Aho

Lam

Sethi
Ullman

Second
Edition

s1[Idwo)

Compilers

Principles, Techniques, & Tools

* Second Edition
- , b

‘ Alfred V. Aho
Monica S. Lam

Ravi Sethi

Jeffrey D. Ullman

Second Edition

Alfred V. Aho
Columbia University

Monica §. Lam
Stanford University

Ravi Sethi
Avaya

Jeffrey D. Ullman
Stanford University

PEARSCN

Boston San Francisco New York
London Toronto Sydney Tokyo Singapore Madrid
Mexico City Munich Paris Cape Town Hong Kong Montreal

Publisher Greg Tobin

Executive Editor Michael Hirsch
Acquisitions Editor Matt Goldstein
Praject Editor Katherine Harutunian
Associate Managing Editor Jeftrey Holcomb
Cover Designer Joyce Cosentino Wells
Digital Assets Manager Marianne Groth
Media Producer Bethany Tidd
Senior Marketing Manager Michelle Brown
Marketing Assistant Sarah Milmore
Senior Author Support/

Technology Specialist Joe Vetere
Scnior Manufacturing Buyer Carol Melviile
Cover Image Scott Ullman of Strange Tonic Productions

(www strangetomc.com)

Many of the designations nsed by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and Addison-Wesley was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

This interior of this book was composed in LAT:X.

Library of Congress Cataloging-in-Publication Data

Compilers : principles, techniques, and toels / Alfred V. Aho ... [et al.j. -~ 2nd ed.
p. em.

Rev, ¢d. oft Compiiers, principles, techniques, and tools / Alfred V. Aho, Ravi
Sethi, Jeffrey D. Ullman, 1986.

ISBN 0-321-48681-1 (alk. paper)

1. Compilers (Computer programs) 1. Aho, Alfred V. TI. Aho, Alfred V.
Compilers, principles, techniques, and tools,

QA76.76.C65A37 2007

005.4'53--dc22
2006024333

Copyright © 2007 Pearson Fducation, Tnc, All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publisher. Printed in the
United States of America. For information on obtaining permission for use of
material in this work, please submit a written request to Pearson Education,
Inc., Rights and Contracts Department, 75 Arlington Street, Suite 300, Boslon,
MA (2116, fax your request to 617-848-7047, or e-mail at

bttp://www, pearsoned.com/legal/permissions.htm.

23456789 10—-CW—100908 07 06

Preface

In the time since the 1986 edition of this book, the world of compiler design
has changed significantly. Programming languages have cvolved to present new
compilation problems. Computer architectures offer a variety of resources of
which the compiler designer must take advantage. Perhaps most interestingly,
the venerable technology of code optimization has found use outside compilers.
Tt is now used in tools that find bugs in software, and most importantly, find
sccurity holes in existing code. And much of the “front-end” lechnology —
grammars, regular expressions, parsers, and syntax-directed translators -— are
still in wide use.

Thus, our philosophy from previous versions of the book has not changed.
We recognize that few readers will build, or even maintain, a compiler for a
major programming language. Yet the models, theory, and algorithms associ-
ated with a compiler can be applied to & wide range of problems in software
design and software development. We therefore emphasive problems that arc
most commnonly encountered in designing a language processor, regardless of
the source language or target machine.

Use of the Book

It takes at least two quarters or even two semesters to cover all or most of the
material in this book. Tt is common to cover the first half in an undergraduate
course and the second half of the book - stressing code optimization — in
a gecond course at the graduate or mezzanine level. Here is an outline of the
chapters:

Chapter 1 containg motivational material and also presents some background
issues in computer architecture and programming-language principles.

Chapter 2 develops a miniature compiler and introduces many of the impor-
tant concepts, which are then developed in later chapters. The compiler itself
appoears in the appendix.

Chapter 3 covers lexical analysis, regular expressions, finite-state machines, and
scanner-generator tools. This material is fundamental to text-processing of all
SOTtE.

vi PREFACE

Chapter 4 covers the major parsing methods, top-down (recursive-descent, LL)
and bottom-up (LR and its variants).

Chapter 5 introduces the principal ideas in syntax-directed definitions and
syntax-directed translations.

Chapter 6 takes the theory of Chapter 5 and shows how to use it to generate
intermediate code for a typical programming language.

Chapter 7 covers run-iimc environments, especially management of the run-time
stack and garbage collection,

Chapter 8 is on object-code gencration. Il covers construction of basic blocks,
generalion of code from expressions and bagic blocks, and register-allocation
techniques.

Chapter 9 introduces the technology of code optimization, including How graphs,
data-flow frameworks, and iferative algorithms for solving these frameworks.

Chapter 10 covers instruction-level optimization. The emphasis is on the ex-
traction of parallelism from small sequences of instructions and scheduling them
on singlc processors that can do more than one thing at once.

Chapter 11 ialks about larger-scale parallelism detection and exploitation. Here,
the emphasis is on numeric codes that have many tight loops that range over
multidimensional arrays.

Chapter 12 is on interprocedural anaiysis. It covers pointer analysis, aliasing,
and data-flow analysis that takes into account ithe sequence of procedure calls
that reach a given point in the code.

Courses from material in this book have been taught at Columbia, arvard,
and Stanford. At Columbia, a senior/first-year graduate course on program-
ming languages and transiators has been regularly offered using material from
the first eight chapters. A highlight of this course is a scmcester-long project
in which students work in small tcams to create and implement a little lan-
gnage of their own design. The student-created languages have covered diverse
application domains including quantum computation, music synthesis, com-
puter graphics, gaming, matrix operations and many other areas. Students use
compiler-component, generators sich as ANTLR, Lex, and Yace and the syntax-
directed translation techniques discussed in chapiers two and five to build their
compilers. A follow-on graduate course has focused on material in Chapters 9
through 12, emphasizing code generation and optimization for confemporary
machines including network processors and muitiprocessor architectures.

At Stanford, a once-quarter introductory course covers roughly the mate-
rial in Chapters 1 through 8, although there is an introduction to global code
optimization from Chapter 9. The second compiler course covers Chapters 9
through 12, plus the more advanced material on garbage collection from Chap-
ter 7. Students use a locally developed, Java-based system called Joeq for
implementing data-flow analysis algorithms.

PREFACE vil

Prerequisites

The reader should possess some “computer-science sophistication,” including
at least a second course on programming, and courses in data structures and
discrete mathematics, Knowledge of several different programming languages
is useful.

Exercises

The book contains extensive exercises, with some for almost every section, We
indicate harder exerciscs or parts of cxercises with an exclamation point. The
hardest exercises have a double exclamation point.

Gradiance On-Line Homeworks

A feature of the new edition ig that there is an accompanying set of on-line
homeworks using a technology developed by Gradiance Corp. Instructors may
assign these homeworks to their class, or students not enrolled in a class may
enroll in an “ornibus class” that allows them to do the homeworks as a tutorial
(without an instructor-created class). Gradiance questions look like ordinary
questions, but your solutions are sampled. Tf you make an incorrvect choice you
are given specific advice or feedback to help you correct your solution. If your
Instructor periaits, you are allowed to try again, until you get a perfect score.

A subscription to the Gradiance service is offered with all new copies of this
text sold in North America. For more information, visit the Addison-Weslay
web site www. aw. com/gradiance or send email to computing@aw. com.

Support on the World Wide Web

The book’s home page is
dragonbeook.stanford. edu

Here, you will find errata as we learn of them, and backup materials. We hope
to make available the notes for each offering of compiler-related courses as we
teach them, including homeworks, solutions, and exams. We also plan to post
descriptions of important compilers written by their implementers.

Acknowledgements

Cover art is by 8. D. Ullman of Strange Tonic Productions.
Jon Bentley gave us extensive comments on a number of chapters of an
earlicr draft of this book. Helpful comments and crrata were received from:

viii PREFACE

Domenico Bianculli, Peter Bosch, Marcic Buss, Marc Eaddy, Stephen Edwards,
Vibhav Garg, Kim Hazelwood, Gaurav Ke, Wei Li, Mike Smith, Art Stamness,
Krysta Svore, Olivier Tardieu, and Jia Zeng. The help of all these people is
gratefully acknowledged. Remaining errors are ours, of course.

In addition, Monica would like to thank her colleagues on the SUIF com-
piler tcam for an 18year lesson on compiling: Gerald Aigner, Dzintars Avots,
Saman Amarasinghe, Jennifer Anderson, Michael Carbin, Gerald Cheong, Amer
Diwan, Robert French, Anwar Ghuloum, Mary Hall, John Hennessy, David
Heine, Shih-Wei Liao, Amy Lim, Benjamin Livshits, Michael Martin, Dror
Maydan, Todd Mowry, Brian Murphy, Jeffrey Oplinger, Karen Pieper, Mar-
tin Rinard, Olatunji Ruwase, Constantine Sapuntzakis, Patrick Sathyanathan,
Michacl Smith, Steven Tjiang, Chau-Wen Tseng, Christopher Unkel, John
Whaley, Robert Wilson, Christopher Wilson, and Michacl Wolf.

A. V. A., Chatham NJ
M. 8. L., Menlo Park CA
R. §., Far Hills NJ

J. D. U., Stanford CA
June, 2006

Table of Contents

1 Introduction

1.1 Language Processors v i v e
1.1.1 Exercises for Seesion 1.1 0oL
1.2 The Structure of a Compiler
1.2.1 Lexical Analysis
1.2.2 Syntax Analysis o e
1.23 Semantic Analysis oL oL
1.2.4 Intermediate Code Generation
1.2.5 Code Oplimization
1.2.6 Code Generationo
1.2.7 Symbel-Table Management
1.2.8 The Grouping of Phases into Passes
1.2.9 Compiler-Construction Tools
1.3 The Evolution of Programming Languages
1.3.1 The Move to Higher-level Languages
1.3.2 lmpactson Compilers oo 0 oL L
1.3.3 Dxercises for Section 1.3
1.4 The Science of Building a Compiler
1.4.1 Modeling in Compiler Design and Implementation .
1.4.2 The Science of Code Optimization
1.5 Applications of Compiler Technology -
1.5.1 Implementation of High-Level Programming Languages
1.5.2 Optimizations for Computer Architectures
1.5.3 Decsign of New Computer Architectures
1.54 Trogram Translations,...
1.5.,6 Software Productivity Tools
1.6 Programming Language Basics
1.6.1 'The Static/Dynamic Distinetion
1.6.2 Enpvironments and States,
1.6.3 Static Scope and Block Structure L.
1.6.4 Explicit Access Control
1.6.5 Dynamic Scope
1.6.6 Parameter Pagsing Mechanisms

15

TABLE OF CONTENTS

L6.7 Aliasing oL 3
1.6.8 Exercises for Section 1.6 35
17 Summary of Chapter 1. i
1.8 References for Chapter 2. _ 38
A Simple Syntax-Directed Translator 39
21 Introduction. 40
2.2 Syntax Definition L. 42
221 Definition of Grammars, 42
222 Derivations 44
223 ParseTrees e 45
224 Ambiguityo oL T
225 Associativity of Operators 48
2.2.6 Precedenceof Operators 48
2.2.7 Exercises for Section 2.2 Lo L L, 31
2.3 Syntax-Directed Translation a2
231 Postlix Notation 33
2.3.2 Synthesized Attributes 34
2.3.3 Simple Syntax-Directed Definitions a6
234 Tree Traversals a6
2.3.5 Translation Schemes 37
2.3.6 Exerciges for Section 2.3 oL L. 60
24 Parsing e e 60
241 Top-Down Parsing 61
2.4.2 Predictive Parsing 64
243 When 1o Use e-Productions 65
2.4.4 Designing a Predictive Parser 66
2.4.5 Left Recursion 67
246 Excrcisesfor Section 2.4 L. 68
2.5 A Translator for Simple Expressions 68
2.5.1 Abstract and Concrete Syntax, .. 69
2.5.2 Adapting the Translation Scheme o ... L. 70
2.5.3 Procedures for the Nonterminals 72
2.5.4 Simplifying the Translator 73
2.5.5 The Complete Program 74
2.6 Lexical Amalysis 76
2.6.1 Removal of White Space and Comments 77
2.6.2 Reading Ahead 78
263 Constants e e e e e e e e 78
2.6.4 Recognizing Keywords and Identifiers 9
2.6.5 A Lexical Analyzer 81
2.6.6 Exercises for Section 2.6 oL 84
2.7 Symhol Tables . . - oL 83
2.7.1 Symbol Table Per Scope 86

2.7.2 The Useof Symbol Tables &0

TABLE OF CONTENTS xi

2.8 Intermediate Code Generation 91
2.8.1 Two Kinds of Intermediate Representations ul
2.8.2 Construction of Syntax Trees 92
283 Static Checking Lo 97
284 Three-Address Code oo oo 99
985 Exercises for Section 2.8o 105

2.9 Summary of Chapter 2.o 105

3 Lexical Analysis 109

3.1 The Role of the Lexical Analyzer . . . 0 . . 000000 109
3.1.1 Lexical Analysis Versus Parsing 110
3.1.2 Tokens, Patterns, and Lexemes 111
3.1.3 Attributes for Tokens oL 112
314 TLexical Errors. o .« oo 113
3.1.5 Bxercises for Section 3.1 114

32 Input Buffering 115
321 BufferPaivs o 115
3.22 Sentinels.o 116

3.3 Specification of Tokenso oL 116
3.3.1 Strings and Languages 117
3.3.2 Operations on Languages 119
3.33 Regular Expressions L. 120
334 Regular Definitions oL 123
3.3.5 Extensions of Regular Expressions 124
3.36 ExercisesforSection 3.3 125

34 Recognitionof Tokens oL 128
J4.1 Transition Diagrams oo 130
3.4.2 Recognition of Reserved Words and Identifiers 132
3.4.3 Completion of the Running Fxample 133
3.4.4 Architecture of a Transgition-Diagram-Based Lexical An-

alyzer ... 134
3.4.5 FExercises for Section 3.4 136

3.5 The Lexical-Analyzer Generator Lex 144
351 TUseoflex. 140
3.5.2 Structure of Lex Programs 141
353 Conflict ResolutioninLex 144
3.5.4 The Lookahead Operator 144
3.55 Exercisesfor Section 3.5 146

3.6 Finite Automata L 147
3.6.1 XNondelerministic Finite Amtomata, 147
3.6.2 Transgition Tables, 148
3.6.3 Acceptance of Input Strings by Automata, . 149
3.6.4 Deterministic Finlte Automata 149
3.6.5 Exerciscs for Section 3.6 L. 151

