ;  j  <= i+n ;  j++) 

X[j-i+ll  = 1 /3  * (X[j-i] + X[j-i+l] + X[j-i+2]) 

(a) The code in Fig. 11.50 transformed by [ :  : ] a  

(b) Data dependences of the code in (a). 

f o r  ( j  = 0 ;  j  <= m+n; j++) 
f o r  ( i  = max(0, j ) ;  i <= rnin(rn,j), i++)  

XCj-i+1] = 1/3 * (XCj-i] + X[j-i+1] + x[j-i+2]) 

(c) A permutation of the loops in (a). 

I 

(d) Data dependences of the code in (b). 

Figure 11.51: Fully permutable version of the code Fig. 11.50 



866 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

We can pipeline the SOR code in two different ways, shown in Fig. 11.52(a) 
and Fig. 11.52(b), corresponding to the two possible permutations shown in 
Fig. 11.51 (a) and (c), respectively. In each case, every column of the iteration 
space constitutes a task, and every row constitutes a stage. We assign stage i 
to processor i ,  thus each processor executes the inner loop of the code. Ignoring 
boundary conditions, a processor can execute iteration i only after processor 
p - 1 has executed iteration i - 1. 

/* 0 <= p <= m */ 
f o r  ( j  = p; j <= p+n; j++) { 

i f  (p > 0) wait (p-I) ;  
X[j-p+ll = 1/3 * (X[j-p] + X[j-p+l] + X[j-p+2]); 
i f  (p < min (m,j))  s igna l  (p+ l ) ;  

(a) Processors assigned to rows. 

/* 0 <= p <= m+n */ 
f o r  ( i  = max(0,p); i <= min(m,p); i++) ( 

i f  (p > max(0,i)) wait (p-I) ;  
X[p-i+l] = 1/3 * (X[p-i] + X[p-i+l] + ~ [ p - i + 2 1 )  
i f  (p < m+n) & (p > i )  s igna l  (p+l ) ;  

> 
(b) Processors assigned to columns. 

Figure 11.52: Two pipelining implementations of the code from Fig. 11.51 

Suppose every processor takes exactly the same amount of time to execute 
an iteration and synchronization happens instantaneously. Both these pipelined 
schemes would execute the same iterations in parallel; the only difference is 
that they have different processor assignments. All the iterations executed in 
parallel lie along the 135" diagonals in the iteration space in Fig. 11.51(b), 
which corresponds to the 150" diagonals in the iteration space of the original 
code; see Fig. 11.50(b). 

However, in practice, processors with caches do not always execute the same 
code in the same amount of time, and the time for synchronization also varies. 
Unlike the use of synchronization barriers which forces all processors to operate 
in lockstep, pipelining requires processors to synchronize and communicate with 
at most two other processors. Thus, pipeliriing has relaxed wavefronts, allowing 
some processors to surge ahead while others lag momentarily. This flexibility 
reduces the time processors spend waiting for other processors and improves 
parallel performance. 

The two pipelining schemes shown above are but two of the many ways 
in which the computation can be pipelined. As we said, once a loop is fully 



permutable, we have a lot of freedom in how we wish to parallelize the code. 
The first pipeline scheme maps iteration [i, j] to processor i;  the second maps 
iteration [i, j ]  to  processor j .  We can create alternative pipelines by mapping 
iteration [i, j] to processor coi + cl j, provided co and cl are positive constants. 
Such a scheme would create pipelines with relaxed wavefronts between 90" and 
180°, both exclusive. 

11.9.5 General Theory 

The example just completed illustrates the following general theory underlying 
pipelining: if we can come up with at least two different outermost loops for a 
loop nest and satisfy all the dependences, then we can pipeline the computation. 
A loop with k outermost fully permutable loops has k - 1 degrees of pipelined 
parallelism. 

Loops that cannot be pipelined do not have alternative outermost loops. 
Example 11.56 shows one such instance. To honor all the dependences, each 
iteration in the outermost loop must execute precisely the computation found 
in the original code. However, such code may still contain parallelism in the 
inner loops, which can be exploited by introducing at least n synchronizations, 
where n is the number of iterations in the outermost loop. 

f o r  ( i  = 0 ;  i < 100; i++) 1 
f o r  ( j  = 0 ;  j  < 100; j++) 

X[jl = XCjl + YCi , j l ;  / *  ( s l )  */ 
Z [ i l  = X[A[i]]; /* ( s 2 )  */ 

Figure 11.53: A sequential outer loop (a) and its PDG (b) 

Example 11.56 : Figure 11.53 is a more complex version of the problem we saw 
in Example 11.50. As shown in the program dependence graph in Fig. 11.53(b), 
statements sl and s2 belong to the same strongly connected component. Be- 
cause we do not know the contents of matrix A, we must assume that the 
access in statement sa may read from any of the elements of X. There is a true 
dependence from statement sl to statement s2 and an antidependence from 



868 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

statement s2 to statement s l .  There is no opportunity for pipelining either, 
because all operations belonging to iteration i in the outer loop must precede 
those in iteration i + 1. To find more parallelism, we repeat the parallelization 
process on the inner loop. The iterations in the second loop can be parallelized 
without synchronization. Thus, 200 barriers are needed, with one before and 
one after each execution of the inner loop. 

11.9.6 Time-Partition Constraints 

We now focus on the problem of finding pipelined parallelism. Our goal is to 
turn a computation into a set of pipelinable tasks. To find pipelined parallelism, 
we do not solve directly for what is to be executed on each processor, like we 
did with loop parallelization. Instead, we ask the following fundamental ques- 
tion: What are all the possible execution sequences that honor the original data 
dependences in the loop? Obviously the original execution sequence satisfies all 
the data dependences. The question is if there are affine transformations that 
can create an alternative schedule, where iterations of the outermost loop exe- 
cute a different set of operations from the original, and yet all the dependences 
are satisfied. If we can find such transforms, we can pipeline the loop. The 
key point is that if there is freedom in scheduling operations, there is paral- 
lelism; details of how we derive pipelined parallelism from such transforms will 
be explained later. 

To find acceptable reorderings of the outer loop, we wish to find one- 
dimensional affine transforms, one for each statement, that map the original 
loop index values to an iteration number in the outermost loop. The trans- 
forms are legal if the assignment can satisfy all the data dependences in the 
program. The "time-partition constraints," shown below, simply say that if 
one operation is dependent upon the other, then the first must be assigned 
an iteration in the outermost loop no earlier than that of the second. If they 
are assigned in the same iteration, then it is understood that the first will be 
executed after than the second within the iteration. 

An affine-partition mapping of a program is a legal-time par t i t ion  if and only 
if for every two (not necessarily distinct) accesses sharing a dependence, say 

in statement s l  , which is nested in dl  loops, and 

in statement s2 nested in d2 loops, the one-dimensional partition mappings 
(Cl , c l  ) and (C2, c2) for statements s l  and s2, respectively, satisfy the t ime- 
par t i t ion constraints: 

For all il in ,Zdl  and i2 in z d 2  such that 



11.9. PIPELINING 

b) Blil + bl 2 0, 

c) B2i2 + b2 2 0, and 

it is the case that Clil + cl 5 C2i2 + c2. 

This constraint, illustrated in Fig. 11.54, looks remarkably similar to the 
space-partition constraints. It is a relaxation of the space-partition constraints, 
in that if two iterations refer to the same location, they do not necessarily have 
to be mapped to the same partition; we only require that the original relative 
execution order between the two iterations is preserved. That is, the constraints 
here have 5 where the space-partition constraints have =. 

0 

u u u u o  Array 

17 
q 

Time steps 

Figure 11.54: Time-Partition Constraints 

We know that there exists at least one solution to the time-partition con- 
straints. We can map operations in each iteration of the outermost loop back 
to the same iteration, and all the data dependences will be satisfied. This so- 
lution is the only solution to the time-partition constraints for programs that 
cannot be pipelined. On the other hand, if we can find several independent 
solutions to time-partition constraints, the program can be pipelined. Each 
independent solution corresponds to a loop in the outermost fully permutable 
nest. As you can expect, there is only one independent solution to the timing 
constraints extracted from the program in Example 11.56, where there is no 
pipelined parallelism, and that there are two independent solutions to the SOR 
code example. 

Example 11.57 : Let us consider Example 11.56, and in particular the data 
dependences of references to array X in statements sl and s 2 .  Because the 



870 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

access is not affine in statement s2, we approximate the access by modeling 
matrix X simply as a scalar variable in dependence analysis involving statement 
s2. Let (i, j) be the index value of a dynamic instance of s l  and let i t  be the 
index value of a dynamic instance of s2. Let the computation mappings of 
statements s l ,  and s2 be ( [ G I ,  C I ~ ] ,  cl) and ([Czl], cz), respectively. 

Let us first consider the time-partition constraints imposed by dependences 
from statemeit s l  to s2. Thus, i 5 i t ,  the transformed ( i , j ) th iteration of s l  
must be no later than the transformed i'th iteration of s2; that is, 

Expanding, we get 

Since j can be arbitrarily large, independent of i and it ,  it must be that C12 = 0. 
Thus, one possible solution to the constraints is 

Cll = C21 = 1 and C12 = cl = c2 = 0. 

Similar arguments about the data dependence from sz to s l  and s2 back to 
itself will yield a similar answer. In this particular solution, the ith iteration 
of the outer loop, which consists of the instance i of s2 and all instances (i, j )  
of s l ,  are all assigned to timestep i. Other legal choices of Cll, Czl, cl, and c2 
yield similar assignments, although there might be timesteps at which nothing 
happens. That is, all ways to schedule the outer loop require the iterations 
to execute in the same order as in the original code. This statement holds 
whether all 100 iterations are executed on the same processor, on 100 different 
processors, or anything in between. 

Example 11.58 : In the SOR code shown in Fig. 11.50(a), the write reference 
X [ j  + I] shares a dependence with itself and with the three read references in 
the code. We are seeking computation mapping ([Cl, C2], C )  for the assignment 
statement such that 

if there is a dependence from (i, j )  to (it, j'). By definition, (i, j )  4 (it, j'); that 
is, either i < i t  or (i = it A j < j ')). 

Let us consider three of the pairs of data dependences: 

1. True dependence from write access X [ j  + l] to read access X [ j  + 21. Since 
the instances must access the same location, j + 1 = j' + 2 or j = j' + 1. 
Substituting j = j' + 1 into the timing constraints, we get 



Since j = j' + 1, j > j', the precedence constraints reduce to i < it. 
Therefore, 

2. Antidependence from read access X [ j  + 21 to write access X [j + 11. Here, 
j + 2 = j' + 1, or j = j' - 1. Substituting j = j' - 1 into the timing 
constraints, we get 

When i = i', we get 

When i < i t ,  since C2 2 0, we get 

3. Output dependence from write access X [ j  + I] back to itself. Here j = j'. 
The timing constraints reduce to 

Since only i < i' is relevant, we again get 

The rest of the dependences do not yield any new constraints. In total, 
there are three constraints: 

Here are two independent solutions to these constraints: 

The first solution preserves the execution order of the iterations in the outer- 
most loop. Both the original SOR code in Fig. 11.50(a) and the transformed 
code shown in Fig. 11.51(a) are examples of such an arrangement. The second 
solution places iterations lying along the 135" diagonals in the same outer loop. 
The code shown in Fig. 11.51 (b) is an example of a code with that outermost 
loop composition. 

Notice that there are many other possible pairs of independent solutions. 
For example, 

would also be an independent solutions to the same constraints. We choose the 
simplest vectors to simplify code transformation. 



872 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

11.9.7 Solving Time-Partition Constraints by Farkas' 
Lemma 

Since time-partition constraints are similar to space-partition constraints, can 
we use a similar algorithm to solve them? Unfortunately, the slight difference 
between the two problems translates into a big technical difference between the 
two solution methods. Algorithm 11.43 simply solves for Cl , cl , C2, and c2, 
such that for all il in Zdl and i2 in Zd"f 

then 

The linear inequalities due to the loop bounds are only used in determining if 
two references share a data dependence, and are not used otherwise. 

To find solutions to the time-partition constraints, we cannot ignore the 
linear inequalities i 4 i'; ignoring them often would allow only the trivial so- 
lution of placing all iterations in the same partition. Thus, the algorithm to 
find solutions to the time-partition constraints must handle both equalities and 
inequalities. 

The general problem we wish to solve is: given a matrix A ,  find a vector 
c such that for all vectors x such that A x  2 0, it is the case that cTx 2 0. 
In other words, we are seeking c such that the inner product of c and any 
coordinates in the polyhedron defined by the inequalities A x  2 0 always yields 
a nonnegative answer. 

This problem is addressed by Farkas' Lemma. Let A be an m x n matrix 
of reals, and let c be a real, nonzero n-vector. Farkas' lemma says that either 
the primal system of inequalities 

has a real-valued solution x ,  or the dual system 

has a real-valued solution y,  but never both. 
The dual system can be handled by using Fourier-Motzkin elimination to 

project away the variables of y. For each c that has a solution in the dual 
system, the lemma guarantees that there are no solutions to the primal system. 
Put another way, we can prove the negation of the primal system, i.e., we can 
prove that cTx > 0 for all x such that A x  2 0, by finding a solution y to the 
dual system: = c and y > 0. 

Algorithm 11.59 : Finding a set of legal, maximally independent affine time- 
partition mappings for an outer sequential loop. 



About Farkas' Lemma 

The proof of the lemma can be found in many standard texts on linear 
programming. Farkas' Lemma, originally proved in 1901, is one of the 
theorems of the alternative. These theorems are all equivalent but, despite 
attempts over the years, a simple, intuitive proof for this lemma or any of 
its equivalents has not been found. 

INPUT: A loop nest with array accesses. 

OUTPUT: A maximal set of linearly independent time-partition mappings. 

METHOD: The following steps constitute the algorithm: 

1. Find all data-dependent pairs of accesses in a program. 

2. For each pair of data-dependent accesses, Fl = (Fl , fl , B l  , bl) in state- 
ment s l  nested in dl loops and F2 = (Fa, f2, B2 ,  b2)  in statement 5-2 nested 
in d2 loops, let (Cl  , el) and (C2,  c2) be the (unknown) time-partition 
mappings of statements s l  and s 2 ,  respectively. Recall the time-partition 
constraints state that 

For all il in Zdl and i2 in zd2 such that 

a) il 4 s m  i2, 
b) B l i l  + b l  2 0, 
c) B2i2 + b2 2 0, and 

d) F l i l  + fl = F2i2 + f2, 

it is the case that Cli l  + cl  5 C2i2 + cz. 

Since il 4,,,, i 2  is a disjunctive union of a number of clauses, we can 
create a system of constraints for each clause and solve each of them 
separately, as follows: 

(a) Similarly to step (2a) in Algorithm 11.43, apply Gaussian elimination 
to the equations 

to reduce the vector 

to  some vector of unknowns, x. 



874 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

(b) Let c be all the unknowns in the partition mappings. Express the 
linear inequality constraints due to the partition mappings as 

for some matrix D. 

(c) Express the precedence constraints on the loop index variables and 
the loop bounds as 

for some matrix A. 

(d) Apply Farkas' Lemma. Finding x to satisfy the two constraints above 
is equivalent to finding y  such that 

=DTc and y 2  0. 

Note that cTD here is cT in the statement of Farkas' Lemma, and 
we are using the negated form of the lemma. 

(e) In this form, apply Fourier-Motzkin elimination to project away the y 
variables, and express the constraints on the coefficients c as Ec > 0. 

(f) Let E'c' > 0 be the system without the constant terms. 

3. Find a maximal set of linearly independent solutions to E'c' 2 0 using 
Algorithm B.l in Appendix B. The approach of that complex algorithm 
is to keep track of the current set of solutions for each of the statements, 
then incrementally look for more independent solutions by inserting con- 
straints that force the solution to be linearly independent for at least one 
statement. 

4. From each solution of c' found, derive one affine time-partition mapping. 
The constant terms are derived using Ec 2 0. 

Example 11.60 : The constraints for Example 11.57 can be written as 



Farkas' lemma says that these constraints are equivalent to 

Solving this system, we get 

Cll = Czl 2 0 and C12 = ca - el = 0. 

Notice that these constraints are satisfied by the particular solution we obtained 
in Example 11.57. 

11.9.8 Code Transformations 

If there exist k independent solutions to the time-partition constraints of a loop 
nest, then it is possible to transform the loop nest to have k outermost fully 
permutable loops, which can be transformed to create k- 1 degrees of pipelining, 
or to create k - 1 inner parallelizable loops. Furthermore, we can apply blocking 
to fully permutable loops to improve data locality of uniprocessors as well as 
reducing synchronization among processors in a parallel execution. 

Exploiting Fully Permutable Loops 

We can create a loop nest with k outermost fully permutable loops easily from 
k independent solutions to the time-partition constraints. We can do so by 
simply making the kth solution the kth row of the new transform. Once the 
affine transform is created, Algorithm 11.45 can be used to generate the code. 

Example 11.61 : The solutions found in Example 11.58 for our SOR example 
were 

Making the first solution the first row and the second solution the second row, 
we get the transform 

which yields the code in Fig. 11.51 (a). 
Making the second solution the first row instead, we get the transform 

which yields the code in Fig. 11.51 (c). 



876 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

It is easy to see that such transforms produce a legal sequential program. 
The first row partitions the entire iteration space according to the first solution. 
The timing constraints guarantee that such a decomposition does not violate 
any data dependences. Then, we partition the iterations in each of the outer- 
most loop according to the second solution. Again this must be legal because we 
are dealing with just subsets of the original iteration space. The same goes for 
the rest of the rows in the matrix. Since we can order the solutions arbitrarily, 
the loops are fully permutable. 

Exploiting Pipelining 

We can easily transform a loop with k outermost fully permutable loops into a 
code with k - 1 degrees of pipeline parallelism. 

Example 11.62 : Let us return to our SOR example. After the loops are 
transformed to be fully permutable, we know that iteration [il , i2] can be exe- 
cuted provided iterations [il, in - 11 and [il - 1, i2] have been executed. We can 
guarantee this order in a pipeline as follows. We assign iteration il  to processor 
pl. Each processor executes iterations in the inner loop in the original sequen- 
tial order, thus guaranteeing that iteration [il , i2] executes after [il , ia - I]. In 
addition, we require that processor p waits for the signal from processor p - 1 
that it has executed iteration - 1, i2] before it executes iteration b, i2]. This 
technique generates the pipelined code Fig. 11.52(a) and (b) from the fully 
permutable loops Fig. 1 1.51 (a) and (c) , respectively. 

In general, given k outermost fully permutable loops, the iteration with 
index values (il , . . . , ik )  can be executed without violating data-dependence 
constraints, provided iterations 

have been executed. We can thus assign the partitions of the first k - 1 dimen- 
sions of the iteration space to O(nk-l) processors as follows. Each processor is 
responsible for one set of iterations whose indexes agree in the first k - 1 dimen- 
sions, and vary over all values of the kth index. Each processor executes the 
iterations in the kth loop sequentially. The processor corresponding to values 
[pl, p2,. . . , pr-l] for the first k - 1 loop indexes can execute iteration i in the 
kth loop as long as it receives a signal from processors 

[pl - 1;p2, .  . ,pk-l], . . 1 blr - .  - rpk-2,pk-1 - 11 

that they have executed their ith iteration in the kth loop. 

Wavefront ing 

It is also easy to generate k - 1 inner parallelizable loops from a loop with k 
outermost fully permutable loops. Although pipelining is preferable, we include 
this information here for completeness. 



11.9. PIPELINING 

We partition the computation of a loop with k outermost fully permutable 
loops using a new index variable i t ,  where i' is defined to be some combination 
of all the indices in the k permutable loop nest. For example, i t  = i l  + . . . + .ik 
is one such combination. 

We create an outermost sequential loop that iterates through the i t  par- 
titions in increasing order; the computation nested within each partition is 
ordered as before. The first k - 1 loops within each partition are guaranteed 
to be parallelizable. Intuitively, if given a two-dimensional iteration space, this 
transform groups iterations along 135" diagonals as an execution of the outer- 
most loop. This strategy guarantees that iterations within each iteration of the 
outermost loop have no data dependence. 

Blocking 

A k-deep, fully permutable loop nest can be blocked in k-dimensions. Instead 
of assigning the iterations to processors based on the value of the outer or inner 
loop indexes, we can aggregate blocks of iterations into one unit. Blocking is 
useful for enhancing data locality as well as for minimizing the overhead of 
pipelining. 

Suppose we have a two-dimensional fully permutable loop nest, as in Fig. 
11.55(a), and we wish to break the computation into b x b blocks. The execution 
order of the blocked code is shown in Fig. 11.56, and the equivalent code is in 
Fig. 11.55(b). 

If we assign each block to one processor, then all the passing of data from one 
iteration to another that is within a block requires no interprocessor communi- 
cation. Alternatively, we can coarsen the granularity of pipelining by assigning 
a column of blocks to one processor. Notice that each processor synchronizes 
with its predecessors and successors only at block boundaries. Thus, another 
advantage of blocking is that programs only need to communicate data ac- 
cessed at  the boundaries of the block with their neighbor blocks. Values that 
are interior to a block are managed by only one processor. 

Example 11.63 : We now use a real numerical algorithm - Cholesky decom- 
position - to illustrate how Algorithm 11.59 handles single loop nests with only 
pipelining parallelism. The code, shown in Fig. 11.57, implements an O(n3) al- 
gorithm, operating on a 2-dimensional data array. The executed iteration space 
is a triangular pyramid, since j only iterates up to the value of the outer loop 
index i, and k only iterates to the value of j. The loop has four statements, all 
nested in different loops. 

Applying Algorithm 11.59 to this program finds three legitimate time di- 
mensions. It nests all the operations, some of which were originally nested in 
1- and 2-deep loop nests into a 3-dimensional, fully permutable loop nest. The 
code, together with the mappings, is shown in Fig. 11.58. 

The code-generation routine guards the execution of the operations with the 
original loop bounds to ensure that the new programs execute only operations 



878 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

f o r  (i=O; i<n; i++) 
f o r  (j=i; j<n; j++) ( 

<S> 

3 

(a) A simple loop nest. 

f o r  (ii = 0; ii<n; i+=b) 
f o r  (jj = 0; jjcn; jj+=b) 

f o r  (i = ii*b; i <= min(ii*b-1, n); i++) 
f o r  (j = ii*b; j <= min(jj*b-1, n); j++) ( 

<S> 
3 

(b) A blocked version of this loop nest. 

Figure 11.55: A 2-dimensional loop nest and its blocked version 

(a) Before. (b) After. 

Figure 11.56: Execution order before and after blocking a 2-deep loop nest. 



f o r  ( i  = 1 ;  i <= N ;  i++)  ( 
f o r  ( j  = 1 ;  j <= i -1 ;  j++) ( 

f o r  (k = 1 ;  k <= j-1;  k++) 
x [ i , j l  = X [ i , j l  - X[i,k] * X[j,k];  

X [ i , j l  = X C i , j l  / X C j , j l ;  
3 
f o r  (m = 1 ;  m <= i -1 ;  m++) 

x [ i , i ]  = X [ i , i l  - X [ i , m l  * X[i,m]; 
X [ i , i ]  = s q r t ( X [ i , i ] ) ;  

3 

Figure 11.57: Cholesky decomposition 

f o r  ( i 2  = 1 ;  i 2  <= N ;  i2++) 
f o r  ( j 2  = 1 ;  j 2  <= i 2 ;  j2++) ( 

/* beginning of code f o r  p rocessor  ( i 2 , j 2 )  */ 
f o r  (k2 = 1 ;  k2 <= i 2 ;  k2++) ( 

// Mapping: i 2  = i, j 2  = j ,  k2 = k 
i f  ( j 2 < i 2  && k2<j2)  

~ [ i 2 ,  j21 = X[i2,j21 - X[i2,k2] * X[j2,k2]; 

// Mapping: i 2  = i ,  j 2  = j ,  k2 = j 
i f  ( j2==k2 && j 2 < i 2 )  

X [ i Z , j Z l  = X[i2,j21 / X[j2, j2] ;  

// Mapping: i 2  = i, j 2  = i, k2 = m 
i f  ( i2==j2  && k2<i2)  

X[i2,i21 = X[i2,i2] - X[i2,k2] * X[i2,k2]; 

/ /  Mapping: i 2  = i, j 2  = i, k2 = i 
i f  ( i2==j2  && j2==k2) 

X [k2, k21 = s q r t  (X [k2, k21) ; 
3 
/* ending of code f o r  p rocessor  ( i 2 , j 2 )  */ 

I 

Figure 11.58: Figure 11.57 written as a fully permutable loop nest 



880 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

that are in the original code. We can pipeline this code by mapping the 3- 
dimensional structure to a z-dimensional processor space. Iterations (i2, j2, k2) 
are assigned to the processor with ID (i2, j2). Each processor executes the 
innermost loop, the loop with the index k2. Before it executes the kth iteration, 
the processor waits for signals from the processors with ID'S (i2 - 1, j2) and 
(i2, j2 - 1). After it executes its iteration, it signals processors (i2 + 1, j2) and 
(i2, j2 + 1). 

11.9.9 Parallelism With Minimum Synchronization 

We have described three powerful parallelization algorithms in the last three 
sections: Algorithm 11.43 finds all parallelism requiring no synchronizations, 
Algorithm 11.54 finds all parallelism requiring only a constant number of syn- 
chronizations, and Algorithm 11.59 finds all the pipelinable parallelism requir- 
ing O(n) synchronizations where n is the number of iterations in the outermost 
loop. As a first approximation, our goal is to parallelize as much of the compu- 
tation as possible, while introducing as little synchronization as necessary. 

Algorithm 11.64, below, finds all the degrees of parallelism in a program, 
starting with the coarsest granularity of parallelism. In practice, to parallelize a 
code for a multiprocessor, we do not need to exploit all the levels of parallelism, 
just the outermost possible ones until all the computation is parallelized and 
all the processors are fully utilized. 

Algorithm 11.64 : Find all the degrees of parallelism in a program, with all 
the parallelism being as coarse-grained as possible. 

INPUT: A program to be parallelized. 

OUTPUT: A parallelized version of the same program. 

METHOD: Do the following: 

1. Find the maximum degree of parallelism requiring no synchronization: 
Apply Algorithm 11.43 to the program. 

2. Find the maximum degree of parallelism that requires O(1) synchroniza- 
tions: Apply Algorithm 11.54 to each of the space partitions found in 
step 1. (If no synchronization-free parallelism is found, the whole compu- 
tation is left in one partition). 

3. Find the maximum degree of parallelism that requires O(n) synchroniza- 
tions. Apply Algorithm 11.59 to each of the partitions found in step 2 
to find pipelined parallelism. Then apply Algorithm 11.54 to each of the 
partitions assigned to each processor, or the body of the sequential loop 
if no pipelining is found. 

4. Find the maximum degree of parallelism with successively greater degrees 
of synchronizations: Recursively apply Step 3 to computation belonging 
to each of the space partitions generated by the previous step. 



Example  11.65 : Let us now return to Example 11.56. No parallelism is 
found by Steps 1 and 2 of Algorithm 11.54; that is, we need more than a 
constant number of synchronizations to parallelize this code. In Step 3, applying 
Algorithm 11.59 determines that there is only one legal outer loop, which is the 
one in the original code of Fig. 11.53. So, the loop has no pipelined parallelism. 
In the second part of Step 3, we apply Algorithm 11.54 to parallelize the inner 
loop. We treat the code within a partition like a whole program, the only 
difference being that the partition number is treated like a symbolic constant. 
In this case the inner loop is found to be parallelizable and therefore the code 
can be parallelized with n synchronization barriers. 

Algorithm 11.64 finds all the parallelism in a program at each level of syn- 
chronization. The algorithm prefers parallelization schemes that have less syn- 
chronization, but less synchronization does not mean that the communication 
is minimized. Here we discuss two extensions to the algorithm to address its 
weaknesses. 

Considering Communicat ion Cost  

Step 2 of Algorithm 11.64 parallelizes each strongly connected component in- 
dependently if no synchronization-free parallelism is found. However, it may 
be possible to parallelize a number of the components without synchronization 
and communication. One solution is to greedily find synchronization-free par- 
allelism among subsets of the program dependence graph that share the most 
data. 

If communication is necessary between strongly connected components, we 
note that some communication is more expensive than others. For example, 
the cost of transposing a matrix is significantly higher than just having to com- 
municate between neighboring processors. Suppose sl  and s2 are statements in 
two separate strongly connected components accessing the same data in itera- 
tions il and i2, respectively. If we cannot find partition mappings (Cl ,  cl) and 
(C2, c2) for statements s l  and s2, respectively, such that 

we instead try to satisfy the constraint 

where 6 is a small constant. 

Trading Communicat ion for Synchronization 

Sometimes we would rather perform more synchronizations to minimize com- 
munication. Example 11.66 discusses one such example. Thus, if we cannot 



882 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

parallelize a code with just neighborhood communication among strongly con- 
nected components, we should attempt to pipeline the computation instead 
of parallelizing each component independently. As shown in Example 11.66, 
pipelining can be applied to a sequence of loops. 

Example 11.66 : For the AD1 integration algorithm in Example 11.49, we 
have shown that optimizing the first and second loop nests independently finds 
parallelism in each of the nests. However, such a scheme would require that 
the matrix be transposed between the loops, incurring O(n2) data traffic. If 
we use Algorithm 11.59 to find pipelined parallelism, we find that we can turn 
the entire program into a fully permutable loop nest, as in Fig. 11.59. We then 
can apply blocking to reduce the communication overhead. This scheme would 
incur O(n) synchronizations but would require much less communication. 

f o r  ( j  = 0 ;  j  < n;  j++) 
f o r  ( i  = 1 ;  i < n+ l ;  i++)  ( 

i f  ( i  < n) X[i , j ]  = f ( X [ i , j ]  + X[i - l , j ] )  
i f  ( j  > 0) X C i - 1 , j l  = g(X[i-l , j l ,XCi-1,j-11); 

> 

Figure 11.59: A fully permutable loop nest for the code of Example 11.49 

11.9.10 Exercises for Section 11.9 

Exercise 11.9.1 : In Section 11.9.4, we discussed the possibility of using di- 
agonals other than the horizontal and vertical axes to pipeline the code of 
Fig. 11.51. Write code analogous to the loops of Fig. 11.52 for the diagonals: 
(a) 135" (b) 120". 

Exercise 11.9.2 : Figure 11.55 (b) can be simplified if b divides n evenly. 
Rewrite the code under that assumption. 

f o r  (i=O; i<lOO; i++)  ( 
P[i,Ol = 1 ;  /* sl */ 
P [ i , i ]  = I ;  /* s2  */ 

1 
f o r  ( i=2;  i<lOO; i++) 

f o r  ( j = l ;  j c i ;  j++) 
P [ i , j ]  = P[ i - l , j - I ]  + P [ i - 1 , j l ;  /*  s 3  */ 

Figure 11.60: Computing Pascal's triangle 



11.9. PIPELINING 883 

Exercise 11.9.3 : In Fig. 11.60 is a program to compute the first 100 rows of 
Pascal's triangle. That is, P[i ,  j] will become the number of ways to choose j 
things out of i ,  for 0 5 j 5 i < 100. 

a) Rewrite the code as a single, fully permutable loop nest. 

b) Use 100 processors in a pipeline to implement this code. Write the code for 
each processor p, in terms of p, and indicate the synchronization necessary. 

c) Rewrite the code using square blocks of 10 iterations on a side. Since the 
iterations form a triangle, there will be only 1 + 2 + . . . + 10 = 55 blocks. 
Show the code for a processor (pl , p2) assigned to the pl th block in the i 
direction and the p2 th block in the j direction, in terms of pl and p2. 

f o r  (i=O; i<lOO; I++) ( 
A [ i ,  0,0] = Bl[ i ] ;  / *  sl */ 
A[i,99,0] = B2[i];  /* s 2  */ 

J 
f o r  ( j = l ;  j<99;  j++) ( 

A [  0 , j  ,01 = B3Ljl;  / *  s 3  */ 
A[99,j ,01 = B4Cjl; /* s 4  */  

3 
f o r  (i=O; i<99;  i + + )  

f o r  (j=O; j<99;  j++) 
f o r  ( k = l ;  k(100; k++) 

A [ i ,  j ,k] = (4*A[i, j ,k-11 + A[i-1, j ,k-l]  + 
A[i+l ,  j ,k-11 + A C i ,  j-1,k-11 + 
A[i , j+l ,k-11;  /* s5 * /  

Figure 11.61: Code for Exercise 11.9.4 

! Exercise 11.9.4 : Repeat Exercise 11.9.2 for the code of Fig. 11.61. However, 
note that the iterations for this problem form a 3-dimensional cube of side 100. 
Thus, the blocks for part (c) should be 10 x 10 x 10, and there are 1000 of them. 

! Exercise 11.9.5 : Let us apply Algorithm 11.59 to a simple example of the 
time-partition constraints. In what follows, assume that the vector il is (il , jl), 
and vector i2 is (i2, jz) ;  technically, both these vectors are transposed. The 
condition il +,,,, i2 consists of the following disjunction: 

ii. i l  = i2 and jl < j2. 

The other equalities and inequalities are 



884 CHAPTER 2 1 .  OPTIMIZING FOR PARALLELISM AND LOCALITY 

Finally, the time-partition inequality, with unknowns cl, dl, el ,  cz, d2, and ez, 
is 

a) Solve the time-partition constraints for case i - that is, where il < iz. In 
particular, eliminate as many of i l ,  jl, i2, and j2 as you can, and set up 
the matrices D and A as in Algorithm 11.59. Then, apply Farkas' Lemma 
to the resulting matrix inequalities. 

b) Repeat part (a) for the case ii, where i l  = i2 and jl < j2. 

11.10 Locality Optimizations 

The performance of a processor, be it a part of a multiprocessor or not, is 
highly sensitive to its cache behavior. Misses in the cache can take tens of clock 
cycles, so high cache-miss rates can lead to poor processor performance. In the 
context of a multiprocessor with a common memory bus, contention on the bus 
can further add to the penalty of poor data locality. 

As we shall see, even if we just wish to improve the locality of uniprocessors, 
the affine-partitioning algorithm for parallelization is useful as a means of iden- 
tifying opportunities for loop transformations. In this section, we describe three 
techniques for improving data locality in uniprocessors and multiprocessors. 

1. We improve the temporal locality of computed results by trying to use the 
results as soon as they are generated. We do so by dividing a computation 
into independent partitions and executing all the dependent operations in 
each partition close together. 

2. Array contraction reduces the dimensions of an array and reduces the 
number of memory locations accessed. We can apply array contraction if 
only one location of the array is used at a given time. 

3. Besides improving temporal locality of computed results, we also need 
to optimize for the spatial locality of computed results, and for both the 
temporal and spatial locality of read-only data. Instead of executing each 
partition one after the other, we interleave a number of the partitions so 
that reuses among partitions occur close together. 



11.10. LOCALITY OPTIMIZATIONS 

11.10.1 Temporal Locality of Computed Data 

The affne-partitioning algorithm pulls all the dependent operations together; 
by executing these partitions serially we improve temporal locality of computed 
data. Let us return to the multigrid example discussed in Section 11.7.1. Ap- 
plying Algorithm 11.43 to parallelize the code in Fig 11.23 finds two degrees 
of parallelism. The code in Fig 11.24 contains two outer loops that iterate 
through the independent partitions serially. This transformed code has im- 
proved temporal locality, since computed results are used immediately in the 
same iteration. 

Thus, even if our goal is to  optimize for sequential execution, it is profitable 
to  use parallelization to  find these related operations and place them together. 
The algorithm we use here is similar to that of Algorithm 11.64, which finds all 
the granularities of parallelism starting with the outermost loop. As discussed 
in Section 11.9.9, the algorithm parallelizes strongly connected components in- 
dividually, if we cannot find synchronization-free parallelism at each level. This 
parallelization tends to increase communication. Thus, we combine separately 
parallelized strongly connected components greedily, if they share reuse. 

11.10.2 Array Contraction 

The optimization of array contraction provides another illustration of the trade- 
off between storage and parallelism, which was first introduced in the context of 
instruction-level parallelism in Section 10.2.3. Just as using more registers al- 
lows for more instruction-level parallelism, using more memory allows for more 
loop-level parallelism. As shown in the multigrid example in Section 11.7.1, 
expanding a temporary scalar variable into an array allows different iterations 
to  keep different instances of the temporary variables and to execute at the 
same time. Conversely, when we have a sequential execution that operates on 
one array element at a time serially, we can contract the array, replace it with 
a scalar, and have each iteration use the same location. 

In the transformed multigrid program shown in Fig. 11.24, each iteration of 
the inner loop produces and consumes a different element of AP, AM, T, and a 
row of D. If these arrays are not used outside of the code excerpt, the iterations 
can serially reuse the same data storage instead of putting the values in different 
elements and rows, respectively. Figure 11.62 shows the result of reducing the 
dimensionality of the arrays. This code runs faster than the original, because 
it reads and writes less data. Especially in the case when an array is reduced 
to a scalar variable, we can allocate the variable to a register and eliminate the 
need to access memory altogether. 

As less storage is used, less parallelism is available. Iterations in the trans- 
formed code in Fig. 11.62 now share data dependences and no longer can be 
executed in parallel. To parallelize the code on P processors, we can expand 
each of the scalar variables by a factor of P and have each processor access 
its own private copy. Thus, the amount by which the storage is expanded is 



886 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

f o r  (j = 2, j <= jl, j++) 
f o r  (i = 2, i <= il, i++) ( 

AP - - . . . , 
T = 1.0/(1.0 +AP); 
D [21 = T*AP; 
DW[l,2, j ,i] = T*DW[1,2, j ,i] ; 
f o r  (k=3, k <= kl-I, k++) ( 

AM = AP; 
AP - - . . . , 
T = . . .  AP -AM*D[k-I]...; 
D [kl = T*AP; 

. . . 
f o r  (k=kl-I, k>=2, k--) 

DW[l,k,j,i] = DW[i,k,j,i] +D[k]*DW[l,k+l,j,i]; 
3 

Figure 11.62: Code of Fig. 11.23 after partitioning (Fig. 11.24) and array con- 
traction 

directly correlated to the amount of parallelism exploited. 
There are three reasons it is common to find opportunities for array con- 

traction: 

Higher-level programming languages for scientific applications, such as 
Matlab and Fortran 90, support array-level operations. Each subexpres- 
sion of array operations produces a temporary array. Because the arrays 
can be large, every array operation such as a multiply or add would require 
reading and writing many memory locations, while requiring relatively few 
arithmetic operations. It is important that we reorder operations so that 
data is consumed as it is produced and that we contract these arrays into 
scalar variables. 

2. Supercomputers built in the 80's and 90's are all vector machines, so 
many scientific applications developed then have been optimized for such 
machines. Even though vectorizing compilers exist, many programmers 
still write their code to operate on vectors at a time. The multigrid code 
example of this chapter is an example of this style. 

3. Opportunities for contraction are also introduced by the compiler. As 
illustrated by variable T in the multigrid example, a compiler would ex- 
pand arrays to improve parallelization. We have to contract them when 
the space expansion is not necessary. 

Example 1 It67 : The array expression Z = W + X + Y translates to 



11.10. LOCALITY OPTIMIZATIONS 

Rewriting the code as 

f o r  ( i = O ;  i<n; i++) ( T = W [i] + X [il ; Z [i] = T + Y [i] 3 

can speed it up considerably. Of course at the level of C code, we would not 
even have to use the temporary T, but could write the assignment to Z[i] as a 
single statement. However, here we are trying to model the intermediate-code 
level at which a vector processor would deal with the operations. 

Algorithm 11.68 : Array contraction. 

INPUT: A program transformed by Algorithm 11.64. 

OUTPUT: An equivalent program with reduced array dimensions. 

METHOD: A dimension of an array can be contracted to a single element if 

1. Each independent partition uses only one element of the array, 

2. The value of the element upon entry to the partition is not used by the 
partition, and 

3. The value of the element is not live on exit from the partition. 

Identify the contractable dimensions - those that satisfy the three condi- 
tions above - and replace them with a single element. 

Algorithm 11.68 assumes that the program has first been transformed by Al- 
gorithm 11.64 to pull all the dependent operations into a partition and execute 
the partitions sequentially. It finds those array variables whose elements' live 
ranges in different iterations are disjoint. If these variables are not live after the 
loop, it contracts the array and has the processor operate on the same scalar 
location. After array contraction, it may be necessary to selectively expand 
arrays to accommodate for parallelism and other locality optimizations. 

The liveness analysis required here is more complex than that described in 
Section 9.2.5. If the array is declared as a global variable, or if it is a parameter, 
interprocedural analysis is required to ensure that the value on exit is not used. 
Furthermore, we need to compute the liveness of individual array elements, 
conservatively treating the array as a scalar would be too imprecise. 

11.10.3 Partition Interleaving 

Different partitions in a loop often read the same data, or read and write the 
same cache lines. In this and the next two sections, we discuss how to optimize 
for locality when reuse is found across partitions. 3 



888 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

Reuse in Innermost Blocks 

We adopt the simple model that data can be found in the cache if it is reused 
within a small number of iterations. If the innermost loop has a large or un- 
known bound, only reuse across iterations of the innermost loop translates into 
a locality benefit. Blocking creates inner loops with small known bounds, al- 
lowing reuse within and across entire blocks of computation to  be exploited. 
Thus, blocking has the effect of capitalizing on more dimensions of reuse. 

Example 11.69 : Consider the matrix-multiply code shown in Fig. 11.5 and 
its blocked version in Fig. 11.7. Matrix multiplication has reuse along every 
dimension of its three-dimensional iteration space. In the original code, the in- 
nermost loop has n iterations, where n is unknown and can be large. Our simple 
model assumes that only the data reused across iterations in the innermost loop 
is found in the cache. 

In the blocked version, the three innermost loops execute a three-dimension- 
al block of computation, with B iterations on each side. The block size B is 
chosen by the compiler to  be small enough so that all the cache lines read and 
written within the block of computation fit into the cache. Thus reused data 
across iterations in the third outermost loop can be found in the cache. 

We refer to  the innermost set of loops with small known bounds as the inner- 
most block. It is desirable that the innermost block include all the dimensions 
of the iteration space that carry reuse, if possible. Maximizing the lengths of 
each side of the block is not as important. For the matrix-multiply example, 3- 
dimensional blocking reduces the amount of data accessed for each matrix by a 
factor of B2. If reuse is present, it is better to  accommodate higher-dimensional 
blocks with shorter sides than lower-dimensional blocks with longer sides. 

We can optimize locality of the innermost fully permutable loop nest by 
blocking the subset of loops that share reuse. We can generalize the notion of 
blocking to exploit reuses found among iterations of outer parallel loops, also. 
Observe that blocking primarily interleaves the execution of a small number 
of instances of the innermost loop. In matrix multiplication, each instance of 
the innermost loop computes one element of the array answer; there are n2 of 
them. Blocking interleaves the execution of a block of instances, computing B 
iterations from each instance at a time. Similarly, we can interleave iterations 
in parallel loops to  take advantage of reuses between them. 

We define two primitives below that can reduce the distance between reuses 
across different iterations. We apply these primitives repeatedly, starting from 
the outermost loop until all the reuses are moved adjacent to  each other in the 
innermost block. 

Interleaving Inner Loops in a Parallel Loop 

Consider the case where an outer parallelizable loop contains an inner loop. To 
exploit reuse across iterations of the outer loop, we interleave the executions of 



11.10. LOCALITY OPTIMIZATIONS 889 

a fixed number of instances of the inner loop, as shown in Fig. 11.63. Creating 
two-dimensional inner blocks, this transformation reduces the distance between 
reuse of consecutive iterations of the outer loop. 

f o r  (i=O; i<n; i++) f o r  (ii=O; ii<n; ii+=4) 
f o r  (j=O; j<n; j++) f o r  (j=O; j<n; j++) 

<S> f o r  (i=ii; ii<rnin(n, ii+4) ; ii+=4) 
<S> 

(a) Source program. (b) Transformed code. 

Figure 11.63: Interleaving 4 instances of the inner loop 

The step that turns a loop 

f o r  (i=O; i<n; i++) 
<s> 

into 

f o r  (ii=O; ii<n; ii+=4) 
f o r  (i=ii; ii<min(n, ii+4); ii+=4) 

<S> 

is known as stripmining. In the case where the outer loop in Fig. 11.63 has a 
small known bound, we need not stripmine it, but can simply permute the two 
loops in the original program. 

Interleaving Statements in a Parallel Loop 

Consider the case where a parallelizable loop contains a sequence of statements 
SI ,  s 2 ,  . . . , s,. If some of these statements are loops themselves, statements 
from consecutive iterations may still be separated by many operations. We 
can exploit reuse between iterations by again interleaving their executions, as 
shown in Fig. 11.64. This transformation distributes a stripmined loop across 
the statements. Again, if the outer loop has a small fixed number of iterations, 
we need not stripmine the loop but simply distribute the ariginal loop over all 
the statements. 

We use si ( j )  to denote the execution of statement si in iteration j. Instead of 
the original sequential execution order shown in Fig. 11.65(a), the code executes 
in the order shown in Fig. 11.65(b). 

Example 11.70: We now return to the multigrid example and show how 
we exploit reuse between iterations of outer parallel loops. We observe that 
references DW[1, k , j , i ] ,  DW[1, k - l , j , i ] ,  and DW[l ,  k+ l ,  j , i ]  in the innermost 
loops of the code in Fig. 11.62 have rather poor spatial locality. From reuse 
analysis, as discussed in Section 11.5, the loop with index i carries spatial 



890 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

f o r  (i=O; i<n; i++) ( f o r  (ii=O; ii<n; ii+=4) ( 
<Sl> f o r  (i=ii; i<min(n,ii+4); i++) 
<S2> <S1> 
. . . f o r  (i=ii; i<min(n, ii+4) ; i++) 

1 <S2> 

(a) Source program. (b) Transformed code. 

Figure 11.64: The statement-interleaving transformation 

locality and the loop with index k carries group reuse. The loop with index k 
is already the innermost loop, so we are interested in interleaving operations on 
DW from a block of partitions with consecutive i values. 

We apply the transform to interleave statements in the loop to obtain the 
code in Fig. 11.66, then apply the transform to interleave inner loops to obtain 
the code in Fig. 11.67. Notice that 3s we interleave B iterations from loop with 
index i ,  we need to expand variables AP,  AM, T into arrays that hold B results 
at a time. 

11.10.4 Putting it All Together 

Algorithm 11.71 optimizes locality for a uniprocessor, and Algorithm 11.72 
optimizes both parallelism and locality for a multiprocessor. 

Algorithm 11.71 : Optimize data locality on a uniprocessor. 

INPUT: A program with affine array accesses. 

OUTPUT: An equivalent program that maximizes data locality. 

METHOD: Do the followiag steps: 

1. Apply Algorithm 11.64 to optimize the temporal locality of computed 
results. 

2. Apply Algorithm 11.68 to contract arrays where possible. 

3. Determine the iteration subspace that may share the same data or cache 
lines using the technique described in Section 11.5. For each statement, 
identify those outer parallel loop dimensions that have data reuse. 

4. For each outer parallel loop carrying reuse, move a block of the iterations 
into the innermost block by applying the interleaving primitives repeat- 
edly. 



I1 .lo. LOCALITY OPTIMIZATIONS 

(a) Original order. 

(b) Transformed order. 

Figure 11.65: Distributing a stripmined loop 

5. Apply blocking to the subset of dimensions in the innermost fully per- 
mutable loop nest that carries reuse. 

6. Block outer fully permutable loop nest for higher levels of memory hier- 
archies, such as the third-level cache or the physical memory. 

7. Expand scalars and arrays where necessary by the lengths of the blocks. 

Algorithm 11.72 : Optimize parallelism and data locality for multiprocessors. 

INPUT: A program with affine array accesses. 

OUTPUT: An equivalent program that maximizes parallelism and data locality. 

METHOD: Do the following: 

1. Use the Algorithm 11.64 to parallelize the program and create an SPMD 
program. 



892 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

for (j = 2, j <= jl, j++) 
for (ii = 2, ii <= il, ii+=b) ( 

for (i = ii; i <= min(ii+b-1,il); i++) ( 
ib = i-ii+l; 
AP Lib] - - . . . )  
T = 1.0/(1.0 +AP[ib]); 
D [2, ibl = T*AP Lib] ; 
DW[1,2, j ,i] = T*DW[1,2, j ,i] ; 

3 
for (i = ii; i <= min(ii+b-1,il); i++) ( 

for (k=3, k <= kl-1, k++) 
ib = i-ii+l; 
AM = AP Lib] ; 
AP Lib] - - . . ,  
T = . . . AP [ib] -AM*D [ib, k-11. . . ; 
D Lib, k] = T*AP; 
DW[l,k,j,i] = T*(DW[l,k,j,i]+D~[l,k-l,j,i]) ...; 

> 
. . . 
for (i = ii; i <= min(ii+b-1,il); i++) 

for (k=kl-1, k>=2, k--) ( 
DW[l,k,j ,i] = DW[l,k,j,i] +D[iw,k]*DW[l,k+l,j ,i]; 

/* Ends code to be executed by processor (j,i) */ 

Figure 11.66: Excerpt of Fig. 11.23 after partitioning, array contraction, and 
blocking 

2. Apply Algorithm 11.71 to the SPMD program produced in Step 1 to 
optimize its locality. 

11.10.5 Exercises for Section 11.10 

Exercise 11.10.1 : Perform array contraction on the following vector opera- 
tions: 

for (i=O; i<n; i++) T[i] = A[i] * B[il; 
for (i=O; i<n; i++) D[i] = T[i] + C[i]; 

Exercise 11.10.2 : Perform array contraction on the following vector opera- 
tions: 



11.21. OTHER USES OF AFFINE TRANSFORMS 

for (j = 2, j <= jl, j++) 
for (ii = 2, ii <= il, ii+=b) ( 

for (i = ii; i <= min(ii+b-1,il); i++) ( 
ib = i-ii+l; 
AP [ib] - - . . ,  
T = 1.0/(1.0 +AP[ib]); 
D [2, ibl = T*AP [ib] ; 
DW[1,2, j ,i] = T*DW[1,2, j ,i] ; 

j 

for (k=3, k <= kl-1, k++) 
for (i = ii; i <= min(ii+b-1,il); i++) ( 

ib = i-ii+l; 
AM = AP [ib] ; 
AP [ib] - - . . . , 
T = . . . AP Lib] -AM*D [ib, k-11 . . . ; 
D [ib, k] = T*AP; 
DWClYky j ,il = T*(DW[lYky j ,il+DW[l,k-1, J ,i]). . .; 

. . . 
for (k=kl-1, k>=2, k--) ( 

for (i = ii; i <= min(ii+b-1,il); i++) 
DW[l,k,j,il = DW[l,k,j,il +D[iw,k]*DW[l,k+l,j,i]; 

/* Ends code to be executed by processor (j,i) */ 

Figure 11.67: Excerpt of Fig. 11.23 after partitioning, array contraction, and 
blocking 

for (i=O; i<n; i++) T [i] = A [i] + B [i] ; 
for (i=O; i<n; i++) S[i] = C[i] + D[i]; 
for (i=O; icn; i++) E[i] = T[i] * S[i]; 

Exercise 11.10.3 : Stripmine the outer loop 

for (i=n-1; i>=O; i--) 
for (j=O; j<n; j++) 

into strips of width 10. 

Other Uses of Affine Transforms 

So far we have focused on the architecture of shared memory machines, but 
the theory of affine loop transforms has many other applications. We can ap- 
ply affine transforms to other forms of parallelism including distributed memory 



894 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

machines, vector instructions, SIMD (Single Instruction Multiple Data) instruc- 
tions, as well as multiple-instruction-issue machines. The reuse analysis intro- 
duced in this chapter also is useful for data prefetching, which is an effective 
technique for improving memory performance. 

11.11.1 Distributed Memory Machines 

For distributed memory machines, where processors communicate by sending 
messages to  each other, it is even more important that processors be assigned 
large, independent units of computation, such as those generated by the afine- 
partitioning algorithm. Besides computation partitioning, a number of addi- 
tional compilation issues remain: 

1. Data allocation. If processors use different portions of an array, they each 
only have to allocate enough space to  hold the portion used. We can use 
projection to determine the section of arrays used by each processor. The 
input is the system of linear inequalities representing the loop bounds, the 
array access functions, and the affine partitions that map the iterations 
to  processor IDS. We project away the loop indices and find for each 
processor ID the set of array locations used. 

2. Communication code. We need to generate explicit code to  send and 
receive data to  and from other processors. At each synchronization point 

(a) Determine the data residing on one processor that is needed by other 
processors. 

(b) Generate the code that finds all the data to  be sent and packs it into 
a buffer. 

(c) Similarly, determine the data needed by the processor, unpack re- 
ceived messages, and move the data to  the right memory locations. 

Again, if all accesses are affine, these tasks can be performed by the 
compiler, using the affine framework. 

3. Optimization. It is not necessary for all the communications to  take place 
at the synchronization points. It is preferable that each processor sends 
data as soon as it is available, and that each processor does not start 
waiting for data until it is needed. Such optimizations must be balanced 
by the goal of not generating too many messages, since there is a nontrivial 
overhead associated with processing each message. 

Techniques described here have other applications as well. For example, a 
special-purpose embedded system may use coprocessors to  offload some of its 
computations. Or, instead of demand fetching data into the cache, an embedded 
system may use a separate controller to load and unload data into and out of 
the cache, or other data buffers, while the processor operates on other data. In 
these cases, similar techniques can be used to  generate the code to  move data 
around. 



11.11. OTHER USES OF AFFINE TRANSFORMS 

11.1 1.2 Multi-Instruction-Issue Processors 

We can also use affine loop transforms to optimize the performance of multi- 
instruction-issue machines. As discussed in Chapter 10.5, the performance of 
a software-pipelined loop is limited by two factors: cycles in precedence con- 
straints and the usage of the critical resource. By changing the makeup of the 
innermost loop, we can improve these limits. 

First, we may be able to use loop transforms to create innermost paralleliz- 
able loops, thus eliminating precedence cycles altogether. Suppose a program 
has two loops, with the outer being parallelizable and the inner not. We can 
permute the two loops to make the inner loop parallelizable and so create more 
opportunities for instruction-level parallelism. Notice that it is not necessary 
for iterations in the innermost loop to be completely parallelizable. It is suffi- 
cient that the cycle of dependences in the loop be short enough so that all the 
hardware resources are fully utilized. 

We can also relax the limit due to resource usage by improving the usage 
balance inside a loop. Suppose one loop only uses the adder, and another uses 
only the multiplier. Or, suppose one loop is memory bound and another is 
compute bound. It is desirable to fuse each pair of loops in these examples 
together so as to utilize all the functional units at the same time. 

11.11.3 Vector and SIMD Instructions 

Besides multiple-instruction issue, there are two other important forms of in- 
struction-level parallelism: vector and SIMD operations. In both cases, the 
issue of just one instruction causes the same operation to be applied to a vector 
of data. 

As mentioned previously, many early supercomputers used vector instruc- 
tions. Vector operations are performed in a pipelined manner; the elements 
in the vector are fetched serially and computations on different elements are 
overlapped. In advanced vector machines, vector operations can be chained: 
as the elements of the vector results are produced, they are immediately con- 
sumed by operations of another vector instruction without having to wait for 
all the results to be ready. Moreover, in advanced machines with scatter/gather 
hardware, the elements of the vectors need not be contiguous; an index vector 
is used to specify where the elements are located. 

SIMD instructions specify that the same operation be performed on contigu- 
ous memory locations. These instructions load data from memory in parallel, 
store them in wide registers, and compute on them using parallel hardware. 
Many media, graphics, and digital-signal-processing applications can benefit 
from these operations. Low-end media processors can achieve instruction-level 
parallelism simply by issuing one SIMD instruction at a time. Higher-end pro- 
cessors can combine SIMD with multiple-instruction issue to achieve higher 
performance. 

SIMD and vector instruction generation share many similarities with locality 



896 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

optimization. As we find independent partitions that operate on contiguous 
memory locations, we stripmine those iterations and interleave these operations 
in innermost loops. 

SIMD instruction generation poses two additional difficulties. First, some 
machines require that the SIMD data fetched from memory be aligned. For 
example, they might require that 25,6-byte SIMD operands be placed in ad- 
dresses that are multiples of 256. If the sdurce loop operates on just one array 
of data, we can generate one main loop that operates on aligned data and ex- 
tra code before and after the loop to handle those elements at the boundary. 
For loops operating on more than one array, however, it may not be possible 
to align all the data at the same time. Second, data used by consecutive it- 
erations in a loop may not be contiguous. Examples include many important 
digital-signal-processing algorithms, such as Viterbi decoders and fast Fourier 
transforms. Additional operations to shuffle the data around may be necessary 
to take advantage of the SIMD instructions. 

11.1 1.4 Prefetching 

No data-locality optimization can eliminate all memory accesses; for one, data 
used for the first time must be fetched from memory. To hide the latency 
of memory operations, prefetch instructions have been adopted in many high- 
performance processors. Prefetch is a machine instruction that indicates to the 
processor that certain data is likely to be used soon, and that it is desirable to 
load the data into the cache if it is not present already. 

The reuse analysis described in Section 11.5 can be used to estimate when 
caches misses are likely. There are two important considerations when gener- 
ating prefetch instructions. If contiguous memory locations are to be accessed, 
we need to issue only one prefetch instruction for each cache line. Prefetch 
instructions should be issued early enough so that the data is in the cache by 
the time it are used. However, we should not issue prefetch instructions too 
far in advance. The prefetch instructions can displace data that may still be 
needed; also the prefetched data may be flushed before it is used. 

Example 11.73 : Consider the following code: 

f o r  (i=O; i i < 3 ;  i++) 
f o r  (j=O; j<100; j++) 

A[i,j] = . . . ;  

Suppose the target machine has a prefetch instruction that can fetch two words 
of data at a time, and that the latency of a prefetch instruction takes about 
the time to execute six iterations of the loop above. The prefetch code for the 
above example is shown in Fig. 11.68. 

We unroll the innermost loop twice, so a prefetch can be issued for each cache 
line. We use the concept of software pipelining to prefetch data six iterations 
before it is used. The prolog fetches the data used in the first six iterations. The 



11.12. SUMMARY OF CHAPTER 11 

f o r  (i=O; i i < 3 ;  i++)  ( 
f o r  (j=O; j<6 ;  j+=2) 

prefetch(&ACi, j l)  ; 
f o r  (j=O; j<94; j+=2) C 

pref etch(&A [i, j+61) ; 
A[i , j I  = . . . ;  
~ [ i , j + l ]  = . . . ;  

1 
f o r  ( j=94;  j<100; j++) 

~ [ i , j ]  = . . .; 

Figure 11.68: Code modified to prefetch data 

steady state loop prefetches six iterations ahead as it performs its computation. 
The epilog issues no prefetches, but simply executes the remaining iterations. 
17 

11.12 Summary of Chapter 11 

+ Parallelism and Locality from Arrays. The most important opportunities 
for both parallelism and locality-based optimizations come from loops 
that access arrays. These loops tend to have limited dependences among 
accesses to array elements and tend to access arrays in a regular pattern, 
allowing efficient use of the cache for good locality. 

+ A f i n e  Accesses. Almost all theory and techniques for parallelism and 
locality optimization assume accesses to arrays are affine: the expressions 
for the array indexes are linear functions of the loop indexes. 

+ Iteration Spaces. A loop nest with d nested loops defines a d-dimensional 
iteration space. The points in the space are the d-tuples of values that 
the loop indexes can assume during the execution of the loop nest. In the 
affine case, the limits on each loop index are linear functions of the outer 
loop indexes, so the iteration space is a polyhedron. 

+ Fourier-Motxlcin Elimination. A key manipulation of iteration spaces is 
to reorder the loops that define the iteration space. Doing so requires that 
a polyhedral iteration space be projected onto a subset of its dimensions. 
The Fourier-Motzkin algorithm replaces the upper and lower limits on a 
given variable by inequalities between the limits themselves. 

+ Data Dependences and Array Accesses. A central problem we must solve 
in order to manipulate loops for parallelism and locality optimizations 
is whether two array accesses have a data dependence (can touch the 



898 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

same array element). When the accesses and loop bounds are affine, the 
problem can be expressed as whether there are solutions to a matrix-vector 
equation within the polyhedron that defines the iteration space. 

+ Matrix Rank and Data Reuse. The matrix that describes an array access 
can tell us several important things about that access. If the rank of the 
matrix is as large as possible (minimum of the number of rows and number 
of columns), then the access never touches the same element twice as the 
loops iterate. If the array is stored in row- (column-)major form, then the 
rank of the matrix with the last (first) row deleted tells us whether the 
access has good locality; i.e., elements in a single cache line are accessed 
at about the same time. 

+ Data Dependence and Diophantine Equations. Just because two accesses 
to the same array touch the same region of the array does not mean that 
they actually access any element in common. The reason is that each 
may skip some elements; e.g., one accesses even elements and the other 
accesses odd elements. In order to be sure that there is a data dependence, 
we must solve a Diophantine (integer solutions only) equation. 

+ Solving Diophantine Linear Equations. The key technique is to compute 
the greatest common divisor (GCD) of the coefficients of the variables. 
Only if that GCD divides the constaht term will there be integer solutions. 

+ Space-Partition Constraints. To parallelize the execution of a loop nest, 
we need to map the iterations of the loop to a space of processors, which 
can have one or more dimensions. The space-partition constraints say 
that if two accesses in two different iterations share a data dependence 
(i.e., they access the same array element), then they must map to the 
same processor. As long as the mapping of iterations to processors is 
affine, we can formulate the problem in matrix-vector terms. 

+ Primitive Code Transformations. The transformations used to parallelize 
programs with affine array accesses are combinations of seven primitives: 
loop fusion, loop fission, re-indexing (adding a constant to loop indexes), 
scaling (multiplying loop indexes by a constant), reversal (of a loop index), 
permutation (of the order of loops), and skewing (rewriting loops so the 
line of passage through the iteration space is no longer along one of the 
axes). 

+ Synchronization of Parallel Operations. Sometimes more parallelism can 
be obtained if we insert synchronization operations between steps of a 
program. For example, consecutive loop nests may have data depen- 
dences, but synchronizations between the loops can allow the loops to be 
parallelized separately. 

+ Pipelining. This parallelization technique allows processors to share data, 
by synchronously passing certain data (typically array elements) from one 



11.13. REFERENCES FOR CHAPTER 11 

processor to an adjacent processor in the processor space. The method 
can improve the locality of the data accessed by each processor. 

+ Time-Partition Constraints. To discover opportunities for pipelining, we 
need to discover solutions to  the time-partition constraints. These say 
that whenever two array accesses can touch the same array element, then 
the access in the iteration that occurs first must be assigned to a stage 
in the pipeline that occurs no later than the stage to which the second 
access is assigned. 

+ Solving Time-Partition Constraints. Farkas' Lemma provides a power- 
ful technique for finding all the affine time-partition mappings that are 
allowed by a given loop nest with array accesses. The technique is es- 
sentially to  replace the primal formulation of the linear inequalities that 
express the time-partition constraints by their dual. 

+ Blocking. This technique breaks each of several loops in a loop nest into 
two loops each. The advantage is that doing so may allow us to  work on 
small sections (blocks) of a multidimensional array, one block at a time. 
That,  in turn, improves the locality of the program, letting all the needed 
data reside in the cache while working on a single block. 

+ Strzprnining. Similar to  blocking, this technique breaks only a subset of 
the loops of a loop nest into two loops each. A possible advantage is that 
a multidimensional array is accessed a "strip" at a time, which may lead 
to the best possible cache utilization. 

11.13 References for Chapter 11 

For detailed discussions of multiprocessor architectures, we refer the reader t o  
the text by Hennessy and Patterson [9]. 

Lamport [13] and Kuck, Muraoka, and Chen [6] introduced the concept of 
data-dependence analysis. Early data-dependence tests used heuristics to  prove 
a pair of references to  be independent by determining if there are no solutions to  
Diophantine equations and systems of real linear inequalities: [5, 6, 261. May- 
dan, Hennessy, and Lam [18] formulated the data-dependence test as integer 
linear programming and showed that the problem can be solved exactly and 
efficiently in practice. The data-dependence analysis described here is based 
on work by Maydan, Hennessy, and Lam [18] and Pugh and Wonnacott [23], 
which in turn use techniques of Fourier-Motzkin elimination [7] and Shostak's 
algorithm [25]. 

The 70's and early 80's saw the use of loop transformations to improve 
vectorization and parallelization: loop fusion [3], loop fission [I], stripmining 
[17], and loop interchange [28]. There were three major experimental paral- 
lelizer/vectorizing projects going on at the time: Parafrase led by Kuck at the 
University of Illinois Urbana-Champaign [21], the PFC project led by Kennedy 



900 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

at Rice University [4], and the PTRAN project led by Allen at IBM Research 
121- 

McKellar and Coffman [I91 first discussed using blocking to improve data 
locality. Lam, Rothbert, and Wolf [12] provided the first in-depth empirical 
analysis of blocking on caches for modern architectures. Wolf and Lam [27] 
used linear-algebra techniques to compute data reuse in loops. Sarkar and Gao 
[24] introduced the optimization of array contraction. 

Lamport [13] was the first to model loops as iteration spaces and used hyper- 
planing (a special case of an affine transform) to find parallelism for multipro- 
cessors. Affine transforms have their root in systolic-array algorithm design [l 11 . 
Intended as parallel algorithms directly implemented in VLSI, systolic arrays 
require communication to be minimized along with parallelization. Algebraic 
techniques were developed to map the computation onto space and time coordi- 
nates. The concept of an affine schedule and the use of Farkas' Lemma in affine 
transformations were introduced by Feautrier [8]. The affine-transformation 
algorithm described here is based on work by Lim et al. [15, 14, 161. 

Porterfield [22] proposed one of the first compiler algorithms to prefetch 
data. Mowry, Lam, and Gupta [20] applied reuse analysis to minimize the 
prefetch overhead and gain an overall performance improvement. 

1. Abu-Sufah, W., D. J. Kuck, and D. H. Lawrie, "On the performance 
enhancement of paging systems through program analysis and transfor- 
mations," IEEE Trans. on Computing C-305 (1981), pp. 341-356. 

2. Allen, F. E., M. Burke, P. Charles, R. Cytron, and J. Ferrante, "An 
overview of the PTRAN analysis system for multiprocessing," J. Parallel 
and Distributed Computing 5:5 (1988), pp. 617-640. 

3. Allen, F. E. and J. Cocke, "A Catalogue of optimizing transformations," 
in Design and Optimization of Compilers (R. Rustin, ed.), pp. 1-30, 
Prentice-Hall, 1972. 

4. Allen, R. and K. Kennedy, "Automatic translation of Fortran programs to 
vector form," ACM Transactions on Programming Languages and Systems 
9:4 (1987), pp. 491-542. 

5. Banerjee, U., Data Dependence in Ordinary Programs, Master's thesis, 
Department of Computer Science, University of Illinois Urbana-Cham- 
paign, 1976. 

6. Banerjee, U., Speedup of Ordinary Programs, Ph.D. thesis, Department 
of Computer Science, University of Illinois Urbana-Champaign, 1979. 

7. Dantzig, G. and B. C. Eaves, "Fourier-Motzkin elimination and its dual," 
J. Combinatorial Theory, A(14) (1973), pp. 288-297. 

8. Feautrier, P., "Some efficient solutions to the affine scheduling problem: 
I. One-dimensional time," International J. Parallel Programming 215 
(1992), pp. 313-348, 



11.13. REFERENCES FOR CHAPTER 11 90 1 

9. Hennessy, J. L. and D. A. Patterson, Computer Architecture: A Quanti- 
tative Approach, Third Edition, Morgan Kaufman, San Francisco, 2003. 

10. Kuck, D., Y. Muraoka, and S. Chen, "On the number of operations 
simultaneously executable in Fortran-like programs and their resulting 
speedup," IEEE Transactions on Computers C-21:12 (1972), pp. 1293- 
1310. 

11. Kung, H. T.  and C. E. Leiserson, "Systolic arrays (for VLSI)," in Duff, 
I. S. and G. W. Stewart (eds.), Sparse Matrix Proceedings pp. 256-282. 
Society for Industrial and Applied Mathematics, 1978. 

12. Lam, M. S., E. E. Rothberg, and M. E. Wolf, "The cache performance and 
optimization of blocked algorithms," Proc. Sixth International Conference 
on Architectural Support for Programming Languages and Operating Sys- 
tems (1991), pp. 63-74. 

13. Lamport, L., "The parallel execution of DO loops," Comm. A CM 17:2 
(1974), pp. 83-93. 

14. Lim, A. W., G. I. Cheong, and M. S. Lam, "An affine partitioning algo- 
rithm to maximize parallelism and minimize communication," Proc. 13th 
International Conference on Supercomputing (1999), pp. 228-237. 

15. Lim, A. W. and M. S. Lam, "Maximizing parallelism and minimizing 
synchronization with affine transforms," Proc. 24th ACM SIGPLAN-SIG- 
ACT Symposium on Principles of Programming Languages (1997), pp. 
201-214. 

16. Lim, A. W., S.-W. Liao, and M. S. Lam, "Blocking and array contrac- 
tion across arbitrarily nested loops using affine partitioning," Proc. ACM 
SIGPLAN Symposium on Principles and Practice of Parallel Program- 
ming (2001), pp. 103-112. 

17. Loveman. D. B., "Program improvement by source-to-source transforma- 
tion," J. ACM 24:l (1977), pp. 121-145. 

18. Maydan, D. E., J. L. Hennessy, and M. S. Lam, "An efficient method for 
exact dependence analysis," Proc. A CM SIGPLAN 1991 Conference on 
Programming Language Design and Implementation, pp. 1-14. 

19. McKeller, A. C. and E. G. Coffman, "The organization of matrices and 
matrix operations in a paged multiprogramming environment ," Comm. 
ACM, 12:3 (1969), pp. 153-165. 

20. Mowry, T. C., M. S. Lam, and A. Gupta, "Design and evaluation of a com- 
piler algorithm for prefetching," Proc. Fifth International Conference on 
Architectural Support for Programming Languages and Operating Systems 
(1992), pp. 62-73. 



902 CHAPTER 11. OPTIMIZING FOR PARALLELISM AND LOCALITY 

21. Padua, D. A. and M. J .  Wolfe, "Advanced compiler optimziations for 
supercomputers," Comm. ACM, 29:12 (1986), pp. 1184-1201. 

22. Porterfield, A., Software Methods for Improving Cache Performance on 
Supercomputer Applications, Ph.D. Thesis, Department of Computer Sci- 
ence, Rice University, 1989. 

23. Pugh, W. and D. Wonnacott , "Eliminating false positives using the omega 
test ," Proc. A CM SIGPLAN 1992 Conference on Programming Language 
Design and Implementation, pp. 140-151. 

24. Sarkar, V. and G. Gao, "Optimization of array accesses by collective loop 
transformations," Proc. 5th International Conference on Supercomputing 
(1991), pp. 194-205. 