3.7 From Regular Expressions to Automata 152

xii TABLE OF CONTENTS

3.7.1 Conversionof an NFA toa DFA . _ 152
3.7.2 Simulation ofan NFA 156
3.7.3 Efficicncy of NFA Simulation 157
3.74 Construction of an NFA from a Regular Expression . . . 150
3.7.5 Efliciency of Siring-Processing Algorithms 163
3.76 Exercisesfor Section 3.7 166

3.8 Design of a Lexical-Analyzer Generator 166
3.8.1 The Structure of the Generated Analyzer 167
3.8.2 Pattern Matching Based on NFA’s 168
3.8.3 DFA’s for Lexical Analyzers 170
3.83.4 Implementing the Lookshead Operator 171
3.8.5 Excrcises for Section 3.8 L. 172

3.9 Optimization of DFA-Based Pattern Matchers 173
3.9.1 Important Statesof an NFA 173
3.9.2 Functions Computed From the Syntax Tree 175
3.9.3 Computing nulleble, firstpos, and lastpos 176
394 Computing followpos 177
3.9.5 Converting a Regular Expression Directly to a DFA . . . 179
3.9.6 Minimizing the Number of States of a DFA 180
3.9.7 State Minimization in Lexical Analyzers 184
3.9.8 Trading Time for Space in DFA Simulation 185
3.99 Exercisesfor Section 3.9 186

3.10 Summaryof Chapter 3. L e 187
3.11 References for Chapter 3. 189
4 Syntax Analysis 191
4.1 Introduction. e 192
411 TheRoleofthe Parser. 192
4.1.2 Representalive Grammars 193
4.1.3 Syntax Error Handling« oL 194
4.3.4 FError-Recovery Strategieso 195

4.2 Context-Free Grammars o oo 197
4,2.1 The Formal Definition of a Context-Free Grammar 197
42,2 Notational Conventions+ 198
4123 Derivations oo e 199
494 DParse Trees and Derivations - 201
425 Ambigulty oo 203
426 Verifying the Language Generated by a Grammar 204
4,2.7 Context-Free Grammars Versus Regular Expressions . . . 205
4.28 Exercises for Section 4.2 206

4.3 Writing a Grammar 209
4.3.1 Lexical Versus Syntactic Apalysis . . . - 209
4.3.2 Eliminating Ambiguity - e 210
4.3.3 Elimination of Left Recursion 212

4.3.4 Left Factoring oo 214

TABLE OF CONTENTS xiii

4.3.5 Non-Contexl-Free Language Constructs 215
4.3.6 Exercises for Section 4.3o 216

44 Top-Down Parsing 217
4.4.1 Recursive-Descent, Parsing 219
4492 FIRSTand FOLLOW 220
443 LL{1} Grammars 222
4.4.4 WNonrecursive Predictive Parsing, 226
4.4.5 FError Recovery in Predictive Parsing 228
446 Exercisesfor Scction 44 231

4.5 Bottom-Up Parsing 233
451 BReductions L 234
4.5.2 Handle Pruning oL 235
4.5.3 Shift-Reduce Parsing, 236
4.5.4 Conflicts During Shift-Reduce Parsing 238
4.5.5 Exercises [or Section 4.5 oL, 240

4.6 Iniroduction to LR Parsing: Simple LR 241
46.1 Why LR Parsers? 241
4.6.2 Ttems and the LR(0) Automaton 242
4.6.3 The LR-Parsing Algorithm 248
4.6.4 Constructing SLR-Parsing Tables 252
46,5 Viable Prefixes oo oo 256
4.6.6 Exercisesfor Section 4.6 257

4.7 More Powerful LR Parserso L., 259
471 Caponical LR(1) Tteras 260
4.7.2 Constructing LR(1) Sets of ftems 261

7.3 Cancnical LR(1) Parsing Tables 265

4.74 Constructing LALR, Parsing Tables 266
4.7.5 Efficient Construction of LALR Parsing Tables 270
4.76 Compaction of LR Parsing Tables 275
4.7.7 Exercises for Section 4.7 277

4.8 Using Ambignous Grammars 278
4.8.1 Precedence and Associativity to Resolve Conflicts 279
4.8.2 The “Dangling-Else” Ambiguity 281
4.8.3 Error Recovery in LR Parsing 283
4.8.4 Exercises for Section 4.8 . ., ., 285

4.9 Parser Generators L L 287
4.9.1 The Parser Generator Yace 287
4.9.2 Using Yacc with Ambiguous Grammars 291
4.9.3 Creating Yace Lexical Analyzers with Lex, .. 294
494 Error RecoveryinYace 295
19.5 Exerciscs for Section 4.9 297

4.10 Surnmary of Chapter 4 207

4,11 References for Chapter 4300

TABLE OF CONTENTS

6.3.1 Type Expressions.o

5 Syntax-Directed Translation 303
5.1 Syntax-Directed Definitions, 304
5.1.1 Inherited and Synihesized Attributes, . .., 304
5.1.2 Bvaluating an SDD at the Nodes of a Parse Tree 306
5.1.3 Exercises for Section 5.1,, ..., ... 309

5.2 Evaluation Ordersfor SDD’s 310
3.2.1 DNependency Graphs 310
3.2.2 QOrdering the Evaluation of Attributes 312
3.2.3 S-Attributed Definitions, 312
5.2.4 L-Attributed Definitions00 313
5.2.5 Semantic Rules with Controlled Side Effects 314
5.2.6 Exercises for Section 5.2 317

53 Applications of Syntax-Directed Translation 318
33.1 Construction of Syntax Trees 318
5.3.2 The Structure of a Type, 321
5.3.3 Excrcises for Section 5.3 oL 323

3.4 Syntax-Directed Translation Schemes 324
5.4.1 Postfix Translation Schemes 324
5.4.2 Darser-Stack Implementation of Postfix SDT’s 323
5.4.3 8SD1’s With Actions Inside Productions 327
3.4.4 Eliminating Left Recursion From SDT’s 328
5.4.5 SD1’s for L-Attributed Definitions 331
54.6 Exercisesfor Seetion b4 L L0 336

3.5 Implementing L-Attributed SDD'so ..o 337
5.5.1 Translation During Recursive-Descent Parsing ... 338
5.5.2 On-The-Fly Code Generation 340
5.5.3 L-Attributed SDD’s and LL Parsing 343
5.5.4 Bottom-Up Parsing of L-Atiributed SDD’s 348
55.0 Exercises for Section 5.5 L. 352

56 SummarvofChapter bo 353
57 BReferences for Chapter 5. 354
Intermediate-Code Generation 357
6.1 Variants of Syntax Trees oo 358
6.1.1 Directed Acyclic Graphs for Expressions 359
6.1.2 The Value-Numhber Method for Constructing DAG’s . . . 360
6.1.3 Excrcises for Section 6.1o 362

6.2 Three-Address Code« 363
6.2.1 Addresses and Instruckions oL 364
6.2.2 Quadrupleso 366
6.23 Triples 367
6.2.4 Static Single-Assignment Formo 369
6.2.5 Exercises for Section 6.2 . . -o 370

6.3 Types and Declarations - -« oo oo 370
71

TARBLE OF CONTENTS xv

6.3.2 Typc Bquivalence. oo 372
6.3.3 Declarationso 373
6.3.4 Storage Layout for Local Names 37
6.3.5 Sequences of Declarations, 376
6.3.6 Fields in Becords and Classes 376
6.3.7 Exercises for Section 6.3 378
6.4 Translation of Expressions Lo 378
6.4.1 Operations Within Expressions 378
6.4.2 Tucremental Translation 380
6.4.3 Addressing Array Elements 381
6.4.4 Translation of Array References 383
6.4.5 Exercises for Section 6.4, e e e e 381
6.5 Type Checking 386
6.5.1 Rules for Type Checking 387
6.3.2 Type Conversionso 388
6.3.3 Overloading of Functions and Operators 390
6.3.4 Type Inference and Polymorphic Functions 391
6.3.5 An Algorithm for Unification 395
6.5.6 Exercises for Section 6.5 oo 398
6.6 Control Flow 399
6.6.1 Boolean Expressions 399
6.6.2 Short-Circuit Code 00 oL 400
6.6.3 Flow-of-Control Statements 401
6.6.4 Control-Flow Translation of Boolean Expressions 403
6.6.5 Avoiding Redundant Gotos, 405
§.6.6 Boolean Values and Jumping Code 408
6.6.7 Excrcises for Section 6.6o L. 408
6.7 Backpatching 410
6.7.1 One-Pags Code Generation Using Backpatching 410
6.7.2 Backpatching for Boolean Expressions 411
6.7.3 Flow-of-Control Statements 413
6.7.4 Break-, Continue-, and Goto-Statements 116
6.7.5 Excrcises for Seetion 6.7 L L L. 417
6.8 Switch-Statements L. 418
6.8.1 ‘Translation of Switch-Statements . ., . . ., 419
6.8.2 Syntax-Pirected Translation of Switch-Statements 420
6.8.3 Exercisesfor Section 6.8 , 421
6.9 Intermediate Code for Procedures. 422
6.10 Summary ol Chapter 6 424

.11 References for Chapter 6 425

xvi TABLE OF CONTENTS
7 Run-Time Environments 427
7.1 Storage Organization 427
7.1.1 Static Versus Dynamic Storage Allocation 429

7.2 Stack Allocation of Space, 430
.21 Activation Trees 430
7.2.2 Activation Records 433
7.23 Calling Sequences L L. 436
7.2.4 Variable-Length Dataonthe Stack 438
7.2.5 Exercises for Section 7.2 44{)

7.3 Access to Nonlocal Data on the Stack 441
7.3.1 Data Access Without Nested Procedures. 442
7.3.2 Issues With Nested Procedures, 442
7.3.3 A Language With Nested Procedure Declarations 443
734 NWNestingDepth L. 443
735 AccessLinks 445
7.3.6 Manipulating Access Links 447
7.3.7 Access Links for Procedure Parameters 4418
738 Displays 449
7.3.9 Exercises for Section 7.3 o 0oL 451

7.4 Heap Managemento e 452
7.4.1 The Memory Manager 453
7.4.2 The Memory Hierarchy of a Computer 451
7.4.3 Locality in Programs 455
7.4.4 Reducing Fragmentation 457
T.4.5 Manual Deallocation Requests 460
74.6 Exeorcises for Section 74 463

7.3 Introduction to Garbage Collection 463
7.5.1 Design Goals for Garbage Collectors 464
7.5.2 Reachability. 466
7.5.3 Reference Counting Garbage Collectors 468
7.0.4 FExercisesfor Section 7.5o L. 470

7.6 Introduction to Trace-Based Collection 470
7.6.1 A Basic Mark-and-Sweep Collector 471
7.6.2 Basic Abstraction 473
7.6.3 Optimizing Mark-and-Sweep 475
7.6.4 Mark-and-Compact Garbage Collectors 476
7.6.53 Copvingcollectors 478
7.6.6 Comparing Costs« .. . 482
7.6.7 Exercisesfor Section 7.6 482

7.7 Short-Pause Garbage Collection 483
7.7.1 Incremental Garhage Collection 483
7.7.2 Incremental Reachability Analysis 483
7.7.3 Partial-Collection Basies 487
7.74 QGenerational Garbage Collection 488

7.7.5 The Train Algorithm 190

TABLE OF CONTENTS xvid

7.7.6 Excrcises for Section 7.7 oo 493

7.8 Advanced Topics in Garbage Collection 494
7.8.1 Parallel and Concurrent Garbage Collection 495
7.8.2 Partial Object Reloecationo oL 497
7.8.3 Conservative Collection for Unsafe Languages 498
7.84 Weak References oo oo 498
7.8.5 Exercises for Section 7.8 499

79 Summary of Chapter 7. ., 300
7.10 Roferences for Chapter 7. -0 oo 502
8 Code Generation 505
8.1 Issues in the Design of a Code Generator 506
8.1.1 Input to the Code Generator 507
8.1.2 The Target Program a07
2.1.3 Instruction Selection oL oL h08
814 Register Allocation 510
815 Fvaluation Ordero oo o oo 511

8.2 The Target Language, 5612
8.2.1 A Simple Target Machine Model 512
822 DProgram and Instruction Costs 515
823 Excreisesfor Section 82 oo Lo oL J16

8.3 Addressesin the Target Code als
£3.1 Static Allocalion Lo oL 518
£3.2 Stack Allocation L 520
8.3.3 Run-Time Addresses for Names 322
834 FExercisesfor Section 83 324

8.4 Basic Blocks and Flow Graphs 329
84.1 BasicBlockso oL 526
8.42 Next-Use Information 528
843 Flow Graphs o L. 329
8.4.4 Rcepresentation of Flow Graphs 230
845 LooDs oL a3l
846 Excrcises for Section 84o oL, nal

8.5 Optimization of Basic Blocks 533
8.5.1 The DAG Representation of Basi: Blocks .« 533
8.5.2 Finding Local Common Subexpressions 534
8.5.3 Dead Code Elimination , 235
8.5.4 The Use of Algebraic Identities 536
8.3.5 Representation of Array References 537
8.5.6 Pointer Assigninents and Procedure Calls . ., . ., . . 339
8.5.7 Reassernbiing Basic Blocks From DAG's 539
8.5.8 Exercisesfor Scction 85 541

8.6 A Simple Code Generator 342
8.6.1 Register and Address Descriptors 543

8.6.2 The Code-Generation Algorithm . . ., 544

xvil TABLE OF CONTENTS
8.6.3 Design of the Function getReg 547
8.6.4 Exercises for Section 8.6 548

8.7 Peephole Optimization 549
8.7.1 Eliminating Redundant Loads and Stores 530
8.7.2 Eliminating Unreachable Code 530
8.7.3 Flow-of-Control Optimizations 531
8.7.4 Algebraic Simplification and Reduction in Strength 532
8.7.5 Useof MachineIdioms D32
8.7.6 Lbxcrcises for Section 87 L. 533

8.8 Register Allocation and Assignment 553
8.8.1 Global Register Allocation., 553
882 UsageCoumts o i 554
8.8.3 Register Asgignment for Outer Loops 556
8.8.4 Register Allocation by Graph Coloring 556
8.8.5 ExercisesforSection 88 557

8.9 Instruction Selection by Tree Rewriting 558
8.9.1 Tree-Translation Schemes 558
8.9.2 Code Generation by Tiling an Input Tree 560
8.9.3 Pattern Matching by Parsing 263
8.9.4 Routines for Semantic Checking 565
8.9.5 General Tree Matching. 565
8.9.6 Exercisesfor Section 89 367

8.10 Optimal Code Generation for Expressions 567
2.10.1 Ershov Numbers 567
8.10.2 Generating Code From Labeled Expression Trees 568
8.10.3 Evaluating Expressions with an Insufficient Supply of Reg-

iSters e e e 570
8.10.4 Excrcises for Section 8.10 572

8.11 Dynamic Programming Code-Generation. 573
8,11.1 Contiguous Evaluation 574
8.11.2 The Dynamic Programming Algorithm 575
8.11.3 Exercises for Section 8.11 C e e 577

812 Summary of Chapter 8 L 578

8.13 References for Chapter 8 Lo 579

9 Machine-Independent Optimizations 583

9.1 The Principal Sources of Optimization a84
9.1.1 Causes of Redundaney 384
9.1.2 A Running Example: Quicksort.583
9.1.3 Semantics-Preserving Transformations 586
9.1.4 Global Common Subexpressions 388
9.1.5 Copy Propagation390
9.1.6 Decad-Code Elimination 591
9.1.7 CodeMotion 592

.18 Induction Variables and Reduction in Strength 592

TABLE OF CONTENTS xix

9.2

9.4

9.6

9.1.0 Exercises for Section 0.109
Introduction 1o Data-Flow Analysis 597
0.2.1 The Data-Flow Abstraction397
9.2.2 The Data-Flow Analysis Schema 599
9.2.3 Data-Flow Schemas on Basic Blocks 600
9.2.4 Reaching Definitionso 601
025 Live-Variable Analysis 608
§9.2.6 Available Expressionso 0oL 610
027 SUMINALY . -+« v v e e e e e e e e 614
9.2.8 Exercises for Sectlon 9.2 oo 615
Foundations of Data-Flow Analysis 618
9.3.1 Semilattices 618
0.3.2 Transler Punctions 0o 623
3.3.3 The Iterative Algorithm for General Frameworks 626
9.3.4 Meaning of a Data-Flow Solution 628
9.3.5 Dxercises for Section 9.3o o000 631
Constant Propagation 632
9.4.1 Data-Flow Values for the Constant-Propagation Frame-
WOLK . . . o o o e e e e e e 633

9.4.2 The Meet for the Constant-Propagation Framework . . . 633
9.4.3 Transfor Punctions for the Constant-Propagation I'rame-

work ... e e 634
044 Monotonicity of the Constant-Propagation Framework . . 635
9.4.5 Nondistributivity of the Constant-Propagation Framework 635

9.4.6 Interpretalion of the Results 637
9.41.7 IDxercises for Section 9.4 L. 637
Partial-Redundancy Elimination 639
951 The Sources of Redundancy 639
9.5.2 Can All Redundaney Be Eliminated? 642
9.3.3 The Lazy-Code-Motion Problem 644
9.5.4 Anticipation of Expressions . ,, G645
9.5.5 The Lazy-Code-Motion Algorithm 646
9.5.6 IDxercises for Section 95 655
Loops in Flow Graphs 655
96.1 Dominators 656
9.6.2 Depth-Firat Ordering 666G
9.6.3 Edges in a Depth-First Spanning Tree, . 661
8.6.14 Back Edges and Reducibility 662
9.6.5 DepthofaFlow Graph 665
966 Natural Loops L. 665
9.6.7 Specd of Convergence of Iterative Data-Flow Algorithms . 667
9.6.8 Exercisesfor Scection 9.6 L. 669
Region-Based Aualysis . . o 0 00 oL Lo L. 672
9.7.1 Regions 672
9.7.2 Region Hierarchies for Reducible Flow Graphs 673

XX TABLE OF CONTENTS
9.7.3 Overview of a Region-Based Analysis 676
9.741 Necessary Assumptions About Transfer Functions 678
9.7.5 An Algorithmn lor Region-Bagsed Analysis 680
9.7.6 Iandling Nonreducible Flow Graphs R4
9.7.7 Excrcises for Section 9.7 486

9.8 Symbolic Analysis L. 686
9.8.1 Affine Expressions of Relerence Variables 687
9.8.2 Data-Flow Problem Formulation 689
9.8.3 Region-Based Symbolic Analysis 694
9.8 DxercisesforSection 9.8 699

9.9 Summary of Chapler 9. 700

9.10 Refercnces for Chapter 9. 703

10 Instruction-Level Parallelism 707

10.1 Processor Architectures . ., L., 708
10.1.1 Instruction Pipelines and Branch Delays 708
10.1.2 Pipeclined Execution 709
10.1.3 Multiple Instruction Issue 710

10.2 Code-Scheduling Constraints 714
10.21 Data Dependence 711
10.2.2 Finding Dependences Among Memory Accesses L 712
10.2.3 Tradeoff Between Register Usage and Parallelism 713
10.2.4 Phase Ordering Betwecn Register Allocation and Code

Scheduling 716
10.2.5 Control Dependence o o L. 716
10.2.6 Speculative Execution Support 717
10.2.7 A Basic Machine Model oo oo 0oL T19
10.2.8 Exercises for Section 10.2 T20

10.3 Basic-Block Scheduling o oo oL 721
10.3.1 Data-Dependence Graphs 722
16.3.2 List Scheduling of Basic Bloeks 723
10.3.3 Prioritized Topological Orders 725
10.3.4 Excrcises for Section 103 726

10.4 Global Code Scheduling, 727
10.4.1 Primitive Code Motion 728
10.4.2 Upward Code Motiono oo v o v 730
10.4.3 Downward Code Motion oL 731
10.4.4 Updating Data Dependences 732
10.4.5 Global Scheduling Algorithms, 732
10.4.6 Advanced Code Motion Techniques 736
10.4.7 Interaction with Dynamic Schedulers 737
10.4.8 Exerciscs for Section 104o 737

10.5 Software Pipelining oo oo i 738
10.5.1 Introduction L e 738

10.5.2 Software Pipclining of Loops 740

TABLE OF CONTENTS xxd
10.5.3 Register Allocation and Code Generation 743
1054 Do-Across LOoOPS . .« . v o o v v o e e e 743
10.5.5 Goals and Constraints of Software Pipelining 745
10.5.6 A Software-Pipelining Algorithm 749
10.5.7 Scheduling Acyclic Data-Dependence Graphs 749
10.5.8 Scheduling Cyclic Dependence Graphs 751
10.5.9 Improvements to the Pipelining Algorithms 758
10.5.10 Modular Variable Expansion 758
10.5.11 Conditional Statementso oL 761
10.5.12 Hardware Support for Software Pipelining 762
10.5.13 Exercises for Section 1.5o oo 763

10.6 Summary of Chapter 10o 765
10.7 References for Chapter 10 oo 766
11 Optimizing for Parallelism and Locality 769
11.1 Basic Concepts o v v v v i e e e e 7l
11.1.1 Multiprocassors o o o o e e e e T2
11.1.2 Parallelism in Applications 773
11.1.3 Loop-Level Parallelism 775
11.1.4 Data Locality o o 0 Tt
11.1.5 Introduction to Affine Transform Theory 778

11.2 Matrix Multiply: An In-Depth Example 782
11.2.1 The Matrix-Multiplication Algorithm 782
11.2.2 Optimizations o . 783
11.2.3 Cache Interference, 788
11.2.4 Exercises for Secsion 1.2 L. L. 788

11.3 Tteration Spaces L 788
11.3.1 Constructing Iteration Spaces from Loop Nests 788
11.3.2 Execution Order for Loop Nests 791
11.3.3 Matrix Formulation of Inequalities 791
11.3.4 Tucorporating Symbolic Constants 793
11.3.5 Comirolling the Order of Execution 793
11.3.6 Changing Axes 798
11.3.7 Exercises for Section 1.3 L. 799

[1.4 Affine Array Indexes L. 301
11.41 Affine Aecesses L L e 802
11.4.2 Affine and Nonaffine Accesses in Practice 803
11.1.3 Exercises for Section 114 804

11.6 DataReuse oo 804
11,51 Typesof Reuse 805
1152 Self BHeuse . . o o 0 o oo Lo 806
11.5.3 Sell-Spatial Reuse 809
11.54 Group Reuse, 811
11.5.5 Exercises for Section 11.5 814

11.6 Array Data-Dependence Analysis, 815

xxii TABLE OF CONTENTS
11.6.1 Definition of Data Dependence of Array Accesses 816
11.6.2 Integer Linear Programming 817
1163 The GCD Test oo i, 818
11.6.4 Heuristics for Solving Integer Linear Programs 820
11.6.5 Solving General Integer Linear Programs 823
11.6.6 Summary o 825
11.6.7 Exercises for Section 11.6 826

11.7 Finding Synchronization-Free Parallelism, 828
11.7.1 An Introductory Example 828
11.7.2 Affine Space Partitions &30
11.7.3 Space-Partition Constraints 831
11.7.4 Solving Space-Partition Constraints 835
11.7.5 A Simple Code-Generation Algorithm 838
11.7.6 Eliminating Empty Lierations 841
11.7.7 Eliminating Tests from Innermost Loops 844
11.7.8 Source-Code Transforms 346
11.7.9 Exercises for Section 11.7, 851

11.8 Synchronization Detween Parallel Loops 853
11.8.1 A Constant. Number of Synchronizations 853
11.8.2 Program-Dependence Graphs 854
11.8.3 Hierarchical Time 857
11.8.4 The Parallelization Algorithm 859
11.8.5 Exercises for Section 11.8 . . _ 860

11.9 Pipelining oo e e 861
11.9.1 What is Pipelining? L. 861
11.9.2 Successive Over-Relaxation (SOR}: An Example 863
11.9.3 Fully Permutable Loops 864
11.9.4 Pipelining Fully Permutable Loops 864
11.9.53 General Theory o 867
11.9.6 Time-Partition Constraints« 868
11.9.7 Solving Time-Partition Constraints by Farkas’ Lemma . . 872
11.9.8 Code Transformations 875
11.9.9 Parallelism With Minimum Synchronization 880
11.9.10Exercises for Section 11.9 882

11.10 Locality Optimizations o0 B84
11.10.1 Temporal Locality of Computed Data 885
11.10.2 Array Contractiono o0 o oo 885
11.10.3 Partition Interleaving oL 887
11.160.4Putting it All Together 890
11.10.5 Exercises for Section 11.10. PO 892

11.11 Other Uses of Affine Transforms 863
11.11.1 Distributed memory machines 894
11.11.2Multi-lnstruction-Issue Processors 895
11.11.3 Vector and SIMD Instructions 805

11.11.4Prefetching . . - . . . oo e s 396

TABLE OF CONTENTS xxiii

11.12 Summary of Chapter 11 o L. 897
11.13 References for Chapter 11, L 899
12 Interprocedural Analysis 903
12.1 Basic Concepts . . - - o o 0 o e 904
12.1.1 Call Graphs o 904
12.1.2 Comtext Sensitivity oL 906
1213 Call Strings . -« o o oo oo 908
12.1.4 Cloning-Based Context-Sensitive Analysis 910
12.1.5 Summary-Based Context-Sensitive Analysis 911
12.1.6 Exercigses for Section 12.1 L. 914

12.2 Why Interprocedural Analysis? L. L 916
12.2.1 Virtual Method Invocation 916
12.2.2 Pointer Alias Analysis L a7
12.2.3 Parallelization 17
12.2.4 Detection of Software Trrors and Vulnerabilities 917
1225 SQL Injection e 918
1226 Buffer Overflow 920

12.3 A Logical Representation of Data Flow . . 0 0 ..o o . 921
12.3.1 Introduction to Datalog 921
1232 Datalog Buleso oo 922
12.3.3 Imtensional and Extensional Predicates 924
12.3.4 Execution of Dalalog Programs 927
12.3.5 Incremental Evaluation of Datalog Programs 928
12,3.6 Problematic Datalog Rules 930
12.3.7 Exercises for Scction 12,3o L. 932

12.4 A Simple Pointer-Analysis Algorithem 933
12.4.1 Why is Pointer Analysis Difficult 934
12.4.2 A Model for Pointers and References 935
1243 Flow Insensitivity 936
12.4.4 The Formulation in Datalog, ..., ... 937
12.4.53 Using Type Information 938
12.4.6 Excrcises for Section 124 . . . 0 . .00, 939

12.5 Context-Insensitive Interprocedural Analysis. 941
12.5.1 Effects of a Method Invocation 911
12.5.2 Call Graph Discovery in Datalog 943
12.5.3 Dynamic Loading and Reflection, 941
12.5.4 Exercises for Section 12.5 , 945

12.6 Context-Sensitive Pointer Analysis 945
12.6.1 Contexts and Call Strings 946
12.6.2 Adding Context to Datalog Rules 949
12.6.3 Additional Observations Aboul Sensitivity 949
12.6.4 Excrcises for Seclion 12.6 950

12,7 Datalog Implementation by BDD’s, 951

12.7.1 Binary Decision Diagrams 951

xxiv TABLE OF CONTENTS
12.7.2 Transformations on BDD's L., 953

12.7.3 Representing Relations by BDD's 954

12.7.4 Relational Operations ag BDD Operations, . 954

12.7.6 Using BDD's for Points-to Analysis 957

12.7.6 Exercises for Section 12.7 958

12,8 Summary of Chapter 12 L, 958
12.9 References for Chapter 12 961

A A Complete Front End 965
A1 The Source Language . . . - oL 965
A2 Main e e e 966
A% Lexical Analyzer 967
A4 Symbol Tables and Types L 970
A5 Intermediatc Code for Expressions a7l
A6 Jumnping Code for Boolean Expressions 974
A7 Intermediate Code for Statements 978
A8 Parser e e e e e 981
A9 Creatingthe FrontEnd oo 986

B Finding Linearly Independent Solutions 089

Index 993

Chapter 1

Introduction

Programming languages are notations for describing computations to people
and to machines. The world ag we know it depends on programming languages,
because all the software running on all the computers was written in some
programming language. But, before a program can be run, it first must be
translated into a form in which it can be executed by a computer.

The software systems that do this translation arc called compilers.

This book is about how to design and implement compilers. We shall dis-
cover that a few basic ideas can be used to construct translators for a wide
variety of languages and machines. Besides compilers, the principles and tech-
niques for compiler design are applicable to so many other domains that they
arc likely to be reused many times in the career of a computer scientist. The
study of compiler writing touches upon programmming languages, machine ar-
chitecture, language theory, algorithms, and software engincering.