25. R. Shostak, "Deciding linear inequalities by computing loop residues," J. 
ACM, 28:4 (1981), pp. 769-779. 

26. Towle, R. A., Control and Data Dependence for Program Transforma- 
tion, Ph.D . thesis, Department of Computer Science, University of Illinois 
Urbana-Champaign, 1976. 

27. Wolf, M. E. and M. S. Lam, "A data locality optimizing algorithm," 
Proc. SIGPLAN 1991 Conference on Programming Language Design and 
Implementation, pp. 30-44. 

28. Wolfe, M. J., Techniques for Improving the Inherent Parallelism in Pro- 
grams, Master's thesis, Department of Computer Science, University of 
Illinois Urbana-Champaign, 1978. 



Chapter 12 

Interprocedural Analysis 

In this chapter, we motivate the importance of interprocedural analysis by dis- 
cussing a number of important optimization problems that cannot be solved 
with intraprocedural analysis. We begin by describing the common forms of 
interprocedural analysis and explaining the difficulties in their implement ation. 
We then describe applications for interprocedural analysis. For widely used 
programming languages like C and Java, pointer alias analysis is key to  any 
interprocedural analysis. Thus, for much of the chapter, we discuss techniques 
needed to compute pointer aliases. To start, we present Datalog, a notation 
that greatly hides the complexity of an efficient pointer analysis. We then de- 
scribe an algorithm for pointer analysis, and show how we use the abstraction 
of binary decision diagrams (BDD's) to implement the algorithm efficiently. 

Most compiler optimizations, including those described in Chapters 9, 10, 
and 11, are performed on procedures one at a time. We refer to  such analyses as 
intraprocedural. These analyses conservatively assume that procedures invoked 
may alter the state of all the variables visible to  the procedures and that they 
may create all possible side effects, such as modifyiag any of the variables visible 
to  the procedure or generating exceptions that cause the unwinding of the 
call stack. Intraprocedural analysis is thus relatively simple, albeit imprecise. 
Some optimizations do not need interprocedural analysis, while others may yield 
almost no useful information without it. 

An interprocedural analysis operates across an entire program, flowing in- 
formation from the caller to  its callees and vice versa. One relatively simple but 
useful technique is to  inline procedures, that is, to  replace a procedure invoca- 
tion by the body of the procedure itself with suitable modificatiohs to  account 
for parameter passing and the return value. This method is applicable only if 
we know the target of the procedure call. 

If procedures are invoked indirectly through a pointer or via the method- 
dispatch mechanism prevalent in object-oriented programming, analysis of the 
program's pointers or references can in some cases determine the targets of 
the indirect invocations. If there is a unique target, inlining can be applied. 



904 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

Even if a unique target is determined for each procedure invocation, inlining 
must be applied judiciously. In general, it is not possible to inline recursive 
procedures directly, and even without recursion, inlining can expand the code 
size exponentially. 

12.1 Basic Concepts 

In this section, we introduce call graphs - graphs that tell us which procedures 
can call which. We also introduce the idea of "context sensitivity," where data- 
flow analyses are required to take cognizance of what the sequence of procedure 
calls has been. That is, context-sensitive analysis includes (a synopsis of) the 
current sequence of activation records on the stack, along with the current point 
in the program, when distinguishing among different "places" in the program. 

12.1.1 Call Graphs 

A call graph for a program is a set of nodes and edges such that 

1. There is one node for each procedure in the program. 

2, There is one node for each call site, that is, a place in the program where 
a procedure is invoked. 

3. If call site c may call procedure p, then there is an edge from the node for 
c to the node for p. 

Many programs written in languages like C and Fortran make procedure calls 
directly, so the call target of each invocation can be determined statically. In 
that case, each call site has an edge to exactly one procedure in the call graph. 
However, if the program includes the use of a procedure parameter or function 
pointer, the target generally is not known until the program is run and, in fact, 
may vary from one invocation to another. Then, a call site can link to many or 
all procedures in the call graph. 

Indirect calls are the norm for ob ject-oriented programming languages. In 
particular, when there is overriding of methods in subclasses, a use of method 
rn may refer to any of a number of different methods, depending on the subclass 
of the receiver object to which it was applied. The use of such virtual method 
invocations means that we need to know the type of the receiver before we can 
determine which method is invoked. 

Example 12.1 : Figure 12.1 shows a C program that declares pf to be a global 
pointer to a function whose type is "integer to integer." There are two functions 
of this type, f unl and f un2, and a main function that is not of the type that pf 
points to. The figure shows three call sites, denoted c l ,  c2, and c3; the labels 
are not part of the program. 



12.1. BASIC CONCEPTS 

int (*pf) (int) ; 

cl: 

int funl (int x) ( 
if (x < 10) 

return (*pf) (x+l) ; 
else 

return x; 

int fun2(int y) -( 

pf = &funl; 
return (*pf) (y) ; 

1 

void main() ( 
pf = &fun2; 
(*pf ) ( 5 )  ; 

1 

Figure 12.1: A program with a function pointer 

The simplest analysis of what pf could point to would simply observe the 
types of functions. Functions funl and fun2 are of the same type as what 
pf points to, while main is not. Thus, a conservative call graph is shown in 
Fig. 12.2(a). A more careful analysis of the program would observe that pf is 
made to point to  f un2 in main and is made to point to  f unl in f un2. But there 
are no other assignments to  any pointer, so, in particular, there is no way for 
pf to point to main. This reasoning yields the same call graph as Fig. 12.2(a). 

An even more precise analysis would say that at  c3, it is only possible for pf 
to  point to  f un2, because that call is preceded immediately by that assignment 
to  pf . Similarly, at  c2 it is only possible for pf t o  point t o  f unl. As a result, 
the initial call to  funl can come only from f un2, and funl does not change pf, 
so whenever we are within funl, pf points to f unl. In particular, at  cl, we 
can be sure pf points to  funl. Thus, Fig. 12.2(b) is a more precise, correct call 
graph. 

In general, the presence of references or pointers to functions or methods 
requires us to  get a static approximation of the potential values of all procedure 
parameters, function pointers, and receiver object types. To make an accurate 
approximation, interprocedural analysis is necessary. The analysis is iterative, 
starting with the statically observable targets. As more targets are discov- 
ered, the analysis incorporates the new edges into the call graph and repeats 
discovering more targets until convergence is reached. 



CHAPTER 12. INTERPROCED URAL ANALYSIS 

main da 
Figure 12.2: Call graphs derived from Fig. 12.1 

12.1.2 Context Sensitivity 

Interprocedural analysis is challenging because the behavior of each procedure is 
dependent upon the context in which it is called. Example 12.2 uses the problem 
of interprocedural constant propagation on a small program to illustrate the 
significance of contexts. 

Example 12.2 : Consider the program fragment in Fig. 12.3. Function f is 
invoked at three call sites: c i ,  c2 and c3. Constant 0 is passed in as the 
actual parameter at c i ,  and constant 243 is passed in at c2 and c3 in each 
iteration; the constants 1 and 244 are returned, respectively. Thus, function f 
is invoked with a constant in each of the contexts, but the value of the constant 
is context-dependent . 

As we shall see, it is not possible to tell that t 1, t 2 ,  and t 3  each are assigned 
constant values (and thus so is X [ i ] ) ,  unless we recognize that when called in 
context c l ,  f returns 1, and when called in the other two contexts, f returns 
244. A naive analysis would conclude that f can return either 1 or 244 from 
any call. 

One simplistic but extremely inaccurate approach to interprocedural anal- 
ysis, known as context-insensitive analysis, is to treat each call and return 
statement as "goto" operations. We create a super control-flow graph where, 
besides the normal intraprocedural control flow edges, additional edges are cre- 
ated connecting 

1. Each call site to the beginning of the procedure it calls, and 

2. The return statements back to the call sites.' 
l ~ h e  return is actually to the instruction following the call site. 



12.1. BASIC CONCEPTS 

f o r  (i = 0; i < n ;  i++)  C 
c l :  t l  = f (0);  
c2: t 2  = f (243) ; 
c3: t 3  = f (243); 

X [ i ]  = t l + t 2 + t 3 ;  

i n t  f ( i n t  v) 
r e t u r n  (v+l )  ; 

> 

Figure 12.3: A program fragment illustrating the need for context-sensitive 
analysis 

Assignment statements are added to assign each actual parameter to  its 
corresponding formal parameter and to assign the returned value to  the variable 
receiving the result. We can then apply a standard analysis intended to be used 
within a procedure to  the super control-flow graph to find context-insensitive 
interprocedural results. While simple, this model abstracts out the important 
relationship between input and output values in procedure invocations, causing 
the analysis to  be imprecise. 

Example 12.3 : The super control-flow graph for the program in Fig. 12.3 is 
shown in Figure 12.4. Block B6 is the function f .  Block B3 contains the call 
site cl; it sets the formal parameter v to  0 and then jumps to the beginning of 
f ,  at B6. Similarly, B4 and B5 represent the call sites c2 and c3, respectively. 
In B4, which is reached from the end of f (block B6), we take the return value 
from f and assign it to  t l .  We then set formal parameter v to  243 and call f 
again, by jumping to Bg . Note that there is no edge from B3 to B4. Control 
must flow through f on the way from B3 to B4. 

B5 is similar to  B4. It receives the return from f ,  assigns the return value 
to  t 2 ,  and initiates the third call to f .  Block B7 represents the return from the 
third call and the assignment to  X[i]. 

If we treat Fig. 12.4 as if it were the flow graph of a single procedure, then 
we would conclude that coming into B6,  v can have the value 0 or 243. Thus, 
the most we can conclude about r e t v a l  is that it is assigned 1 or 244, but no 
other value. Similarly, we can only conclude about t 1, t 2 ,  and t 3  that they can 
each be either 1 or 244. Thus, X[i] appears to  be either 3, 246, 489, or 732. In 
contrast, a context-sensitive analysis would separate the results for each of the 
calling contexts and produces the intuitive answer described in Example 12.2: 
t1 is always 1, t 2  and t 3  are always 244, and X[i] is 489. C1 



CHAPTER 12. INTERPROCEDURAL ANALYSIS 

Figure 12.4: The control-flow graph for Fig. 12.3, treating function calls as 
control flow 

B 1  

12.1.3 Call Strings 

i = O  

In Example 12.2, we can distinguish among the contexts by just knowing the 
call site that calls the procedure f .  In general, a calling context is defined by 
the contents of the entire call stack. We refer to the string of call sites on the 
stack as the call string. 

Example 12.4 : Figure 12.5 is a slight modification of Fig. 12.3. Here we have 
replaced the calls to f by calls to g ,  which then calls f with the same argument. 
There is an additional call site, c4, where g calls f .  

There are three call strings to f :  (c l ,  c4), (c2, c4), and (c3, c4). As we see 
in this example, the value of v in function f depends not on the immediate or 
last site c4 on the call string. Rather, the constants are determined by the first 
element in each of the call strings. 

B 7  

Example 12.4 illustrates that information relevant to the analysis can be 
introduced early in the call chain. In fact, it is sometimes necessary to consider 
the entire call string to compute the most precise answer, as illustrated in 
Example 12.5. 

B 3  c1: v = 0 

t3 = retval 
t4 = '" '2 

t 5  = t4+t3 
X C i I  = t5 
i = i+l 

- 
B2 

if i<n goto  L--, 



12.1. BASIC CONCEPTS 

f o r  ( i  = 0 ;  i < n ;  i++)  ( 
c l :  t l  = g ( 0 ) ;  
c2: t 2  = g(243) ; 
c3: t 3  = g(243);  

X [ i ]  = t l + t 2 + t 3 ;  
3 

i n t  g  ( i n t  V) ( 
c4: r e t u r n  f  (v) ; 

3 

i n t  f ( i n t  v) ( 
r e t u r n  (v+l )  ; 

3 

Figure 12.5: Program fragment illustrating call strings 

f o r  ( i  = 0 ;  i < n ;  i++)  ( 
c l :  t l  = g ( 0 ) ;  
c2: t 2  = g(243) ; 
c3: t 3  = g(243);  

X [ i l  = t l + t 2 + t 3 ;  
3 

i n t  g  ( i n t  V) ( 
i f  (v > 1)  ( 

c4: r e t u r n  g(v-1) ; 
3 e l s e  ( 

c5: r e t u r n  f  (v) ; 

i n t  f ( i n t  v) ( 
r e t u r n  (v+l )  ; 

Figure 12.6: Recursive program requiring analysis of complete call strings 



910 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

Example 12.5 : This example illustrates how the ability to  reason about un- 
bounded call strings can yield more precise results. In Fig. 12.6 we see that if 
g is called with a positive value c, then g will be invoked recursively c times. 
Each time g is called, the value of its parameter u decreases by 1. Thus, the 
value of g's parameter u in the context whose call string is c2(c4)" is 243 - n. 
The effect of g is thus to  increment 0 or any negative argument by 1, and to 
return 2 on any argument 1 or greater. 

There are three possible call strings for f .  If we start with the call at  c l ,  
then g calls f immediately, so ( c l ,  c5) is one such string. If we start at  c2 or 
c3, then we call g a total of 243 times, and then call f .  These call strings are 
(c2, c4, c4,.  . . , c5) and (c3, c4, c4, .  . . , c5), where in each case there are 242 
c4's in the sequence. In the first of these contexts, the value of f ' s  parameter 
u is 0, while in the other two contexts it is 1. 

In designing a context-sensitive analysis, we have a choice in precision. For 
example, instead of qualifying the results by the full call string, we may just 
choose to distinguish between contexts by their k most immediate call sites. 
This technique is known as k-limiting context analysis. Context-insensitive 
analysis is simply a special case of k-limiting context analysis, where k is 0. We 
can find all the constants in Example 12.2 using a 1-limiting analysis and all the 
constants in Example 12.4 using a 2-limiting analysis. However, no k-limiting 
analysis can find all the constants in Example 12.5, provided the constant 243 
were replaced by two different and arbitrarily large constants. 

Instead of choosing a fixed value k, another possibility is to  be fully con- 
text sensitive for all acyclic call strings, which are strings that contain no re- 
cursive cycles. For call strings with recursion, we can collapse all recursive 
cycles, in order to  bound the number of different contexts analyzed. In Ex- 
ample 12.5, the calls initiated a t  call site c2 may be approximated by the call 
string: (c2, c4*, c5). Note that,  with this scheme, even for programs without 
recursion, the number of distinct calling contexts can be exponential in the 
number of procedures in the program. 

12.1.4 Cloning-Based Context-Sensitive Analysis 

Another approach to context-sensitive analysis is to  clone the procedure con- 
ceptually, one for each unique context of interest. We can then apply a context- 
insensitive analysis to  the cloned call graph. Examples 12.6 and 12.7 show the 
equivalent of a cloned version of Examples 12.4 and 12.5, respectively. In real- 
ity, we do not need to clone the code, we can simply use an efficient internal 
representation to  keep track of the analysis results of each clone. 

Example 12.6 : The cloned version of Fig. 12.5 is shown in Fig. 12.7. Because 
every calling context refers to  a distinct clone, there is no confusion. For ex- 
ample, g l  receives 0 as input and produces 1 as output, and g2 and g3 both 
receive 243 as input and produce 244 as output. 



12.1. BASIC CONCEPTS 

f o r  ( i  = 0 ;  i < n ;  i++)  ( 
tl = g l ( 0 ) ;  
t 2  = g2(243); 
t 3  = g3(243); 
X [ i ]  = t l + t 2 + t 3 ;  

J 
i n t  g l  ( i n t  V) ( 

c4.1: r e t u r n  f  I (v) ; 
J 
i n t  g2 ( i n t  v) ( 

c4.2:  r e t u r n  f  2  (v) ; 
J 
i n t  g3 ( i n t  v) ( 

c4.3: r e t u r n  f  3  (v) ; 

i n t  f  1 ( i n t  v) ( 
r e t u r n  (v+l )  ; 

> 
i n t  f 2  ( i n t  v) ( 

r e t u r n  (v+l )  ; 
3 
i n t  f 3  ( i n t  v) ( 

r e t u r n  (v+l )  ; 
I 

Figure 12.7: Cloned version of Fig. 12.5 

Example 12.7 : The cloned version of Example 12.5 is shown in Fig. 12.8. For 
procedure g, we create a clone to represent all instances of g that are first called 
from sites c l ,  c2, and c3. In this case, the analysis would determine that the 
invocation at call site c l  returns 1, assuming the analysis can deduce that with 
v = 0, the test v > 1 fails. This analysis does not handle recursion well enough 
to produce the constants for call sites c2 and c3, however. 

12.1.5 Summary-Based Context-Sensitive Analysis 

Summary-based interprocedural analysis is an extension of region-based anal- 
ysis. Basically, in a summary-based analysis each procedure is represented by 
a concise description ("summary") that encapsulates some observable behavior 
of the procedure. The primary purpose of the summary is to avoid reanalyzing @ 

a procedure's body at every call site that may invoke the procedure. 
Let us first consider the case where there is no recursion. Each procedure is 

modeled as a region with a single entry point, with each caller-callee pair sharing 



CHAPTER 12. INTERPROCEDURAL ANALYSIS 

f o r  ( i  = 0 ;  i < n ;  i++)  ( 
c l :  t l  = g l ( 0 ) ;  
c2: t 2  = g2 (243) ; 
c3: t 3  = g3 (243) ; 

X [ i ]  = t l + t 2 + t 3 ;  

i n t  g1 ( i n t  V) ( 
i f  (v > 1)  ( 

c4.1: r e t u r n  g l  (v-I) ; 
) e l s e  ( 

c5.1: r e t u r n  f  1 (v) ; 
1 

i n t  g2 ( i n t  v) ( 
i f  (v > 1)  ( 

c4.2: r e t u r n  g2 (v-1) ; 
) e l s e  ( 

c5.2: r e t u r n  f  2  (v) ; 

i n t  g3 ( i n t  v) ( 
i f  (v > I )  ( 

r e t u r n  g3 (v-1) ; 
) e l s e  ( 

r e t u r n  f  3  (v) ; 

i n t  f l  ( i n t  v) ( 
r e t u r n  (v+1) ; 

k 
i n t  f 2  ( i n t  v) ( 

r e t u r n  (v+1) ; 
J 
i n t  f 3  ( i n t  v) ( 

r e t u r n  (v+1) ; 
1 

Figure 12.8: Cloned version of Fig. 12.6 



12.1. BASIC CONCEPTS 913 

an outer-inner region relationship. The only difference from the intraprocedural 
version is that,  in the interprocedural case, a procedure region can be nested 
inside several different outer regions. 

The analysis consists of two parts: 

1. A bottom-up phase that computes a transfer function to  summarize the 
effect of a procedure, and 

2. A top-down phase that propagates caller information to  compute results 
of the callees. 

To get fully context-sensitive results, information from different calling contexts 
must propagate down to the callees individually. For a more efficient, but less 
precise calculation, information from all callers can be combined, using a meet 
operator, then propagated down to the callees. 

Example 12.8 : For constant propagation, each procedure is summarized by a 
transfer function specifying how it would propagate constants through its body. 
In Example 12.2, we can summarize f as a function that,  given a constant c as 
an actual parameter to  v, returns the constant c + 1. Based on this information, 
the analysis would determine that t 1, t 2 ,  and t 3  have the constant values 1, 
244, and 244, respectively. Note that this analysis does not suffer the inaccuracy 
due to  unrealizable call strings. 

Recall that Example 12.4 extends Example 12.2 by having g call f .  Thus, 
we could conclude that the transfer function for g is the same as the transfer 
function for f .  Again we conclude that t 1, t 2 ,  and t 3  have the constant values 
1, 244, and 244, respectively. 

Now, let us consider what is the value of parameter v in function f for 
Example 12.2. As a first cut, we can combine all the results for all calling 
contexts. Since v may have values 0 or 243, we can simply conclude that v is 
not a constant. This conclusion is fair, because there is no constant that can 
replace v in the code. 

If we desire more precise results, we can compute specific results for contexts 
of interest. Information must be passed down from the context of interest to  
determine the context-sensitive answer. This step is analogous to  the top-down 
pass in region-based analysis. For example, the value of v is 0 at call site c l  
and 243 at sites c2 and c3. To get the advantage of constant propagation 
within f ,  we need to capture this distinction by creating two clones, with the 
first specialized for input value 0 and the latter with value 243, as shown in 
Fig. 12.9. 

With Example 12.8, we see that,  in the end, if we wish to  compile the 
code differently in different contexts, we still need to clone the code. The 
difference is that in the cloning-based approach, cloning is performed prior to  
the analysis, based on the call strings. In the summary-based approach, the 
cloning is performed after the analysis, using the analysis results as a basis. 



914 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

f o r  ( i  = 0; i < n ;  i++) ( 
c l :  t1 = fO(0);  
c2: t 2  = f 243 (243) ; 
c3: t 3  = f243(243); 

X [ i ]  = t l + t 2 + t 3 ;  
1 

i n t  fO ( i n t  v) ( 
r e t u r n  ( I ) ;  

i n t  f243 ( i n t  v) ( 
r e t u r n  (244) ; 

3 

Figure 12.9: Result of propagating all possible constant arguments to the func- 
tion f 

Even if cloning is not applied, in the summary-based approach inferences about 
the effect of a called procedure are made accurately, without the problem of 
unrealizable paths. 

Instead of cloning a function, we could also inline the code. Inlining has the 
additional effect of eliminating the procedure-call overhead as well. 

We can handle recursion by computing the fixedpoint solution. In the pres- 
ence of recursion, we first find the strongly connected components in the call 
graph. In the bottom-up phase, we do not visit a strongly connected component 
unless all its successors have been visited. For a nontrivial strongly connected 
component, we iteratively compute the transfer functions for each procedure in 
the component until convergence is reached; that is, we iteratively update the 
transfer functions until no more changes occur. 

12.1.6 Exercises for Section 12.1 

Exercise 12.1.1 : In Fig. 12.10 is a C program with two function pointers, p 
and q. N is a constant that could be less than or greater than 10. Note that 
the program results in an infinite sequence of calls, but that is of no concern 
for the purposes of this problem. 

a) Identify all the call sites in this program. 

b) For each call site, what can p point to? What can q point to? 

c) Draw the call graph for this program. 

! d) Describe all the call strings for f and g. 



12.1. BASIC CONCEPTS 

i n t  ( * p ) ( i n t > ;  
i n t  (*q) ( i n t  ) ; 

i n t  f  ( i n t  i )  ( 
i f  ( i  < 10) 

(p = &g; r e tu rn  (*q) ( i )  ; 1 
e l s e  

(p = &f ; r e tu rn  (*p) ( i )  ; I  

i n t  g ( i n t  j )  ( 
i f  ( j  < 10) 

(q = & f ;  r e tu rn  ( * p ) ( j ) ; )  
e l s e  

(q = &g; r e tu rn  (*q) ( j )  ; 3  
3 

void main() ( 
p  = & f ;  
q  = k g ;  
(*p) ((*q) (N) ) ; 

3 

Figure 12.10: Program for Exercise 12.1.1 

Exercise 12.1.2 : In Fig. 12.11 is a function i d  that is the "identity function7'; 
it returns exactly what it is given as an argument. We also see a code fragment 
consisting of a branch and following assignment that sums x + y. 

a) Examining the code, what can we tell about the value of x at the end? 

b) Construct the flow graph for the code fragment, treating the calls to i d  
as control flow. 

c) If we run a constant-propagation analysis, as in Section 9.4, on your flow 
graph from (b), what constant values are determined? 

d) What are all the call sites in Fig. 12.11? 

e) What are all the contexts in which i d  is called? 

f) Rewrite the code of Fig. 12.11 by cloning a new version of i d  for each 
context in which it is called. 

g) Construct the flow graph of your code from (f), treating the calls as control 
flow. 



916 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

i n t  i d ( i n t  x) ( r e t u r n  x ; )  

. . . 
i f  (a == 1) ( x  = i d ( 2 ) ;  y  = i d ( 3 ) ;  ) 
e l s e  ( x  = i d ( 3 ) ;  y  = i d ( 2 ) ;  3 
z = x+y; 

Figure 12.11: Code fragment for Exercise 12.1.2 

h) Perform a constant-propagation analysis on your flow graph from (g). 
What constant values are determined now? 

12.2 Why Interprocedural Analysis? 

Given how hard interprocedural analysis is, let us now address the important 
problem of why and when we wish to use interprocedural analysis. Although 
we used constant propagation to illustrate interprocedural analysis, this inter- 
procedural optimization is neither readily applicable nor particularly beneficial 
when it does occur. Most of the benefits of constant propagation can be ob- 
tained simply by performing intraprocedural analysis and inlining procedure 
calls of the most frequently executed sections of code. 

However, there are many reasons why interprocedural analysis is essential. 
Below, we describe several important applications of interprocedural analysis. 

12.2.1 Virtual Method Invocation 

As mentioned above, object-oriented programs have many small methods. If 
we only optimize one method at a time, then there are few opportunities for 
optimization. Resolving method invocation enables optimization. A language 
like Java dynamically loads its classes. As a result, we do not know at compile- 
time to which of (perhaps) many methods named m a use of "m" refers in an 
invocation such as x.m(). 

Many Java implementations use a just-in-time compiler to compile its byte- 
codes at run time. One common optimization is to profile the execution and 
determine which are the common receiver types. We can then inline the meth- 
ods that are most frequently invoked. The code includes a dynamic check on the 
type and executes the inlined methods if the run-time object has the expected 
type. 

Another approach to resolving uses of a method name m is possible as long 
as all the source code is available at compile time. Then, it is possible to 
perform an interprocedural analysis to determine the object types. If the type 
for a variable x turns out to be unique, then a use of x.m() can be resolved. 



12.2. WHY INTERPROCED URAL ANALYSIS? 

We know exactly what method m refers to in this context. In that case, we can 
in-line the code for this m, and the compiler does not even have to include a 
test for the type of x. 

12.2.2 Pointer Alias Analysis 

Even if we do not wish to perform interprocedural versions of the common data- 
flow analyses like reaching definitions, these analyses can in fact benefit from 
interprocedural pointer analysis. All the analyses presented in Chapter 9 apply 
only to local scalar variables that cannot have aliases. However, use of pointers 
is common, especially in languages like C. By knowing whether pointers can be 
aliases (can point to the same location), we can improve the accuracy of the 
techniques from Chapter 9. 

Example 12.9 : Consider the following sequence of three statements, which 
might form a basic block: 

Without knowing if p and q can point to the same location - that is, whether 
they can be aliases - we cannot conclude that x is equal to 1 at the end of the 
block. 

12.2.3 Parallelization 

As discussed in Chapter 11, the most effective way to parallelize an applica- 
tion is to find the coarsest granularity of parallelism, such as that found in 
the outermost loops of a program. For this task, interprocedural analysis is 
of great importance. There is a significant difference between scalar optimiza- 
tions (those based on values of simple variables, as discussed in Chapter 9) 
and parallelization. In parallelization, just one spurious data dependence can 
render an entire loop not parallelizable, and greatly reduce the effectiveness 
of the optimization. Such amplification of inaccuracies is not seen in scalar 
optimizations. In scalar optimization, we only need to find the majority of 
the optimization opportunities. Missing one opportunity or two seldom makes 
much of a difference. 

12.2.4 Detection of Software Errors and Vulnerabilities 

Interprocedural analysis is not only important for optimizing code. The same 
techniques can be used to analyze existing software for many kinds of coding 
errors. These errors can render software unreliable; coding errors that hackers 
can exploit to take control of, or otherwise damage, a computer system can 
pose significant security vulnerability risks. 



918 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

Static analysis is useful in detecting occurrences of many common error 
patterns. For example, a data item must be guarded by a lock. As another 
example, disabling an interrupt in the operating system must be followed by a 
re-enabling of the interrupt. Since a significant source of errors is the incon- 
sistencies that span procedure boundaries, interprocedural analysis is of great 
importance. PREfix and Metal are two practical tools that use interprocedural 
analysis effectively to find many programming errors in large programs. Such 
tools find errors statically and can improve software reliability greatly. How- 
ever, these tools are both incomplete and unsound, in the sense that they may 
not find all errors, and not all reported warnings are real errors. Unfortunately, 
the interprocedural analysis used is sufficiently imprecise that, were the tools 
to report all potential errors, the large number of false warnings would render 
the tools unusable. Nevertheless, even though these tools are not perfect, their 
systematic use has been shown to greatly improve software reliability. 

When it comes to security vulnerabilities, it is highly desirable that we find 
all the potential errors in a program. In 2006, two of the "most popular" forms 
of intrusions used by hackers to compromise a system were 

1. Lack of input validation on Web applications: SQL injection is one of the 
most popular forms of such vulnerability whereby hackers gain control of 
a database by manipulating inputs accepted by web applications. 

2. Buffer overflows in C and C++ programs. Because C and C++ do not 
check if accesses to arrays are in bounds, hackers can write well-crafted 
strings into unintended areas and hence gain control of the program's 
execution. 

In the next section, we shall discuss how we can use interprocedural analysis to 
protect programs against such vulnerabilities. 

12.2.5 SQL Injection 

SQL injection refers to the vulnerability where hackers can manipulate user 
input to a Web application and gain unintended access to a database. For 
example, banks want their users to be able to make transactions online, provided 
they supply their correct password. A common architecture for such a system 
is to have the user enter strings into a Web form, and then to have those 
strings form part of a database query written in the SQL language. If systems 
developers are not careful, the strings provided by the user can alter the meaning 
of the SQL statement in unexpected ways. 

Example 12.10 : Suppose a bank offers its customers access to a relation 

AcctData(name, password, balance) 

That is, this relation is a table of triples, each consisting of the name of a 
customer, the password, and the balance of the account. The intent is that cus- 
tomers can see their account balance only if they provide both their name and 



12.2. W H Y  INTERPROCED URAL ANALYSIS? 919 

their correct password. Having a hacker see an account balance is not the worst 
thing that could occur, but this simple example is typical of more complicated 
situations where the hacker could execute payments from the account. 

The system might implement a balance inquiry as follows: 

1. Users invoke a Web form where they enter their name and password. 

2. The name is copied to a variable n and the password to a variable p. 

3. Later, perhaps in some other procedure, the following SQL query is exe- 
cuted: 

SELECT balance FROM AcctData 
WHERE name = ' : n )  and password = ) : p '  

For readers not familiar with SQL, this query says: "Find in the table AcctData 
a row with the first component (name) equal to the string currently in variable 
n and the second component (password) equal to the string currently in variable 
p; print the third component (balance) of that row." Note that SQL uses single 
quotes, not double quotes, to delimit strings, and the colons in front of n and 
p indicate that they are variables of the surrounding language. 

Suppose the hacker, who wants to find Charles Dickens' account balance, 
supplies the following values for the strings n and p: 

n = Charles Dickens' -- p = who cares 

The effect of these strange strings is to convert the query into 

SELECT balance FROM AcctData 
WHERE name = 'Charles Dickens' --' and password = 'who cares '  

In many database systems -- is a comment-introducing token and has the effect 
of making whatever follows on that line a comment. As a result, the query now 
asks the database system to print the balance for every person whose name is 
'Charles Dickens', regardless of the password that appears with that name 
in a name-password-balance triple. That is, with comments eliminated, the 
query is: 

SELECT balance FROM AcctData 
WHERE name = 'Charles Dickens' 

In Example 12.10, the "bad" strings were kept in two variables, which might 
be passed between procedures. However, in more realistic cases, these strings 
might be copied several times, or combined with others to form the full query. 
We cannot hope to detect coding errors that create SQL-injection vulnerabilities 
without doing a full interprocedural analysis of the entire program. 



920 CHAPTER 12. INTERPROCED URAL ANALYSIS 

12.2.6 Buffer Overflow 

A bufter overflow attack occurs when carefully crafted data supplied by the user 
writes beyond the intended buffer and manipulates the program execution. For 
example, a C program may read a string s from the user, and then copy it into 
a buffer b using the function call: 

If the string s is actually longer than the buffer b, then locations that are not 
part of b wilI have their values changed. That in itself will probably cause the 
program to malfunction or at least to produce the wrong answer, since some 
data used by the program will have been changed. 

But worse, the hacker who chose the string s can pick a value that will do 
more than cause an error. For example, if the buffer is on the run-time stack, 
then it is near the return address for its function. An insidiously chosen value 
of s may overwrite the return address, and when the function returns, it goes 
to a place chosen by the hacker. If hackers have detailed knowledge of the 
surrounding operating system and hardware, they may be able to  execute a 
command that will give them control of the machine itself. In some situations, 
they may even have the ability to  have the false return address transfer control 
to  code that is part of the string s ,  thus allowing any sort of program to be 
inserted into the executing code. 

To prevent buffer overflows, every array-write operation must be statically 
proven to be within bounds, or a proper array-bounds check must be performed 
dynamically. Because these bounds checks need to be inserted by hand in C 
and C++ programs, it is easy to  forget to insert the test or to  get the test 
wrong. Heuristic tools have been developed that will check if a t  least some test, 
though not necessarily a correct test, has been performed before a s t r c p y  is 
called. 

Dynamic bounds checking is unavoidable because it is impossible to  deter- 
mine statically the size of users' input. All a static analysis can do is assure that 
the dynamic checks have been inserted properly. Thus, a reasonable strategy is 
to  have the compiler insert dynamic bounds checking on every write, and use 
static analysis as a means to  optimize away as many bounds check as possible. 
It  is no longer necessary to  catch every potential violation; moreover, we only 
need to optimize only those code regions that execute frequently. 

Inserting bounds checking into C programs is nontrivial, even if we do not 
mind the cost. A pointer may point into the middle of some array, and we do 
not know the extent of that array. Techniques have been developed to keep 
track of the extent of the buffer pointed to  by each pointer dynamically. This 
information allows the compiler to  insert array bounds checks for all accesses. 
Interestingly enough, it is not advisable to  halt a program whenever a buffer 
overflow is detected. In fact, buffer overflows do occur in practice, and a pro- 
gram would likely fail if we disable all buffer overflows. The solution is to  extend 
the size of the array dynamically to  accommodate for the buffer overruns. 



12.3. A LOGICAL REPRESENTATION OF DATA FLOW 921 

Interprocedural analysis can be used to  speed up the cost of dynamic ar- 
ray bounds checks. For example, suppose we are interested only in catching 
buffer overflows involving user-input strings, we can use static analysis to  de- 
termine which variables may hold contents provided by the user. Like SQL 
injection, being able to  track an input as it is copied across procedures is useful 
in eliminating unnecessary bounds checks. 

12.3 A Logical Representation of Data Flow 

To this point, our representation of data-flow problems and solutions can be 
termed "set-theoretic." That is, we represent information as sets and compute 
results using operators like union and intersection. For instance, when we in- 
troduced the reaching-definitions problem in Section 9.2.4, we computed IN[B] 
and OUT[B] for a block B ,  and we described these as sets of definitions. We 
represented the contents of the block B by its gen and kill sets. 

To cope with the complexity of interprocedural analysis, we now introduce a 
more general and succinct notation based on logic. Instead of saying something 
like "definition D is in IN[B]," we shall use a notation like in (B,  D)  to  mean 
the same thing. Doing so allows us to express succinct "rules7' about inferring 
program facts. It also allows us to  implement these rules efficiently, in a way 
that generalizes the bit-vector approach to set-theoretic operations. Finally, 
the logical approach allows us to  combine what appear to  be several indepen- 
dent analyses into one, integrated algorithm. For example, in Section 9.5 we 
described partial-redundancy elimination by a sequence of four data-flow anal- 
yses and two other intermediate steps. In the logical notation, all these steps 
could be combined into one collection of logical rules that are solved simulta- 
neously. 

12.3.1 Introduction to  Datalog 

Datalog is a language that uses a Prolog-like notation, but whose semantics is 
far simpler than that of Prolog. To begin, the elements of Datalog are atoms 
of the form p(X1, X z , . .  . , X,). Here, 

I. p is a predicate - a symbol that represents a type of statement such as 
"a definition reaches the beginning of a block." 