In this preliminary chapter. we introduce the different forms of language
translators, give a high level overview of the structure of a typical compiler,
and discuss the trends in programming languages and machine architecture
that are shaping compilers. We include some observations on the relationship
between compiler design and computer-science theory and an outline of the
applications of cormpiier technology that go beyond compilation. We end with
a brief outline of key programming-language concepts that will be needed for
our study of compilers.

1.1 Language Processors

Simply stated, a compiler is a program that can read a program in one lan-
guage -- the source langnage — and translate it into an equivalent program in
another language — the target language: see Fig. 1.1. An important. vole of the
compiler is to report any errors in the source program that it detects during
the translation process.

2 CHAPTER 1. INTRODUCTION

SITCe Progratn

{

|
Compiler J

target program

Figure 1.1: A compiler

If the target program is an executable machine-language program, it can
then be called by the user to process inputs and produce outputs; see Fig. 1.2,

J

input - - Target Program output

Figure 1.2: Running the target program

An interpreter is another common kind of language processor. Instead of
producing a targel program as a translation, an interpreter appears to directly
execute the operations specified in the source program on inputs supplied by
the user, as shown in Fig. 1.3

SOUrce Programy ——e
Interpretar = gutput

input —

Figure 1.3: An intcrpreter

The machine-language target program produced by a compiler is usually
muck fagter than an interpreter at mapping inputs 1o ontputs . An interpreter,
however, can usually give hetier error diagnostics than a compiler, because it
executes the source program statement by stalement.

Example 1.1: Java language processors combine compilation and interpreta-
tion, as shown in Fig, 1.4, A Java source program may first be compiled into
an intermediate form called bytecodes. The bytecodes are then interpreted by a
virtual machine. A benefit of this arrangement is that bytecodes compiled on
one machine can be interpreted on another machine, perhaps across a network.

In order to achieve [asier processing of inputs to outputs, some Java compil-
ers, called just-in-time compilers, translate the bytecodes into machine language
immediately before they run the intermediate program to process the input. O

1.1. LANGUAGE PROCESSORS 3

SOUrce pProgram

Translator

intermediale program Virtual

. t t
Machine - ouipu

input
Figure 1.4: A hybrid compiler

In addition to a compiler, several other programs may be required to create
an executable target program, as shown in Fig. 1.5. A sourcc program may be
divided into modnies stored in separate files. The task of collecting the source
program is sometimes enirusted to a separate program, called a preprocessor.
The preprocessor may also expand shorthands, called macros, into source lan-
guage statoments.

The moedified source program is then fed to a compiler. The compiler may
produce an assembly-language program as its oulpul, because assembly lan-
suage is easier to produce as output and is easier to debug. The assembly
language is then processed by a program called an assembler that produces
relocatable machine code as its output.

Large programs are often compiled in pieces, so the relocatable machine
code may have to be linked together with other relocatable object files and
library files inio the code that actually runs on the machine. The linker resolves
external memory addresses, where the code in one file may refer to a location
in another file. The loader then puts together all of the executable object files
into memory for execution.

1.1.1 Exercises for Section 1.1

Exercise 1.1.1: What is the difference between a compiler and an interpreter?

Exercise 1.1.2: What are the advantages of (a) a compiler over an interpreter
(b) an interpreier over a compiler?

Exercise 1.1.3: What advantages are there to a language-processing system in
which the compiler produces assembly language rather than machine language?

Exercise 1.1.4: A compiler that translates a high-level language into another
bigh-level language is called a source-to-source translator. What advantages are
there to using C as a target language for a compiler?

Exercise 1.1.5: Describe some of the tasks that an assembler needs to per-
form.

4 CHAPTER 1. INTRODUCTION

source program

|
Preprocessor ’

modified source program

‘ Cormpiler

target assembly program

‘ Assembler

relocatable machine code

N R

Linker/Loader

library files
relocatable object files

target machine code

Figure 1.5: A language-processing svstem

1.2 The Structure of a Compiler

Up to this point we have treated a compiler as a single box that maps a sonrce
program into a semantically equivalent target program. If we open up this box
a little, we see that there are two parts to this mapping: analysis and synthesis.

The analysis part breaks up the source program into constituent pleces and
imposes a grammatical structure on them, It thon uses this structure to cre-
ate an intermediate representation of the source program. If the analysis part
detects that the source program is either syntactically ill formed or semanti-
cally unsound, then it must provide informative messages, so the user can take
corrective action. The analysis part also collects information about Lthe source
program and stores it in a data structure called a symbol table, which is passed
along with the intermediate representation to the synthesis part.

The synthesis part constructs the desired target program from the interme-
diate representation and the information in the symbol table. The analysis part
is often called the front end of the compiler; the synthesis part is the back end

If we examine the compilation process in more deiail, we sce that it operates
as a sequence of phases, each of which transforms one representation of the
source program to another. A typical decomposition of a compiler into phases
is shown in Fig. 1.6. In practice, several phases may be grouped together,
and the intermediate representations between the grouped phases need not be
constructed explicitly. The symhol table, which stores information about the

1.2. THE STRUCTURE OF A COMPILER 5

character stream

{ Lexical Analyzer

I
token stream

Syulax Anaslyzer

—_ — =
syntax tree

Tr Semantic Analyzer

T
syntax tree

Symbol Table Intermediate Code Generator |

T
mtermediate representation

[_"_\?échine—lndepcndcnt
J

Code Optimizer
| _Code Optimiser

intermediate representation

| Code Generator

target-machine code

! Machine-Dependent
| Code Optiwizer

T
target-machine code

Figure 1.G6: Phases of a compiler

entire source program, is used by all phases of the compiler.

Some compilers have a machine-independent optimization phase between
the front end and the back end. The purpose of this optimization phase is to
perform transformations on the intermediate representation, so that the back
end can produce a better target program than it would have otherwise pro-
duced from an unoptimized intermediate representation. Since optimization is
optional, one or the other of the two optimization phases shown in Fig. 1.6 may

be missing.
1.2.1 Lexical Analysis

The first phase of a compiler is called lerical analysis or scanning. The lex-
ical analyzer reads the streamn of characters making up the source program

6 CHAPTER 1. INTRODUCTION

and groups the characters into meaningful sequences called lewemes. For each
lexeme, the lexical analyzer produces as output a token of the form

(token-name, attribute-value)

that it passes on to the subsequent phase, syntax analysis. In the token, the
first component token-name is an abstract symbol that is used during syntax
analysis, and the second component aifribute-value points to an enury in the
gymhol table for this token. Information from the symbol-table entry is needed
for semantic analysis and code generation.

For example, suppose a source program contains the assignment statement

position = initial + rate * 60 (L.1)

The characters in this assignment could be grouped into the following lexemes
and mapped into the following tokens passed on to the syntax analyzer:

1. positionis a lexeme that would be mapped into a token {id, 1}, where id
is an abstract symbol standing for identifier and 1 points to the symbol-
table entry for position. The symbal-table entry for an identifier holds
information about the identifier, such as its name and {ype.

2, The assignment, symbol = is a lexeme that 15 mapped into the token {(=}.
Since this token needs no attribute-value, we have omitted the second
component, We could have used any ahstract symbol such as assign for
the token-name, but for notational convenicnce we have chosen to use the
lexeme itsclf as the name of the abstract symbol.

3. initialis a lexeme that is mapped into the token {id, 2}, where 2 points
to the symbol-table entry for initial.

4, +is a lexeme thal is mapped into the token {+}.

5. rate is a lexeme that is mapped into the token {id, 3}, where 3 points to
the symbol-table entry for rate.

6. * is a lexeme that is mapped into the token (*).
7. 60 is 4 lexeme that is mapped into the token {(60).}

Blanks separating the lexemes would be discarded by the lexical analyzer.
Figure 1.7 shows the representation of the assignment statement (1.1) after
lexical analysis as the sequence of tokens

(id, 1) (=) (id,2) (+) {id,3) () (60) (1.2)

In this representation, the token names =, +, and * are abstract symbols for
the assignment, addition, and multiplication operators, respectively.

I Technically speaking, for the lexeme 60 we should make up a token like {number, 4},
where 4 points to the symbol table for the internal representation of integer 60 bul we shall
defor the discussion of tokens for numbers until Chapter 2. Chapier 3 discusses techniques
for building lexical analyzers.

1.2, THE STRUCTURE OF A COMPILER

position = initial + rate * 60

1

! Lexical Analyzer |

{id,1) (=) (id,2) {+) (id,3) (=} {60}

| Syntax Analywer J

- Y
1y T
1 positiohT--v ; {id, 2¥ /"“ o
initial {id, 3§ 60
3 | rate ¥
r Semantic Analyzer J
I_' =
. - T
SYMBOL TABLE (KLlf%d ”,,*-RHM
i, #
(id,3)/ inttofloat

[
60
untermediatc Cade Generatoﬂ

ti = inttofloat{60)
t2 = id3 * 1
13 = 1d2 + 2
idl = £3
1

E Code Optimizor

t1 = id3 * 60.0
idl = id2 + 1
'
r Caode Generator :’

LDF R2Z, id3

MULF R2, R2, #60.0
LDF R1, id2

ADDF R1, R1, R2
STF id1, R1

Figure 1.7: Translation of an assignment statement

8 CHAPTER 1. INTRODUCTION

1.2.2 Syntax Analysis

The second phase of the compiler is syntas analysis or parsing. The parser udes
the first components of the tokens produced by the lexical analyzer to create
a tree-like intermediate representation that depicts the grammatical structure
of the token stream. A typical reprosentation is a synfax #ree in which each
interior node represents an operation and the children of the node represent the
arguments of the operation. A syntax tree for the token stream (1.2) is shown
as the output of the syniactic analyzer in Fig. 1.7.
This tree shows the order in which the operations in the assignment

position = initial + rate * 60

are to be performed. The tree has an interior node labeled * with {id, 3} as
its loft child and the integer 60 as its right child. The node {id, 3} represents
the identifier rate. The node labeled * makes it explicit that we must first
multiply the value of rate by 60. The node labeled + indicates that we must
add the result of this multiplication to the valne of initial. The rool of the
tree, labeled =, indicates that we must store the result of this addition into the
location for the identifior position. This ordering of operations i3 consistent
with the usual conventions of arithmetic which tell us that nmitiplication has
higher precedence than addition, and hence that the multiplication is to be
performed before the addition.

The subsequent phases of the compiler use the gramimatical structure to help
analyze the source program and generate the target program. In Chapier 4
we shall use context-free grammars to g¢pecify the grammatical structure of
programming languages and discuss algorithms for constructing efficient syntax
analyzers automatically from cortain classes of grammars. In Chapters 2 and 5
we shall see that syntax-directed definitions can help specify the translation of
programuing language constructs.

1.2.3 Semantic Analysis

The semantic analyzer uses the syntax tree and the information in the symbol
table to check the source program for semantic consistency with the language
definition. It alsc gathers type information and saves it in cither the syntax tree
or the gymbol table, for subsequent use during intermediate-code generation,

An important part of semantic analysis s type checking, where the compiler
checks that each operator has matching operands. For example, many program-
ming language definitions require an array index to be an integer; the compiler
must report an error if a Hoating-point number is used to index an array.

The language specification may permit some type conversions ealled coer-
cions. For example, a hinary arithmetic operator may be applied to either a
pair of integers or to a pair of floating-point numbers. If the operator is applied
to a floating-point number and an integer, the compiler may convert or coerce
the integer into a floating-point number.

1.2. THE STRUCTURE OF A COMPILER 9

Such a coercion appears in Fig. 1.7. Suppose that positioen, initial, and
rate have been declared to be floating-point numbers, and that the lexeme 60
by itseif forms an integer. The type checker in the semantic analyzer in Fig. 1.7
discovers that the operator * is applied to a floating-point number rate and
an integer 60. In this case, the integer may be converted into a floating-point
number. In Fig. 1.7, notice that the output of the semantic analyzer has an
extra node for the operator inttofloat, which explicitly converts its integer
argument into a floating-point number. Type checking and semantic analysis
are discussed in Chapter 6.

1.2.4 Intermediate Code Generation

In the process of translating a source program into target code, a compiler may
constriuct oue or mote intermediate representations, which can have a variety
of forms. Syntax trees are a form of intermediate representation; they are
commonly used during syntax and semantic analysis.

After syntax and semantic analysis of the source program, many compil-
ers generate an explicit low-level or machine-like intermediate repregsentation,
which we can think of as a program for an abstract machine, This intermedi-
ate representation should have two important properties: it should be easy to
produce and it should be easy to translate into the target machine.

in Chapter 6, we counsider an intermediate form called three-address code,
which consists of a sequence of assembly-like instructions with three operands
per instruction. Each operand can act like a register. The output of the inter-
mediate code generator in Fig. 1.7 consists of the three-address code sequence

t1 = inttofloat{6Q)

t2 = id3 * t1)
t3 = id2 + t2 (1'3)
idl = t3

There arc scveral points worth noting about three-address instructions.
First, each three-address assignment instruction has at most one operator on the
right side. Thus, these instructions fix the order in which operations are to be
done; the multiplication precedes the addition in the source program (1.1). Sec-
ond, the compiler mist generate a temporary name o hold the value computed
by a three-address instruction. Third, some “thres-address instructions” like
the first and last in the sequence (1.3), above, have fewer than three operands.

In Chapter 6, we cover the principal intermediate representations used in
compilers. Chapters 5 introduces techniques for syntax-directed translation
that are applied in Chapter 6 to type checking and intermediate-code generation

for typical programming language constructs such as expressions, flow-of-control
constructs, and procedure calls,

10 CHAPTER 1. INTRODUCTION

1.2.5 Code Optimization

The machine-independent code-optimization phase attempts to improve the
intermediate code so that better target code will result. Usually better means
faster, but other objectives may be desired, such as shorter code, or target cade
that consumues less power. For example, a straightforward algorithm gencratcs
the intermediate code (1.3), using an instruction for each operator in the tree
representation that comes from the semantic analyzer.

A simple intermediate code generation algorithm followed by code optimiza-
tion is a reasonable way to generate good target code. The optimizer can deduce
that the conversion of 60 from integer to floating point can be done once and for
all at compile time, so the inttofloat operation can be eliminated by replacing
the integer 60 by the floating-peint number 60.0. Moreover, t3 is used only
once to transmit its value to id1 so the optimizer can transform {1.3) into the
shorter sequence

tl = id3 #* 60.0
idi = 142 + ti (1.4)
There is a great variation in the amount of code optimization different com-
pilers perform. In those that do the most, the so-called “optimizing compilers,”
a significant amount of time is spent on this phase. There are simple opti-
mizations that significantly improve the running time of the target program
without slowing down compilation too much. The chapters from 8 on discuss
machine-independent and machine-dependent optimizations in detail.

1.2.6 Code Generation

The code generator takes as input an intermediate representation of the source
program and maps it into the target language. If the target langnage is machine
code, registers or memory locations are selected for each of the variables used by
the program. Then, the intermediate instructions are translated into sequences
of machine instructions that perform the same task. A crucial aspect of code
gencration is the judicious assignment of registers to hold variables.

For example, using registers R1 and R2, the intermediate code in (1.4) might
get translated into the machine code

LDF R2, 1d3
MULF R2, R2, #60.0

LDF R1, id2 (1.5)
ADDF R1, BRi, R2
STF idl, RL

The first operand of each instruciion specifics a destination. The F in each
instruction tells us that it deals with floating-point numbers. The code in

1.2, THE STRUCTURE OF 4 COMPILER 11

(1.5) loads the contents of address 1d3 into register R2, then multiplies it with
floating-point constant 60.0. The # signifies that 60.0 is to be treated as an
immediate constant. The third instruction moves id2 into register R1 and the
fourth adds to it the value previously computed in register R2. Finally, the value
in register R1 is stored into the address of id1, so the code correctly implements
the agsignment statement (1.1). Chapter 8 covers code generation.

"This discussion of code generation has ignored the important issue of stor-
age allocation for the identifiers in the source program. As we shall see in
Chapter 7, the organization of storage at run-time depends on the language be-
ing compiled. Storage-allocation decisions are made either during intermediate
code generation or during code generation.

1.2.7 Symbol-Table Management

An cssential function of a compiler 18 to record the variable names used in the
source program and collect information about various attributes of each name.
These attributes may provide information about the storage allocated for a
name, its type, its scope (where in the program its value may be used), and
in the case of procedure names, such things as the number and types of its
arguments, the method of passing each argument (for example, hy value or by
reference), and the type returned.

The symbol table is a data structure containing a record for each variable
name, with ficlds for the aivtributes of the name. The data structure should be
designed to allow the compiler to find the record for each name quickly and to
store or retrieve data from that record quickly. Symbol tables are discussed in
Chapter 2.

1.2.8 The Grouping of Phases into Passes

The discussion of phases deals with the logical organization of a compiler. In
an implementation, activities from several phases may be grouped together
into a pass that reads an input file and writes an output file. For example,
the front-end phases of lexical analysis, syniax analysis, semantic analysis, and
intermediatc code generation might be grouped together into onc pass. Code
optimization might be an optional pass. Then there could be a back-end pass
consisting of code generation for a particular target machine.

Some compiler collections have been created around carefully designed in-
termediate representations that allow the front end for a particular language to
interface with the back end for a certain target machine. With these collections,
we can produce compilers for different source languages for one target machine
by combining different front ends with the back end for that target machine,
Similarly, we can produce compilers for different target machines, by combining
a front end with back ends for different target machines.

12 CHAPTER 1. INTRODUCTION

1.2.9 Compiler-Construction Tools

The compiler writer, like any software developer, can profitably use modern
software development environments containing tools such as language editors,
debuggers, version managers, profilers, test harnesses, and so on. In addition
to these general software-development tools, other more specialized tools have
been created to help implement various phases of a compiler.

These tools use specialized languages for specifying and implementing spe-
cific components, and many use quite sophisticated algorithms. The most suc-
cessful tools are those that hide the details of the gencration algorithm and
produce components that can be easily integrated into the remainder of the
compiler. Some commonly used compiler-construction tools include

1. Parser generators that automatically produce syntax analyzers from a
grammatical description of a programming language.

2. Seanner generators that produce lexical analyzers from a regular-expres-
sion description of the tokens of a language.

3. Syntaxr-directed translation engines that produce colleciions of routines
for walking a parse trec and generating intermediate code.

4. Cede-generator generators that produce a code generator from a collection
of rules for translating each operation of the intermediate language into
the machine language for a target machine.

5. Data-flow analysis engines that facilitate the gathering of information
about how values are transmitted from one part of a program fo cach
other part. Data-flow analysis is a key part of code optimization.

6. Compiler-construction toolkits that provide an integrated set of routines
for constructing various phases of a compiler.

We ghall describe many of these tools throughout this book.

1.3 The Evolution of Programming Languages

The first electronic computers appeared in the 1940°s and were programmed in
machine language by sequences of (s and 1’s that explicitly told the computer
what operations to execute and in what order. The operations themselves
were very low level: move data from one location to another, add the contents
of two registers, compare two values, and so on. Needless to say, this kind
of programming was slow, tedious, and crror prone. And once written, the
programs were hard to understand and modify.

1.3. THE EVOLUTION OF PROGRAMMING LANGUAGES 13

1.3.1 The Move to Higher-level Languages

The first step towards more people-friendly programming languages was the
development of muemonic assembly languages in the early 1950°s. Initially,
the instructions in an assembly language were just mnemonic representations
of machine instructions. Later, macro instructions were added to assembly
languages so that a programmer could define paramcterized shorthands for
frequently used sequences of machine instructions.

A major step towards higher-Jevel languages was made in the latter half of
the 1950’ with the development of Fortran for scientific computation, Cobol
for business data processing, and Lisp for symbolic computation. The philos-
ophy behind these languages was to create higher-level notations with which
programmers could morc easily writc numerical computations, business appli-
cations, and symbolic programs. These languages were so successful that they
are still in use today.

In the following decades, many more languages were created with innovative
features to help make programming easier, more natural, and more robust.
Later in this chapier, we shall discuss some key features that are common to
many modern programming languages.

Today, there are thousands of programming languages. They can be classi-
fied in a variety of ways. One classification is by generation. First-generation
languages are the machine languages, second-generation the assembly languages,
and third-generation the higher-level languages like Fortran, Cobol, Lisp, C,
C++, C#, and Java. Fourth-generation languages are languages designed
for specific applications like NOMAD for report generation, SQL for database
queries, and Postseript for text formatting., The term fifth-generalion language
has been applied to logic- and counstraint-based languages like Prolog and OPS5.

Another classification of languages uses the term imperative for languages
in which a program specifies how a computation s to be done and declarative
for languages in which a program specifies what computation is to be done.
Langnages such as C, C++, C#, and Java are imperative languages. In imper-
ative languages there is a notion of programn state and statements that change
the state. Functional languages such as ML and Haskell and constraint logic
languages such as Prolog are often cousidered to be declarative languages.

The term von Neumann language is applied to programming languages
whose computational model is based on the von Neumann computer archi-
tecture. Many of today’s languages, such as Fortran and C are von Neumann
languages.

An object-oriented language is one that supports object-oriented program-
ming, a programming style in which a program consists of a collection of objects
that interact with one another. Simula 67 and Smalltalk are the earliest major
object-oriented languages. Languages such ags C++, C#, Java, and Ruby are
more recent object-oriented languages.

Seripting languages arc interpreted langnages with high-level operators de-
signed for “gluing together” computations. These computations were originally

14 CHAPTER 1. INTROQDUCTION

called “scripts.” Awk, JavaScript, Perl, PHP, Python, Ruby, and Tcl are pop-
ular examples of scripting languages. 'rograms written in scripting languages
are often much shorter than equivalent programs written in languages like C.

1.3.2 Impacts on Compilers

Since the design of programming languages and compilers are intimately related,
the advances in programming languages placed new demands on compiler writ-
ers. They had to devise algorithms and represenlations to translate and support
the new language features, Since the 1940’s, computer architecture has evolved
as well. Not only did the compiler writers have to track new langnage fea-
turcs, they also had to devise translation algorithms that would take maximal
advantage of the new hardware capabilities.

Compilers can help promote the nse of high-level languages by mininizing
the execution overhead of the programs written in these languages. Compilers
are also critical in making high-performance computer architecturces effective
on users’ applications. In fact, the performance of a computer system is so
dependent on compiler technology that compilers are used as a tool in evaluating
architectural concepts before a computer is built.

Compiler writing is challenging. A compiler by itself is a large program.
Moreover, many modern language-processing systems handle several source lan-
guages and target machines within the same framework; that is, they serve as
collections of compilers, possibly consisting of millions of lines of code. Con-
sequently, good softwarc-engincering techniques are essential for creating and
evolving modern language processors.

A compiler must translate correctly the potentially infinite set of programs
that could be written in the source language. The problem of generating the
optimal target code from a source program is undecidable in general; thus,
compiler writers must evaluate tradeoffs about what problems to tackle and
what heuristics to use to approach the problem of generating efficient code.

A study of compilers is also a study of how theory meets practice, as we
shall see in Section 1.4.

The purpose of this text is to teach the methodology and fundamental ideas
used in compiler design. It is mot the intention of this text to teach all the
algorithms and lechniques that could be used for building a state-of-the-art
language-processing systemn. However, readers of this text will acquire the basic
knowledge and understanding to learn how to build a compiler relatively easily.

1.3.3 Exercises for Section 1.3
Exercise 1.3.1: Indicate which of the following terms:

a) imperative h) declarative ¢) von Nenmann
d) object-oriented e) functional) third-generation
g) fourth-generation h) scripting

1.4. THE SCIENCE OF BUILDING A COMPILER 15

apply to which of the following languages:

1HC 2) C++ 3) Cobol 4) Fortran 3) Java
6) Lisp 7) ML 8) Perl 9) Python 10) VB.

1.4 The Science of Building a Compiler

Compiler design is full of beautiful examples where complicated real-world prob-
lems are solved by abstracting the essence of the problem mathematically. These
serve as cxcellent illustrations of how abstractions can be used to solve prob-
lems: take a problem, formulate a mathematical abstraction that captures the
key characteristics, and solve it using mathematical techniques. The problem
formulation must be grounded in a solid understanding of the characteristics of
computer programs, and the solution must be validated and refined empirically.

A compiler must accept all source programs that conform to the specification
of the language; the set of source programs is infinite and any program can be
very large, consisting of possibly millions of lines of code. Any transformation
performed by the compiler while translating a source program must preserve the
meaning of the program being compiled. Compiler writers thus have influence
over not just the compilers they create, but all the programs that their com-
pilers compile. This leverage makes writing compilers particularly rewarding;
however, it also makes compiler development challenging.

1.4.1 Modeling in Compiler Design and Implementation

The study of compilers is mainly a study of how we design the right mathe-
matical models and choose the right algorithms, while balancing the need for
generality and poweér against simplicity and cfficiency.

Some of most fundamental models are finite-state machines and regular
expressions, which we shall meet in Chapter 3. These models are useful for de-
scribing the lexical units of programs (keywords, identifiers, and such) and for
describing the algorithms used by the compiler to recognize those units. Also
among the most fundamental models are context-free grammars, used to de-
scribe the synlactic structure of programming languages such as the nesting of
parentheses or control constructs. We shall study grammars in Chapter 4. Sim-
ilarly, trees are an important model for representing the structure of programs
and their translation into object code, as we shall see in Chapter 5.

1.4.2 The Science of Code Optimization

The term “optimization” in compiler design refers to the attempts that a com-
piler makes to produce code that is more efficient than the obvious code. “Op-
timization” is thus a misnomer, since there is no way that the code produced
by a compiler can be guaranteed to be as fast or faster than any other code
that performs the same task.

16 CHAPTER 1. INTRODUCTION

In modern times, the optimization of code that a compiler performs has
become both more important and more complex. It is more complex hecanse
processor architectures have become more complex, yielding more opportunities
to improve the way code executes. It is more important because massively par-
allel computers require substantial optimization, or their performance suffers by
orders of magnitude. With the likely prevalence of multicore machines {com-
pulers with chips that have large numbers of processors on them), all compilers
will have to face the problem of taking advantage of multiprocessor machines.

It is hard, if not impossible, to build a robust compiler out of “hacks.”
Thus, an extensive and useful theory has been built up around the problem of
optimizing code. The use of a rigorous mathematical foundation allows us to
show that an optimization is correct and that it produces the desirable effect
for all possible inputs. We shall see, starting in Chapter 9, how models such
as graphs, matrices, and lincar programs are necessary if the compiler is to
produce well optimized code.

On the other hand, pure theory alone is insufficient. Like many rcal-world
problems, Lhere are no perfect answers. In fact, most of the guestions that
we ask in compiler optimization are undecidable. (ne of the most important
skills in compiler design is the ability to formulate the right problem to solve.
We need a good understanding of the behavior of programs o start with and
thorough experimentation and evaluation to validate our intuitions.

Compiler aptimizations must meet the following design objectives:

e The optimization must be correct, that is, preserve the meaning of the
compiled program,

¢ The optimization must improve the performance of many programs,
¢ The compilation time must be kept reasonable, and
¢ The engineering effort required must be manageable.

It is iznpossible to overemphasize the importance of correctness, It is trivial
to write a compiler that generates last code if the generated code need not
be correct! Optimizing compilers are go difficult to get right that we dare say
that no optimizing compiler is completely error-free! Thus, the most important
ohjective in writing a compiler is that it is correct,

The sccond goal is that the compiler must be effeciive in improving the per-
formance of many input programs. Normally, performance means the speed of
the program execution. Especially in cmbedded applications, we may also wish
to minimize the size of the generated code. And in the case of mobile devices,
it is also desirable that the code minimizes power consumption. Typically, the
same optimizations that speed up execution time also conserve power. Besides
performance, usability aspects such as error reporting and debugging are also
important.

Third, we need to keep the compilation time short to support a rapid devel-
opment and debugging cycle. This requirement has become easier 10 meet as

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 17

machines get faster. Often, a program is first developed and debugged without
program optimizations. Not only is the compilation time reduced, but more
i:mpbrtantly, unoptimized programs are easicr to debug, because the optimiza-
tions introduced by a compiler often obscure the relationship between the source
code and the object code. Turning on optimizations in the compiler sometimes
exposes new problems in the source program; thus testing must again be per-
formed on the optimized code. The need for additional testing sometimes deters
the use of optimizations in applications, especially if their performance is not
critical.

Finally, a compiler is a complex system; we must keep the system sim-
ple to assure that the engincering and maintenance costs of the compiler are
manageable. There is an infinite number of program optimizations that we
could implement, and it takes a nontrivial amount of effort {0 create a correct
and effective optimization, We must prioritize the optimizations, implementing
only those that lead to the greatest benefits on source programs encountered in
practice.