2. X I ,  X 2 , .  . . , X, are terms such as variables or constants. We shall also 
allow simple expressions as arguments of a predicate.2 

A ground atom is a predicate with only constants as arguments. Every 
ground atom asserts a particular fact, and its value is either true or false. It 

2~ormally, such terms are built from function symbols and complicate the implementation 
of Datalog considerably. However, we shall use only a few operators, such as addition or 
subtraction of constants, in contexts that do not complicate matters. 



922 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

is often convenient to represent a predicate by a relation, or table of its true 
ground atoms. Each ground atom is represented by a single row, or tuple, of 
the relation. The columns of the relation are named by attributes, and each 
tuple has a component for each attribute. The attributes correspond to the 
components of the ground atoms represented by the relation. Any ground 
atom in the relation is true, and ground atoms not in the relation are false. 

Example 12.11 : Let us suppose the predicate in(B, D)  means "definition D 
reaches the beginning of block B." Then we might suppose that, for a particular 
flow graph, in(bl, dl) is true, as are in(b2, dl) and in(b2, d2). We might also 
suppose that for this flow graph, all other in  facts are false. Then the relation 
in Fig. 12.12 represents the value of this predicate for this flow graph. 

Figure 12.12: Representing the value of a predicate by a relation 

The attributes of the relation are B and D. The three tuples of the relation 
are ( b l ,  dl), (b2, dl),  and (b2, d2). 

We shall also see at times an atom that is really a comparison between 
variables and constants. An example would be X # Y or X = 10. In these 
examples, the predicate is really the comparison operator. That is, we can 
think of X = 10 as if it were written in predicate form: equals(X, 10). There is 
an important difference between comparison predicates and others, however. A 
comparison predicate has its standard interpretation, while an ordinary pred- 
icate like in  means only what it is defined to mean by a Datalog program 
(described next). 

A literal is either an atom or a negated atom. We indicate negation with 
the word NOT in front of the atom. Thus, NOT in(B,  D) is an assertion that 
definition D does not reach the beginning of block B. 

12.3.2 Datalog Rules 

Rules are a way of expressing logical inferences. In Datalog, rules also serve to 
suggest how a computation of the true facts should be carried out. The form 
of a rule is 

H : - B 1 & B 2 & . - -  & B ,  

The components are as follows: 

H and B1, B2, . . . , B, are literals - either atoms or negated atoms. 



12.3. A LOGICAL REPRESENTATION OF DATA FLOW 923 

Datalog Conventions 

We shall use the following conventions for Datalog programs: 

1. Variables begin with a capital letter. 

2. All other elements begin with lowercase letters or other symbols such 
as digits. These elements include predicates and constants that are 
arguments of predicates. 

H is the head and B1, B2,  . . . , B, form the body of the rule. 

Each of the Bi7s is sometimes called a subgoal of the rule. 

We should read the : - symbol as "if." The meaning of a rule is "the head 
is true if the body is true." More precisely, we apply a rule to a given set of 
ground atoms as follows. Consider all possible substitutions of constants for 
the variables of the rule. If this substitution makes every subgoal of the body 
true (assuming that all and only the given ground atoms are true), then we can 
infer that the head with this substitution of constants for variables is a true 
fact. Substitutions that do not make all subgoals true give us no information; 
the head may or may not be true. 

A Datalog program is a collection of rules. This program is applied to "data," 
that is, to a set of ground atoms for some of the predicates. The result of the 
program is the set of ground atoms inferred by applying the rules until no more 
inferences can be made. 

Exarnple 12.12 : A simple example of a Datalog program is the computation 
of paths in a graph, given its (directed) edges. That is, there is one predicate 
edge(X, Y) that means "there is an edge from node X to node Y." Another 
predicate path(X, Y) means that there is a path from X to Y. The rules defining 
paths are: 

The first rule says that a single edge is a path. That is, whenever we replace 
variable X by a constant a and variable Y by a constant b, and edge(a, b) is 
true (i.e., there is an edge from node a to node b), then path(a, b) is also true 
(i.e., there is a path from a to b). The second rule says that if there is a path 
from some node X to some node Z ,  and there is also a path from Z to  node Y, 
then there is a path from X to Y. This rule expresses "transitive closure." Note 
that any path can be formed by taking the edges along the path and applying 
the transitive closure rule repeatedly. 



924 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

For instance, suppose that the following facts (ground atoms) are true: 
edge(l,2), edge(2,3), and edge(3,4). Then we can use the first rule with 
three different substitutions to infer path( l ,2) ,  path(2,3), and path(3,4). As 
an example, substituting X = 1 and Y = 2 instantiates the first rule to  be 
path(l,2) : - edge(l,2). Since edge(l,2) is true, we infer path(l,2).  

With these three path facts, we can use the second rule several times. If 
we substitute X = 1, Z = 2, and Y = 3, we instantiate the rule to  be 
path( l ,3)  : - path(l ,2)  & path(2,3). Since both subgoals of the body have 
been inferred, they are known to be true, so we may infer the head: path(l,3).  
Then, the substitution X = 1, Z = 3, and Y = 4 lets us infer the head 
path(l,4);  that is, there is a path from node 1 to node 4. 

12.3.3 Intensional and Extensional Predicates 

It is conventional in Datalog programs to distinguish predicates as follows: 

1. EDB, or extensional database, predicates are those that are defined a- 
priori. That is, their true facts are either given in a relation or table, or 
they are given by the meaning of the predicate (as would be the case for 
a comparison predicate, e.g.). 

2. IDB, or intensional database, predicates are defined only by the rules. 

A predicate must be IDB or EDB, and it can be only one of these. As a result, 
any predicate that appears in the head of one or more rules must be an IDB 
predicate. Predicates appearing in the body can be either IDB or EDB. For 
instance, in Example 12.12, edge is an EDB predicate and path is an IDB 
predicate. Recall that we were given some edge facts, such as edge(l,2), but 
the path facts were inferred by the rules. 

When Datalog programs are used to  express data-flow algorithms, the EDB 
predicates are computed from the flow graph itself. IDB predicates are then 
expressed by rules, and the data-flow problem is solved by inferring all possible 
IDB facts from the rules and the given EDB facts. 

Example 12.13 : Let us consider how reaching definitions might be expressed 
in Datalog. First, it makes sense to  think on a statement level, rather than 
a block level; that is, the construction of gen and kill sets from a basic block 
will be integrated with the computation of the reaching definitions themselves. 
Thus, the block bl suggested in Fig. 12.13 is typical. Notice that we identify 
points within the block numbered 0,1, . . . , n,  if n is the number of statements 
in the block. The ith definition is "at" point i, and there is no definition a t  
point 0. 

A point in the program must be represented by a pair (b, n), where b is a 
block name and n is an integer between 0 and the number of statements in 
block b. Our formulation requires two EDB predicates: 



12.3. A LOGICAL REPRESENTATION OF DATA FLOW 

Figure 12.13: A basic block with points between statements 

1. def(B, N,  X) is true if and only if the N th  statement in block B may define 
variable X .  For instance, in Fig. 12.13 def(bl, 1, x) is true, def(bl,3, x) is 
true, and def(bl, 2, Y) is true for every possible variable Y that p may 
point to  a t  that point. For the moment, we shall assume that Y can be 
any variable of the type that p points to. 

2. succ(B, N,  C)  is true if and only if block C is a successor of block B in 
the flow graph, and B has N statements. That is, control can flow from 
the point N of B to the point 0 of C. For instance, suppose that b2 is 
a predecessor of block bl in Fig. 12.13, and ba has 5 statements. Then 
succ(bz, 5, bl) is true. 

There is one IDB predicate, rd(B, N,  C, M,  X) .  It is intended to be true if 
and only if the definition of variable X at the Mth  statement of block C reaches 
the point N in block B.  The rules defining predicate rd  are in Fig. 12.14. 

Figure 12.14: Rules for predicate rd  

Rule (1) says that if the Nth  statement of block B defines X, then that 
definition of X reaches the N th  point of B (i.e., the point immediately after 
the statement). This rule corresponds to  the concept of "gen" in our earlier, 
set-theoretic formulation of reaching definitions. 

Rule (2) represents the idea that a definition passes through a statement 
unless it is "killed," and the only way to kill a definition is to redefine its 
variable with 100% certainty. In detail, rule (2) says that the definition of 
variable X from the Mth  statement of block C reaches the point N of block B 
if 

a) it reaches the previous point N - 1 of B, and 



926 CHAPTER 12. INTERPROCED URAL ANALYSIS 

b) there is at  least one variable Y ,  other than X ,  that may be defined at the 
Nth  statement of B. 

Finally, rule (3) expresses the flow of control in the graph. It says that the 
definition of X a t  the Mth  statement of block C reaches the point 0 of B if 
there is some block D with N statements, such that the definition of X reaches 
the end of D ,  and B is a successor of D.  

The EDB predicate succ from Example 12.13 clearly can be read off the flow 
graph. We can obtain deffrom the flow graph as well, if we are conservative and 
assume a pointer can point anywhere. If we want to  limit the range of a pointer 
to  variables of the appropriate type, then we can obtain type information from 
the symbol table, and use a smaller relation def. An option is to  make def 
an IDB predicate and define it by rules. These rules will use more primitive 
EDB predicates, which can themselves be determined from the flow graph and 
symbol table. 

Example 12.14 : Suppose we introduce two new EDB predicates: 

1. assign(B, N,  X )  is true whenever the Nth  statement of block B has X 
on the left. Note that X can be a variable or a simple expression with an 
1-value, like *p. 

2. type(X, T )  is true if the type of X is T .  Again, X can be any expression 
with an 1-value, and T can be any expression for a legal type. 

Then, we can write rules for def, making it an IDB predicate. Figure 12.15 
is an expansion of Fig. 12.14, with two of the possible rules for def. Rule (4) 
says that the N th  statement of block B defines X ,  if X is assigned by the N th  
statement. Rule (5) says that X can also be defined by the N th  statement of 
block B if that statement assigns to  *P ,  and X is any of the variables of the 
type that P points to. Other kinds of assignments would need other rules for 
def. 

As an example of how we would make inferences using the rules of Fig. 12.15, 
let us re-examine the block bl of Fig. 12.13. The first statement assigns a 
value to  variable x, so the fact assign(bl, 1, x) would be in the EDB. The third 
statement also assigns to  x, so assign(b17 3, x) is another EDB fact. The second 
statement assigns indirectly through p, so a third EDB fact is assign(b172, *p). 
Rule (4) then allows us to  infer def(bl,l, x) and def(bl,3, x). 

Suppose that p is of type pointer-to-integer (*int), and x and y are integers. 
Then we may use rule (5), with B = b17 N = 2, P = p, T = int, and X equal to  
either x or y, to  infer def(bl, 2, x) and def(b17 2, y). Similarly, we can infer the 
same about any other variable whose type is integer or coerceable to  an integer. 



12.3. A LOGICAL REPRESENTATION OF DATA FLOW 

Figure 12.15: Rules for predicates r d  and def 

12.3.4 Execution of Datalog Programs 

Every set of Datalog rules defines relations for its IDB predicates, as a function 
of the relations that are given for its EDB predicates. Start with the assumption 
that thg IDB relations are empty (i.e., the IDB predicates are false for all 
possible arguments). Then, repeatedly apply the rules, inferring new facts 
whenevqr the rules require us to do so. When the process converges, we are 
done, a+d the resulting IDB relations form the output of the program. This 
process is formalized in the next algorithm, which is similar to the iterative 
algorithps discussed in Chapter 9. 

~1~oritjhr.n 12.15 : Simple evaluation of Datalog programs. 

INPUT: A Datalog program and sets of facts for each EDB predicate. 
I 

OUTPUIT: Sets of facts for each IDB predicate. 

METH D: For each predicate p in the program, let Rp be the relation of facts 0 true for that predicate. If p is an EDB predicate, then Rp is the set of 
en for that predicate. If p is an IDB predicate, we shall compute Rp. 
the algorithm in Fig. 12.16. 

Example 12.16 : The program in Example 12.12 computes paths in a graph. 
To applj. Algorithm 12.15, we start with EDB predicate edge holding all the 
edges of) the graph and with the relation for path empty. On the first round, 
rule (2) ields nothing, since there are no path facts. But rule (1) causes all the 
edge fac ! s to become path facts as well. That is, after the first rouqd, we know 
path(a, 8) if and only if there is an edge from a to b. 



928 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

for (each IDB predicate p) 
Rp = 0; 

while (changes to any Rp occur) { 
consider all possible substitutions of constants for 

variables in all the rules; 
determine, for each substitution, whether all the 

subgoals of the body are true, using the current 
Rp's to determine truth of EDB and IDB predicates; 

if (a substitution makes the body of a rule true) 
add the head to R, if q is the head predicate; 

Figure 12.16: Evaluation of Datalog programs 

On the second round, rule (1) yields no new paths facts, because the EDB 
relation edge never changes. However, now rule (2) lets us put together two 
paths of length 1 to make paths of length 2. That is, after the second round, 
path(a, b) is true if and only if there is a path of length 1 or 2 from a to b. 
Similarly, on the third round, we can combine paths of length 2 or less to 
discover all paths of length 4 or less. On the fourth round, we discover paths of 
length up to to 8, and in general, after the ith round, path(a, b) is true if and 
only if there is a path from a to b of length 2i-1 or less. 

12.3.5 Incremental Evaluation of Datalog Programs 

There is an efficiency enhancement of Algorithm 12.15 possible. Observe that a 
new IDB fact can only be discovered on round i if it is the result of substituting 
constants in a rule, such that at least one of the subgoals becomes a fact that 
was just discovered on round i - 1. The proof of that claim is that if all the facts 
among the subgoals were known at round i - 2, then the "new" fact would have 
been discovered when we made the same substitution of constants on round 
i - 1. 

To take advantage of this observation, introduce for each IDB predicate p 
a predicate newP that will hold only the newly discovered p-facts from the 
previous round. Each rule that has one or more IDB predicates among its 
subgoals is replaced by a collection of rules. Each rule in the collection is 
formed by replacing exactly one occurrence of some IDB predicate q in the 
body by newQ. Finally, for all rules, we replace the head predicate h by newH. 
The resulting rules are said to be in incremental form. 

The relations for each IDB predicate p accumulates all the p-facts, as in 
Algorithm 12.15. In one round, we 

1. Apply the rules to evaluate the newP predicates. 



12.3. A LOGICAL REPRESENTATION OF DATA FLOW 

Incremental Evaluation of Sets 

It is also possible to solve set-theoretic data-flow problems incrementally. 
For example, in reaching definitions, a definition can only be newly dis- 
covered to  be in IN[B] on the ith round if it was just discovered to  be 
in OUT[P] for some predecessor P of B. The reason we do not generally 
try to  solve such data-flow problems incrementally is that the bit-vector 
implementation of sets is so efficient. It is generally easier to fly through 
the complete vectors than to decide whether a fact is new or not. 

2. Then, subtract p from newP, to make sure the facts in newP are truly 
new. 

3. Add the facts in newP to p. 

4. Set all the newX relations to  Q) for the next round. 

These ideas will be formalized in Algorithm 12.18. However, first, we shall give 
an example. 

Example 12.17 : Consider the Datalog program in Example 12.12 again. The 
incremental form of the rules is given in Fig. 12.17. Rule (I)  does not change, 
except in the head because it has no IDB subgoals in the body. However, 
rule (2), with two IDB subgoals, becomes two different rules. In each rule, one 
of the occurrences of path in the body is replaced by newpath. Together, these 
rules enforce the idea that at  least one of the two paths concatenated by the 
rule must have been discovered on the previous round. 

Figure 12.17: Incremental rules for the path Datalog program 

Algorithm 12.18 : Incremental evaluation of Datalog programs. 

INPUT: A Datalog program and sets of facts for each EDB predicate. 

OUTPUT: Sets of facts for each IDB predicate. 



930 CHAPTER 12. INTERPROCED URAL ANALYSIS 

METHOD: For each predicate p in the program, let Rp be the relation of facts 
that are true for that predicate. If p is an EDB predicate, then Rp is the set of 
facts given for that predicate. If p is an IDB predicate, we shall compute Rp. 
In addition, for each IDB predicate p, let RnewP be a relation of "new" facts 
for predicate p. 

1. Modify the rules into the incremental form described above. 

2. Execute the algorithm ih Fig. 12.18. 

for (each IDB predicate p) { 
Rp = 0; 
Rnew~ = 0; 

1 
repeat { 

consider all possible substitutions of constants for 
variables in all the rules; 

determine, for each substitution, whet her all the 
subgoals of the body are true, using the current 
Rp7s and RneWP's to determine truth of EDB 
and IDB predicates; 

if (a substitution makes the body of a rule true) 
add the head to RnewH, where h is the head 

predicate; 
for (each predicate p) { 

Rnew~ = Rnew~ - Rp; 
Rp = Rp U Rnew~; 

1 
} until (all RneWp's are empty); 

Figure 12.18: Evaluation of Dat alog programs 

12.3.6 Problematic Datalog Rules 
There are certain Datalog rules or programs that technically have no meaning 
and should not be used. The two most important risks are 

1. Unsafe rules: those that have a variable in the head that does not appear 
in the body in a way that constrains that variable to take on only values 
that appear in the EDB. 

2. Unstratified programs: sets of rules that have a recursion involving a nega- 
t ion. 

We shall elaborate on each of these risks. 



12.3. A LOGICAL REPRESENTATION O F  DATA FLOW 

Rule Safety 

Any variable that appears in the head of a rule must also appear in the body. 
Moreover, that appearance must be in a subgoal that is an ordinary IDB or 
EDB atom. It  is not acceptable if the variable appears only in a negated atom, 
or only in a comparison operator. The reason for this policy is to  avoid rules 
that let us infer an infinite number of facts. 

Example 12.19 : The rule 

p(X, Y) : - q(Z) & NOT r (X)  & X # Y 

is unsafe for two reasons. Variable X appears only in the negated subgoal 
r (X) and the comparison X # Y. Y appears only in the comparison. The 
consequence is that p is true for an infinite number of pairs (X, Y), as long as 
r (X)  is false and Y is anything other than X. 

Stratified Datalog 

In order for a program to make sense, recursion and negation must be separated. 
The formal requirement is as follows. We must be able to divide the IDB 
predicates into strata, so that if there is a rule with head predicate p and a 
subgoal of the form NOT q ( . . . ) ,  then q is either EDB or an IDB predicate in 
a lower stratum than p. As long as this rule is satisfied, we can evaluate the 
strata, lowest first, by Algorithm 12.15 or 12.18, and then treat the relations 
for the IDB predicates of that strata as if they were EDB for the computation 
of higher strata. However, if we violate this rule, then the iterative algorithm 
may fail to converge, as the next example shows. 

Example 12.20 : Consider the Datalog program consisting of the one rule: 

Suppose e is an EDB predicate, and only e(1) is true. Is p(1) true? 
This program is not stratified. Whatever stratum we put p in, its rule has 

a subgoal that is negated and has an IDB predicate (namely p itself) that is 
surely not in a lower stratum than p. 

If we apply the iterative algorithm, we start with Rp = 0, so initially, the 
answer is "no; p(1) is not true." However, the first iteration lets us infer p ( l ) ,  
since both e(1) and NOT p(1) are true. But then the second iteration tells us 
p(1) is false. That is, substituting 1 for X in the rule does not allow us to  infer 
p ( l ) ,  since subgoal NOT p(1) is false. Similarly, the third iteration says p(1) is 
true, the fourth says it is false, and so on. We conclude that this unstratified 
program is meaningless, and do not consider it a valid program. 



932 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

12.3.7 Exercises for Section 12.3 

! Exercise 12.3.1 : In this problem, we shall consider a reaching-definitions 
data-flow analysis that is simpler than that in Example 12.13. Assume that each 
statement by itself is a block, and initially assume that each statement defines 
exactly one variable. The EDB predicate pred(I, J )  means that statement I is 
a predecessor of statement J .  The EDB predicate defines(1, X )  means that the 
variable defined by statement I is X .  We shall use IDB predicates in(I ,  D) and 
out(I, D) to mean that definition D reaches the beginning or end of statement 
I ,  respectively. Note that a definition is really a statement number. Fig. 12.19 
is a datalog program that expresses the usual algorithm for computing reaching 
definitions. 

1) kill(I, D) : - defines (I,  X) & defines (D, X )  

Figure 12.19: Datalog program for a simple reaching-definitions analysis 

Notice that rule (I)  says that a statement kills itself, but rule (2) assures 
that a statement is in its own "out set" anyway. Rule (3) is the normal transfer 
function, and rule (4) allows confluence, since I can have several predecessors. 

Your problem is to modify the rules to handle the common case where a 
definition is ambiguous, e.g., an assignment through a pointer. In this situation, 
defines(1, X )  may be true for several different X's and one I. A definition is 
best represented by a pair (D, X) ,  where D is a statement, and X is one of 
the variables that may be defined at D. As a result, in and out become three- 
argument predicates; e.g., in(1, D, X) means that the (possible) definition of X 
at statement D reaches the beginning of statement I .  

Exercise 12.3.2: Write a Datalog program analogous to Fig. 12.19 to com- 
pute available expressions. In addition to predicate defines, use a predicate 
eval ( I ,  X,  0, Y) that says statement I causes expression XOY to be evaluated. 
Here, 0 is the operator in the expression, e.g., +. 
Exercise 12.3.3 : Write a Datalog program analogous to Fig. 12.19 to compute 
live variables. In addition to predicate defines, assume a predicate use(I, X )  
that says statement I uses variable X .  

Exercise 12.3.4 : In Section 9.5, we defined a data-flow calculation that in- 
volved six concepts: anticipated, available, earliest, postponable, latest, and 
used. Suppose. we had written a Datalog program to define each of these in 



12.4. A SIMPLE POINTER-ANALYSIS ALGORITHM 933 

terms of EDB concepts derivable from the program (e.g., gen and kill infor- 
mation) and others of these six concepts. Which of the six depend on which 
others? Which of these dependences are negated? Would the resulting Datalog 
program be stratified? 

Exercise 12.3.5 : Suppose that the EDB predicate edge(X, Y) consists of the 
following facts: 

a) Simulate the Datalog program of Example 12.12 on this data, using the 
simple evaluation strategy of Algorithm 12.15. Show the path facts dis- 
covered at each round. 

b) Simulate the Datalog program of Fig. 12.17 on this data, as part of the 
incremental evaluation strategy of Algorithm 12.18. Show the path facts 
discovered at  each round. 

Exercise 12.3.6 : The following rule 

is part of a larger Datalog program P. 

a) Identify the head, body, and subgoals of this rule. 

b) Which predicates are certainly IDB predicates of program P? 

! c) Which predicates are certainly EDB predicates of P? 

d) Is the rule safe? 

e) Is P stratified? 

Exercise 12.3.7 : Convert the rules of Fig. 12.14 to incremental form. 

12.4 A Simple Pointer- Analysis Algorithm 
In this section, we begin the discussion of a very simple flow-insensitive pointer- 
alias analysis assuming that there are no procedure calls. We shall show in 
subsequent sections how to handle procedures first context insensitively, then 
context sensitively. Flow sensitivity adds a lot of complexity, and is less im- 
portant to context sensitivity for languages like Java where methods tend to be 
small. 

The fundamental question that we wish to ask in pointer-alias analysis is 
whether a given pair of pointers may be aliased. One way to answer this question 
is to compute for each pointer the answer to the question LLwhat objects can 
this pointer point to?" If two pointers can point to the same object, then the 
pointers may be aliased. 



934 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

12.4.1 Why is Pointer Analysis Difficult 

Pointer-alias analysis for C programs is particularly difficult, because C pro- 
grams can perform arbitrary computations on pointers. In fact, one can read in 
an integer and assign it to  a pointer, which would render this pointer a potential 
alias of all other pointer variables in the program. Pointers in Java, known as 
references, are much simpler. No arithmetic is allowed, and pointers can only 
point to the beginning of an object. 

Pointer-alias analysis must be interprocedural. Without interprocedural 
analysis, one must assume that any method called can change the contents of 
all accessible pointer variables, thus rendering any intraprocedural pointer-alias 
analysis ineffective. 

Languages allowing indirect function calls present an additional challenge 
for pointer-alias analysis. In C, one can call a function indirectly by calling a 
dereferenced function pointer. We need to know what the function pointer can 
point to  before we can analyze the function called. And clearly, after analyzing 
the function called, one may discover more functions that the function pointer 
can point to, and therefore the process needs to  be iterated. 

While most functions are called directly in C, virtual methods in Java cause 
many invocations to  be indirect. Given an invocation x . m() in a Java program, 
there may be many classes to which object x might belong and that have a 
method named m. The more precise our knowledge of the actual type of x, the 
more precise our call graph is. Ideally, we can determine at compile time the 
exact class of x and thus know exactly which method m refers to. 

Example 12.2 1 : Consider the following sequence of Java statements: 

Object o; 
o = new String(); 
n = o.length(); 

Here o is declared to  be an Object. Without analyzing what o refers to, all 
possible methods called "length" declared for all classes must be considered as 
possible targets. Knowing that o points to  a String will narrow interprocedural 
analysis to  precisely the method declared for String. 

It is possible to  apply approximations to  reduce the number of targets. For 
example, statically we can determine what are all the types of objects created, 
and we can limit the analysis to  those. But we can be more accurate if we can 
discover the call graph on the fly, based on the points-to analysis obtained a t  
the same time. More accurate call graphs lead not only to  more precise results 
but also can reduce greatly the analysis time otherwise needed. 

Points-to analysis is complicated. It is not one of those "easy" data flow 
problems where we only need to simulate the effect of going around a loop of 
statements once. Rather, as we discover new targets for a pointer, all statements 
assigning the contents of that pointer t o  another pointer need t o  be re-analyzed. 



12.4. A SIMPLE POINTER-ANALYSIS ALGORITHM 

For simplicity, we shall focus mainly on Java. We shall start with flow- 
insensitive and context-insensitive analysis, assuming for now that no methods 
are called in the program. Then, we describe how we can discover the call graph 
on the fly as the points-to results are computed. Finally, we describe one way 
of handling context sensitivity. 

12.4.2 A Model for Pointers and References 

Let us suppose that our language has the following ways to  represent and ma- 
nipulate references: 

1. Certain program variables are of type "pointer to  T" or "reference to  T," 
where T is a type. These variables are either static or live on the run-time 
stack. We call them simply variables. 

2. There is a heap of objects. All variables point to  heap objects, not to  
other variables. These objects will be referred to  as heap objects. 

3. A heap object can have fields, and the value of a field can be a reference 
t o  a heap object (but not t o  a variable). 

Java is modeled well by this structure, alnd we shall use Java syntax in examples. 
Note that C is modeled less well, since pointer variables can point to  other 
pointer variables in C, and in principle, any C value can be coerced into a 
pointer. 

Since we are performing an insensitive analysis, we only need to assert that 
a given variable v can point to a given heap object h; we do not have to address 
the issue of where in the program v can point to  h, or in what contexts v can 
point to  h. Note, however, that variables can be named by their full name. In 
Java, this name can incorporate the module, class, method, and block within 
a method, as well as the variable name itself. Thus, we can distinguish many 
variables that have the same identifier. 

Heap objects do not have names. Approximation often is used to  name the 
objects, because an unbounded number of objects may be created dynamically. 
One convention is to  refer to  objects by the statement a t  which they are created. 
As a statement can be executed many times and create a new object each time, 
an assertion like "v can point to  h" really means "v can point t o  one or more 
of the objects created at the statement labeled h." 

The goal of the analysis is to determine what each variable and each field 
of each heap object can point to. We refer to this as a points-to analysis; 
two pointers are aliased if their points-to sets intersect. We describe here an 
inclusion-based analysis; that is, a statement such as v = w causes variable v t o  
point to  all the objects w points to, but not vice versa. While this approach may 
seem obvious, there are other alternatives t o  how we define points-to analysis. 
For example, we can define an equivalence-based analysis such that a statement 
like v = w would turn variables v and w into one equivalence class, pointing 



936 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

to all the variables that each can point to. While this formulation does not 
approximate aliases well, it provides a quick, and often good, answer to the 
question of which variables point to the same kind of objects. 

12.4.3 Flow Insensitivity 

We start by showing a very simple example to illustrate the effect of ignoring 
control flow in points-to analysis. 

Example 12.22: In Fig. 12.20, three objects, h, i ,  and j, are created and 
assigned to variables a ,  b, and c, respectively. Thus, surely a points to h, b 
points to i ,  and c points to j by the end of line (3). 

1) h: a = n e w O b j e c t ( ) ;  
2) i:  b = new Object() ;  
3) j :  c  = new Object() ;  
4 a  = b; 
5 1 b = c ;  
6) c = a ;  

Figure 12.20: Java code for Example 12.22 

If you follow the statements (4) through (6), you discover that after line (4) 
a points only to i .  After line (5), b points only to j , and after line (6), c points 
only to i .  

The above analysis is flow sensitive because we follow the control flow and 
compute what each variable can point to after each statement. In other words, 
in addition to considering what points-to information each statement "gener- 
ates ," we also account for what points-to information each statement "kills." 
For instance, the statement b = c ; kills the previous fact "b points to j" and 
generates the new relationship "b points to what c points to.?' 

A flow-insensitive analysis ignores the control flow, which essentially assumes 
that every statement in the program can be executed in any order. It computes 
only one global points-to map indicating what each variable can possibly point 
to at any point of the program execution. If a variable can point to two different 
objects after two different statements in a program, we simply record that it can 
point to both objects. In other words, in flow-insensitive analysis, an assignment 
does not "kill7' any points-to relations but can only "generate7' more points-to 
relations. To compute the flow-insensitive results, we repeatedly add the points- 
to effects of each statement on the points-to relationships until no new relations 
are found. Clearly, lack of flow sensitivity weakens the analysis results greatly, 
but it tends to reduce the size of the representation of the results and make the 
algorithm converge faster. 



12.4. A SIMPLE POINTER-ANALYSIS ALGORITHM 937 

Example 12.23 : Returning to Example 12.22, lines (1) through (3) again tell 
us a can point to h; b can point to i ,  and c can point to j. With lines (4) 
and ( 5 ) ,  a can point to both h and i ,  and b can point to both i and j. With 
line (6), c can point to h, i ,  and j .  This information affects line ( 5 ) ,  which in 
turn affects line (4), In the end, we are left with the useless conclusion that 
anything can point to anything. O 

12.4.4 The Formulation in Datalog 

Let us now formalize a flow-insensitive pointer-alias analysis based on the dis- 
cussion above. We shall ignore procedure calls for now and concentrate on the 
four kinds of statements that can affect pointers: 

1. Object creation. h: T v = new T O  ; This statement creates a new heap 
object, and variable v can point to it. 

2. Copy statement. v = w; Here, v and w are variables. The statement 
makes v point to whatever heap object w currently points to; i.e., w is 
copied into v. 

3. Field store. v. f = w; The type of object that v points to must have a 
field f ,  and this field must be of some reference type. Let v point to heap 
object h, and let w point to g .  This statement makes the field f, in h 
now point to g. Note that the variable v is unchanged. 

4. Field load. v = w.  f ; Here, w is a variable pointing to some heap object 
that has a field f ,  and f points to some heap object h. The statement 
makes variable v point to h. 

Note that compound field accesses in the source code such as v = w. f .g 
will be broken down into two primitive field-load statements: 

Let us now express the analysis formally in Datalog rules. First, there are 
only two IDB predicates we need to compute: 

1. ~ t s ( V ,  H )  means that variable V can point to heap object H .  

2. hpts(H, F, G) means that field F of heap object H can point to heap 
object G. 

The EDB relations are constructed from the program itself. Since the 
location of statements in a program is irrelevant when the analysis is flow- 
insensitive, we only have to assert in the EDB the existence of statements that 
have certain forms. In what follows, we shall make a convenient simplification. 
Instead of defining EDB relations to hold the information garnered from the 



938 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

program, we shall use a quoted statement form to suggest the EDB relation 
or relations that represent the existence of such a statement. For example, 
"H : T V = new T" is an EDB fact asserting that at statement H there is 
an assignment that makes variable V point to a new object of type T. We as- 
sume that in practice, there would be a corresponding EDB relation that would 
be populated with ground atoms, one for each statement of this form in the 
program. 

With this convention, all we need to write the Datalog program is one rule 
for each of the four types of statements. The program is shown in Fig. 12.21. 
Rule (1) says that variable V can point to heap object H if statement H is an 
assignment of a new object to V. Rule (2) says that if there is a copy statement 
V = W, and W can point to H ,  then V can point to H .  

1) pts(V,H) :- " H :  T V  =newT" 

Figure 12.21: Datalog program for flow-insensitive pointer analysis 

Rule (3) says that if there is a statement of the form V . F = W, W can point 
to G, and V can point to H ,  then the F field of W can point to G. Finally, 
rule (4) says that if there is a statement of the form V = W .  F, W can point to 
G, and the F field of G can point to H ,  then V can point to H .  Notice that pts 
and hpts are mutually recursive, but this Datalog program can be evaluated by 
either of the iterative algorithms discussed in Section 12.3.4. 

12.4.5 Using Type Information 

Because Java is type safe, variables can only point to types that are cornpat- 
ible to the declared types. For example, assigning an object belonging to a 
superclass of the declared type of a variable would raise a run-time exception. 
Consider the simple example in Fig. 12.22, where S is a subclass of T.  This 
program will generate a run-time exception if p is true, because a cannot be 
assigned an object of class T. Thus, statically we can conclude that because of 
the type restriction, a can only point to h and not g. 



12.4. A SIMPLE POINTER-ANALYSIS ALGORITHM 

S a; 
T b; 
if (p) ( 

g : b = new T O ;  
) else 

h: b = new S O ;  
3 
a = b; 

Figure 12.22: Java program with a type error 

Thus, we introduce to our analysis three EDB predicates that reflect impor- 
tant type information in the code being analyzed. We shall use the following: 

1. vType(V, T )  says that variable V is declared to have type T. 

2. hType(H, T)  says that heap object H is allocated with type T .  The type 
of a created object may not be known precisely if, for example, the object 
is returned by a native method. Such types are modeled conservatively 
as all possible types. 

3. assignable(T, S )  means that an object of type S can be assigned to  a 
variable with the type T. This information is generally gathered from the 
declaration of subtypes in the program, but also incorporates information 
about the predefined classes of the language. assignable(T, T )  is always 
true. 

We can modify the rules from Fig. 12.21 to allow inferences only if the 
variable assigned gets a heap object of an assignable type. The rules are shown 
in Fig. 12.23. 

The first modification is to rule (2). The last three subgoals say that we can 
only conclude that V can point to H if there are types T and S that variable V 
and heap object H may respectively have, such that objects of type S can be 
assigned to variables that are references to type T.  A similar additional restric- 
tion has been added to rule (4). Notice that there is no additional restriction 
in rule (3) because all stores must go through variables. Any type restriction 
would only catch one extra case, when the base object is a null constant. 

12.4.6 Exercises for Section 12.4 

Exercise 12.4.1 : In Fig. 12.24, h and g are labels used to represent newly 
created objects, and are not part of the code. You may assume that objects of 
type T have a field f. Use the Datalog rules of this section to infer all possible 
pts and hpts facts. 



CHAPTER 12. INTERPROCEDURAL ANALYSIS 

1) pts(V,H) :- " H :  T V  =newTV 

Figure 12.23: Adding type restrictions to flow-insensitive pointer analysis 

h: T a = new T O ;  
g: T  b  = new T O ;  

T  c  = a ;  
a .f  = b;  
b.f = c ;  
T  d = c . f ;  

Figure 12.24: Code for Exercise 12.4.1 

! Exercise 12.4.2 : Applying the algorithm of this section to the code 

h: T a = new T O ;  
g: b = n e w T ( ) ;  

T c = a ;  

would infer that both a and b can point to h and g. Had the code been written 

h: T  a  = new T O ;  
g: b = n e w T ( ) ;  

T c = b ;  

we would infer accurately that a can point to h, and b and c can point to 
g. Suggest an intraprocedural data-flow analysis that can avoid this kind of 
inaccuracy. 



12.5. CONTEXT-INSENSITIVE INTERPROCED URAL ANALYSIS 941 

t p ( t  x) .C 
h: T a = new T ;  

a.f = x ;  
r e tu rn  a; 

1 

void main() ( 
g: T b  = new T;  

b  = p ( b ) ;  
b = b . f ;  

3 

Figure 12.25: Example code for pointer analysis 

! Exercise 12.4.3 : We can extend the analysis of this section to be interproce- 
dural if we simulate call and return as if they were copy operations, as in rule (2) 
of Fig. 12.21. That is, a call copies the actuals to their corresponding formals, 
and the return copies the variable that holds the return value to the variable 
that is assigned the result of the call. Consider the program of Fig. 12.25. 

a) Perform an insensitive analysis on this code. 

b) Some of the inferences made in (a) are actually "bogus," in the sense that 
they do not represent any event that can occur at run-time. The problem 
can be traced to the multiple assignments to variable b. Rewrite the code 
of Fig. 12.25 so that no variable is assigned more than once. Rerun the 
analysis and show that each inferred pts and hpts fact can occur at run 
time. 

12.5 Context-Insensitive Interprocedural 
Analysis 

We now consider method invocations. We first explain how points-to analysis 
can be used to compute a precise call graph, which is useful in computing precise 
points-to results. We then formalize on-the-fly call-graph discovery and show 
how Datalog can be used to describe the analysis succinctly. 

12.5.1 Effects of a Method Invocation 

The effects of a method call such as x = y.  n(z)  in Java on the points-to rela- 
tions can be computed as follows: 

1. Determine the type of the receiver object, which is the object that y points 
to. Suppose its type is t .  Let rn be the method named n in the narrowest 



CHAPTER 12. INTERPROCED URAL ANALYSIS 

superclass of t that has a method named n. Note that, in general, which 
method is invoked can only be determined dynamically. 

2. The formal parameters of m are assigned the objects pointed to by the ac- 
tual parameters. The actual parameters include not just the parameters 
passed in directly, but also the receiver object itself. Every method invo- 
cation assigns the receiver object to the t h i s  ~ a r i a b l e . ~  We refer to the 
t h i s  variables as the 0th formal parameters of methods. In x = y . n (2) , 
there are two formal parameters: the object pointed to by y is assigned 
to variable t h i s ,  and the object pointed to by x is assigned to the first 
declared formal parameter of m. 

3. The returned object of m is assigned to the left-hand-side variable of the 
assignment statement. 

In context-insensitive analysis, parameters and returned values are modeled 
by copy statements. The interesting question that remains is how to determine 
the type of the receiver object. We can conservatively determine the type ac- 
cording to the declaration of the variable; for example, if the declared variable 
has type t,  then only methods named n in subtypes of t can be invoked. Unfor- 
tunately, if the declared variable has type Object, then all methods with name 
n are all potential targets. In real-life programs that use object hierarchies ex- 
tensively and include many large libraries, such an approach can result in many 
spurious call targets, making the analysis both slow and imprecise. 

We need to know what the variables can point to in order to compute the 
call targets; but unless we know the call targets, we cannot find out what all the 
variables can point to. This recursive relationship requires that we discover the 
call targets on the fly as we compute the points-to set. The analysis continues 
until no new call targets and no new points-to relations are found. 

Example 12.24 : In the code in Fig. 12.26, r is a subtype of s, which itself is a 
subtype of t. Using only the declared type information, a .  n () may invoke any 
of the three declared methods with name n since s and r are both subtypes of 
a's declared type, t. Furthermore, it appears that a may point to objects g, h, 
and i after line (5). 

By analyzing the points-to relationships, we first determine that a can point 
to j, an object of type t. Thus, the method declared in line (1) is a call target. 
Analyzing line (I), we determine that a also can point to g, an object of type 
r .  Thus, the method declared in line (3) may also be a call target, and a can 
now also point to i ,  another object of type r .  Since there are no more new 
call targets, the analysis terminates without analyzing the met hod declared in 
line (2) and without concluding that a can point to h. 

3~emember  that variables are distinguished by the method to which they belong, so there 
is not just one variable named t h i s ,  but rather one such variable for each method in the 
program. 



CONTEXT-INSENSITIVE INTERPROCEDURAL ANALYSIS 

c l a s s  t ( 
1) g: t n ( )  { r e t u r n  new r ( ) ;  1 

I- 
c l a s s  s extends t ( 

2) h: t n ( )  ( r e t u r n  new s () ; 3 
I- 
c l a s s  r extends s ( 

3) i: t n ( )  C r e t u r n  new r(); 3 
3 

main 0 ( 
4) j :  t a  = new t o ;  
5 1 a  = a . n ( ) ;  

1 

Figure 12.26: A virtual method invocation 

12.5.2 Call Graph Discovery in Datalog 

To formulate the Dat alog rules for cont ext-insensitive interprocedural analysis, 
we introduce three EDB predicates, each of which is obtainable easily from the 
source code: 

1. actual(S, I, V) says V is the I t h  actual parameter used in call site S .  

2. formal (M, I, V) says that V is I t h  formal parameter declared in method 
M .  

3. cha(T, N, M )  says that M is the method called when N is invoked on a 
receiver object of type T. (cha stands for class hierarchy analysis). 

Each edge of the call graph is represented by an IDB predicate invokes. 
As we discover more call-graph edges, more points-to relations are created as 
the parameters are passed in and returned values are passed out. This effect is 
summarized by the rules shown in Figure 12.27. 

The first rule computes the call target of the call site. That is, "S : V.N( ...)" 
says that there is a call site labeled S that invokes method named N on the 
receiver object pointed to  by V. The subgoals say that if V can point to  heap 
object H, which is allocated as type T ,  and M is the method used when N is 
invoked on objects of type T, then call site S may invoke method M .  

The second rule says that if site S can call method M ,  then each formal 
parameter of M can point to  whatever the corresponding actual parameter of 
the call can point to. The rule for handling returned values is left as an exercise. 

Combining these two rules with those explained in Section 12.4 create a 
context-insensitive points-to analysis that uses a call graph that is computed 
on the fly. This analysis has the side effect of creating a call graph using a 



CHAPTER 12. INTERPROCED URAL ANALYSIS 

1) inuokes(S,M) :- " S :  V.N( ...)" & 

pts(V, H )  & 
hType(H7 T) & 
cha(T7 N, M)  

2) pts(V, H )  : - inuokes(S, M )  & 
f orrnal (M, I, V) & 
actual (S, I ,  W) & 

pts(W, H )  

Figure 12.27: Datalog program for call-graph discovery 

context-insensitive and flow-insensitive points-to analysis. This call graph is 
significantly more accurate than one computed based only on type declarations 
and syntactic analysis. 

12.5.3 Dynamic Loading and Reflectioq 

Languages like Java allow dynamic loading of classes. It is impossible to an- 
alyze all the possible code executed by a program, and hence impossible to 
provide any conservative approximation of call graphs or pointer aliases stat- 
ically. Static analysis can only provide an approximation based on the code 
analyzed. Remember that all the analyses described here can be applied at the 
Java bytecode level, and thus it is not necessary to examine the source code. 
This option is especially significant because Java programs tend to use many 
libraries. 

Even if we assume that all the code to be executed is analyzed, there is 
one more complication that makes conservative analysis impossible: reflection. 
Reflection allows a program to determine dynamically the types of objects to 
be created, the names of methods invoked, as well as the names of the fields 
accessed. The type, method, and field names can be computed or derived 
from user input, so in general the only possible approximation is to assume the 
universe. 

Example 12.25 : The code below shows a common use of reflection: 

1) String className = . . . ; 
2) Class c = Class.forName(className); 

3) Object o = c.newInstance() ; 
4) T t = (T) 0; 

The f orName method in the Class library takes a string containing the class 
name and returns the class. The method newInstance returns an instance of 
that class. Instead of leaving the object o with type Ob j ect, this object is cast 
to a superclass T of all the expected classes. 



12.6. CONTEXT-SENSITIVE POINTER ANALYSIS 945 

While many large Java applications use reflection, they tend to use common 
idioms, such as the one shown in Example 12.25. As long as the application 
does not redefine the class loader, we can tell the class of the object if we know 
the value of className. If the value of className is defined in the program, 
because strings are immutable in Java, knowing what className points to 
will provide the name of the class. This technique is another use of points-to 
analysis. If the value of className is based on user input, then the points-to 
analysis can help locate where the value is entered, and the developer may be 
able to limit the scope of its value. 

Similarly, we can exploit the typecast statement, line (4) in Example 12.25, 
to approximate the type of dynamically created objects. Assuming that the 
typecast exception handler has not been redefined, the object must belong to a 
subclass of the class T. 

12.5.4 Exercises for Section 12.5 

Exercise 12.5.1 : For the code of Fig. 12.26 

a) Construct the EDB relations actual, formal, and cha. 

b) Make all possible inferences of pts and hpts facts. 

! Exercise 12.5.2 : How would you add to the EDB predicates and rules of 
Section 12.5.2 additional predicates and rules to take into account the fact that 
if a, method call returns an object, then the variable to which the result of the 
call is assigned can point to whatever the variable holding the return value can 
point to? 

12.6 Context-Sensitive Pointer Analysis 

As discussed in Section 12.1.2, context sensitivity can improve greatly the pre- 
cision of interprocedural analysis. We talked about two approaches to interpro- 
cedural analysis, one based on cloning (Section 12.1.4) and one on summaries 
(Section 12.1.5). Which one should we use? 

There are several difficulties in computing the summaries of points-to infor- 
mation. First, the summaries are large. Each method's summary must include 
the effect of all the updates that the function and all its callees can make, in 
terms of the incoming parameters. That is, a method can change the points-to 
sets of all data reachable through static variables, incoming parameters and all 
objects created by the method and its callees. While complicated schemes have 
been proposed, there is no known solution that can scale to large programs. 
Even if the summaries can be computed in a bottom-up pass, computing the 
points-to sets for all the exponentially many contexts in a typical top-down 
pass presents an even greater problem. Such information is necessary for global 
queries like finding all points in the code that touch a certain object. 



946 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

In this section, we discuss a cloning-based context-sensitive analysis. A 
cloning-based analysis simply clones the methods, one for each context of in- 
terest. We then apply the context-insensitive analysis to the cloned call graph. 
While this approach seems simple, the devil is in the details of handling the 
large number of clones. How many contexts are there? Even if we use the 
idea of collapsing all recursive cycles, as discussed in Section 12.1.3, it is not 
uncommon to find 1014 contexts in a Java application. Representing the results 
of these many contexts is the challenge. 

We separate the discussion of context sensitivity into two parts: 

1. How to handle context sensitivity logically? This part is easy, because we 
simply apply the context-insensitive algorithm to the cloned call graph. 

2. How to represent the exponentially many contexts? One way is to rep- 
resent the information as binary decision diagrams (BDD's), a highly- 
optimized data structure that has been used for many other applications. 

This approach to context sensitivity is an excellent example of the impor- 
tance of abstraction. As we are going to show, we eliminate algorithmic com- 
plexity by leveraging the years of work that went into the BDD abstraction. We 
can specify a context-sensitive points-to analysis in just a few lines of Datalog, 
which in turn takes advantage of many thousands of lines of existing code for 
BDD manipulation. This approach has several important advantages. First, 
it makes possible the easy expression of further analyses that use the results 
of the points-to analysis. After all, the points-to results on their own are not 
interesting. Second, it makes it much easier to write the analysis correctly, as 
it leverages many lines of well-debugged code. 

12.6.1 Contexts and Call Strings 

The context-sensitive points-to analysis described below assumes that a call 
graph has been already computed. This step helps make possible a compact 
representation of the many calling contexts. To get the call graph, we first run 
a context-insensitive points-to analysis that computes the call graph on the fly, 
as discussed in Section 12.5. We now describe how to create a cloned call graph. 

A context is a representation of the call string that forms the history of the 
active function calls. Another way to look at the context is that it is a summary 
of the sequence of calls whose activation records are currently on the run-time 
stack. If there are no recursive functions on the stack, then the call string - 
the sequence of locations from which the calls on the stack were made - is a 
complete representation. It is also an acceptable representation, in the sense 
that there is only a finite number of different contexts, although that number 
may be exponential in the number of functions in the program. 

However, if there are recursive functions in the program, then the number 
of possible call strings is infinite, and we cannot allow all possible call strings to 
represent distinct contexts. There are various ways we can limit the number of 



12.6. CONTEXT-SENSITIVE POINTER ANALYSIS 

distinct contexts. For example, we can write a regular expression that describes 
all possible call strings and convert that regular expression to a deterministic 
finite automaton, using the methods of Section 3.7. The contexts can then be 
identified with the states of this automaton. 

Here, we shall adopt a simpler scheme that captures the history of nonrecur- 
sive calls but considers recursive calls to  be "too hard to  unravel." We begin by 
finding all the mutually recursive sets of functions in the program. The process 
is simple and will not be elaborated in detail here. Think of a graph whose 
nodes are the functions, with an edge from p to q if function p calls function 
q. The strongly connected components (SCC7s) of this graph are the sets of 
mutually recursive functions. As a common special case, a function p that calls 
itself, but is not in an SCC with any other function is an SCC by itself. The 
nonrecursive functions are also SCC's by themselves. Call an SCC nontrivial 
if it either has more than one member (the mutually recursive case), or it has 
a single, recursive member. The SCC's that are single, nonrecursive functions 
are trivial SCC7s. 

Our modification of the rule that any call string is a context is as follows. 
Given a call string, delete the occurrence of a call site s if 

1. s is in a function p. 

2. Function q is called at site s (q = p is possible). 

3.  p and q are in the same strong component (i.e., p and q are mutually 
recursive, or p = q and p is recursive). 

The result is that when a member of a nontrivial SCC S is called, the call site 
for that call becomes part of the context, but calls within S to other functions 
in the same SCC are not part of the context. Finally, when a call outside S is 
made, we record that call site as part of the context. 

Example 12.26 : In Fig. 12.28 is a sketch of five methods with some call sites 
and calls among them. An examination of the calls shows that q and r are 
mutually recursive. However, p, s, and t are not recursive at all. Thus, our 
contexts will be lists of all the call sites except s 3  and s5, where the recursive 
calls between q and r take place. 

Let us consider all the ways we could get from p to  t ,  that is, all the contexts 
in which calls to t occur: 

1. p could call s at 92, and then s could call t at either s7  or s8. Thus, two 
possible call strings are (s2, s7) and (s2, s8). 

2. p could call q at s l .  Then, q and r could call each other recursively some 
number of times. We could break the cycle: 

(a) At s4, where t is called directly by q. This choice leads to  only one 
context, ( s l ,  s4). 



CHAPTER 12. INTERPROCED URAL ANALYSIS 

void p o  ( 
h: T a = new TO;  

s l :  T b = a . q ( ) ;  
s2: b . s o ;  

T q o  ( 
s3: T c = t h i s . r ( ) ;  
i: T d = new T O ;  

s4: d . t o ;  
r e tu rn  d; 

3 

T r o  C 
s5: T e = t h i s . q ( ) ;  
~ 6 :  @ . s o ;  

re turn  e ;  

void s o  C 
s7: T f = t h i s . t ( ) ;  
s8: f = f . t o ;  

3 

T t 0 C  
j :  T g =new T O ;  

re turn  g ;  
3 

Figure 12.28: Methods and call sites for a running example 

(b) At s6, where r calls s. Here, we can reach t either by the call at s7 
or the call at s8. That gives us two more contexts, (s I ,  s6, s7) and 
( s l ,  s6, s8). 

There are thus five different contexts in which t can be called. Notice that all 
these contexts omit the recursive c sites, s 3  and s5. For example, the context 
( s i ,  s4) actually represents the ite set of call strings ( s l ,  s3, (s5, s3)", s4) 
fo ra l lnLO.  

We now describe how we derive the cloned call graph. Each cloned method 
is identified by the method in the program M and a context C. Edges can be 
derived by adding the corresponding contexts to each of the edges in the original 
call graph. Recall that there is an edge in the original call graph linking call 
site S with method M if the predicate involces(S, M )  is true. To add contexts 



12.6. CONTEXT-SENSITIVE POINTER ANALYSIS 949 

to identify the methods in the cloned call graph, we can define a corresponding 
CSinvokes predicate such that CSinvokes(S, C, M, D) is true if the call site S 
in context C calls the D context of method M.  

12.6.2 Adding Context to Datalog Rules 

To find context-sensitive points-to relations, we can simply apply the same 
context-insensitive points-to analysis to the cloned call graph. Since a method 
in the cloned call graph is represented by the original method and its context, 
we revise all the Datalog rules accordingly. For simplicity, the rules below do 
not include the type restriction, and the -'s are any new variables. 

1) pts(V,C,H) :-  " H :  T V = new T()" & 
CSinvokes(H, C, -, -) 

5) pts(V, D, H )  : - CSinvokes(S, C, M, D) & 
f orrnal (M, I, V) & 
actual (S, I ,  W) & 

pts(W, C, H )  

Figure 12.29: Datalog program for context-sensitive points-to analysis 

An additional argument, representing the context, must be given to the IDB 
predicate pts. pts(V, C, H )  says that variable V in context C can point to heap 
object H .  All the rules are self-explanatory, perhaps with the exception of Rule 
5. Rule 5 says that if the call site S in context C calls method M of context D, 
then the formal parameters in method M of context D can point to the objects 
pointed to by the corresponding actual parameters in context C. 

12.6.3 Additional Observations About Sensitivity 

What we have described is one formulation of context sensitivity that has been 
shown to be practical enough to handle many large real-life Java programs, 



950 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

using the tricks described briefly in the next section. Nonetheless, this algorithm 
cannot yet handle the largest of Java applications. 

The heap objects in this formulation are named by their call site, but with- 
out context sensitivity. That simplification can cause problems. Consider the 
object-factory idiom where, all objects of the same type are allocated by the 
same routine. The current scheme would make all objects of that class share the 
same name. It is relatively simple to handle such cases by essentially inlining 
the allocation code. In general, it is desirable to increase the context sensitivity 
in the naming of objects. While it is easy to add context sensitivity of objects 
to the Datalog formulation, getting the analysis to scale to large programs is 
another matter. 

Another important form of sensitivity is object sensitivity. An object- 
sensitive technique can distinguish between methods invoked on different re- 
ceiver objects. Consider the scenario of a call site in a calling context where 
a variable is found to point to two different receiver objects of the same class. 
Their fields may point to different objects. Without distinguishing between the 
objects, a copy among fields of the t h i s  object reference will create spurious 
relationships unless we separate the analysis according to the receiver objects. 
Object sensitivity is more useful than context sensitivity for some analyses. 

12.6.4 Exercises for Section 12.6 

void p o  ( 
h: T a  = new T o ;  
i: T b  = new T o ;  

c l :  T c  = a .q (b ) ;  
3 

T q ( T y ) C  
j :  T d  = new T o ;  

c2: d  = t h i s . q ( d )  ; 
c3: d = d . q ( y ) ;  
c4: d  = d . r O ;  

r e t u r n  d ;  
3 

T r O (  
r e t u r n  t h i s ;  

1 

Figure 12.30: Code for Exercises 12.6.1 and 12.6.2 

Exercise 12.6.1 : What are all the contexts that would be distinguished if we 
apply the methods of this section to the code in Fig. 12.307 



12.7. DATALOG IMPLEMENTATIONBY BDD'S 

! Exercise 12.6.2 : Perform a context sensitive analysis of the code in Fig. 12.30. 

! Exercise 12.6.3 : Extend the Datalog rules of this section to  incorporate the 
type and subtype information, following the approach of Section 12.5. 

12.7 Datalog Implementation by BDD's 

Binary Decision Diagrams (BDD's) are a method for representing boolean func- 
tions by graphs. Since there are 22n boolean functions of n variables, no repre- 
sentation method is going to be very succinct on all boolean functions. However, 
the boolean functions that appear in practice tend to have a lot of regularity. It 
is thus common that one can find a succinct BDD for functions that one really 
wants to  represent. 

It  turns out that the boolean functions that are described by the Datalog 
programs that we have developed to analyze programs are no exception. While 
succinct BDD's representing information about a program often must be found 
using heuristics and/or techniques used in commercial BDD-manipulating pack- 
ages, the BDD approach has been quite successful in practice. In particular, 
it outperforms methods based on conventional database-management systems, 
because the latter are designed for the more irregular data patterns that appear 
in typical commercial data. 

It  is beyond the scope of this book to cover all of the BDD technology that 
has been developed over the years. We shall here introduce you to the BDD 
notation. We then suggest how one represents relational data as BDD's and 
how one could manipulate BDD's to  reflect the operations that are performed 
to execute Datalog programs by algorithms such as Algorithm 12.18. Finally, 
we describe how to represent the exponentially many contexts in BDD's, the 
key to the success of the use of BDD's in context-sensitive analysis. 

12.7.1 Binary Decision Diagrams 

A BDD represents a boolean function by a rooted DAG. The interior nodes of 
the DAG are each labeled by one of the variables of the represented function. 
At the bottom are two leaves, one labeled 0 the other labeled 1. Each interior 
node has two edges to  children; these edges are called "low" and "high." The 
low edge is associated with the case that the variable at the node has value 0, 
and the high edge is associated with the case where the variable has value 1. 

Given a truth assignment for the variables, we can start a t  the root, and 
a t  each node, say a node labeled x, follow the low or high edge, depending 
on whether the truth value for x is 0 or 1, respectively. If we arrive at the 
leaf labeled 1, then the represented function is true for this truth assignment; 
otherwise it is false. 

Example 12.27: In Fig. 12.31 we see a BDD. We shall see the function it 
represents shortly. Notice that we have labeled all the "low" edges with 0 and 



CHAPTER 12. INTERPROCED URAL ANALYSIS 

n 

Figure 12.31: A binary decision diagram 

all the "high" edges by 1. Consider the truth assignment for variables wxyx 
that sets w = x = y = 0 and x = 1. Starting a t  the root, since w = 0 we take 
the low edge, which gets us to  the leftmost of the nodes labeled x. Since x = 0, 
we again follow the low edge from this node, which takes us to  the leftmost of 
the nodes labeled y. Since y = 0 we next move to the leftmost of the nodes 
labeled x. Now, since x = 1, we take the high edge and wind up at the leaf 
labeled 1. Our conclusion is that the function is true for this truth assignment. 

Now, consider the truth assignment wxyx = 0101, that is, w = y = 0 and 
x = z = I .  We again start a t  the root. Since w = 0 we again move to the 
leftmost of the nodes labeled x. But now, since x = 1, we follow the high edge, 
which jumps to the 0 leaf. That is, we know not only that truth assignment 
0101 makes the function false, but since we never even looked at y or x, any 
truth assignment of the form Olyx will also make the function have value 0. 
This "short-circuiting" ability is one of the reasons BDD's tend to be succinct 
representations of boolean functions. 

In Fig. 12.31 the interior nodes are in ranks - each rank having nodes with 
a particular variable as label. Although it is not an absolute requirement, it is 
convenient to  restrict ourselves to  ordered BDD's. In an ordered BDD, there is 
an order X I ,  x i , .  . . , x, to the variables, and whenever there is an edge from a 
parent node labeled xi to  a child labeled xj, then i < j .  We shall see that it 
is easier to  operate on ordered BDD7s, and from here we assume all BDD's are 



12.7. DATALOG IMPLEMENTATION BY BDD 'S 

ordered. 
Notice also that BDD7s are DAG7s, not trees. Not only will the leaves 0 

and 1 typically have many parents, but interior nodes also may have several 
parents. For example, the rightmost of the nodes labeled z in Fig. 12.31 has 
two parents. This combination of nodes that would result in the same decision 
is another reason that BDD7s tend to be succinct. 

12.7.2 Transformations on BDD's 

We alluded, in the discussion above, to two simplifications on BDD7s that help 
make them more succinct: 

1. Short-Circuiting: If a node N has both its high and low edges go to  the 
same node M ,  then we may eliminate N. Edges entering N go to M 
instead. 

2. Node-Merging: If two nodes N and M have low edges that go to  the same 
node and also have high edges that go to  the same node, then we may 
merge N with M .  Edges entering either N or M go to the merged node. 

It  is also possible to  run these transformations in the opposite direction. In 
particular, we can introduce a node along an edge from N to M .  Both edges 
from the introduced node go to M ,  and the edge from N now goes to  the 
introduced node. Note, however, that the variable assigned to the new node 
must be one of those that lies between the variables of N and M in the order. 
Figure 12.32 shows the two transformations schematically. 

(a) Short-circuiting (b) Node-merging 

Figure 12.32: Transformations on BDD7s 



954 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

12.7.3 Representing Relations by BDD's 

The relations with which we have been dealing have components that are taken 
frop "domains." A domain for a component of a relation is the set of possible 
values that tuples can have in that component. For example, the relation 
pts(V, H) has the domain of all program variables for its first component and 
the domain of all object-creating statements for the second component. If a 
domain has more than 2"-' possible values but no more than 2" values, then 
it requires n bits or boolean variables to represent values in that domain. 

A tuple in a relation may thus be viewed as a truth assignment to the 
variables that represent values in the domains for each of the components of the 
tuple. We may see a relation as a boolean function that returns the value true 
for all and only those truth assignments that represent tuples in the relation. 
An example should make these ideas clear. 

Example 12.28 : Consider a relation r (A, B) such that the domains of both 
A and B are {a, b, c, d). We shall encode a by bits 00, b by 01, c by 10, and d 
by 11. Let the tuples of relation r be: 

Let us use boolean variables wx to encode the first (A) component and variables 
yx to encode the second (B) component. Then the relation r becomes: 

That is, the relation r has been converted into the boolean function that is 
true for the three truth-assignments wxyx = 0001, 0010, and 1110. Notice that 
these three sequences of bits are exactly those that label the paths from the 
root to the leaf 1 in Fig. 12.31. That is, the BDD in that figure represents this 
relation r ,  if the encoding described above is used. 

12.7.4 Relational Operations as BDD Operations 

Now we see how to represent relations as BDD's. But to implement an algorithm 
like Algorithm 12.18 (incremental evaluation of Dat alog programs), we need 
to manipulate BDD's in a way that reflects how the relations themselves are 
manipulated. Here are the principal operations on relations that we need to 
perform: 



12.7. DATALOG IMPLEMENTATION B Y  BDD 'S 955 

1. Initialixation: We need to create a BDD that represents a single tuple of 
a relation. We'll assemble these into BDD's that represent large relations 
by taking the union. 

2. Union: To take the union of relations, we take the logical OR of the 
boolean functions that represent the relations. This operation is needed 
not only to  construct initial relations, but also to  combine the results of 
several rules for the same head predicate, and to accumulate new facts 
into the set of old facts, as in the incremental Algorithm 12.18. 

3. Projection: When we evaluate a rule body, we need to construct the head 
relation that is implied by the true tuples of the body. In terms of the 
BDD that represents the relation, we need to eliminate the nodes that 
are labeled by those boolean variables that do not represent components 
of the head. We may also need to rename the variables in the BDD 
to correspond to the boolean variables for the components of the head 
relation. 

4. Join: To find the assignments of values to  variables that make a rule 
body true, we need to "join" the relations corresponding to each of the 
subgoals. For example, suppose we have two subgoals r(A, B)  & s (B,  C). 
The join of the relations for these subgoals is the set of (a, b, c) triples 
such that (a, b) is a tuple in the relation for r ,  and (b, c) is a tuple in 
the relation for s. We shall see that,  after renaming boolean variables in 
BDD's so the components for the two B7s  agree in variable names, the 
operation on BDD7s is similar to the logical AND, which in turn is similar 
to  the OR operation on BDD7s that implements the union. 

BDD's for Single Tuples 

To initialize a relation, we need to have a way to construct a BDD for the 
function that is true for a single truth assignment. Suppose the boolean vari- 
ables are XI, xz, . . . , x,, and the truth assignment is alaz . . . a,, where each ai 
is either 0 or 1. The BDD will have one node Ni for each xi. If ai = 0, then 
the high edge from Ni leads to the leaf 0, and the low edge leads to  Ni+l7 or to  
the leaf 1 if i = n. If ai = 1, then we do the same, but the high and low edges 
are reversed. 

This strategy gives us a BDD that checks whether each xi has the correct 
value, for i = 1 ,2 , .  . . , n. As soon as we find an incorrect value, we jump 
directly to  the 0 leaf. We only wind up a t  the 1 leaf if all variables have their 
correct value. 

As an example, look ahead to Fig. 12.33(b). This BDD represents the 
function that is true if and only if x = y = 0, i.e., the truth assignment 00. 



956 CHAPTER 12. INTERPROCED URAL ANALYSIS 

Union 

We shall give in detail an algorithm for taking the logical OR of BDD's, that 
is, the union of the relations represented by the BDD's. 

Algorithm 12.29 : Union of BDD's. 

INPUT: Two ordered BDD's with the same set of variables, in the same order. 

OUTPUT: A BDD representing the function that is the logical OR of the two 
boolean functions represented by the input BDD's. 

METHOD: We shall describe a recursive procedure for combining two BDD's. 
The induction is on the size of the set of variables appearing in the BDD's. 

BASIS: Zero variables. The BDD's must both be leaves, labeled either 0 or 1. 
The output is the leaf labeled 1 if either input is 1, or the leaf labeled 0 if both 
are 0. 

INDUCTION: Suppose there are k variables, yl,  yz, . . . , yk found among the 
two BDD's. Do the following: 

1. If necessary, use inverse short-circuiting to  add a new root so that both 
BDD's have a root labeled yl. 

2. Let the two roots be N and M; let their low children be No and Mo, and 
let their high children be Nl and MI. Recursively apply this algorithm to 
the BDD's rooted a t  No and Mo. Also, recursively apply this algorithm 
to the BDD's rooted at Nl and MI. The first of these BDD's represents 
the function that is true for all truth assignments that have yl = 0 and 
that make one or both of the given BDD's true. The second represents 
the same for the truth assignments with yl = 1. 

3. Create a new root node labeled yl. Its low child is the root of the first 
recursively constructed BDD, and its high child is the root of the second 
BDD. 

4. Merge the two leaves labeled 0 and the two leaves labeled 1 in the com- 
bined BDD just constructed. 

5. Apply merging and short-circuiting where possible to  simplify the BDD. 

Example 12.30 : In Fig. 12.33(a) and (b) are two simple BDD's. The first 
represents the function x OR y, and the second represents the function 

NOT x AND NOT y 



12.7. DATALOG IMPLEMENTATION BY BDD'S 

Figure 12.33: Constructing the BDD for a logical OR 

Notice that their logical OR is the function 1 that is always true. To apply 
Algorithm 12.29 to these two BDD's, we consider the low children of the two 
roots and the high children of the two roots; let us take up the latter first. 

The high child of the root in Fig. 12.33(a) is 1, and in Fig. 12.33(b) it is 0. 
Since these children are both at the leaf level, we do not have to insert nodes 
labeled y along each edge, although the result would be the same had we chosen 
to do so. The basis case for the union of 0 and 1 is to produce a leaf labeled 1 
that will become the high child of the new root. 

The low children of the roots in Fig. 12.33(a) and (b) are both labeled y, 
so we can compute their union BDD recursively. These two nodes have low 
children labeled 0 and 1, so the combination of their low children is the leaf 
labeled 1. Likewise, their high children are 1 and 0, so the combination is 
again the leaf 1. When we add a new root labeled x, we have the BDD seen in 
Fig. 12.33(c). 

We are not done, since Fig. 12.33(c) can be simplified. The node labeled y 
has both children the node 1, so we can delete the node y and have the leaf 1 
be the low child of the root. Now, both children of the root are the leaf 1, so 
we can eliminate the root. That is, the simplest BDD for the union is the leaf 
1, all by itself. 

12.7.5 Using BDD's for Points-to Analysis 

Getting context-insensitive points-to analysis to work is already nontrivial. The 
ordering of the BDD variables can greatly change the size of the representation. 
Many considerations, as well as trial and error, are needed to come up with an 
ordering that allows the analysis to complete quickly. 

It is even harder to get context-sensitive points-to analysis to execute be- 
cause of the exponentially many contexts in the program. In particular, if we 



958 CHAPTER 12. INTERPROCED URAL ANALYSIS 

arbitrarily assign numbers to  represent contexts in a call graph, we cannot han- 
dle even small Java programs. It is important that the contexts be numbered 
so that the binary encoding of the points-to analysis can be made very com- 
pact. Two contexts of the same method with similar call paths share a lot of 
commonalities, so it is desirable to number the n contexts of a method consecu- 
tively. Similarly, because pairs of caller-callees for the same call site share many 
similarities, we wish to  number the contexts such that the numeric difference 
between each caller-callee pair of a call site is always a constant. 

Even with a clever numbering scheme for the calling contexts, it is still hard 
to  analyze large Java programs efficiently. Active machine learning has been 
found useful in deriving a variable ordering efficient enough to handle large 
applications. 

12.7.6 Exercises for Section 12.7 

Exercise 12.7.1 : Using the encoding of symbols in Example 12.28, develop 
a BDD that represents the relation consisting of the tuples (b, b), (c ,  a ) ,  and 
(b, a) .  You may order the boolean variables in whatever way gives you the most 
succinct BDD. 

! Exercise 12.7.2 : As a function of n ,  how many nodes are there in the most 
succinct BDD that represents the exclusive-or function on n variables. That is, 
the function is true if an odd number of the n variables are true and false if an 
even number are true. 

Exercise 12.7.3 : Modify Algorithm 12.29 so it produces the intersection (log- 
ical AND) of two BDD's. 

! ! Exercise 12.7.4 : Find algorithms to perform the following relational opera- 
tions on the ordered BDD's that represent them: 

a) Project out some of the boolean variables. That is, the function repre- 
sented should be true for a given truth assignment a if there was any 
truth assignment for the missing variables that,  together with a made 
the original function true. 

b) Join two relations r and s, by combining a tuple from r with one from 
s whenever these tuples agree on the attributes that r and s have in 
common. It is really sufficient to  consider the case where the relations 
have only two components, and one from each relation matches; that is, 
the relations are r(A, B)  and s(B,  C). 

12.8 Summary of Chapter 12 

+ Interprocedural Analysis: A data-flow analysis that tracks information 
across procedure boundaries is said to be interprocedural. Many analyses, 



12.8. SUMMARY OF CHAPTER 12 

such as points-to analysis, can only be done in a meaningful way if they 
are interprocedural. 

+ Call Sites: Programs call procedures at certain points referred to as call 
sites. The procedure called at  a site may be obvious, or it may be am- 
biguous, should the call be indirect through a pointer or a call of a virtual 
met hod that has several implement at ions. 

+ Call Graphs: A call graph for a program is a bipartite graph with nodes 
for call sites and nodes for procedures. An edge goes from a call-site node 
to a procedure node if that procedure may be called at the site. 

+ Inlining: As long as there is no recursion in a program, we can in principle 
replace all procedure calls by copies of their code, and use intraprocedural 
analysis on the resulting program. This analysis is in effect, interproce- 
dural. 

+ Flow Sensitivity and Context-Sensitivity: A data-flow analysis that pro- 
duces facts that depend on location in the program is said to be flow- 
sensitive. If the analysis produces facts that depend on the history of 
procedure calls is said to be context-sensitive. A data-flow analysis can 
be either flow- or context-sensitive, both, or neither. 