Thus, in studying compilers, we learn not only how to build a compiler, but
also the general mecthodology of solving complex and open-ended problems. The
approach used in compiler development involves both theory and experimenta-
tion. We normally start by formulating the problem hased on our intuitions on
what the imporiant issues are.

1.5 Applications of Compiler Technology

Compiler design is not only about compilers, and many people use the technol-
ogy learned by studying compilers in school, vet have never, strictly speaking,
written (even part of} a compiler for & major programming language. Compiler
technology has other important uses as well. Additionally, compiler design im-
pacts several other areas of computer science. In this section, we review the
most important interactions and applications of the technology.

1.5.1 Implementation of High-Level Programming
Languages

A high-level programming language defines a programming abstraction: the
programmer expresses an algorithm using the language, and the compiler must
translate that program to the target language. Generally, higher-level program-
ming languages are easier to program in, but are less efficient, that is, the target
programs riin more slowly. Programmers using a low-level language have more
control over a computation and can, in principle, produce more efficient code.
Unfortunately, lower-level programs are harder to write and —- worse still -
less portable, more prone o errors, and harder to maintain. Optimizing com-
pilers inchide techniques to improve the performance of generated code, thus
offsetting the inefficiency introduced by high-level abstractions.

18 CHAPTER 1. INTRODUCTION

Example 1.2: The register keyword in the C programming language is an
early example of the intcraction between compiler technology and language evo-
lution. When the C language was created in the mid 1970s, it was considered
necessary to let a programmer control which program variables reside in regis-
ters. This control became unnecessary as effective register-allocation techniques
were developed, and most modern programs no longer use this language feature.
In fact, programs that use the register keyword may lose efficiency, because
programmers often are not the best judge of very low-level matters like register
allocation. The optimal choice of register allocation depends greatly on the
specifics of a machine architecture. Hardwiring low-level resource-management
decisions like register allocation may in fact hurt performance, especially if the
program is run on machines other than the one for which it was written. O

The many shifts in the popular choice of programming languages have been
in the direction of incrcased levels of abstraction. € was the predominant
systems programming langnage of the 80°s; many of the new projects started
in the 90’s chose C++; Java, introduced in 1995, gained popularity quickly
in the late 90’s. The new programming-language features introduced in each
round spurred new research in compiler optimization. In the following, we give
an overview on the main language features that have stimulated significant
advances in compiler technology.

Practically all commen programming languages, including C, Fortran and
Cabol, support user-defined aggregate data types, such as arrays and structures,
and high-level control flow, such as loops and procedure invocations. If we just
take each high-level construct or data-access operation and translate it directly
to machine code, the result would be very inefficient. A body of compiler
optimizations, known as data-flow eptimizations, has been developed to analyze
the flow of data through the program and removes redundancies across these
constructs. They are effective in generating code that resembles code written
by a skilled programmer at a lower level.

Object orientation was first iniroduced in Simula in 1967, and has been
incorporated in languages such as Smalltalk, C++4, C#, and Java. The key
ideas behind object orientation are

1. Data abstraction and
2. Inheritance of properties,

both of which have been found to make programs more modular and easier to
maintain. Object-oriented programs arc different from those written in many
other languages, in that they consist of many more, but smaller, procedures
{called methods in ohject-oriented terms). Thus, compiler optimizations must
be able to perform well across the procedural boundaries of the source program.
Procedure inlining, which is the replacement of a procedure call by the body
of the procedure, is particularly useful here. Optimizations to speed up virtual
method dispatches have also been developed.

1.5. APPLICATIONS QF COMPILER TECHNOLOGY 19

Java has many features that make programming easier, many of which have
been introduced previously in other languages. The Java language is type-safe;
that is, an object cannot be used as an object of an unrelated type. All array
accesses are checked to ensurc that they lie within the bounds of the array.
Java has no pointers and does not allow pointer arithmetic. It has a built-in
garbage-collection facility that automatically frees the memory of variables that
are no longer in use. While all these features make programming easier, they
incur a run-time overhead. Compiler optimizations have been developed to
reduce the overhead, for example, by eliminating unnecessary range checks and
by allocating objecis that are not accessible beyond a procedure on the stack
instead of the heap. Effective algorithins also have been developed to minimize
the overhead of garbage collection.

In addition, Java is designed to support portabie and mobile code. Programs
are distributed as Java bytecode, which must either be interpreted or compiled
into native code dynamically, that is, at run time. Dynamic compilation has also
been studied in other contexts, where information is extracted dynamically at
run time and used to produce better-optimized code. In dynamic optimization,
it is important to minimize the compilation time as it is part of the execution
overhead. A common technique used is to only compile and oplimize those
parts of the program that will be frequently executed.

1.5.2 Optimizations for Computer Architectures

The rapid evolution of computer architectures has also led to an insatiable
demand for new compiler technology. Almost all high-performance systemns
take advantage of the same two basic techniques: parellelism and memory hi-
erarchies. Parallelism can be found at several levels: at the instruction level,
where multiple operations are executed simultaneously and at the precessor
level, where different threads of the same application are run on different pro-
cessors. Memory hierarchies arc a response to the basic limitation thatl we can
build very fast storage or very large storage. but not storage that is both fast
and large.

Parallelism

All modern microprocessors exploit instruction-level parallelism. However, this
paralielism can be hidden from the programmer. Programs are written as if all
instructions were execuled in sequence; the hardware dynamically checks for
dependencies in the sequential instruction stream and issues themn in parallel
when possible. In some cases, the machine includes a hardware scheduler that
can change the instruction ordering to increase the parallelism in the program.
Whether the hardware reorders the instructions or not, compilers can rearrange
the instructions to make instruction-level parallelism more effective.
Instruction-level parallclism can also appear explicitly in the instruction set.
VLIW (Very Long Insiruction Word) machines have instructions that can issue

20 CHAPTER 1. INTRODUCTION

multiple operations in paralicl. The Intel IA64 is a well-known example of such
an architecture. All high-performance, general-purpose microprocessors also
include instructions that can operate on a vector of data at the same time.
Compiler techniques have been developed to generate code automatically for
such machines from sequential programs.

Multiprocessors have also become prevalent; even personal computers of-
ten have muiltiple processors. Programmers can write multithreaded code for
multiprocessors, or parallel codc can be automatically generated by a com-
piler from conventional sequential programs. Such a compiler hides from the
programmers the details of finding parallelism in a program, distributing the
computation across the machine, and minimizing synchronization and com-
munication among the processors. Many scientific-computing and engineering
applications are computation-intensive and can bencfit greatly from paraliel
processing. Parallelization techniques have been developed to translate auto-
matically sequential scientific programs into multiprocessor code.

Memory Hierarchies

A memory hierarchy consists of several levels of storage with different speeds
and sizes, with the level closest to the processor being the fastest but small-
est. The average memory-access time of a program is reduced if most of its
accesses are satisfied by the faster levels of the hierarchy. Both parallelism and
the existence of a memory hierarchy improve the potential performance of a
machinge, but they must be harnessed effectively by the compiler to deliver real
performance on an application.

Memory hierarchies are found in all machines. A processor usually has
a small number of registers consisting of hundreds of bytes, several levels of
caches containing kilobytes to megabytes, phyvsical memory containing mega-
bytes to gigabytes, and finally secondary storage that contains gigabytes and
beyond. Correspondingly, the speed of accesses between adjacent levels of the
hierarchy can differ by two or three orders of magnitude. The performance of a
system is often limited not by the speed of the processor but by the performance
of the memory subsystem. While compilers traditionally focus on optimizing
the processor execution, more cmphasis is now placed on making the memory
hierarchy more effective.

Using registers effectively is probably the single most important problem in
optimizing a program. Unlike registers that have to be managed explicitly in
software, caches and physical memories are hidden from the instruction set and
are managed by hardware. It has been found that cache-management policies
implemented by hardware are not effective in some cases, especially in scientific
code that has large data structures (arrays, typically). It is possible to improve
the effectiveness of the memory hierarchy by changing the layout of the data,
or changing the order of instructions accessing the data. We can also change
the layout of code to improve the effectiveness of instruction caches.

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 21

1.5.3 Design of New Computer Architectures

In the early days of computer architecture design, compilers were developed
after the machines were built. That has changed. Since programming in high-
level langnages is the norm, the performance of a computer system is determined
not by its raw speed but alse by how well compilers can exploit its features.
Thus, in modern computer architecture development, compilers are developed
in the processor-design stage, and compiled code, running on simulators, is used
to evaluate the proposed architectural features.

RISC

One of the best known examples of how compilers influenced the design of
computer architecture was the invention of the RISC (Reduced Instruction-Set
Computer) architecture. Prior to this invention, the trend was to develop pro-
gressively complex instruction sets intended to make assembly programming
easier; these architectures were known as CISC (Coruplex Instruction-Set Com-
puter). For example, CISC instruction sets include complex memory-addressing
modes to support data-structure accesses and procedure-invocation instructions
that save registers and pass parameters on the stack.

Compiler optimizations often can reduce these instructions to a small num-
ber of simpler operations hy eliminating the redundancics across complex in-
structions. Thus, it is desirable to build simple instruction sets; compilers can
use them effectively and the hardware is much easier to optimize.

Most general-purpose processor architectures, including PowerPC, SPARC,
MIPS, Alpha, and PA-RISC, are based on the RISC concept. Although the
x86 architecture—the most popular microprocessor —has a CISC instruction
set, many of the ideas developed for RISC machines are used in the imple-
mentation of the processor itself, Moreover, the most effective way to use a
high-performance x86 machine is Lo use just its simple instructions.

Specialized Architectures

Over the last three decades, many architectural concepts have been proposed.
They include data flow machines, vector machines, VLIW (Very Long Instruc-
tion Word) machines, SIMD (Single Instruction, Multiple Data) arrays of pro-
cessors, gystolic arrays, multiprocessors with shared memory, and multiproces-
sors with distributed memory. The devclopment of each of these architectural
concepts was accompanied by the research and development of corresponding
conipiler technology.

Some of these ideas have made their way into the designs of embedded
machines. Since entire systerns can fit on a single chip, processors need no
longer be prepackaged commodity units, but can be tailored to achieve better
cost-effectiveness for a particular application, Thus, in contrast to general-
purpose processors, where economies of scale have led computer architectures

22 CHAPTER 1. INTRODUCTION

to converge, application-specific processors exhibit a diversity of computer ar-
chitecturcs. Compiler technology is needed not only to support programming
for these architectures, but also to cvaluate proposed architectural designs.

1.5.4 Program Translations

While we normally think of compiling as a translation from a high-level lan-
guage to the machine level, the same technology can be applied to translate
between different kinds of languages. The following are some of the important
applications of program-translation techniques.

Binary Tramslation

Compiler technology can be used to translate the binary code for one machine
to that of another, allowing a machine to run programs originally compiled for
another instruction set. Binary translation technology has been used by various
computer companies to increase the availability of software for their machines.
In particular, because of the domination of the x86 personal-computer mar-
ket, most software titles are available as x85 code. Binary translators have
been developed to convert x86 code into both Alpha and Sparc code. Binary
translation was also used by Transmeta Inc. in their implementation of the x86
instruction set. Instead of executing the complex x86 instruction set directly in
hardware, the Trangmeta Crusoe processor is a VLIW processor that relies on
binary translation to convert x86 code into native VLIW code.

Binary translation can also be used to provide backward compatibility.
When the processor in the Apple Macintosh was changed from the Motorola MC
63040 to the PowerPC in 1994, binary translation was used to allow PowerPC
processors run legacy MC 68040 code.

Hardware Synthesis

Not only is most software written in high-level languages; even hardware de-
signs are mostly described in high-level hardwarc description languages like
Verilog and VHDL (Very high-speed integrated circuit Hardware Description
Language). Hardwarc designs are typically described at the register trans-
fer level (RTL), where variables represent registers and expressions represent
combinational logic. Hardware-synthesis tools translate RTL descriptions auto-
matically into gates, which are then mapped to transistors and eventually to a
physical layoui. Unlike compilers for programming languages, these tools often
take hours optimizing the circuit. Techniques to translate designs at higher
levels, such as the behavior or functional level, also exist.

Database Query Interpreters

Besides specifying software and hardware, languages are useful in many other
applications. For example, query languages, especially SQL {Structured Query

1.5. APPLICATIONS OF COMPILER TECHNOLOGY 23

Language), are used to search databases. Database queries consist of predicates
containing relational and boolean operators. They can be interpreted or com-
piled into commands to search a database for records satisfying that predicate.

Compiled Simulation

Simulation is a general technigue used in many scientific and engineering disci-
plines to understand a phenomenon or to validate a design. Inputs to a simula-
tor usually include the description of the design and specific input parameters
for that particular simulation run. Simulations can be very expensive, We typi-
cally need to simulate many possible design alternatives on many different input
sets, and each experiment may take days to complete on a high-performance
machine. Instead of writing a simulator that interprets the design, it is faster
to compile the design to produce machine code that simulates that particular
design natively. Compiled simulation can run orders of magnitude faster than
an interpreter-based approach. Compiled simulation is used in many state-of-
the-art fools that simulate designs written in Verilog or VHDL.

1.5.5 Software Productivity Tools

Programs are arguably the most complicated engineering artifacts ever pro-
duced; they consist of many many details, every one of which must be correct
before the program will work completely. As a result, errors are rampant in
programs; errors may crash a system, produce wrong results, render a system
vulnerable to security attacks, or even lead to catastrophic failures in critical
systems. Testing is the primary technique for locating errors in programs.

An interesting and promising complementary approach is to use data-flow
analysis to locate errors statically (that is, before the program is run). Data-
flow analysis can find errors along all the possible execulion paths, and not
just those exercised by the input data sets, as in the case of program testing.
Many of the data-flow-analysis techniques, originaily developed for compiler
optimizations, can be uscd to create tools that assist programmers in their
software engineering tasks.

The problem of finding all program errors is undecidable. A data-flow analy-
sis may be designed to warn the programmers of all possible statements violating
a particular category of errors. But if most of these warnings are false alarms,
users will not use the tool. Thus, practical error detectors are often neither
sound nor complete. That is, they may not find all the errors in the program,
and not all errors reported are guaranteed to be real errors. Noncthcless, var-
lous static analyses have been developed and shown to be effective in finding
errors, such as dereferencing null or freced pointers, in real programs. The fact
that error detectors may be unsound makes them significantly different from
compiler optimizations. Qptimizers must be conservative and cannot alter the
semantics of the program under any circumstances.