+ Cloning-Based Context-Sensitive Analysis: In principle, once we establish 
the different contexts in which a procedure can be called, we can imagine 
that there is a clone of each procedure for each context. In that way, a 
context-insensitive analysis serves as a context-sensitive analysis. 

+ Summary-Based Context-Sensitive Analysis: Another approach to inter- 
procedural analysis extends the region-based analysis technique that was 
described for intraprocedural analysis. Each procedure has a transfer 
function and is treated as a region at each place where that procedure is 
called. 

+ Applications of Interprocedural Analysis: An important application re- 
quiring interprocedural analysis is the detection of software vulnerabili- 
ties. These are often characterized by having data read from an untrusted 
input source by one procedure and used in an exploitable way by another 
procedure. 

+ Datalog: The language Datalog is a simple notation for if-then rules that 
can be used to describe data-flow analyses at a high level. Collections of 
Datalog rules, or Datalog programs, can be evaluated using one of several 
standard algorithms. 

+ Datalog Rules: A Datalog rule consists of a body (antecedent) and head 
(consequent). The body is one or more atoms, and the head is an atom. 
Atoms are predicates applied to arguments that are variables or constants. 



CHAPTER 12. INTERPROCEDURAL ANALYSIS 

The atoms of the body are connected by logical AND, and an atom in the 
body may be negated. 

+ IDB and EDB Predicates: EDB predicates in a Datalog program have 
their true facts given a-priori. In a data-flow analysis, these predicates 
correspond to the facts that can be obtained from the code being analyzed. 
IDB predicates are defined by the rules themselves and correspond in a 
data-flow analysis to the information we are trying to extract from the 
code being analyzed. 

+ Evaluation of Datalog programs: We apply rules by substituting constants 
for variables that make the body true. Whenever we do so, we infer that 
the head, with the same substitution for variables, is also true. This 
operation is repeated, until no more facts can be inferred. 

+ Incremental Evaluation of Datalog Programs: An efficiency improvement 
is obtained by doing incremental evaluation. We perform a series of 
rounds. In one round, we consider only substitutions of constants for 
variables that make at least one atom of the body be a fact that was just 
discovered on the previous round. 

+ Java Pointer Analysis: We can model pointer analysis in Java by a frame- 
work in which there are reference variables that point to heap objects, 
which may have fields that point to other heap objects. An insensitive 
pointer analysis can be written as a Datalog program that infers two kinds 
of facts: a variable can point to a heap object, or a field of a heap object 
can point to another heap object. 

+ Type Information to Improve Pointer Analysis: We can get more precise 
pointer analysis if we take advantage of the fact that reference variables 
can only point to heap objects that are of the same type as the variable 
or a subtype. 

+ Interprocedural Pointer Analysis: To make the analysis interprocedural, 
we must add rules that reflect how parameters are passed and return 
values assigned to variables. These rules are essentially the same as the 
rules for copying one reference variable to another. 

+ Call-Graph Discovery: Since Java has virtual methods, interprocedural 
analysis requires that we first limit what procedures can be called at a 
given call site. The principal way to discover limits on what can be called 
where is to analyze the types of objects and take advantage of the fact 
that the actual method referred to by a virtual method call must belong 
to an appropriate class. 

+ Context-Sensitive Analysis: When procedures are recursive, we must con- 
dense the information contained in call strings into a finite number of 
contexts. An effective way to do so is to drop from the call string any 



22.9. REFERENCES FOR CHAPTER 12 961 

call site where a procedure calls another procedure (perhaps itself) with 
which it is mutually recursive. Using this representation, we can mod- 
ify the rules for intraprocedural pointer analysis so the context is carried 
along in predicates; this approach simulates cloning-based analysis. 

+ Binary  Decision Diagrams: BDD's are a succinct representation of bool- 
ean functions by rooted DAG7s. The interior nodes correspond to boolean 
variables and have two children, low (representing truth value 0) and high 
(representing 1). There are two leaves labeled 0 and 1. A truth assignment 
makes the represented function true if and only if the path from the root 
in which we go to the low child if the variable at a node is 0 and to the 
high child otherwise, leads to  the 1 leaf. 

+ B D D 7 s  and Relations: A BDD can serve as a succinct representation of 
one of the predicates in a Datalog program. Constants are encoded as 
truth assignments to  a collection of boolean variables, and the function 
represented by the BDD is true if an only if the boolean variables represent 
a true fact for that predicate. 

+ Implementing Data-Flow Analysis by B D D 7 s :  Any data-flow analysis that 
can be expressed as Datalog rules can be implemented by manipulations 
on the BDD's that represent the predicates involved in those rules. Often, 
this representation leads to  a more efficient implementation of the data- 
flow analysis than any other known approach. 

12.9 References for Chapter 12 

Some of the basic concepts in interprocedural analysis can be found in [I, 6, 7, 
and 2 11. Callahan et al. [I I] describe an interprocedural constant-propagation 
algorithm. 

Steensgaard [22] published the first scalable pointer-alias analysis. It  is 
context-insensitive, flow-insensitive, and equivalence-based. A context-insens- 
itive version of the inclusion-based points-to analysis was derived by Ander- 
sen [2]. Later, Heintze and Tardieu [15] described an efficient algorithm for this 
analysis. Fahndrich, Rehof, and Das [14] presented a context-sensitive, flow- 
insensitive, equivalence-based analysis that scales to  large programs like gcc. 
Notable among previous attempts to  create a context-sensitive, inclusion-based 
points-to analysis is Emami, Ghiya, and Hendren [13], which is a cloning-based 
context-sensitive, flow-sensitive, inclusion-based, points-to algorithm. 

Binary decision diagrams (BDD's) first appeared in Bryant [9]. Their first 
use for data-flow analysis was by Berndl et al. [4]. The application of BDD's to  
insensitive pointer analysis is reported by Zhu [25] and Berndl et al. (81. Whaley 
and Lam [24] describe the first context-sensitive, flow-insensitive, inclusion- 
based algorithm that has been shown to apply to  real-life applications. The 
paper describes a tool called bddbddb that automatically translates analysis 



962 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

described in Datalog into BDD code. Object-sensitivity was introduced by 
Milanova, Rountev, and Ryder [18]. 

For a discussion of Datalog, see Ullman and Widom [23]. Also see Lam et 
al. [16] for a discussion of the connection of data-flow analysis to Datalog. 

The Metal code checker is described by Engler et al. [12] and the PREfix 
checker was created by Bush, Pincus, and Sielaff [lo]. Ball and Rajamani [4] 
developed a program analysis engine called SLAM using model checking and 
symbolic execution to simulate all possible behaviors of a system. Ball et al. [5] 
have created a static analysis tool called SDV based on SLAM to find API usage 
errors in C device-driver programs by applying BDD's to model checking. 

Livshits and Lam [17] describe how context-sensitive points-to analysis can 
be used to find SQL vulnerabilities in Java web applications. Ruwase and 
Lam [20] describe how to keep track of array extents and insert dynamic bounds 
checks automatically. Rinard et al. [19] describe how to extend arrays dynam- 
ically to accommodate for the overflowed contents. Avots et al. [3] extend the 
context-sensitive Java points-to analysis to C and show how it can be used to 
reduce the cost of dynamic detection of buffer overflows. 

1. Allen, F. E., "Interprocedural data flow analysis," Proc. IFIP Congress 
1974, pp. 398-402, North Holland, Amsterdam, 1974. 

2. Andersen, L., Program Analysis and Specialixation for the C Programming 
Language, Ph.D. thesis, DIKU, Univ. of Copenhagen, Denmark, 1994. 

3. Avots, D., M. Dalton, V. B. Livshits, and M. S. Lam, "Improving software 
security with a C pointer analysis," ICSE 2005: Proc. 27th International 
Conference on Sofiware Engineering, pp. 332-341. 

4. Ball, T.  and S. K. Rajamani, "A symbolic model checker for boolean 
programs," Proc. SPIN 2000 Workshop on Model Checking of Software, 
pp. 113-130. 

5. Ball, T., E. Bounimova, B. Cook, V. Levin, J. Lichtenber, C. McGarvey, 
B. Ondrusek, S. Rajamani, and A. Ustuner, "Thorough static analysis of 
device drivers," EuroSys (2006), pp. 73-85. 

6. Banning, J. P., "An efficient way to find the side effects of procedural calls 
and the aliases of variables," Proc. Sixth Annual Symposium on Principles 
of Programming Languages (1979), pp. 29-41. 

7. Barth, J. M., "A practical interprocedural data flow analysis algorithm," 
Comm. ACM 21:9 (1978), pp. 724-736. 

8. Berndl, M., 0. Lohtak, F. Qian, L. Hendren, and N. Umanee, "Points- 
to analysis using BDD's," Proc. ACM SIGPLAN 2003 Conference on 
Programming Language Des2gn and Implementatzon, pp. 103-114. 

9. Bryant, R. E., "Graph-based algorithms for Boolean function manipula- 
tion," IEEE Trans. on Computers C-35% (1986), pp. 677-691. 



12.9. REFERENCES FOR CHAPTER 12 963 

10. Bush, W. R., J. D. Pincus, and D. J. Sielaff, "A static analyzer for finding 
dynamic programming errors," Software-Practice and Experience, 30:7 
(2000), pp. 775-802. 

11. Callahan, D., K. D. Cooper, K. Kennedy, and L. Torczon, "Interprocedu- 
ral constant propagation," Proc. SIGPLAN 1986 Symposium on Compiler 
Construction, SIGPLAN Notices, 21:7 (1986), pp. 152-161. 

12. Engler, D., B. Chelf, A. Chou, and S. Hallem, "Checking system rules us- 
ing system-specific, programmer-written compiler extensions," Proc. Sixth 
USENIX Conference on Operating Systems Design and Implementation 
(2000). pp. 1-16. 

13. Emami, M., R. Ghiya, and L. J. Hendren, "Context-sensitive interproce- 
dural points-to analysis in the presence of function pointers," Proc. SIG- 
PLAN Conference on Programming Language Design and Implementation 
(1994), pp. 224-256. 

14. Fahndrich, M., J .  Rehof, and M. Das, "Scalable context-sensitive flow 
analysis using instantiation constraints," Proc. SIGPLAN Conference on 
Programming Language Design and Implementation (2000), pp. 253-263. 

15. Heintze, N. and 0. Tardieu, ""Ultra-fast aliasing analysis using CLA: a 
million lines of C code in a second," Proc. of the SIGPLAN Conference on 
Programming Language Design and Implementation (2001), pp. 254-263. 

16. Lam, M. S., J. Whaley, V. B. Livshits, M. C. Martin, D. Avots, M. Carbin, 
and C. Unkel, "Context-sensitive program analysis as database queries," 
Proc. 2005 ACM Symposium on Principles of Database Systems, pp. 1-12. 

17. Livshits, V. B. and M. S. Lam, "Finding security vulnerabilities in Java 
applications using static analysis" Proc. 14th USENIX Security Sympo- 
sium (2005), pp. 271-286. 

18. Milanova, A., A. Rountev, and B. G. Ryder, "Parameterized object sen- 
sitivity for points-to and side-effect analyses for Java" Proc. 2002 ACM 
SIGSOFT International Symposium on Sofiware Testing and Analysis, 
pp. 1-11. 

19. Rinard, M., C. Cadar, D. Dumitran, D. Roy, and T. Leu, "A dynamic 
technique for eliminating buffer overflow vulnerabilities (and other mem- 
ory errors) ," Proc. 2004 Annual Computer Security Applications Confer- 
ence, pp. 82-90. 

20. Ruwase, 0. and M. S. Lam, "A practical dynamic buffer overflow detec- 
tor," Proc. 11th Annual Network and Distributed System Security Sym- 
posium (2004), pp. 159-169. 



964 CHAPTER 12. INTERPROCEDURAL ANALYSIS 

21. Sharir, M. and A. Pnueli, "Two approaches to interprocedural data flow 
analysis," in S. Muchnick and N. Jones (eds.) Program Flow Analysis: 
Theory and Applications, Chapter 7 ,  pp. 189-234. Prentice-Hall, Upper 
Saddle River NJ, 1981. 

22. Steensgaard, B., "Points-to analysis in linear time," Twenty- Third A CM 
Symposium on Principles of Programming Languages (1996). 

23. Ullman, J .  D. and J .  Widom, A First Course in Database Systems, Pren- 
tice-Hall, Upper Saddle River NJ, 2002. 

24. Whaley, J .  and M. S. Lam, "Cloning-based context-sensitive pointer alias 
analysis using binary decision diagrams," Proc. ACM SIGPLAN 2004 
Conference on Programming Language Design and Implementation, pp. 
131-144. 

25. Zhu, J., "Symbolic Pointer Analysis," "Proc. International Conference in 
Computer-Aided Design (2002), pp. 150-157. 



Appendix A 

A Complete Front End 

The complete compiler front end in this appendix is based on the informally 
described simple compiler of Sections 2.5-2.8. The main difference from Chap- 
ter 2 is that the front end generates jumping code for boolean expressions, as 
in Section 6.6. We begin with the syntax of the source language, described by 
a grammar that needs to be adapted for top-down parsing. 

The Java code for the translator consists of five packages: main, lexer,  
symbol, parser ,  and in t e r .  Package i n t e r  contains classes for the language 
constructs in the abstract syntax. Since the code for the parser interacts with 
the rest of the packages, it will be discussed last. Each package is stored as a 
separate directory with a file per class. 

Going into the parser, the source program consists of a stream of tokens, so 
object-orientation has little to do with the code for the parser. Coming out of 
the parser, the source program consists of a syntax tree, with constructs or nodes 
implemented as objects. These objects deal with all of the following: construct 
a syntax-tree node, check types, and generate three-address intermediate code 
(see package i n t e r )  . 

A . l  The Source Language 

A program in the language consists of a block with optional declarations and 
statements. Token basic represents basic types. 

program + block 
block -+ ( decls stmts ) 
decls + decls decl I E: 

decl -+ type id ; 
type + type C num 1 ( basic 

strnts + stmts stmt I c 

Treating assignments as statements, rather than as operators within expres- 
sions, simplifies translation. 



APPENDIX A. A COMPLETE FRONT END 

Object-Oriented Versus Phase-Oriented 

With an object-oriented approach, all the code for a construct is collected 
in the class for the construct. Alternatively, with a phase-oriented ap- 
proach, the code is grouped by phase, so a type checking procedure would 
have a case for each construct, and a code generation procedure would 
have a case for each construct, and so on. 

The tradeoff is that an object-oriented approach makes it easier to 
change or add a construct, such as "for" statements, and a phase-oriented 
approach makes it easier to change or add a phase, such as type checking. 
With objects, a new construct can be added by writing a self-contained 
class, but a change to a phase, such as inserting code for coercions, requires 
changes across all the affected classes. With phases, a new construct can 
result in changes across the procedures for the phases. 

s t m t  -+ 

I 

I 
loc -+ 

loc = bool ; 
if ( bool ) s t m t  
if ( bool ) s t m t  else s t m t  
while ( bool ) s t m t  
do s t m t  while ( bool ) ; 
break ; 
block 
loc [ bool 1 I id 

The productions for expressions handle associativity and precedence of op- 
erators. They use a nonterminal for each level of precedence and a nonterminal, 
factor, for parent hesized expressions, identifiers, array references, and const ants. 

boo1 + bool I I join I join 
join join && equality ( equality 

equality -+ equality == re1 I equality ! = re1 I re1 
re1 -+ e x p r c  expr I expr<= expr I expr>= expr I 

expr > expr 1 expr 
expr -+ expr + t e r m  I expr - t e r m  I t e r m  
t e r m  -+ t e r m  * unary  I t e r m  / u n a r y  I u n a r y  

u n a r y  -+ ! u n a r y  I - u n a r y  I factor 
factor -+ ( bool ) I loc I num 1 real 1 true I false 

A.2 Main 

Execution begins in method main in class Main. Method main creates a lexical 
analyzer and a parser and then calls method program in the parser: 

1) package main; / /  File Main.java 
2) import java. io . * ; import lexer . * ; import parser. * ; 



A.3. LEXICAL ANALYZER 

3) public class Main ( 
4) public static void main(String [I args) throws IOException ( 
5) Lexer lex = new LexerO; 

6) Parser parse = new Parser(1ex); 

7) parse .program() ; 
8) System.out.write('\n'); 
9) 3 

10) 3 

Lexical Analyzer 

Package lexer  is an extension of the code for the lexical analyzer in Sec- 
tion 2.6.5. Class Tag defines constants for tokens: 

1) package lexer ; / /  File Tag.java 
2) public class Tag ( 
3) public final static int 

4, AND = 256, BASIC = 257, BREAK = 258, DO = 259, ELSE = 260, 
5 1 EQ = 261, FALSE = 262, GE = 263, ID = 264, IF = 265, 
6) INDEX = 266, LE = 267, MINUS = 268, NE = 269, NUM = 270, 
7, OR .= 271, REAL = 272, TEMP = 273, TRUE = 274, WHILE = 275; 
8) 3 

Three of the constants, INDEX, MINUS, and TEMP, are not lexical tokens; they 
will be used in syntax trees. 

Classes Token and Nurn are as in Section 2.6.5, with method t o s t r i n g  added: 

1) package lexer; / /  File Token.java 
2) public class Token ( 
3) public final int tag; 

4) public Token(int t) ( tag = t; 3 
5) public String tostring() (return "" + (char)tag;) 
6) 3 

1) package lexer; // File Num.java 
2) public class Num extends Token ( 
3) public final int value; 
4) public Num(int v) (super(Tag.NUM); value = v; 3 
5) public String tostring0 ( return "" + value; 3 
6) 1 

Class Word manages lexemes for reserved words, identifiers, and composite 
tokens like &&. It is also useful for managing the written form of operators in 
the intermediate code like unary minus; for example, the source text -2 has the 
intermediate form minus 2. 

1) package lexer; // File Word.java 
2) public class Word extends Token ( 
3) public Stringlexeme = ""; 
4) public Word(String s, int tag) ( super(tag1; lexeme = s; 3 
5 )  public String tostring0 ( return lexeme; 3 
6) public static final Word 

7) and = new Word( "&&", Tag. AND 1, or = new Word( " I 1 " , Tag. OR 1, 



APPENDIX A. A COMPLETE FRONT END 

8) eq = new Word( "==", Tag.EQ ), ne = new Word( "!=", Tag.NE ), 

9 > le = new Word( "<=", Tag.LE ) ,  ge = new Word( ">=", Tag.GE ), 

10) minus = new Word( "minus", Tag.MINUS ), 

11) True = new Word ( "true", Tag. TRUE ) , 
12) False = new Word( 'If alse" , Tag .FALSE ) , 
13) temp =newWord("tU, Tag.TEMP );  

14) 3 

Class Real is for floating point numbers: 

1) package lexer; / /  File Real.java 
2) public class Real extends Token ( 
3) public final float value; 

4) public Real(f1oat v) ( super(Tag.REAL) ; value = v; 3 
5) public String tostring0 C return "" + value; 3 
6) ) 

The main method in class Lexer, function scan, recognizes numbers, iden- 
tifiers, and reserved words, as discussed in Section 2.6.5. 

Lines 9-13 in class Lexer reserve selected keywords. Lines 14-16 reserve 
lexemes for objects defined elsewhere. Objects Word. True and Word. False 
are defined in class Ward. Objects for the basic types i n t ,  char, bool, and 
f l o a t  are defined in class Type, a subclass of Word. Class Type is from package 
symbols. 

1) package lexer ; // File Lexer.java 
2) import java. io . * ; import java.uti1. * ; import symbols. * ; 
3) public class Lexer ( 

4) public static int line = 1; 
5) char peek = ' ' ; 
6) Hashtable words = new Hashtable0 ; 
7) void reserve(Word w) ( words.put(w.lexeme, w); 3 
8) public LexerO ( 

9 1 reserve( new Word("if", Tag. IF) ; 
10) reserve ( new Word ("else", Tag. ELSE) ) ; 
11) reserve ( new W~rd(~'while", Tag. WHILE) ) ; 

12) reserve( new Word("doU , Tag .DO) ; 

13) reserve( new Word("breakM , Tag .BREAK) ) ; 
14) reserve ( Word. True ) ; reserve ( Word. False ) ; 

15) reserve ( Type. Int ) ; reserve ( Type. Char ) ; 

16) reserve ( Type. Boo1 ) ; reserve ( Type. Float ) ; 

17) 3 

Function readch() (line 18) is used to read the next input character into 
variable peek. The name readch is reused or overloaded (lines 19-24) to 
help recognize composite tokens. For example, once input < is seen, the call 
readch( '= ')  reads the next character into peek and checks whether it is =. 

18) void readch() throws IOException ( peek = (char)System. in.read0 ; 3 

19) boolean readch(char c) throws IOException ( 

20) readch() ; 
21) if ( peek ! = c ) return false; 
22) peek = ' ' ; 
23) return true; 
24) 3 



A.3. LEXICAL ANALYZER 969 

Function scan begins by skipping white space (lines 26-30). It recognizes 
composite tokens like <= (lines 31-44) and numbers like 365 and 3.14 (lines 
45-58), before collecting words (lines 59-70). 

public Token scan() throws IOException ( 
for( ; ; readch0 ( 

if( peek == ' ' I (  peek == '\t) ) continue; 
else if( peek == '\n' ) line = line + 1; 
else break; 

3 
switch( peek ) ( 
case ' & '  : 

if ( readch('&') ) return Word.and; else return new ~oken('&'); 
case '1': 

if ( readch(' 1 ') ) return Word. or; else return new Token(' 1 '1 ; 
case '= ' :  

if ( readch('=') ) return Word.eq; else return new Token('=') ; 

case ' ! ' : 
if( readch('=') ) return Word.ne; else return new Token('!'); 

case ' 0 :  
if ( readch('=') ) return Word.le; else return new Token('<'); 

case ' > ' :  
if( readch('=') ) return Word.ge; else return new Token('>'); 

3 
if ( character. isDigit (peek) ) ( 

int v = 0; 
do i 

v = lO*v + Character.digit(peek, 10); readcho; 
) while( Character.isDigit(peek) ) ;  
if( peek != ' . '  ) return new Num(v); 
float x = v; float d = 10; 
for(;;) € 

readch0 ; 
if( ! Character.isDigit(peek) ) break; 
x = x + Character.digit(peek, 10) / d; d = d*lO; 

3 
return new Real(x) ; 

3 
if ( Character. isLetter(peek) ) i 

StringBuffer b = new StringBufferO ; 
do ( 

b. append(peek) ; readcho ; 
3 while( Character.isLetterOrDigit(peek) ) ;  
String s = b.toString0; 
Word w = (Word)words.get(s); 
if ( w != null ) return w; 
w = new Word(s, Tag.ID); 
words.put(s, w); 
return w; 

Finally, any remaining characters are returned as tokens (lines 71-72). 

71) Token tok = new Token(peek); peek = ' '; 
72) return tok; 
73) 3 
74) 3 



970 APPENDIX A. A COMPLETE FRONT END 

A.4 Symbol Tables and Types 

Package symbols implements symbol tables and types. 
Class Env is essentially unchanged from Fig. 2.37. Whereas class Lexer maps 

strings to words, class Env maps word tokens to objects of class Id, which is 
defined in package i n t e r  along with the classes for expressions and statements. 

1) package symbols; / /  File Env.java 
2) import j ava. ut il . * ; import lexer . * ; import inter. * ; 
3) public class Env C 
4) private Hashtable table ; 
5) protected Env prev; 

6) public Env(Env n) ( table = new Hashtable0 ; prev = n; 3 
7) public void put(Token w, Id i) ( table.put(w, i) ; 3 
8) public Id get(Token w) C 
9, for( Env e = this; e != null; e = e.prev ) ( 

10) Id found = (Id) (e. table .get (w)) ; 

11) if( found != null ) return found; 

12) 3 
13) return null; 
14) 3 
15) 3 

We define class Type to be a subclass of Word since basic type names like i n t  
are simply reserved words, to be mapped from lexemes to appropriate objects by 
the lexical analyzer. The objects for the basic types are Type. I n t ,  Type. F loa t ,  
Type. Char, and Type. Bool (lines 7-10). All of them have inherited field t a g  
set to Tag. BASIC, so the parser treats them all alike. 

1) package symbols; // File Type.java 
2) import lexer . * ; 
3)public class Type extends Word C 
4) public int width = 0; / /  width is used for storage allocation 

5 )  public Type(String s, int tag, int w) ( super(s, tag); width = W; 3 
6) public static final Type 

7) Int = new Type( 'lint" , Tag. BASIC, 4 1, 
8, Float = new Type( "float", Tag.BASIC, 8 1, 
9 > Char = new Type( "char", Tag.BASIC, 1 1, 
10) Boo1 = new Type( "bool", Tag.BASIC, I ) ; 

Functions numeric (lines 11-14) and max (lines 15-20) are useful for type 
conversions. 

public static boolean numeric(Type p) C 
if (p == Type.Char I I  p == Type.Int I  I p == Type.Float) return true; 
else return false; 

3 
public static Type max(Type pl, Type p2 ) ( 

if ( ! numeric(p1) I  I  ! numeric(p2) ) return null; 
else if ( pl == Type.Float 1 )  p2 == Type.Float ) return Type.Float; 
else if ( pl == Type.Int 1 I p2 == Type.Int ) return Type.Int; 
else return Type.Char; 

3 



A.5. INTERMEDIATE CODE FOR EXPRESSIONS 971 

Conversions are allowed between the "numeric" types Type. Char, Type. I n t ,  
and Type. F loa t .  When an arithmetic operator is applied to two numeric types, 
the result is the "max" of the two types. 

Arrays are the only constructed type in the source language. The call to 
super on line 7 sets field width, which is essential for address calculations. It 
also sets lexeme and tok  to default values that are not used. 

1) package symbols ; / /  File Array.java 
2) import lexer . * ; 
3)public class Array extends Type ( 
4) public Type of; / /  array *of* type 
5) public int size = 1; / /  number of elements 
6) public Array(int sz, Type p) ( 

7, ~uper(~'~", Tag.INDEX, sz*p.width) ; size = sz; of = p; 
8) 3 
9) public String tostring0 i return " C" + size + "I " + of. tostring0 ; 3 
10) ) 

Intermediate Code for Expressions 

Package i n t e r  contains the Node class hierarchy. Node has two subclasses: Expr 
for expression nodes and Stmt for statement nodes. This section introduces 
Expr and its subclasses. Some of the methods in Expr deal with booleans and 
jumping code; they will be discussed in Section A.6, along with the remaining 
subclasses of Expr. 

Nodes in the syntax tree are implemented as objects of class Node. For error 
reporting, field l e x l i n e  (line 4, file Node.java) saves the source-line number of 
the construct at  this node. Lines 7-10 are used to emit three-address code. 

1) package inter; / /  File Node.java 
2) import lexer . * ; 
3) public class Node ( 
4) int lexline = 0; 
5) Node0 ( lexline = Lexer.line; ) 

6) void error(String s) -( throw new Error("near line "+lexline+": "+s); 3 
7) static int labels = O ;  
8) public int newlabelo i return ++labels; 3 
9) public void emitlabel(int i) ( System.out .print ("L" + i + ":") ; 3 
10) public void emit(String s) ( System.out.println("\t" + s); 3 
11) 3 

Expression constructs are implemented by subclasses of Expr. Class Expr 
has fields op and type (lines 4-5, file Expr.java), representing the operator and 
type, respectively, at  a node. 

1) package inter; / /  File Expr.java 
2) import lexer . * ; import symbols. * ; 
3) public class Expr extends Node ( 
4) public Token op; 
5) public Type type; 

6) Expr(Token tok, Type p) ( op = tok; type = p; ) 



972 APPENDIX A. A COMPLETE FRONT END 

Method gen (line 7) returns a "term" that can fit the right side of a three- 
address instruction. Given expression E = El + E2, method gen returns a term 
x1 +x2, where XI and x2 are addresses for the values of El and E2, respectively. 
The return value this is appropriate if this object is an address; subclasses of 
Expr typically reimplement gen. 

Method reduce (line 8 )  computes or "reduces" an expression down to a 
single address; that is, it returns a constant, an identifier, or a temporary name. 
Given expression E, method reduce returns a temporary t holding the value of 
E. Again, this is an appropriate return value if this object is an address. 

We defer discussion of methods jumping and emitjumps (lines 9-18) until 
Section A.6; they generate jumping code for boolean expressions. 

public Expr gene return this; 3 
public Expr reduce0 C return this; 3 
public void jumping(int t, int f) ( emitjumps(toString~), t, f); 1 
public void emitjumps(String test, int t, int f) C 

if( t != 0 && f != 0 )  C 
emit(I1if + test + I' goto L" + t); 
emit("goto L" + f) ; 

1 
else if( t != 0 ) emit(I1if l1 + test + " goto L" + t); 
else if( f != 0 ) emit("iffa1se + test + goto L" + f); 
else ; // nothing since both t and f fall through 

3 
public String tostring() ( return op. tostring0 ; 3 

Class Id inherits the default implementations of gen and reduce in class 
Expr, since an identifier is an address. 

1) package inter; / /  File Id.java 
2) import lexer . * ; import symbols. * ; 
3) public class Id extends Expr ( 
4) public int offset; // relative address 
5) public Id(Word id, Type p, int b) ( super(id, p); offset = b; 3 
6) 3 

The node for an identifier of class Id is a leaf. The call super(id,p) (line 5, 
file Id.jaua) saves id and p in inherited fields op and type, respectively. Field 
off set (line 4) holds the relative address of this identifier. 

Class Op provides an implementation of reduce (lines 5-10, file 0p. java)  
that is inherited by subclasses Arith for arithmetic operators, Unary for unary 
operators, and Access for array accesses. In each case, reduce calls gen to 
generate a term, emits an instruction to assign the term to a new temporary 
name, and returns the temporary. 

1) package inter; // File Op.java 
2) import lexer . * ; import symbols. * ; 
3) public class Op extends Expr ( 
4) public Op(Token tok, Type p) ( super(tok, p); 1 
5) public Expr reduce0 C 
GI Expr x = gen (1 ; 



A. 5. INTERMEDIATE CODE FOR EXPRESSIONS 

7) Temp t = new ~emp(type) ; 

8, emit( t .tostring() + " = " + x.tostring0 ) ; 

9) return t ; 

10) 3 
11) 3 

Class Ar i th  implements binary operators like + and *. Constructor Ar i th  
begins by calling super ( t o k , n u l l )  (line 6), where tok  is a token representing 
the operator and n u l l  is a placeholder for the type. The type is determined 
on line 7 by using Type.max, which checks whether the two operands can be 
coerced to a common numeric type; the code for Type .max is in Section A.4. 
If they can be coerced, type is set to the result type; otherwise, a type error 
is reported (line 8). This simple compiler checks types, but it does not insert 
type conversions. 

1) package inter ; / /  File Arith.java 
2) import lexer . * ; import symbols. * ; 
3)public class Arith extends Op ( 

public Expr exprl, expr2; 
public Arith(Token tok, Expr XI, Expr x2) ( 

super (tok, null) ; exprl = XI ; expr2 = x2 ; 
type = Type. max (exprl . type, expr2. type) ; 
if (type == null ) error("type error"); 

> 
public Expr gene ( 

return new Arith(op, exprl.reduce(), expr2.reduceO); 

public String tostring0 ( 
return exprl . tostring()+" "+op. tostring()+" I1+expr2. tostring0 ; 

3 

Method gen constructs the right side of a three-address instruction by reduc- 
ing the subexpressions to addresses and applying the operator to  the addresses 
(line 11, file Arith.java). For example, suppose gen is called at the root for 
a+b*c. The calls to reduce return a as the address for subexpression a and a 
temporary t as the address for b*c. Meanwhile, reduce emits the instruction 
t=b*c. Method gen returns a new Ar i th  node, with operator * and addresses 
a and t as operands.' 

It is worth noting that temporary names are typed, along with all other 
expressions. The constructor Temp is therefore called with a type as a parameter 
(line 6, file Temp.java) .2 

1) package inter; / /  File Temp.java 
2) import lexer . * ; import symbols. * ; 
3) public class Temp extends Expr ( 

l ~ o r  error reporting, field lexline in class Node records the current lexical line number 
when a node is constructed. We leave it to the reader to track line numbers when new nodes 
are constructed during intermediate code generation. 

2 ~ n  alternative approach might be for the constructor to take an expression node as a 
parameter, so it can copy the type and lexical position of the expression node. 



974 APPENDIX A. A COMPLETE FRONT END 

4) static int count = O ;  
5) int number = 0; 
6) public Temp(Type p) C super(Word.temp, p) ; number = ++count; 3 
7) public String tostring0 ( return "t" + number; 3 
8) 3 

Class Unary is the one-operand counterpart of class Ari th:  

1) package inter; // File Unary.java 
2) import lexer . * ; import symbols. * ; 
3) public class Unary extends Op C 
4) public Expr expr; 
5) public Unary(Token tok, Expr x) C / /  handles minus, for ! see Not 

6) super(tok, null) ; expr = x; 
7, type = Type.max(Type.Int, expr.type); 
8) if (type == null ) error("type error"); 
9) 3 
10) public Expr gene ( return new Unary(op, expr.reduce()); 3 
11) public String tostring() ( return op.toString()+" "+expr. tostring0 ; 1 
12) 3 

A.6 Jumping Code for Boolean Expressions 

Jumping code for a boolean expression B is generated by method jumping, 
which takes two labels t and f as parameters, called the true and false exits of 
B,  respectively. The code contains a jump to t if B evaluates to true, and a 
jump to f if B evaluates to false. By convention, the special label 0 means that 
control falls through B to the next instruction after the code for B.  

We begin with class Constant. The constructor Constant on line 4 takes 
a token t ok  and a type p as parameters. It constructs a leaf in the syntax 
tree with label t ok  and type p. For convenience, the constructor Constant is 
overloaded (line 5) to create a constant object from an integer. 

1) package inter; // File Constant.java 
2) import lexer . * ; import symbols. * ; 
3) public class Constant extends Expr C 
4) public Constant(Token tok, Type p) ( super(tok, p); 3 
5) public Constant(int i) ( super(new Bum(i), Type.Int); 3 
6) public static final Constant 

7, True = new Constant(Word.True, Type.Bool), 
8> False = new Constant(Word.False, Type.Boo1); 
9) public void jumping(int t, int f) ( 

lo> if ( this == True && t != 0 ) emit("goto L" + t); 

11) else if ( this == False && f != 0) emit("goto L" + f); 
12) 3 
13) 3 

Method jumping (lines 9-12, file Constant.java) takes two parameters, labels 
t and f .  If this constant is the static object True (defined on line 7) and t is 
not the special label 0, then a jump to t is generated. Otherwise, if this is the 
object Fa l s e  (defined on line 8) and f is nonzero, then a jump to f is generated. 



A.6. JUMPING CODE FOR BOOLEAN EXPRESSIONS 975 

Class Logical provides some common functionality for classes O r ,  And, and 
Not. Fields x and y (line 4) correspond to the operands of a logical opera- 
tor. (Although class Not implements a unary operator, for convenience, it is a 
subclass of ~ogical.) The constructor Logical (tok , a, b) (lines 5-10) builds 
a syntax node with operator tok and operands a and b. In doing so it uses 
function check to  ensure that both a and b are booleans. Method gen will be 
discussed at the end of this section. 