24 CHAPTER 1. INTRODUCTION

In the balance of this section, we shall mention several ways in which pre-
gram analysis, building upon technigues originally developed to optimize code
in compilers, have improved software productivity. Of special importance are
techniques that detect statically when a program might have a security vulner-
ability.

Type Checking

Type checking is an effective and well-established technique ta catch inconsis-
tencies in programs. It can be used to catch errors, for example, where an
operation is applied to the wrong type of object, or if parameters passed 1o a
procedure do not match the signature of the procedure. Program analysis can
go beyond finding type errors by analyzing the flow of dasa through a program.
For example, if a pointer is assigned null and then iinmediately dereferenced,
the program is clearly in error.

The same technology can be used to cateh a variety of security holes, in
which an attacker supplies a string or other data that is used carelessly by the
program. A user-supplied string can be labeled with a type “dangerous.” If
this string is not checked for proper format, then it remains “dangerous,” and
if a string of this type is able to influence the control-flow of the code at some
point in the program, then there is a potential sccurity flaw.

Bounds Checking

It is easier to make mistakes when programming in a lower-level language than
a higher-level one. For example, many security breaches in systems are caused
by buffer overflows in programs written in C. Because C does not have array-
bounds checks, it is up to the user to ensure that the arrays are not accessed
out of bounds. Failing to check that the data supplied by the user can overflow
a buffer, the program may be tricked into storing user data outside of the
buffer. An attacker can manipulate the input data that causes the program to
misbehave and compromise the security of the system. Techniques have been
developed to find buffer overflows in programs, but with limited success.

Had the program been written in a safe language that includes automatic
range checking, this problem would not have occurred. The same data-flow
analvsis that is used to eliminate redundant range checks can also be used to
locate buffer overflows. The major difference, however, is that failing to elimi-
nate a range check would only result in a small run-time cost, while {ailing to
identify a potential buffer overflow may compromise the security of the system.
Thus, while it is adequate Lo use simple techniques to optimize range checks, so-
phisticated analyses, such as tracking the values of pointers across procedures,
are needed to get high-quality results in error detection tools.

1.6. PROGRAMMING LANGUAGE BASICS 25

Memory-Management Tools

Garbage collection is another excellent examplc of the tradeoff between effi-
clency and a combination of ease of programming and software reliability. Au-
tomatic memory management obliterates all memory-management errors (e.g.,
“memory leaks”), which are a major source of problems in C and C++ pro-
grams. Various tools have been developed to help programmers find memory
management errors. For example, Purify is a widely used tool that dynamically
catches memory management errors as they occur. Tools that help identify
some of these problems statically have also been developed.

1.6 Programming Language Basics

In this section, we shall cover the most important terminology and distinctions
that appear in the study of programming languages. Tt is not our purpose to
cover all concepts or all the popular programming languages. We assume that
the reader is familiar with at least one of C, C++, C#, or Java, and may have
encountered other languages as well.

1.6.1 The Static/Dynamic Distinction

Among the most important issues that we face when designing a compiler for
a language is what decisions can the compiler make about a program. If a
language uses a policy that allows the compiler to decide an issne, then we say
that the langiage uses a static policy or that the issie can be decided at compile
time. On the other hand, a policy that only allows a decision te be made when
we execute the program is said to be a dynamic policy or to require a decision
at run timne.

One issue on which we shall concentrate is the scope of declarations. The
scope of a declaration of z is the region of the program in which uses of 2 refer to
this declaration. A language uses static scope or lexical scope if it is possible to
determine the scope of 4 declaration by looking only at the program. Otherwise,
the language uses dynamsc scope. With dynamic scape, as the program runs,
the same use of # could refer to any of several different declarations of z.

Most languages, such as C and Java, usc static scope. We shall discuss static
scoping in Section 1.6.3.

Example 1.3: As another example of the static/dynamic distinction, consider
the use of the term “static” as it applies to data in a Java class declaration. In
Java, a variable is a name for a location in memory used to hold a data value.
Here, “static” refers not to the scope of the variable, but rather to the ability of
the compiler to determine the location in memory where the declared variable
can be found. A declaration like

public static int x;

26 CHAPTER 1. INTRODUCTION

makes ¢ & class variable and says that there is only one copy of #, no matter how
many ohjects of this class are created. Moreover, the compiler can determine a
location in memory where this integer # will be held. In countrast, had “static”
been omitted from this declaration, then each object of the class would have its
own location where z would be held, and the compiler could not determine all
these places in advance of running the program. O

1.6.2 Environments and States

Another important distinction we must make when discussing programming
languages is whether changes occurring as the program runs affect the values of
data elements or affect the interpretation of names for that data. For example,
the execution of an assignment such as x =y +1 changes the value denoted by
the name 2. More specifically, the assignment changes the value in whatever
location is denoted by .

It may be less clear that the location denoted by z can change at run time.
For instance, as we discussed in Example 1.3, if # is not a static (or “class”)
variable, then every object of the class has its own localion for an instance
of variable z. In that vase, the assignment to z can change any of those “in-
stance” variables, depending on the chject to which a method containing that
assignment is applied.

environment state
nalnes locations values
{variahles)

Figure 1.8: Two-stage mapping from names to values

The association of names with locations in memory (the store) and then
with values can be described by two mappings that change as the program runs
(see Fig. 1.8):

1. The environment is a mapping from names to locations in the store. Since
variables refer to locations (“l-values” in the terminology of C), we could
alternatively define an environment as a mapping from names to variables.

2. The state is a mapping from locations in store to their values. That is, the
state maps I-values to their corresponding r-values, in the terminology of
C.

Environments change according to the scope rules of a language.

Example 1.4: Consider the C program fragment in Fig. 1.9. Integer ¢ is
declared a global variable, and also declared as a variable local to function f.
When f is executing, the environment adjusts so that name i refers to the

1.6. PROGRAMMING LANGUAGE BASICS 27

‘i‘n.t i; /* global i */
;.r'o-id £ o

int i; /* local € */

i .= 3; /xuse of local i */
}

x=1+1; /* use of glohal 7 */

Figure 1.9: Two declarations of the name 4

location reserved for the 7 that is local to f, and any use of i, such as the
assignment i = 3 shown explicitly, refers to that location. Typically, the local
i is given a place on the run-time stack.

Whenever a function g other than f is executing, uses of ¢ cannot refer to
the ¢ that is local to f. Uses of name ¢ in g must be within the scope of some
other declaration of 2. An example is the explicitly shown statement x = i+1,
which is inside some procedure whose definition is not shown, Theiin i+ 1
presumably refers to the global ¢. As in most languages, declarations in C must
precede their use, so a function that comes before the global ¢ cannot refer to
it. 00

The environment and state mappings in Fig. 1.8 arc dynamic, but there are
a few exceptions:

1. Static versus dynamic binding of names to locations. Most binding of
names to locations is dynamic, and we discuss several approaches to this
binding throughout the section. Some declarations, such as the global ¢
in Fig. 1.9, can be given & location in the store once and for all, as the
comgpiler generates object code.?

2. Static versus dynamic binding of locations to vahies. The binding of lo-
cations to values (the second stage in Fig. 1.8), is generally dynamic as
well, since we cannot tell the value in a location until we run the program.
Declared constants arc an exception. For instance, the C definition

#define ARRAYSIZE 1000

?Technically, the ¢ compiler will assign a lacation in virtual mewory for the global 4,
leaving it to the loader and Lhe operating system to determine where in the plysical memory
of the machine ¢ will be located. HHowever, we shall not worry about “relocation” issues such
as these, which have no impact on compiling. Instead, we treat the address space that the
compiler uses for its output code as if it gave physical memory locations.

28 CHAPTER 1. INTRODUCTION

Names, Identifiers, and Variables

Although the terms “nam¢” and “variable,” often refer to the same thing,
we use them carefully fo distinguish between compile-time names and the
run-time locations denoted by names.

An identifier is a string of characters, typically letters or digits, that
refers to (identifies) an entity, such as a data object, a procedure, a class,
or a type. All identificrs are names, but not all names are identifiers.
Names can also be expressions. For example, the name z.y might denote
the field y of a structure denoted by . Here, & and ¥ are identifiers, while
z.y is a name, but not an identifier. Composite names like z.y are called
qualified names.

A wariable refers (o a particular location of the store. It is common for
the same identifier to be declared more than once; each such declaration
introduces a new variable. Even if each identifier is declared just once, an
identifier local to a recursive procedure will refer to different locations of
the store at different times.

binds the name ARRAYSIZE to the value 1000 statically. We can determine
this binding by looking at the statemens, and we know that it is impossible
for this binding to change when the program executes.

1.6.3 Static Scope and Block Structure

Most languages, including C and its family, use static scope. The scope rules
for C are based on program structure; the scope of a declaration is determined
implicitly by where the declaration appears in the program. Later languages,
such as C++, Java, and C#, also provide explicit contral over scopes through
the use of keywords like public, private, and protected.

In this section we consider static-scopc rules for a language with blocks,
where a block is a grouping of declarations and statements. C uses braces { and
} to delimit a block; the alternative use of begin and end for the same purpose
dates back to Algol.

Example 1.5: To a first approximation, the C static-scope policy is as follows:

1. A C program consists of a sequence of top-level declarations of variables
and functions.

2. Functions may have variable declarations within them, where variables
include local variables and parameters. The scope of each such declaration
is restricted to the function in which it appears.

1.6. PROGRAMMING LANGUAGE BASICS 29

Procedures, Functions, and Methods

To avoid saying “procedures, functions, or methods,” each time we want
to talk about a subprogram that may be called, we shall usually refer to
all of themn as “procedures.” The exception is that when talking explicitly
of programs in languages like C that have only functions, we shall refer
to them as “functions.” Or, if we are discussing a langnage like Java that
has only methods, we shall use that term instead.

A function generally returns a value of some type (the “return type”),
while a procedure does not return any value. C and similar languages,
which have only functions, treat procedures as functions that have a special
return type “void,” to signify no return value. Object-oriented languages
like Java and C++ use the term “methods.” These can behave like either
functions or procedures, but are associated with a particular class.

3. The scope of a top-level declaration of a name z consists of the entire
program that follows, with the exception of those statements that lie
within a function that also has a declaration of z.

The additional detail regarding the C static-scope policy deals with variable
declarations within statements. We examine such declarations next and in
Example 1.6. O

In C, the syntax of blocks iz given by

1. One type of statement is a block. Blocks can appear anywhere that other
types of statements, such as assighment statements, can appear.

2. A block is a sequence of declarations followed by a sequence of statements,
all surrounded by braces.

Note that this syntax allows blocks to be nested inside each other. This
nesting property is referred to as block siructure. The C family of languages
has block structure, except that a function may not be defined inside another
function.

We say that a declaration 22 “belongs” to a block B if B is the most closely
nested block containing D; that is, I} is located within B, but not within any
block that is nested within B.

The static-scope rule for variable declarations in a block-structured lan-
guages is as follows. If declaration D of name x belongs to block B, then the
scope of D is all of B, except for any blocks B’ nested to any depth within B,
in which z is redeclared. Here, z is redeclared in B’ if some other declaration
D' of the same name x belongs 1o B'.

30 CHAPTER 1. INTRODUCTION

An cquivalent way to express this mile is to focus on a use of a name z.
Let By, Bs,..., By be all the blocks that surround this use of z, with By the
smallest, nested within Bj_;, which is nested within Bj_3, and so on. Search
for the largest i such thai there is a declaration of # belonging to B;. This use
of x refers to the declaration in B;. Alternatively, this use of z is within the
scope of the declaration in B;.

main{) {

int a = 1;
int b = 1; By
{

P _—
int b = Z;

: B
i 2

int a = 3; B
cout << a << b;

(int b = 4; B
4
Lcout << a << b;

}
{

}

Lcout << a << b;

}

cout << a << b;

Figure 1.10: Blocks in a C++ program

Example 1.6: The C++ program in Fig. 1.10 has four blocks, with several
definitions of variables a and b. As a memory aid, each declaration initializes
ita variable to the number of the block to which it belongs.

For instance, consider the declaration int a = 1 in block By. Its scope
is all of By, except for those blocks nested (perhaps deeply) within B; that
have their own declaration of a. Bz, nested immediately within By, does not
have a declaration of e, but Bz does. B, does not have a declaration of e, s0
block By is the only place in the entire program that is outside the scope of the
declaration of the name a that belongs to By. That is, this scope includes By
and alt of B> except for the part of By that is within B3, The scopes of all five
declarations arc summarized in Fig. 1.11.

From another point of view, let us consider the output statement in block
B, and bind the variables @ and b used there to the proper declarations. The
list of surrounding blocks, in order of increasing size, is By, By, B Note that
B; does nol surround the point in question. Bs has a declaration of b, so it
is to this declaration that this use of b refers, and the value of b printed is 4.
However, By does not have a declaration of @, so we next look at Bz. That
block does not have a declaration of a either, so we proceed to By . Fortunately,

1.6. PROGRAMMING LANGUAGE BASICS 31

DECLARATION | SCOPE
int a = 1; B; — By
int b = l; B[— B‘z
int b = 2; Bg — By
int a = 3; B3

int b = 4; By

Figure 1.11: Scopes of declarations in Example 1.6

therc is a declaration int a = 1 helonging to that block, so the value of a
printed is 1. Had there been no such declaration, the program would have been
erroneous. O

1.6.4 Explicit Access Control

Classes and structures introduce a new scope for their members. If p is an
object of a class with a field (member) z, then the use of x in p.& refers to
field x in the class definition. In analogy with block structure, the scope of a
member declaration x in a clags € extends to any subelass €7, except if C' has
a local declaration of the same name z.

Through the usc of keywords like public, private, and protected, object-
oriented languages such as C4++4 or Java provide explicit control over access
to member names in a superclass. These keywords support encapsulation by
restricting access. Thus, private names are purposely given a scope that includes
only the method declarations and definitions associated with that class and any
“friend” classes (the C++ term). Protected names arc accessible to subclasses.
Public names are accessible from outside the class.

In C++, a class definition may be separated from the definitions of some
or all of its methods. Therefore, a name z associated with the class C may
have a region of the code that is outside its scope, followed by another region (a
method definition) that is within its scope. In fact, regions inside and outside
the scope may alternate, until all the methods have heen defined.

1.6.5 Dynamic Scope

Technically, any scoping policy is dynamic if it is based on factor(s) that can
be known only when the program executes. The term dynamic scope, however,
usually refers to the following policy: a nse of a name z refers to the declaration
of in the most rceently called procedure with such a dectaration. Dynamic
scoping of this type appears only in special situations. We shall consider two ex-
amples ol dynamic policies: macro expansion in the C preprocessor and method
resolution in object-oriented programming.