1) package inter ; / /  File Logzcal.java 
2) import lexer . * ; import symbols. * ; 
3) public class Logical extends Expr ( 
4) public Expr exprl, expr2; 

5) Logical(Token tok, Expr xl, Expr x2) ( 

6) super (tok , null) ; / /  null type to start 
7) exprl = XI; expr2 = x2; 

8) type = check(expr1. type, expr2. type) ; 
9 > if (type == null ) error(l1type error"); 
10) 3 
11) public Type check(Type pi, Type p2) ( 

12) if ( pl == Type.Boo1 && p2 == Type.Boo1 ) return Type.Boo1; 

13) else return null; 
14) 3 
15) public Expr gen0 ( 

If9 int f = newlabelo ; int a = newlabelo ; 
17) Temp temp = new Temp(type); 

Is> this. jumping(0,f) ; 
l9> emit (temp. tostring0 + " = true") ; 
20) emit("goto L" + a); 
21) emitlabel(f) ; emit(temp.toString() + " = false") ; 
22) emit label (a) ; 
23) return temp; 
24) 3 
25) public String tostring0 ( 

as) return exprl. tostring()+" "+op. tostring()+" I1+expr2. tostring0 ; 
27) 3 

In class O r ,  method jumping (lines 5-10) generates jumping code for a 
boolean expression B = B1 1 1 Bz. For the moment, suppose that neither the 
true exit t nor the false exit f of B is the special label 0. Since B is true if B1 
is true, the true exit of B1 must be t and the false exit corresponds to the first 
instruction of Bz. The true and false exits of B2 are the same as those of B. 

1) package inter; /I File 0r.java 
2) import lexer . * ; import symbols. * ; 
3)public class Or extends Logical C 
4) public Or(Token tok, Expr XI, Expr x2) C super(tok, XI, x2); 3 
5) public void jumping(int t, int f) C 
6) int label = t ! = 0 ? t : newlabel () ; 

7, expri.jumping(labe1, 0); 
8) expr2. jumping(t ,f) ; 
9> if ( t == 0 emitlabel(labe1); 
10) 3 
11) 3 



976 APPENDIX A. A COMPLETE FRONT END 

In the general case, t , the true exit of B, can be the special label 0. Variable 
l a b e l  (line 6, file 0r.java) ensures that the true exit of B1 is set properly to 
the end of the code for B. If t is 0, then l a b e l  is set to a new label that is 
emitted after code generation for both B1 and B2. 

The code for class And is similar to the code for Or. 

1) package inter; // File And.java 
2) import lexer . * ; import symbols. * ; 
3) public class And extends Logical ( 

4) public And(Token tok, Expr XI, Expr x2) (super(tok, XI, x2); 3 
5) public void jumping(int t , int f) ( 
6) int label = f != 0 ? f : newlabelo; 
7) , exprl.jumping(O, label); 

8) expr2.jumping(t,f); 
9 > if ( f == 0 ) emitlabel(labe1) ; 
10) 3 
11) 3 

Class Not has enough in common with the other boolean operators that we 
make it a subclass of Logical, even though Not implements a unary operator. 
The superclass expects two operands, so b appears twice in the call to  super 
on line 4. Only y (declared on line 4, file Logical.java) is used in the methods 
on lines 5-6. On line 5, method jumping simply calls y . jumping with the true 
and false exits reversed. 

1) package inter; // File Not. java 
2) import lexer . * ; import symbols. * ; 
3)public class Not extends Logical ( 

4) public Not (Token tok, Expr x2) ( super(tok, x2, x2) ; ) 

5) public void jumping(int t, int f) ( expr2. jumping(f, t) ; 3 
6) public String tostring() ( return op.toString()+" "+expr2.toString(); 

7) 3 

Class Re1 implements the operators <, <=, ==, ! =, >=, and >. Function check 
(lines 5-9) checks that the two operands have the same type and that they are 
not arrays. For simplicity, coercions are not permitted. 

I) package inter; // File Re1.java 
2) import lexer . * ; import symbols. * ; 
3)public class Re1 extends Logical ( 

4) public Rel(Token tok, Expr XI, Expr x2) ( super(tok, xl, x2); 3 
5 )  public Type check(Type pl, Type p2) ( 

6, if ( pi instanceof Array I I p2 instanceof Array ) return null; 

7, else if ( pl == p2 ) return Type .Bool; 

8) else return null; 
9) 1 
10) public void jumping(int t, int f) ( 

11> Expr a = exprl .reduce0 ; 

12> Expr b = expr2.reduceo; 
13) 

String test = a.toString() + " + op.toString() + " " + b.to~tring0; 

14) emitjumps(test, t, f); 
15) ) 

16) 3 



A.6. JUMPING CODE FOR BOOLEAN EXPRESSIONS 

Method jumping (lines 10-15, file Rel. java) begins by generating code for the 
subexpressions x and y (lines 11-12). It then calls method emit jumps defined 
on lines 10-18, file Expr.java, in Section A.5. If neither t nor f is the special 
label 0 ,  then emit jumps executes the following 

12) emit(Iiif " + test + I t  goto L" + t); // File Expr.java 

13) emit(ligoto L" + f 1; 

At most one instruction is generated if either t or f is the special label 0 (again, 
from file Expr. java) : 

15> else if( t ! =  0 ) emit("if " + test + " goto L" + t); 

16) else if ( f != 0 ) emit(I1iffalse + test + " goto L" + f) ; 

17) else ; // nothing since both t and f fall through 

For another use of emit jumps, consider the code for class Access. The 
source language allows boolean values to be assigned to identifiers and array 
elements, so a boolean expression can be an array access. Class Access has 
method gen for generating "normal" code and method jumping for jumping 
code. Method jumping (line 11) calls emitjumps after reducing this array 
access to a temporary. The constructor (lines 6-9) is called with a flattened 
array a, an index i, and the type p of an element in the flattened array. Type 
checking is done during array address calculation. 

1) package inter; / /  File Access. java 
2) import lexer . * ; import symbols. * ; 
3) public class Access extends Op C 
4) public Id array; 
5) public Expr index; 

6) public Access(1d a, Expr i, Type p) i / /  p is element type after 
7, super(new Word(" [I ", Tag. INDEX), p) ; // flattening the array 
8) array = a; index = i; 

9) 3 
10) public Expr g e n 0  ( return new Access (array, index.reduce0, type) ; 3 
11) public void jumping(int t ,int f) ( emitjumps(reduce() .tostring() ,t ,f) ; ) 
12) public String tostring0 ( 

13) return array.toString0 + " [ + index.toString() + I f  ]Ii; 
14) 3 
15) 1 

Jumping code can also be used to return a boolean value. Class Logical, 
earlier in this section, has a method gen (lines 15-24) that returns a temporary 
temp, whose value is determined by the flow of control through the jumping code 
for this expression. At the true exit of this boolean expression, temp is assigned 
true; at  the false exit, temp is assigned false. The temporary is declared on 
line 17. Jumping code for this expression is generated on line 18 with the true 
exit being the next instruction and the false exit being a new label f .  The next 
instruction assigns true to temp (line 19), followed by a jump to a new label 
a (line 20). The code on line 21 emits label f and an instruction that assigns 
false to  temp. The code fragment ends with label a, generated on line 22. 
Finally, gen returns temp (line 23). 



978 APPENDIX A. A COMPLETE FRONT END 

A.7 Intermediate Code for Statements 

Each statement construct is implemented by a subclass of Stmt . The fields for 
the components of a construct are in the relevant subclass; for example, class 
While has fields for a test expression and a substatement, as we shall see. 

Lines 3-4 in the following code for class Stmt deal with syntax-tree con- 
struction. The constructor Stmt () does nothing, since the work is done in the 
subclasses. The static object Stmt . Null (line 4) represents an empty sequence 
of statements. 

1) package i n t e r ;  // File Strnt.java 
2) publ ic  c l a s s  Stmt extends Node ( 

3) publ ic  Stmt 0 ( 3 
4) publ ic  s t a t i c  Stmt Null = new S tmtO;  

5) publ ic  void gen( in t  b ,  i n t  a )  (3 / /  c a l l e d  with l a b e l s  begin and a f t e r  
6) i n t  a f t e r  = 0 ;  // saves l a b e l  a f t e r  

7) publ ic  s t a t i c  Stmt Enclosing = Stmt.Nul1; / /  used f o r  break s tmts  

8) 3 

Lines 5-7 deal with the generation of three-address code. The method gen is 
called with two labels b and a ,  where b marks the beginning of the code for this 
statement and a marks the first instruction after the code for this statement. 
Method gen (line 5) is a placeholder for the gen methods in the subclasses. 
The subclasses While and Do save their label a in the field a f t e r  (line 6) so 
it can be used by any enclosed break statement to  jump out of its enclosing 
construct. The object Stmt .Enclosing is used during parsing to  keep track 
of the enclosing construct. (For a source language with continue statements, 
we can use the same approach to keep track of the enclosing construct for a 
continue statement .) 

The constructor for class I f  builds a node for a statement if ( E )  S. Fields 
expr and s t m t  hold the nodes for E  and S, respectively. Note that expr in 
lower-case letters names a field of class Expr; similarly, s t m t  names a field of 
class Stmt . 

1) package i n t e r ;  // File If.3ava 
2) import symbols. * ; 
3) publ ic  c l a s s  I f  extends Stmt ( 
4) Expr expr;  Stmt s tmt ;  
5) publ ic  I f  (Expr x ,  Stmt s )  ( 

6) expr = x ;  stmt = s ;  

7, i f  ( expr . type ! = Type. Boo1 ) expr . e r r o r  ("boolean requi red  i n  i f  ") ; 

8) 3 
9) pub l i c  void gen ( in t  b ,  i n t  a )  { 

lo> i n t  l a b e l  = newlabe lo ;  / /  l a b e l  f o r  t h e  code f o r  stmt 

11> expr.  jumping(O, a )  ; // f a l l  through on t r u e ,  goto a on f a l s e  

la> emit labe l ( labe1)  ; stmt .gen( labe l ,  a) ; 
13) 3 
14) 3 

The code for an If  object consists of jumping code for expr followed by the 
code for s t m t  . As discussed in Section A.6, the call expr . jumping (0,  f ) on line 



A. 7. INTERMEDIATE CODE FOR STATEMENTS 

11 specifies that control must fall through the code for expr if expr evaluates 
to true, and must flow to label a otherwise. 

The implementation of class Else,  which handles conditionals with else 
parts, is analogous to  that of class I f :  

1) package inter; / /  File Else.java 
2) import symbols. * ; 
3) public class Else extends Stmt ( 
4) Expr expr; Stmt stmtl, stmt2; 

5) public Else(Expr x, Stmt sl, Stmt s2) ( 

6) expr = x; stmtl = SI; stmt2 = s2; 
7, if( expr.type != Type.Boo1 ) expr.error("boolean required in 
8) 3 
9) public void gen(int b, int a) ( 

lo> int label1 = newlabelo; / /  label1 for stmtl 
11> int label2 = newlabel0 ; / /  label2 for stmt2 
12) expr. jumping(0 ,label2) ; / /  fall through to stmtl on true 
13) emitlabel(label1) ; stmt I .gen(labell , a) ; emit ( "goto L" + a) ; 
14) emitlabel (label2) ; stmt2. gen(label2, a) ; 
15) 3 
16) 1 

The construction of a While object is split between the constructor While 0 ,  
which creates a node with null children (line 5), and an initialization function 
i n i t  (x , s )  , which sets child expr to  x and child s t m t  to s (lines 6-9). Function 
gen (b , a) for generating three-address code (line 10-16) is in the spirit of the 
corresponding function gen 0 in class I f .  The difference is that label a is saved 
in field af ter  (line 11) and that the code for s t m t  is followed by a jump to b 
(line 15) for the next iteration of the while loop. 

1) package inter; // File While. java 
2) import symbols. * ; 
3) public class While extends Stmt ( 
4) Expr expr; Stmt stmt; 

5) public While0 ( expr = null; stmt = null; ) 
6) public void init(Expr x, Stmt s) ( 

7) expr = x; stmt = s ; 
8> if( expr.type != Type.Boo1 ) expr.error("boolean required in while"); 
9) 
10) public void gen(int b, int a) ( 

11) after = a; / /  save label a 
12) expr. jumping(0, a) ; 

13) int label = newlabelo ; // label for stmt 
14) emitlabel(labe1) ; stmt .gen(label, b) ; 

15) emit("goto L" + b); 
16) 3 
17) 1 

Class Do is very similar to class While. 

1) package inter; / /  File Do.java 
2) import symbols. * ; 
3) public class Do extends Stmt { 
4) Expr expr; Stmt stmt; 



APPENDIX A. A COMPLETE FRONT END 

public D o 0  ( expr = null; stmt = null; 3 
public void init(Stmt s, Expr x) { 

expr = x; stmt = s; 
if( expr.type != Type.Boo1 ) expr.error("boolean required in do" 

3 
public void gen(int b, int a) { 

after = a; 
int label = newlabel () ; // label for expr 
stmt .gen(b, label) ; 
emit label (label) ; 
expr. jumping(b,O) ; 

3 

Class Set implements assignments with an identifer on the left side and an 
expression on the right. Most of the code in class Set is for constructing a node 
and checking types (lines 5-13). Function gen emits a three-address instruction 
(lines 14- 16). 

1) package inter; // File Set.java 
2) import lexer . * ; import symbols. * ; 
3) public class Set extends Stmt ( 

4) public Id id; public Expr expr; 

5 )  public Set(Id i, Expr x) C 
6, id = i; expr = x; 

7, if ( check(id. type, expr. type) == null ) error(Ittype error") ; 

8) 3 
9) public Type check(Type pi, Type p2) ( 

10) if ( Type.numeric(p1) && Type.numeric(p2) ) return p2; 
11> else if ( pi == Type.Boo1 && p2 == Type.Boo1 ) return p2; 

12) else return null; 
13) 3 
14) public void gen(int b, int a) ( 

15> emit( id.toString() + It = It + expr.gen() .tostring() 1; 
16) 3 
17) 3 

Class SetElem implements assignments to an array element: 

1) package inter; / /  File SetElem.java 
2) import lexer . * ; import symbols. * ; 
3) public class SetElem extends Stmt C 
4) public Id array; public Expr index; public Expr expr; 

5) public SetElem(Access x, Expr y) < 
6) array = x.array; index = x.index; expr = y; 
7) if ( check(x. type, expr. type) == null ) error(Ittype error") ; 

8) 3 
9) public Type check(Type pi, Type p2) ( 

lo> if ( pi instanceof Array I I p2 instanceof Array ) return null; 

11) else if ( pi == p2 ) return p2; 

12) else if ( Type.numeric(p1) && ~ype.numeric(p2) ) return p2; 

13) else return null; 
14) 3 
15) public void gen(int b, int a) ( 

16) String sl = index.reduce() .tostring() ; 

17) String s2 = expr .reduce() .tostring() ; 



A.8. PARSER 

Class Seq implements a sequence of statements. The tests for null state- 
ments on lines 6-7 are for avoiding labels. Note that no code is generated for 
the null statement, Stmt . Null ,  since method gen in class Stmt does nothing. 

1) package inter ; / /  File Seq.java 
2) public class Seq extends Stmt C 
3) Stmt stmtl; Stmt stmt2; 

4) public Seq(Stmt sl, Stmt s2) ( stmtl = sl; stmt2 = s2; 
5) public void gen(int b, int a) ( 

6, if ( stmtl == Stmt.Nul1 ) stmt2.gen(b, a); 
7, else if ( stmt2 == Stmt .Null ) stmtl . gen(b, a) ; 

8) else c 
9 > int label = newlabel0 ; 
lo> stmtl.gen(b,label) ; 
11> emitlabel (label) ; 
12) stmt2. gen(labe1, a) ; 
13) 3 
14) 3 
15) 1 

A break statement sends control out of an enclosing loop or switch state- 
ment. Class Break uses field s t m t  to save the enclosing statement construct 
(the parser ensures that Stmt . Enc los ing  denotes the syntax-tree node for 
the enclosing construct). The code for a Break object is a jump to the la- 
bel s t m t  . a f t e r ,  which marks the instruction immediately after the code for 
s tmt .  

1) package inter; // File Break.java 
2) public class Break extends Stmt C 
3) Stmt stmt; 
4) public Break0 C 
5) if ( Stmt .Enclosing == null ) error("unenc1osed break") ; 
6) stmt = Stmt.Enclosing; 
7) 3 
8) public void gen(int b, int a) ( 

9> emit( "goto L" + stmt .after) ; 
10) 1 
11) 3 

Parser 

The parser reads a stream of tokens and builds a syntax tree by calling the 
appropriate constructor functions from Sections A .5-A.7. The current symbol 
table is maintained as in the translation scheme in Fig. 2.38 in Section 2.7. 

Package p a r s e r  contains one class, Pa r se r :  

1) package parser; / /  File Parser.java 
2) import j ava. io . * ; import lexer . * ; import symbols. * ; import inter. * ; 



982 APPENDIX A. A COMPLETE FRONT END 

3) public class Parser C 
4) private Lexer lex; // lexical analyzer for this parser 
5) private Token look; // lookahead tagen 
6) Env top = null; // current or top symbol table 
7) int used = 0; // storage used for declarations 
8) public Parser(Lexer 1) throws IOException C lex = 1; move(); 3 
9) void move0 throws IOException C look = lex.scan(); ) 

10) void error(String s) { throw new Error(I1near line "+lex.line+": "+s); ) 

11) void match(int t) throws IOException C 
12) if ( 1ook.tag == t ) move(); 
13) else error("syntax error"); 
14) 3 

Like the simple expression translator in Section 2.5, class Pa r s e r  has a pro- 
cedure for each nonterminal. The procedures are based on a grammar formed 
by removing left recursion from the source-language grammar in Section A.1. 

Parsing begins with a call to procedure program, which calls b l o c k 0  (line 
16) to parse the input stream and build the syntax tree. Lines 17-18 generate 
intermediate code. 

15) public void program() throws IOException ( // program -> block 
Is> Stmt s = block() ; 

17) int begin = s.newlabel() ; int after = s .newlabel0 ; 

18) s.emitlabel(begin); s.gen(begin, after); s.emitlabel(after); 
19) 3 

Symbol-table handling is shown explicitly in procedure block.3 Variable 
t o p  (declared on line 5) holds the top symbol table; variable savedEnv (line 21) 
is a link to the previous symbol table. 

20) Stmt block() throws IOException C / /  block -> ( decls stmts 3 
all match('{'); Env savedEnv = top; top = new ~nv(top); 
22> decls(); Stmt s = stmtso; 
23> match(')'); top = savedEnv; 
24) return s; 
25) 3 

Declarations result in symbol-table entries for identifiers (see line 36). Al- 
though not shown here, declarations can also result in instructions to reserve 
storage for the identifiers at run time. 

void decls () throws IOExcept ion C 
while( 1ook.tag == Tag.BASIC ) ( // D -> type ID ; 

Type p = type(); Token tok = look; match(Tag.ID); match('; '1; 
Id id = new Id((Word)tok, p, used); 
top.put( tok, id 1; 
used = used + p.width; 

.t 
3 
Type type() throws IOException C 

Type p = (Type)look; / /  expect 1ook.tag == Tag.BASIC 

3 ~ n  attractive alternative is to add methods push and pop to class Env, with the current 
table accessible through a static variable Env. top 



A.8. PARSER 

match(Tag. BASIC) ; 
if( 1ook.tag != ' [ '  ) return p; / /  T -> basic 
else return dims (p) ; / /  return array type 

3 
Type dims (Type p) throws IOExcept ion ( 

rnatch('C2); Token tok = look; match(~ag.~~~); match(']'); 
if( 1ook.tag == 'C' ) 
p = dims(p) ; 
return new Array(((Num)tok).value, p); 

3 

Procedure s t m t  has a switch statement with cases corresponding to the 
productions for nonterminal Stmt. Each case builds a node for a construct, 
using the constructor functions discussed in Section A.7. The nodes for while 
and do statements are constructed when the parser sees the opening keyword. 
The nodes are constructed before the statement is parsed to  allow any enclosed 
break statement to  point back to its enclosing loop. Nested loops are handled 
by using variable S t m t  .Enclosing in class S t m t  and s a v e d s t m t  (declared on 
line 52) to maintain the current enclosing loop. 

Stmt stmts() throws IOException ( 
if ( 1ook.tag == '3' ) return Stmt.Nul1; 
else return new Seq(stmt 0, stmts 0 ; 

3 
Stmt stmt() throws IOException ( 

Expr x; Stmt s, sl, s2; 
Stmt savedstmt ; / /  save enclosing loop for breaks 
switch( 1ook.tag ) ( 
case ' ; ' :  

move () ; 
return Stmt.Nul1; 

case Tag. IF: 
match(Tag.IF); match('('); x = boolo; match(')'); 
sl = stmt() ; 
if ( look. tag != Tag.ELSE ) return new If (x, sl) ; 
match(Tag.ELSE); 
s2 = stmt() ; 
return new Else(x, sl, s2); 

case Tag. WHILE: 
While whilenode = new While(); 
savedstmt = Stmt.Enclosing; Stmt.Enclosing = whilenode; 
match(Tag.WHILE); match('('); x = boolo; match(')'); 
sl = stmt0; 
whilenode. init (x, sl) ; 
Stmt.Enclosing = savedstmt; // reset Stmt.Enclosing 
return whilenode; 

case Tag.DO: 
Do donode = new DoO; 
savedstmt = Stmt.Enclosing; Stmt.Enclosing = donode; 
match(Tag.DO) ; 
sl = stmt(); 
match(Tag.WHILE); match('('); x = boolo; match(')'); match(';'); 
donode. init (sl, x) ; 
Stmt.Enclosing = savedstmt; / /  reset Stmt.Enclosing 
return donode; 



APPENDIX A. A COMPLETE FRONT END 

case Tag.BREAK: 
match(Tag.BREAK); match(';'); 
return new Break0 ; 

case '-0: 
return block(); 

default : 
return assign0 ; 

1 

For cogvenience, the code for assignments appears in an auxiliary procedure, 
assign. 

90) Stmt assign() throws IOException ( 

91) Stmt stmt; Token t = look; 

g2) match(Tag . ID) ; 
93) Id id = top.get(t); 
94) if ( id == null ) error(t . tostring0 + " undeclared") ; 
95) if ( look. tag == '=' ) ( //  S -> id = E ; 

96) move(); stmt = new Set(id, bool0); 

97) 3 
98) else i / / S - > L = E ;  

99) Access x = offset(id1; 
100) match('=') ; stmt = new SetElem(x, bool()) ; 
101) 3 
102) match('; ' I ;  
103) return stmt; 
104) 3 

The parsing of arithmetic and boolean expressions is similar. In each case, 
an appropriate syntax-tree node is created. Code generation for the two is 
different, as discussed in Sections A.5-A.6. 

Expr boo10 throws IOException ( 
Expr x = join(); 
while( 1ook.tag == Tag.OR ) ( 

Token tok = look; move(); x = new Or(tok, x, join()); 
3 
return x; 

3 
Expr join() throws IOExcept ion ( 

Expr x = equalityo; 
while( 1ook.tag == Tag.AND ) ( 

Token tok = look; move() ; x = new And(tok, x, equalityo) ; 
3 
return x; 

3 
Expr equality() throws IOExcept ion i 

Expr x = relo ; 
while( look. tag == Tag .EQ 1 I look. tag == Tag.NE ) ( 

Token tok = look; move(); x = new Rel(tok, x, relo); 
3- 
return x; 

Expr relo throws IOException ( 
Expr x = expr (1 ; 



A.8. PARSER 

switch( 1ook.tag ) ( 
case '< ' :  case Tag.LE: case Tag.GE: case ' > ' :  

Token tok = look; move() ; return new Rel(tok, x, expro) ; 
default : 

return x; 
3 

3 
Expr expr () throws IOExcept ion ( 

Expr x = term0 ; 
while( look.tag == '+' 1 1  1ook.tag == '-' ) ( 

Token tok = look; move(); x = new Arith(tok, x, term()); 
1 
return x; 

1 
Expr term() throws IOException ( 

Expr x = unary ( ) ; 
while(1ook. tag == ' * '  I  1 look. tag == ' / '  ) ( 

Token tok = look; move(); x = new Arith(tok, x, unary()); 
1 
return x; 

J 
Expr unary() throws IOException ( 

if( 1ook.tag == '- ' ) ( 
move(); return new Unary(Word.minus, unary()); 

3 
else if( 1ook.tag == ' ! '  ) ( 

Token tok = look; move() ; return new Not (tok, unary()) ; 

1 
else return factor() ; 

1 

The rest of the code in the parser deals with "factors" in expressions. The 
auxiliary procedure off se t  generates code for array address calculations, as 
discussed in Section 6.4.3. 

Expr factor() throws IOException ( 
Expr x = null; 
switch( 1ook.tag ) ( 
case '0: 

move(); x = boolo; match(')'); 
return x; 

case Tag .NUM: 
x = new Constant(look, Type.Int); move(); return x; 

case Tag.REAL: 
x = new Constant(look, Type.Float); move(); return x; 

case Tag.TRUE: 
x = Constant.True; move(); return x; 

case Tag. FALSE : 
x = Constant .False; move(); return x; 

default : 
error("syntax error") ; 
return x; 

case Tag. ID: 
String s = look.toString(); 
Id id = top.get(look) ; 
if( id == null ) error(look.toString() + " undeclared"); 



986 APPENDIX A. A COMPLETE FRONT END 

179) move() ; 
180) if ( 1ook.tag != 'C' ) return id; 
181) else return off set (id) ; 
182) 3 
183) 3 
184) Access offset(1d a) throws IOException ( // I -> [El I [El I 
185) Expr i; Expr w; Expr ti, t2; Expr loc; // inherit id 
186) Type type = a.type; 
187) match('['); i = boolo; match('] '); // first index, I -> [ E 1 
188) type = ( (Array) type) . of ; 
189) w = new Constant(type.width); 
190) ti = new Arith(new Token('*'), i, w); 
191) loc = ti; 
192) while( 1ook.tag == ' [' ( // multi-dimensional I -> [ E I I 
193) match('['); i = boolo; match(']'); 
194) type = ((Array) type) .of ; 
195) w = new Constant(type.width); 
196) ti = new Arith(new Token('*'), i, w); 
197) t2 = new Arith(new Token('+'), loc, ti); 
198) loc = t2; 
199) 3 
200) return new Access(a, loc, type) ; 
201) 3 
202) 1 

A.9 Creating the Front End 

The code for the packages appears in five directories: main, l exe r ,  symbol, 
pa r s e r ,  and i n t e r .  The commands for creating the compiler vary from system 
to system. The following are from a UNIX implementation: 

j avac lexerj* . j ava 
javac symbols/*. java 
javac inter/*. j ava 
javac parser/*. j ava 
j avac main/*. j ava 

The javac command creates . c l a s s  files for each class. The translator can 
then be exercised by typing j ava main. Main followed by the source program to 
be translated; e.g., the contents of file t e s t  

/ /  File test 
int i; int j ; float v; float x; float [loo] a; 
while( true ) ( 

do i = i+l ; while ( a[il < v) ; 
do j = j-1; while( a[jl > v); 
if ( i >= j ) break; 
x = a[i] ; a[i] = a[jl; a[jl = x; 

3 

On this input, the front end produces 



A.9. CREATING THE FRONT END 

i = i + l  
t i = i * 8  
t 2 = a  [ t i ]  
i f  t 2  < v goto L3 
j = j - l  

t 3 = j * 8  
t 4 = a  C t 3 1  
i f  t 4  > v goto L4 
i f f a l s e  i >= j goto L8 

got0 L2 
t 5 = i * 8  
x = a C t 5 1  
t 6 = i * 8  
t 7 = j * 8  
t 8 = a  C t 7 1  
a  C t 6 1  = t 8  
t 9 = j * 8  
a C t 9 1 = x  
got0 L 1  

Try it. 





Appendix B 

Finding Linearly 
Independent Solutions 

Algorithm. B. 1 : Finds a maximal set of linearly independent solutions for 
A 2  2 6, and expresses them as rows of matrix B. 

INPUT: An m x n matrix A. 

OUTPUT: A matrix B of linearly independent solutions to A 2  2 6. 
METHOD: The algorithm is shown in pseudocode below. Note that X[y] de- 
notes the yth row of matrix X, X[y : z] denotes rows y through z of matrix X, 
and X[y : z][u : v] denotes the rectangle of matrix X in rows y through z and 
columns u through v. 



990 APPENDIX B. FINDING LINEARLY INDEPENDENT SOLUTIONS 

M = AT; 
r0 = 1; 
co = 1; 
B = I,,,; /* an n-by-n identity matrix */ 

while ( true ) ( 

/* 1. Make M[ro : r' - I][co : c' - I ]  into a diagonal matrix with 
positive diagonal entries and M[rl  : n][co : rn] = 0. 
M [r' : n]  are solutions. */ 

r' = T o ;  

C' = cb; 
while ( there exists M [r] [c] # 0 such that 

r - r' and c - c' are both 2 0 ) ( 
Move pivot M[r]  [c] to M[r1] [c'] by row and column 

interchange; 
Interchange row r with row r' in B; 
if ( M[r'][c'] < 0 ) ( 

M[rl]  = -1 * M[r1];  
B[r1] = -1 * B[r l ] ;  

1 
for ( row = ro to n ) ( 

if ( TOW # r' and M[row][c'] # 0 ( 
u = -(M[row][c'] /M[rl][c ']);  
M[row] = M[row] + u * M[r l ] ;  



/* 2. Find a solution besides M[r' : n] .  It must be a 
nonnegative combination of M[ro : r' - l][co : m ]  */ 

Find k,,, . . . , k,t-1 2 0 such that 
k,, M [ro] [c' : m ]  + . - + k , ~  M [r' - I ]  [c' : m] 2 0; 

i f  ( there exists a nontrivial solution, say k, > 0 ) ( 
M[T]  = k r o M [ ~ O ]  + . . . + krt-lM[r' - 11; 
NoMoreSoln = false; 

) else /* M [r' : n]  are the only solutions */ 
NoMoreSoln = t rue;  

/* 3. Make M[ro : r ,  - l ] [ c o :  m ]  2 0 */ 
i f  ( NoMoreSoln ) { /* Move solutions M[r' : n]  to M[ro : r ,  - 11 */ 

for ( r  = r' t o n )  
Interchange rows r and ro + r - r' in M and B ;  

r ,  = ro + 71 - r' + 1; 
else /* Use row addition to find more solutions */ 

r ,  = n + l ;  
for ( col = c' to m ) 

i f  ( there exists M [row] [col] < 0 such that row 2 ro ) 
i f  ( there exists M [r] [col] > 0 such that r 2 ro ) 

for ( row = ro to r ,  - 1 ) 
i f  ( M [row] [col] < 0 ) ( 

u = [(- M [row] [col]/M [r] [col])1 ; 
M[row] = M[row] + u * M[r] ;  
B[row] = B[row] + u * B[r] ;  

else 
for ( row = r ,  - 1 to ro step -1 ) 

i f  ( M[row][col] < 0 ( 
rn = r n -  1; 
Interchange M [row] with M[r,]; 
Interchange B [row] with B [r,] ; 

) 

/* 4. Make M[ro : rn - 1][1 : co - I ]  2 0 */ 
for ( row = ro to r ,  - 1 ) 

for ( col = 1 to co - 1 ) 
i f  ( M [row] [col] < 0 { 

Pick an r such that M[r][col] > 0 and r < ro; 
u = [(-M[row][col]/M[r][col])l; 
M[row] = M[row] + u * M[r] ;  
B[row] = B[row] + u * B[r] ;  

1 



992 APPENDIX B. FINDING LINEARLY INDEPENDENT SOLUTIONS 

/* 5. If necessary, repeat with rows M[r,  : n]  */ 
if ( (NoMoreSoln or r, > n or r ,  == ro )  C 

Remove rows r ,  to n from B; 
return B; 

3 
else C 

c, = m + 1 ;  
for ( col = rn to 1 step -1 ) 

if ( there is no M[r][col] > 0 such that r < r ,  C 
Cn = e n -  1; 
Interchange column col with c, in M ;  

3 
To  = T n ;  

Co  = cn; 
3 



Index 

Abstract syntax tree 
See Syntax tree 

Abu-Sufah, W. 900 
Acceptance 149 
Accepting state 

See Final state 
Access link 434, 445-449 
Action 58-59, 249, 327 
Activation record 433-452 
Activation tree 430-433 
Actual parameter 33, 434, 942 
Acyclic call string 910 
Acyclic path 667 
Acyclic test 821-822 
Ada 391 
Address 364, 374 
Address descriptor 543, 545-547 
Address space 427 
Advancing edge 661 
Affine array access 781,801-804,815- 

826 
Affine expression 687, 770 
Affine partitioning 781 
Affine space partition 830-838 
Affine transformation 778-782,846- 

851 
Aho, A. V. 189-190, 301, 579-580 
Aho-Corasick algorithm 138-140 
Algebraic identities 536, 552 
Alias 35, 713, 903, 917, 933 
Alignment 374, 428 
Allen, F. E. 704, 899-900, 962 
Allen, R. 900 
Allocation, of memory 453 

Alpha 703 
Alphabet 117 
Ambiguous grammar 47, 203-204, 

210-212,255,278-283,291- 
294 

Amdahl's law 774 
Analysis 4 
Ancestor 46 
Andersen, L. 962 
Annotated parse tree 54 
Anticipated expression 645-648,653 
Antidependence 711, 816 
Antisymmetry 619 
Antlr 300, 302 
Architecture 19-22 
Arithmetic expression 49-50? 68-69? 

378-381, 971-974 
Array 373-375, 381-384, 537-539, 

541,584,712-713,770, 920 
See also Affine array access 

Array contraction 884-887 
ASCII 117 
Assembler 3 
Assembly language 13, 508 
Associativity 48, 122, 279-281, 293, 

619 
Atom 921 
Attribute 54, 112 

See also Inherited attribute, Main 
attribute, Synthesized at- 
tribute 

Attribute grammar 306 
Augmented grammar 243 
Auslander, M. A. 580 
Auto-increment 739 
Automaton 147 



INDEX 

See also Deterministic finite au- 
tomaton, LR(0) automaton, 
Nondeterministic finite au- 
tomaton 

Available expression 610-615, 648- 
649, 653 

Avots, D. 962-963 

Back edge 662,664-665 
Back end 4, 357 
Backpat ching 4 10-4 1 7 
Backus, J.  W. 300-301 
Backus-Naur form 

See BNF 
Backward flow 610, 615, 618, 627, 

669 
Baker, H. G. Jr. 502 
Baker's algorithm 475-476, 482 
Ball, T. 962 
Banerjee, U. 900 
Banning, J .  P. 962 
Barth, J .  M. 962 
Base address 381 
Base register 762 
Basic block 525-541, 597, 600-601, 

721-726 
Basic type 371 
Bauer, F. L. 354-355 
BDD 951-958 
Bddbddb 961 
Bergin, T. J .  38 
Berndl, M. 961-962 
Bernstein, D. 766-767 
Best-fit 458 
Big-oh 159 
Binary alphabet 117 
Binary decision diagram 

See BDD 
Binary translation 22 
Binning, of chunks 458 
Birman, A. 301 
Bison 300 
Block 29, 86-87,95 

See also Basic block 

Block structure 
See Static scope 

Blocking 770-771,785-787,877-880, 
888 

BNF 
See Context-free grammar 

Body 43,197, 923 
Body region 673 
Boolean expression 399-400, 403- 

409,411-413,974-977 
Bottom element 619, 622 
Bottom-up parser 233-240 

See also LR parser, Shift-reduce 
parser 

Boundary condition 615 
Boundary tag 459 
Bounds checking 19, 24, 920-921 
Bounimova, E. 962 
Branch 

See Jump 
Branch-and-bound 824-825 
Break-statement 416-417 
Brooker, R. A. 354 
Bryant, R. E. 961-962 
Buffer 115-117 
Buffer overflow 918, 920-921 
Burke, M. 900 
Bus 772-773 
Bush, W. R. 962-963 
Bytecode 2 

C 13, 18, 25, 28-29, 381, 498, 903, 
934 

Cache 20, 454-455, 457, 772, 783- 
785 

Cache interference 788 
Cadar, C. 963 
Call 365,423-424,467,518-522,539, 

541 
Call graph 904-906,943-944 
Call site 904, 950 
Call string 908-910, 946-949 
Callahan, D. 961, 963 
Call-by-name 35 



INDEX 

Call-by-reference 34 
Call-by-value 34 
Calling sequence 436-438 
Canonical derivation 

See Rightmost derivation 
Canonical LR parser 259, 265-266, 

283 
Canonical LR(1) set of items 260- 

264 
Canonical LR(0) set of items 243, 

247 
Cantor, D. C. 300-301 
Carbin, M. 963 
Case sensitivity 125 
CFG 

See Grammar 
Chaitin, G. J. 580 
Chandra, A. K. 580 
Character class 123, 126 
Charles, P. 900 
Chelf, B. 963 
Chen, S. 766-767,899, 901 
Cheney, C. J. 502-503 
Cheney's algorithm 479-482 
Cheong, G. I. 901 
Child 46 
Chomsky, N. 300-301 
Chomsky Normal Form 232, 300 
Chou, A. 963 
Chow, F. 579-580 
Chunk 457-459 
Church, A. 502-503 
Circular dependency 307 
CISC 21, 507-508 
Class 33, 376 
Class variable 25-26 
Clock 708 
Cloning 910-9 1 1 
Closure 119,121-122,243-245,261- 

262 
See also Positive closure 

Closure, of transfer functions 679 
Coalescing, of chunks 459-460 
Cocke, J. 301, 579-580, 704, 900 

Cocke-Younger-Kasami algorithm 232, 
301 

Code generation 10-11,505-581,707- 
767 

See also Scheduling 
Code motion 592 

See also Downward code mo- 
tion, Loop-invariant expres- 
sion, Partial redundancy elim- 
ination, Upward code mo- 
t ion 

Code optimization 5, 10, 15-19,368, 
583-705, 769-963 

Code scheduling 
See Scheduling 

Coercion 99, 388-389 
Coffman, E. G. 900-901 
Coherent cache protocol 772-773 
Collins, G. E. 503 
Coloring 556-557 
Column-major order 382, 785 
Comment 77 
Common subexpression 533-535,588- 

590, 611, 639-641 
Communication 828, 881-882, 894 
Commutativity 122, 619 
Compile time 25 
Complex instruction-set computer 

See CISC 
Composition 624, 678, 693 
Computer architecture 

See Architecture 
Concatenation 119, 121-122 
Concurrent garbage collection 495- 

497 
Conditional jump 513, 527 
Configuration 249 
Conflict 144, 565 

See also Reduce-reduce conflict, 
Shift -reduce conflict 

Conservative data-flow analysis 603 
Constant 78-79 
Constant folding 536, 632-637 
Const ant propagation 

See Constant folding 



INDEX 

Constraint 
See Control-dependence constraint, 

Data dependence, Resource 
constraint 

Context sensitivity 906-908,945-951 
Context-free grammar 

See Grammar 
Context-free language 200,215-216 
Context-sensitive analysis 906-907, 

945-950 
Contiguous evauation 574 
Continue-statement 416-41 7 
Control equivalence 728 
Control flow 399-409,413-417, 525 
Control link 434 
Control-dependence constraint 710, 

716-717 
Control-flow equation 600, 605 
Convex polyhedron 789-790, 795- 

796 
Cook, B. 962 
Cooper, K. D. 580, 963 
Copy propagation 590-591 
Copy statement 544, 937 
Copying garbage collector 478-482, 

488, 497-498 
Corasick, M. J. 189-190 
Cousot, P. 704 
Cousot, R. 704 
C++ 13, 18, 34, 498 
Critical cycle 758 
Critical edge 643 
Critical path 725 
Cross edge 662 
CUP 300, 302 
Cutset 645 
Cyclic garbage 488 
CYK algorithm 

See Cocke-Younger-Kasami al- 
gorit hm 

Cytron, R. 704, 900 

DAG 359-362,533-541, 951 
Dain, J. 300-301 

Dalton, M. 962 
Dangling else 210-212, 281-283 
Dangling pointer 461 
Dantzig, G. 900 
Das, M. 961, 963 
Data abstraction 18 
Data dependence 71 1-715,732,747- 

749,771,781-782,804-805, 
815-826 

See also Antidependence, Out- 
put dependence, True de- 
pendence 

Data locality 891-892 
See also Locality 

Data reuse 804-815, 887-888 
Data space 779-780 
Data-dependence graph 722-723 
Data-flow analysis 18, 23, 597-705, 

921 
Data-flow analysis framework 618 
Datalog 921-933 
Datalog program 923 
Davidson, E. S. 767 
Dead code 533, 535, 550, 591-592 
Dead state 172, 183 
Dead variable 608 
Deallocation, of memory 453, 460- 

463 
Declaration 32, 373, 376 
Declarative language 13 
Decode 708 
Def 609 
Definition 32 
Definition, of a variable 601 
Dependency graph 310-312 
Depth, of a flow graph 665 
Depth-first order 660 
Depth-first search 57 
Depth-first spanning tree 660 
Dereferencing 46 1 
DeRemer, F. 300-301 
Derivation 44-46, 199-202 

See also Leftmost derivation, Right- 
most derivation 

Descendant 46 



INDEX 

Deterministic finite automaton 149- 
156,164-166,170-186,206 

DFA 
See Deterministic finite automa- 

ton 
Dijkstra, E. W. 502-503 
Diophantine equation 818-820 
Directed acyclic graph 

See DAG 
Direct-mapped cache 457, 788 
Display 449-451 
Distributive framework 625,635-636 
Distributivity 122 
Do-across loop 743-745 
Do-all loop 738 
Domain, of a data-flow analysis 599, 

615 
Domain, of a relation 954 
Dominator 656-659, 672, 728 
Dominator tree 657 
Donnelly, C. 301 
Downward code motion 731-732 
Dumitran, D. 963 
Dynamic access 816 
Dynamic loading 944 
Dynamic policy 25 
Dynamic programming 573-577 

See also Cocke-Younger-Kasami 
algorithm 

Dynamic RAM 456 
Dynamic scheduler 719, 737 
Dynamic scope 31-33 
Dynamic storage 429 

See also Heap, Run-time stack 

Earley, J. 301 
Earliest expression 649-650, 654 
Eaves, B. C. 900 
EDB 

See Extensional database pred- 
icate 

Edge 
See Advancing edge, Back edge, 

Critical edge, Cross edge, 

Retreating edge 
Emami, M. 961, 963 
Empty string 44, 118, 121 
Engler, D. 963 
Entry node 531, 605 
Environment 26-28 
Epilog 742 
€ 

See Empty string 
€-free grammar 232 
c-production 63, 65-66 
Eqn 331 
Equivalence-based analysis 935 
Error correction 113-114, 192-196, 

228-231 
Error production 196 
Error recovery 283-284, 295-297 
Ershov, A. P 426, 579-580, 705 
Ershov number 567-572 
Euclidean algorithm 820 
Execution path 597, 628 
Exit block 677 
Exit node 605 
Expression 94,96-97, 101-105,359, 

568-572 
See also Arithmetic expression, 

Boolean expression, Infix 
expression, Postfix expres- 
sion, Prefix expression, Reg- 
ular expression, Type ex- 
pression 

Extensional database predicate 924 

Fahndrich, M. 961, 963 
Fall-through code 406 
Farkas' lemma 872-875 
Feautrier, P. 900 
Feldrnan, S. I. 426 
Fenichel, R. R. 502-503 
Ferrante, J. 704, 900 
Fetch 708 
Field 377, 584, 935 
Field load 937 
Field store 937 



INDEX 

Fift h-generation language 13 
Final state 130-131, 147, 205 
Finite automaton 

See Automaton 
FIRST 220-222 
First-fit 458 
First-generation language 13 
Firstpos 175-177 
Fischer, C. N. 580 
Fisher, J. A. 766-767 
Fission 848, 850, 854 
Fixedpoint 

See Maximum fixedpoint 
Flex 189-190 
Floating garbage 484 
Flow graph 529-531 

See also Reducible flow graph, 
Super control-flow graph 

Flow sensitivity 933, 936-937 
Floyd, R. W. 300-301 
FOLLOW 220-222 
Followpos 177-1 79 
Formal parameter 33, 942 
Fortran 113, 382, 779, 886 
Fortran H 703 
Forward flow 615, 618, 627, 668 
Fourier-Motzkin algorithm 796-797 
Fourt h-generation language 13 
Fragmentation 457-460 
Framework 

See Data-flow analysis frame- 
work, Distributive frame- 
work, Monotone framework 

Fraser, C. W. 580 
Free chunk 457 
Free list 459-460,471 
Free state 473 
Frege, G. 502-503 
Front end 4, 40-41, 357, 986 
Frontier 

See Yield 
Full redundancy 645 
Fully permutable loops 861, 864- 

867, 875-876 
Fully ranked matrix 808 

Function 29 
See also Procedure 

Function call 
See Call 

Function type 371,423 
Functional language 443 
Fusion 848, 850 

Ganapathi, M. 579-580 
Gao, G. 902 
Garbage collection 25, 430,463-499 

See also Mark-and-compact , Mark- 
and-sweep, Short-pause garbage 
collection 

GCD 818-820 
Gear, C. W. 705 
Gen 603,611 
Generational garbage collection 483, 

488-489 
Gen-kill form 603 
Geschke, C. M. 705 
Ghiya, R. 961, 963 
Gibson, R. G. 38 
Glaeser, C. D. 767 
Glanville, R. S. 579-580 
Global code optimization 

See Code optimization 
Global variable 442 
GNU 38,426 
Gosling, J. 426 
GOT0 246, 249, 261 
Graham, S. L. 579-580 
Grammar 42-50, 197-199,204-205 

See also Ambiguous grammar, 
Augmented grammar 

Grammar symbol 199 
Granularity 917 
Granularity, of parallelism 773-775 
Graph 

See Call graph, DAG, Data-de- 
pendence graph, Dependency 
graph, Flow graph, Program- 
dependence graph 

Graph coloring 



INDEX 

See Coloring 
Greatest common divisor 

See GCD 
Greatest lower bound 620, 622 
Gross, T. R. 766-767 
Ground atom 921 
Group reuse 806, 811-813 
Grune, D. 302 
Gupta, A. 900-901 

Hallem, S. 963 
Halstead, M. H. 426 
Handle 235-236 
Hanson, D. R. 580 
Hardware register renaming 714 
Hardware synthesis 22 
Head 42, 197, 923 
Header 665, 672 
Heap 428-430,452-463,518, 935 
Hecht, M. S. 705 
Height, of a semilattice 623, 626, 

628 
Heintze, N, 961, 963 
Hendren, L. J. 961-963 
Hennessy, J. L. 38, 579-580, 766- 

767, 899, 901 
Hewitt, C. 502-503 
Hierarchical reduction 761-762 
Hierarchical time 857-859 
Higher-order function 444 
Hoare, C. A. R. 302 
Hobbs, S. 0 .  705 
Hole 457 
Hopcroft, J. E. 189-190, 302 
Hopkins, M. E. 580 
Hudson, R. L. 582-503 
Hudson, S. E. 302 
Huffman, D. A. 189-190 
Huskey, H. D. 426 

IDB 
See Intensional database pred- 

icate 

Ideal solution, to a data-flow prob- 
lem 628-630 

Idempotence 122, 619 
Identifier 28, 79-80 
Identity function 624 
If-statement 401 
Immediate dominator 657-658 
Imperative language 13 
Inclusion-based analysis 935 
Increment instruction 509 
Incremental evaluation 928-930 
Incremental garbage collection 483- 

487 
Incremental translation 

See On-the-fly generation 
Independent variables test 820-821 
Index 365 
Indexed address 513 
Indirect address 513 
Indirect triples 368-369 
Induction variable 592-596,687-688 
Infix expression 40, 52-53 
Ingerman, P. Z. 302 
Inheritance 18 
Inherited attribute 55,304-305,307 
Initial state 

See Start state 
Initialization 615 
Initiation interval 745 
Iulining 903-904, 9 14 
Input buffering 

See Buffer 
Instruction pipeline 708-709 

See also Software pipelining 
Integer linear programming 817-825 
Intensional database predicate 924 
Interleaving 887-890 
Intermediate code 9, 91-105, 357- 

426, 507, 971-981 
Interpreter 2 
Interprocedural analysis 713, 903- 

964 
Interrupt 526 
Intersection 612-613, 615, 620, 650 
Intraprocedural analysis 903 



INDEX 

Irons, E. T. 354 
Item 242-243 

See also Kernel item, Set of items, 
Valid item 

Iteration space 779-780, 788-799 
Iterative data-flow algorithm 605- 

607, 610, 614, 626-628 

J 

Jacobs, C. J .  H. 302 
Java 2, 13, 18-19, 25, 34, 76, 381, 

903, 934, 944 
Java virtual machine 507-508 
Jazayeri, M. 354 
JFlex 189-190 
Johnson, R. K. 705 
Johnson, S. C. 300-302, 355, 426, 

502-503,579-580 
Join 621, 955 
Jump 513,527, 551-552 
Jumping code 408, 974-977 
Just-in-time compilation 508 
JVM 

See Java virtual machine 

Kam, J .  B. 705 
Kasami, T. 301-302, 705 
Kennedy, K. 899-900,963 
Kernel 777 
Kernel item 245, 272-273 
Kernighan, B. W. 189-190 
Keyword 50-51, 79-80, 132-133 
Kill 601, 603, 611 
Killdall, G. 704-705 
Kleene closure 

See Closure 
Kleene, S. C. 189-190 
Knoop, J .  705 
Knuth, D. E. 189-190,300,302,354- 

355, 502-503 
Knuth-Morris-Pratt algorithm 136- 

138 
Korenjak, A. J .  300, 302 

Kosaraju, S. R. 705 
K u c ~ ,  D. J .  766-767,899-901 
Kung, H. T. 901 

Label 46, 364, 366 
LALR parser 259,266-275,283,287 
Lam, M. S. 767, 899-902, 961-964 
Lamport, L. 503, 766-767, 899-901 
Language 44, 118 

See also Java, Source language, 
Target language 

Lastpos 175-177 
Latest expression 649, 654 
Lattice 621 

See also Semilattice 
Lattice diagram 621-622 
L-attributed definition 313-314,331- 

352 
Law 

See Associativity, Commutativ- 
ity, Distributivity, Idempo- 
tence 

Lawrie, D. H. 900 
Lazy code motion 

See Partial redundancy elimi- 
nation 

Lea 458 
Leader 526-527 
Leaf 45-46 
Leaf region 673 
Least upper bound 621 
LeBlanc, R. J .  580 
Left side 

See Head 
Left-associativity 48 
Left-factoring 2 14-2 15 
Leftmost derivation 201 
Left-recursion 67-68, 71, 212-214, 

328-331 
Left-sentential form 201 
Leiserson, C. E. 901 
Lesk, M. E. 189-190 
Leu, T. 963 
Levin, V. 962 



I N D E X  

Lewis, P. M. I1 300, 302, 355 
Lex 126-127,140-145,166-167,189- 

190, 294-295 
Lexeme 111 
Lexical analyzer 5-7, 41, 76-84, 86, 

109-190,209-210,294-295, 
967-969 

Lexical error 194 
Lexical scope 

See Static scope 
Lexicographic order 79 1 
Liao, S.-W. 901 
Lichtenber, J. 962 
Lieberman, H. 502-503 
Lim, A. W. 901 
Linear programming 

See Integer linear programming 
List scheduling 723-726 
Literal 922 
Live variable 528-529,608-610,615 
Livshits, V. B. 962-963 
LL grammar 223 
LL parser 

See Predictive parser 
LLgen 300 
Load instruction 512 
Loader 3 
Local code optimization 

See Basic block 
Locality 455, 769 

See also Spatial locality, Tem- 
poral locality 

Location 26-28 
Logical address 427 
Logical error 194 
Lohtak, 0. 962 
Lookahead 78,144-145,171-172,272- 

275 
Lookahead-LR parser 

See LALR parser 
Loop 531, 554, 556, 655-656, 775 

See also Do-all loop, Fully per- 
mutable loops, Natural loop 

Loop fission 
See Fission 

Loop fusion 
See Fusion 

Loop nest 780, 791, 797, 862 
Loop region 674 
Loop reversal 

See Reversal 
Loop unrolling 735, 740-741, 743 
Loop-invariant expression 641-642 
Loop-residue test 822-823 
Loveman, D. B. 901 
Lowry, E. S. 579-580, 705 
LR(0) automaton 243,247-248,252 
LR parser 53-252,275-277,325,348- 

352 
See also Canonical LR parser, 

LALR parser, SLR parser 
L-value 26, 98 

See also Location 

Machine language 508 
Macro 13 
Main attribute 341 
Mark-and-compact 476-482 
Mark-and-sweep 471-476, 482 
Marker nonterminal 349 
Markstein, P. W. 580 
Martin, A. J. 503 
Martin, M. C. 963 
Matrix multiplication 782-788 
Maximum fixedpoint 626-628,630- 

631 
Maydan, D. E. 899, 901 
McArthur, R. 426 
McCarthy, J. 189-190, 502-503 
McClure, R. M. 302 
McCullough, W. S. 189-190 
McGarvey, C. 962 
McKellar, A. C. 900-901 
McNaughton, R. 189-190 
McNaughton-Yarnada-Thompson al- 

gorithm 159-161 
Medlock, C. W. 579-580, 705 
Meet 605, 615, 618-619, 622-623, 

633, 678, 695 



INDEX 

Meet-over-paths solution 629-631 N 
Memaization 823 
Memory 20, 772-773 

See also Heap, Physical mem- 
ory, Storage, Virtual mem- 
ory 

Memory hierarchy 20, 454-455 
Memory leak 25, 461 
Message-passing machine 773, 894 
META 300 
Metal 918, 962 
Method 29 

See also Procedure, Virtual method 
Method call 

See Call 
Method invocation 33 
MGU 

See Most general unifier 
Milanova, A. 962-963 
Milner, R. 426 
Minimization, of states 180-185 
Minsky, M. 503 
ML 387, 443-445 
Mock, 0 .  426 
Modular resource-reservation table 

746-747, 758 
Modular variable expansion 758-761 
Monotone framework 624-628, 635 
Moore, E. F. 189-190 
MOP 

See Meet-over-paths solution 
Morel, E. 705 
 orris, D. 354 
Morris, J. H. 189-190 
Mbss, J .  E. B. 502-503 
Most general unifier 393 

See also Unification 
Motwani, R. 189-190,302 
Mowry, T. C. 900-901 
Multiprocessor 772-773, 895 

See also SIMD, Single-program 
multiple data 

Muraoka, Y. 766-767,899, 901 
Mptator 464 

NAA 690 
NAC 633 
Name 26-28 
Narrowing 388-389 
Natural loop 667, 673 
Naur, P. 300, 302 
Neighborhood compaction 736 
Neliac 425 
Nested procedure declarations 442- 

445 
Next-fit 458-459 
NFA 

See Nondeterministic finite au- 
tomaton 

Node 46 
Node merging 953 
Nondeterministic finite automaton 

147-148,152-175,205,257 
Nonreducible flow graph 

See Reducible flow graph 
Nonterminal 42-43, 45, 197-198 

See also Marker nonterminal 
Nonuniform memory access 773 
Null space 808-809 
Nullable 175-1 77 
Nullity 808 
NUMA 

See Nonuniform memory access 

Object code 358 
See also Code generation 

Object creation 937 
Object ownership 462 
Object program 427-428 
Object sensitivity 950 
Ob ject-oriented language 

See C++, Java 
Offset 377-378 
Ogden, W. F. 354 
Olsztyn, J. 426 
Ondrusek, B. 962 



INDEX 

On-the-fly generation 340-343,380- 
381 

Optimization 
See Code optimization 

Ordered BDD 952 
Output dependence 711, 816 
Overloading 99, 390-391 

Paakki, J. 354-355 
Padua, D. A. 902 
Panic-mode garbage collection 492- 

493 
Panic-mode recovery 195-196, 228- 

230, 283-284 
Panini 300 
Parafrase 899 
Parallel garbage collection 495-497 
Parallelism 19-20, 707-902, 917 
Parameter 422 

See also Actual parameter, For- 
mal parameter, Procedure 
parameter 

Parameter passing 33-35, 365 
Parametric polymorphism 391 

See also Polymorphism 
Parent 46 
Parr, T.  302 
Parse tree 45-48, 201-204 

See also Annotated parse tree 
Parser 8, 41, 45, 60-61, 110-111, 

191-302,981-986 
See also Bottom-up parser, Top- 

down parser 
Parser generator 

See Antlr, Bison, CUP, LLgen, 
Yacc 

Parser state 241-242 
See also Set of items 

Partial garbage collection 483, 487- 
494 

Partial order 619-621, 623 
Partial redundancy elimination 639- 

655 
Partially dead variable 655 

Partially ordered set 
See Poset 

Pass 11 
Patel, J. H. 767 
Path 

See Acyclic path, Critical path, 
Execution path, Meet-over- 
paths solution, Weight, of 
a path 

Pattern 111 
Pattern matching, of trees 563-567 
Patterson, D. A. 38, 579-580, 766- 

767, 899, 901 
Pause time 465 

See also Short-pause garbage col- 
lection 

P-code 386 
PDG 

See Program-dependence graph 
Peephole optimization 549-552 
Pelegri-Llopart , E. 580 
Permuation 849-850 
Peterson, W. W. 705 
PFC 899 
Phase I1  
Phoenix 38 
Phrase-level recovery 196, 231 
Physical address 427 
Physical memory 454-455 
Pierce, B. C. 426 
Pincus, J. D. 962-963 
Pipeline 

See Instruction pipeline, Pipelin- 
ing, Software pipelining 

Pipelining 861-884 
Pitts, W. 189-190 
Pnueli, A. 964 
Pointer 365, 373, 514, 539, 935 

See also Dangling pointer, Stack 
pointer 

Pointer analysis 713, 903, 917, 933- 
95 1 

Poison bit 718 
Polyhedron 

See Convex polyhedron 



INDEX 

Polymorphism 391-395 
Porterfield, A. 900, 902 
Poset 619 
Positive closure 123 
Post dominator 728 
Postfix expression 40, 53-54 
Postfix translation scheme 324-327 
Postorder traversal 58, 432 

See also Depth-first order 
Postponable expression 646,649,65 1- 

654 
Power set 620 
Pratt, V. R. 189-190 
PRE 

See Partial redundancy elimi- 
nation 

Precedence 48, 121-122, 279-281, 
293-294 

Predecessor 529 
Predicate 921-922 
Predicated execution 718, 761 
Predictive parser 64-68,222-231,343- 

348 
Prefetch 457 
Prefetching 718, 896 
Prefix 119, 918, 962 
Prefix expression 327 
Preorder traversal 58, 432 
Preprocessor 3 
Prioritized topological order 725-726 
Private 31 
Privatizable variable 758 
Procedure 29, 422-424 
Procedure call 

See Call 
Procedure parameter 448-449 
Processor space 779-781, 838-841 
Product lattice 622-623 
Production 42-43, 45, 197, 199 

See also Error production 
Proebsting, T. A. 580 
Program-dependence graph 854-857 
Programming language 12-14, 25- 

35 

See also Ada, C, C++, Fortran, 
Java, ML 

Projection 955 
Prolog 742 
Prosser, R. T. 705 
Protected 31 
Pseudoregister 713 
PTRAN 900 
Public 31 
Pugh, W. 899, 902 
Purify 25, 462 

Qian, F. 962 
Quadruple 366-368 
Quicksort 431-432, 585 

Rabin, M. 0. 189-190 
Rajamani, S. K. 962 
Randell, B. 502-503 
Rank, of a matrix 807-809 
Rau, B. R. 767 
Reaching definitions 601-608, 615 
Read barrier 486 
Record 371, 376-378, 584 
Recursive descent 338-343 
Recursive type 372 
Recursive-descent parser 64,219-222 
Reduced instruction-set computer 

See RISC 
Reduce-reduce conflict 238-240,293 
Reducible flow graph 662,664,673- 

677, 684-685 
Reduction 234, 324 
Reduction in strength 536,552, 592- 

596 
Reference 

See Pointer 
Reference count 462-463,466,468- 

470 
Reference variable 34, 686-689 
Reflection 944-945 
Reflexivity 619 



INDEX 

Region 672-686, 694-699, 733-734, Root 46 
911 Root set 466-467,488 

Region-based allocation 463 Rosen, B. K. 704 
Register 18, 20, 454-455, 542-543, Rosenkrantz, D. J. 355 

714-715 Rotating register file 762 
See also Pseudoregister, Rot at- Rothberg, E. E. 900-901 

ing register file Rounds, W. C. 354 
Register allocation 510-512,553-557, Rountev, A. 962-963 

570-572,716, 743 ROW 
Register assignment 510, 556 See Tuple 
Register descriptor 543, 545-547 Row-major order 382, 785 
Register pair 510 Roy, D. 963 
Register renaming Rule 922-923 

See Hardware register renam- Run time 25 
ing Run-time environment 427 

Regular definition 123 Run-time stack 428-451, 468 
Regular expression 116-122,159-163, Russell, L. J.  EdB-503 

179-180, 189, 210 Ruwase, 0. 962-963 
Rehof, J. 961, 963 R-value 26, 98 
Re-indexing 848, 850 Ryder, B. G. 962-963 
Relation 922, 954 
Relative address 371, 373, 381 S 

Remembered set 491 Sadgupta, S. 767 
Renvoise, C. 705 Safety 
Reserved word See Conservative data-flow anal- 

See Keyword ysis 
Resource constraint 71 1 Samelson, K. 354-355 
Resource-reservation table 719-720 Sarkar, V. 902 

See also Modular resource-reservation S-attributed definition 306, 312-313, 
table 324 

Retreating edge 661, 664-665 Scaling 848, 850 
Return 365, 467, 518-522, 906, 942 Scanned state 474 
Return value 434 Scanning 110 
Reuse See also Lexical analyzer 

See Data reuse SCC 
Reversal 849-850 See Strongly connected compo- 
Right side nent 

See Body Scheduling 710-71 1, 716 
Right-associativity 48 Scholten, C. S. 503 
Rightmost derivation 201 Schorre, D. V. 302 
Right-sentential form 201, 256 Schwartz, J. T. 579, 581, 704 
Rinard, M. 962-963 Scope 86 
RISC 21, 507-508 Scott, D. 189-190 
Ritchie, D. M. 426, 502-503 Scott, M. L. 38 
Rodeh, M. 766-767 Scripting language 13-14 



1006 INDEX 

SDD 
See 

SDT 
S ynt ax-directed definition 

See Synt ax-directed translation 
SDV 962 
Secondary storage 20 
Second-generat ion language 13 
Sedgewick, R. 585 
Self reuse 806-811 
Semantic analysis 8-9 
Semantic error 194 
Semantic rule 

See Syntax-directed definition 
Semantics 40 
Semilattice 618-623 
Sensitivity 

See Context sensitivity, Flow sen- 
sitivity 

Sentence 200 
Sentential form 200 

See also Left-sentential form, Right- 
sentential form 

Sentinel 116 
Set associativity 457 
Set of items 243-246, 257 

See also Canonical LR(0) set 
of items, Canonical LR(1) 
set of items 

Sethi, R. 38, 579, 581 
Shannon, C. 189-190 
Sharir, M. 964 
Shift-reduce conflict 238-240, 293 
Shift-reduce parser 236-240 
Short-circuiting 953 
Short-pause garbage collection 483- 

494 
Shostak, R. 902 
Side effect 306, 314-316, 727 
Sielaff, D. J. 962-963 
Signature 361 
SIMD 21, 895-896 
Simple syntax-directed definition 56 
Simulation 23 
Single instruction, multiple data 

See SIMD 

Single production 232 
Single-program multiple data 776 
Skewing 849-850 
SLAM 962 
SLR parser 252-257, 283 
SMP 

See Symmetric multiprocessor 
Software pipelining 738-763, 895 
Software productivity 23-25 
Software vulnerability 

See Vulnerability, of software 
SOR 

See Successive over-relaxation 
Sound type system 387 
Source language 1 
Space 

See Data space, Iteration space, 
Null space, Processor space 

Space-partition constraint 83 1-838 
Spatial locality 455-457, 465, 777, 

884 
Spatial reuse 806, 809-811 
Speculative execution 708, 717-719 
Spilling, of registers 716 
SPMD 

See Single-program multiple data 
SQL 22-23 
SQL injection 918-919 
SSA 

See Static single-assignment form 
Stable set 488 
Stack 325, 518, 520 

See also Run-time stack 
Stack machine 507 
Stack pointer 437 
Stallman, R. 301 
Start state 131, 147, 205 
Start symbol 43, 45, 197 
State 147, 205 

See also Dead state, Minimiza- 
tion, of states, Parser state 

State (of the program store) 26-28 
Statement 93-94? 100-101,978-981 

See also Break-statement , Continue- 
statement, If-statement , Switch- 



INDEX 

statement, While-statement 
Static access 816 
Static allocation 518, 524 
Static checking 97-98, 357 

See also Type checking 
Static policy 25 
Static RAM 456 
Static scope 25, 28-31, 442 

See also Scope 
Static single-assignment form 369- 

370 
Static storage 429, 442 
Steady state 742 
Stearns, R. E. 300, 302, 355 
Steel, T. 426 
Steensgaard, B. 961, 964 
Steffens, E. F. M. 503 
Storage 

See Dynamic storage, Static stor- 
age 

Storage layout 373 
Storage-related dependence 

See Antidependence, Output de- 
pendence 

Store instruction 512 
Stratified Datalog program 930-931 
Strength reduction 

See Reduction in strength 
String 118-119, 373 
Strong, J. 426 
Strongly connected component 751, 

859 
Strongly typed language 387 
Structure 

See Class, Record 
Subgoal 923 
Subsequence 119 
Subset construction 153-154 
Substring 119 
Successive over-relaxation 863 
Successor 529 
Suffix 119 
Summary-based analysis 91 1-914 
Super control-flow graph 906 
Superscalar machine 710 

Switch-statement 418-421 
Symbol table 4-5, 11, 85-91, 423, 

970-971 
Symbolic analysis 686-699 
Symbolic constant 793 
Symbolic map 690 
Symmetric multiprocessor 772 
Synchronization 828, 832, 853-854, 

880-882 
Syntax 40 

See also Grammar 
Syntax analysis 

See Parser 
Systax error 194 
Syntax tree 41, 69-70, 92-93, 318- 

321, 358, 367, 981-986 
Syntax-directed definition 54-56,304- 

316 
Syntax-directed translation 40, 57- 

60, 324-352 
Synthesis 4 
Synthesized attribute 54-56, 304- 

305 

T 

Table 
See Relation, Resource-reservation 

table, Symbol table, Tran- 
sition table 

Tail recursion 73 
Takizuka, T. 767 
Tamura, E. 767 
Tardieu, 0 .  961, 963 
Target code 

See Object code 
Target language 1 
Target set 488 
Task parallelism 776 
Temporal locality 455-457,777,884- 

885 
Temporal reuse 806 
Terminal 42-43,45, 197-198, 305 
TeX 331 
Third-generation language 13 
Thompson, K. 189-190 



INDEX 

Three-address code 42, 99, 363-369 
Tick 

See Clock 
Tiling 560-563 
Time-partition constraint 868-875, 

989-992 
Tjiang, S. W. K. 579-580 
TMG 300 
Token 41, 43, 76, 111 
Tokura, N. 705 
Tokuro, M. 767 
Top element 619, 622 
Top-down parser 61-68, 21 7-233 

See also Predictive parser, Recursive- 
descent parser 

Topological order 3 12 
See also Prioritized topological 

order 
Torczon, L. 580, 963 
Towle, R. A. 902 
Trace-based garbage collection 470- 

471 
See also Mark-and-compact, Mark- 

and-sweep 
Train algorithm 483, 490-493 
Transfer barrier 486 
Transfer function 599-600,603-604, 

615,623-624,629,634,676- 
679, 691-693 

Transition 205 
Transition diagram 130-131, 147- 

148 
See also Automaton 

Transition function 147, 150 
Transition table 148-149, 185-186 
Transitivity 619-620 
Traversal 56-57 

See also Depth-first search, Pos- 
torder traversal, Preorder 
traversal 

Tree 46, 56 
Tree rewriting 558-567 
Triple 367-368 
Tritter, A. 426 
True dependence 711, 815 

T1-T2 reduction 677 
Tuple 954 
Type 938 

See also Basic type, Function 
type, Recursive type 

Type checking 24, 98-99, 370, 386- 
398 

Type conversion 388-390 
See also Coercion 

Type equivalence 372-373 
Type expression 371-372,393, 395 
Type inference 387, 391-395 
Type safety 19, 464-465 
Type synthesis 387 
Type variable 391 

Ullman, J. D. 189-190,301-302,579, 
581, 705, 962, 964 

Umanee, N. 962 
UNCOL 425 
UNDEF 633 
Unification 393, 395-398 
Union 119, 121-122, 605, 613, 615, 

620, 650, 955-957 
Unkel, C. 963 
Unreachable code 

See Dead code 
Unreached state 473 
Unsafe Datalog rule 930 
Unsafe language 498 
Unscanned state 474 
Upward code motion 730-732 
Usage count 554-555 
Use 609 
Use before definition 602 
Used expression 649, 653-654 
Used variable 528-529 
Ustuner, A. 962 

Valid item 256 
Value 26-27 
Value-number 360-362, 390 



P96 ' ~ 9 6  'r ' ~ Y Z  
POL ')3: 'd ' Y ~ ~ P V Z  

ZOI-TOC -H 'a ' ~ a s u n o ~  
109-ZOS '3  'r 'UOSI~Y~OA 

TOZ "P-9P PIaFA 
061-681 'H 'VPQ"~A 

PS1 '~62-L82 33eA 

L ~ L  '3 'POOM 

Z06 '668 'a ' ? ? 0 3 ~ ~ u o ~  
206 'P 'IN 'a3IoM 

206-006 '3 'IN ' 3 1 0 ~  
~ Z P  'ZOI '001 'N 'Y?JIM 
10s-zos '8 -d 'UOSIIM 

8SP TUnY3 SsaUJaPIlM 
t L 1  addl e 30 '~?P!M 

P96 '296 'P '"~PIM 
681-881 SU?U~P!M 

8L-LL ' T P ~ 3 e d s  a?!YM 
TOP ?uawa?e?s-a.[!YM 

P96-196 '196 'r 'LaIeYM 
81 '7 '8 '9~IqIaxaM 

SOL '8 '3  'Y~o?su?~M. 
061-681 'P 'd '"~-laqu?aM 

2 2 8 y?ed e $0 '?Y%?~M 
9ZP 'r 'uya9sSaM. 

SOL-POL 'd ' J ~ u S ~ M  
POL 'N 'JAJ ' U V U ~ ~ M  

Z O 1  '001 'H 'JVM 
LL8-9L 8 S U I ? ~ ~ J J ~ A Q M  

OTL 'TZ-61 MITA 
PPG-TP6 

'Pg6 'tT.6-916 'Po6 PoYla" Fn?J?A 
SSP-PSP dJ0"am IQn9"A 

auyy3lem IsnqqA ehler o s ~ e  aas 
auyy3ew Ilen?qA 

LSZ-95 2 xya" aIqeIA 
MITA aaS 

p ~ o ~  uoyq~n~qsuy S u o ~ - d ~ a ~  
uoyssa~dxa pa?led13y?uv aas 

uoyssa~dxa L s n q - d ~ a ~  
968-968 '988 auIY3e" Jo93aA 
OPP-8EP e?eP Y?SuaI-aIq~?J.eh 

uoysuedxa aIqeyJsA JleInpol/y: aas 
uoysuledxa a.[qle?JBA 