32 CHAPITER 1. INTRODUCTION

Declarations and Definitions

The apparently similar terms “declaration” and “definition” for program-
. ming-language concepts are actually quite different. Declarations tell us
about the types of things, while definitions tell us aboui their values. Thus,
int iis a declaration of 7, while i = 1 is a definition of 1. J
The difference is more significant when we deal with methods or other
procedures. In C4++, a method is declared in a class definition, by giving
the types of the arguments and result of the method (often called the
signature for the method. The method is then defined, i.e., the code for
cxecitting the method is given, in another place. Similarly, it is common
to define a C function in one file and declare it in other files where the
[unction is used.

Example 1.7: In the C program of Fig. 1.12, identifier a is a macro that
stands for expression (x + 1). But what is 7 We cannot resolve z statically,
that is, in terms of the program text.

#define a (x+1)

int x = 2;

void b() { int ¥ = 1; printf("%d\n", a); }
void c() { printf("%d\n", a); }

void main() { b(Q; <(; }

Figure 1.12: A macro whose names must be scoped dynamically

In fact, in order to interpret x, we must use the usual dynamic-scope rule.
We examine all the function calls that are currently active, and we take the most
recently called function that has a declaration of x. It is to this declaration that
the use of z refers.

In the example of Fig. 1.12, the function main first calls function b. As b
executes, it prints the value of the macro a. Since (x + 1) must be substituted
for a, we resolve this use of = fo the declaration int x=1 in function 4. The
reagson is that & has a declaration of x, so the (z + 1) in the printf in b refers
to this z. Thus, the value printed is 1.

After b finishes, and c is called, we again need to print the value of macro
a. However, the only z accessible to ¢ is the global x. The printf statement
in ¢ thus refers to this declaration of «, and value 2 is printed. O

Dynarnic scope resolution is also essential for polymorphic procedures, those
that have two or more definitions for the same name, depending only on the

1.6. PROGRAMMING LANGUAGE BASICS 33

Analogy Between Static and Dynamic Scoping

While there could be any number of static or dynamic policies for scoping,
there is an interesting relationship between the normal (block-structured)
static scoping rule and the normat dynamic policy. In a sense, the dynamic
rule is to time as the static rule is to space. While the static rule asks us to
find the declaration whose unit (block) most closely surrounds the physical
location of the use, the dynamic rule asks us to find the declaration whose
unit, {procedure invocation) most closely surrounds the time of the use.

types of the arguments. In gome languages, such as ML (see Section 7.3.3), it
is possible to determine statically Lypes for all uses of names, in which case the
compiler can replace each use of a procedure name p by a reference to the code
for the proper procedure, However, in other languages, such as Java and C4-+,
there are times when the compiler cannot make that determination.

Example 1.8: A distinguishing feature of object-oriented programming is the
ability of each object to invoke the appropriate method in response to a message.
In other words, the procedure called when z.m{) is cxecuted depends on the
class of the object denoted by z at that time. A typical example s as follows:

1. There is a class ¢ with a method named m().
2. D is a subclass of ', and D has its own method named m().
3. There is a use of m of the form z.m(), where z is an object of class C.

Normally, 1t i3 impossible to tell at compile time whether 2 will be of class
C or of the snbclass D. If the method application occurs several times, it is
highly likely that some will be on objects denoted by z that are in class C but
not D, while others will be in class D. Tt is not until run-time that it can be
decided which definition of m is the right one. Thus, the code generaied by the
compiler must determine the class of the object iz, and call one or the other
method named m. O

1.6.6 Parameter Passing Mechanisms

All programming languages have a notion of a procedure, but they can differ
in how these procedures get their arguments. In this section, we shall consider
how the actual parameters (the parameters used in the call of a procedure)
are associated with the formal parameters (those used in the procedure defi-
nition). Which mechanism is used determines how the calling-sequence code
treats parameters. The great majority of languages usc either “call-by-value,”
or “call-by-reference,” or both. We shall explain these terms, and another
method known as “call-by-name.” \hat is priarily of historical interest.

3 CHAPTER 1. INTRODUCTION

Call-by-Value

In call-by-value, the actual parameter is evaluated (if it is an expression) or
copied (if it is a variable). The value is placed in the location belonging to
the corresponding formal parameter of the called procedure. This method is
used ih C and Java, and is a common option in C++, as well as in most
other languages. Call-by-value has the effect that all computation involving the
formal parameters done by the called procedure is local to that procedure, and
the actual parameters themselves cannot be changed.

Note, however, that in C we can pass a pointer to a variable to allow that
variahle to be changed by the callee. Likewisc, array names passed as param-
eters in C, C++, or Java give the called procedure what is in effect a pointer
or reference to the array itself. Thus, if ¢ is the name of an array of the calling
procedure, and it is passed bjy value to correspondinig formal parameter z, then
an assignment such as x[i] = 2 really changes the array element a[2]. The
reason is that, although x gets a copy of the value of a, that value is really a
puinter to the beginning of the area of the store where the array named a is
located.

Similarly, in Java, many variables are rcally references, or pointers, to the
things they stand for. This observation applies to arrays, strings, and ohjects
of all classes. Even though Java uses call-by-value exclusively, whenever we
pass the name of an object to a called procedure, the value received by that
procedure is in effect a pointer to the object. Thus, the called procedure is able
to affect the value of the object itself.

Call-by-Reference

In calli-by-reference, the address of the actual parameter is passed to the callee as
the value of the corresponding formal parameter. Uscs of the formal parameter
in the code of the callee are implemented by following this pointer to the location
indicated by the caller. Changes to the formal parameter thus appear as changes
to the actual parameter.

If the actual parameter is an expression, however, then the expression is
evaluated before the call, and its value stored in a location of its own. Changes
to the formal parameter change this location, but can have no cffect on the
data of the caller.

Call-by-reference is used for “ref” parameters in C++ and js an option in
many other languages. [t is almost essential when the formal parameter is a
large object, array, or structurc. The reason is that strict call-by-value requires
that the caller copy the entire actual parameter into the space belonging to
the corresponding formal parameter. This copying gets expensive when the
parameter is large. As we noted when discussing call-by-value, languages such
as Java solve the problem of passing arrays, strings, or other objects by copying
only a reference to those objects. The effect is that Java behaves as if it uscd
call-by-reference for anything other than a basic type such as an integer or real.

1.6. PROGRAMMING LANGUAGE BASICS 35

Call-by-Name

A third mechanism — call-by-name — was used in the early programming
language Algol 60. It requires that the callee execute as if the actual parameter
were substituted literally [or the formal parameter in the code of the callee, as
if the formal parameter were a macro standing [or the actual parameter (with
renaming of local names in the called procedure, to keep them distinct). When
the actual parameter is an expression rather than a variable, some unintuitive
behaviars oceur, which is one reason this mechanism is not favored today.

1.6.7 Aliasing

There is an interesting consequence of call-by-reference parameter passing or
its simulation, as in Java, where references Lo objects are passed by value, It
is possible that two formal parameters can refer to the same location; such
variables are said to be aligses of one another. As a result, any two variables,
which may appear to take their values from two distinet formal parameters, can
become aliases of each other, as well.

Example 1.9: Suppose a is an array belonging 1o a procedure p, and p calls
another procedure g(z,y) with a call g{a,a). Suppose also that parameters
are passed by value, but that array names are really references to the location
where the array is stored, as in C or similar languages. Now, » and y have
hecome aliases of each other. The important point is that if within ¢ there is
an assignment x[10] = 2, then the value of y[10] also becomes 2. 0O

It turns out that understanding aliasing and the mechanisms that create it
is essential if a compiler is to optimize a program. As we ghall see starting in
Chapter 9, there are many situations where we can only optimize code if we
can be sure certain variables are not aliased. For instance, we might determine
that x = 2 is the only place that variable z is ever assigned. If so, then we can
replace a use of x by a use of 2; for example, replace a = z+3 by the simpler
a = 5. But suppose there were another variahble i that was aliased to x. Then
an assignment y = 4 might have the unexpected effect of chunging . It might
also mean that replacing a = x+3 by a = 5 was a mistake; the proper valuc of
a could be 7 there.

1.6.8 Exercises for Section 1.6

Exercise 1.6.1: For the block-structured C code of Fig. 1.13(a), indicate the
values assigned to w, z, ¥, and z.

Exercise 1.6.2: Repeat Exercise 1.6.1 for the code of Fig. 1.13(b).

Exercise 1.6.3: For the block-structured code of Fig. 1.14, assuming the usual
staiic scoping of declarations, give the scope for each of the twelve declarations.

36 CHAPTER 1. INTRODUCTION

1_'Ln1: W, X, ¥, Z; int w, x, y, Z;

int i = 4; int j = 5; int i = 3; int j = 4;

{ int j =7; { int i =5;
i=6; wo= 1+
v=1+j; }

} X =1+ j;

x =1+ j; { int j = 6;

{ int i = §; i=7;
y=1i+j; y=1+3;

} }

z =1+ j; z=14+17j;

{a) Code for Exercise 1.6.1 {b) Code for Exercise 1.6.2

Figure 1.13: Block-structured code

{ intw, x, y, z; /* Block Bl */
{ int x, z; /* Block B2 %/
{ int w, x; /% Block B3 =/ }
}
{ int w, x; /#* Block B4 =/
{ int y, z: /% Block B5 %/ }
}

Figure 1.14: Block structured code for Exercise 1.6.3

Exercise 1.6.4: What is printed by the following C code?

#define a (x+1)

int x = 2;

void b() { x = a; printf("%d\n", x); }
void ¢{}) { int x = 1; printf{"%d\n"), a; }
void main(} { b(); <O; }

1.7 Summary of Chapter 1

+ Language Processors. An integrated software devclopment environment
includes many different kinds of language processors such as compilers,
interpreters, assemblers, linkers, loaders, debuggers, profilers.

4 Compiler Phases. A compiler operates as a sequence of phases, each of
which transforms the source program from one intermediatc representa-

tion to another.

1.7. SUMMARY OF CHAPTER 1 37

¢ Machine and Assembly Languages. Machine languages were the first-
generation programming languages, followed by assembly languages. Pro-
gramnming in these languages was time consuming and error prone.

4 Modeling in Compiler Design. Compiler design is one of the places where
theory has had the most impact on practice. Models that have been found
useful include antomata, grammars, regular expressions, trees, and many
others.

4 Code Optimization. Although code cannot truly be “optimized,” the sci-
ence of improving the efficiency of code is both complex and very impor-
tant. It is a major portion of the study of compilation,

+ Higher-Level Languages. As time goes on, programrming languages take
on progressively more of the tasks that formerly were left to the program-
mer, such as memory management, type-consistency checking, or parallel
execution of code.

4 Compilers and Computer Architecture. Compiler technology influences
compitter architecture, as well as being influenced by the advances in ar-
chitecture. Many modern innovations in architecture depend on compilers
being able to extract from source programs the opportunities to use the
hardware capabilities effectively.

4+ Software Productivity and Software Security. The same technology that
allows compilers to optimize code can be used for a variety of program-
analysis tasks, ranging from detecling common program bugs to discov-
ering that a program is vulnerable to one of the many kinds of intrusions
that “hackers” have discovered.

4 Scope Rules. The scope of a declaration of z is the context in which uses
of x refer to this declaration. A language uses static scope or legical scope
if it is possible to determine the scope of a declavation by looking only at
the program, Otherwise, the language uses dynamic scope.

+ Environments. The association of names with locations in memory and
then with values can be described in terms of enwironments, which map
names to locations in store, and states, which map locations to their
ralues
Lt e)

4 Block Structure. Languages that allow blocks to he nested are said to
have block structure. A name z in a nested block B is in the scope of a
declaration I of x in an enclosing block if there is no other declaration
of z in an intervening block.

¢ Parameter Passing. DParameters are passed from a calling procedure to
the callee efther by value or by reference. When large objects are passed
by value, the values passed are really references to the objects themselves,
resulting in an effective call-by-reference,

38 CHAPTER 1. INTRODUCTION

+ Aliasing. When parameters are (effectively) passed by reference, two for-
mal parameters can refer to the same object. This possibility allows a
change in one variable to change another.

1.8 References for Chapter 1

For the development of programming languages that were created and in use
by 1967, including Fortran, Algol, Lisp, and Simula, see [7]. For languages that
were created hy 1982, including C, C4++, Pascal, and Smalltalk, see [1].

The GNU Compiler Collection, gee, is a popular source of open-source
compilers for C, C++, Fortran, Java, and other languages [2]. Phoenix is a
compiler-construction toolkit that provides an integrated framework for build-
ing the program analysis, code generation, and code optimization phases of
compilers discussed in this book [3].

For more information about programming language concepts, we recom-
mend [5,6). For more on computer architecture and how it impacts compiling,
we suggest [4).

1. Bergin, T. J. and R. G. Gibson, History of Programming Languages, ACM
Press, New York, 1996.

2. http://gec.gow.org/ .
3. http://researck.microsoft. com/phoenix/default.aspx .

4. Hennessy, J. L. and D. A. Patterson, Computer Organization and De-
sign: The Hardware/Software Interface, Morgan-Kaufmann, San Fran-
cisco, CA, 2004.

5. Scott, M. L., Programming Language Pragmatics, second edition, Morgan-
Kaufmann, San Francisco, CA, 20086,

6. Sethi, R., Programming Languages: Concepts and Constructs, Addison-
Wesley, 1996,

7. Wexelblat, R. L., History of Programming Langueges, Academic Press,
New York, 1981.

Chapter 2

A Simple Syntax-Directed
Translator

This chapter is an introduction to the compiling technigues in Chapiers 3
through 6 of this book. It illustrates the techniques by developing a working
Java program that translates representative programming language statements
into threc-address code, an intermediate represcntation. In this chapter, the
emphasis is on the front end of a compiler, in particular on lexical analysis,
parsing, and intermediate code generation. Chapters 7 and 8 show how to
generate machine instructions from three-address code.

We start small by creating a syntax-directed translator that maps infix arith-
metic expressions into postfix expressions. We then extend this translater to
map code fragments as shown in Fig. 2.1 into three-address code of the form
in Fig. 2.2.

The working Java translator appears in Appendix A. The usc of Java is
convenient, but not essential. In fact, the ideas in this chapter predate the
creation of both Java and C.

{
int i; int j; float[100] a; float v; float x;
while (true } {

do i = i+l while (a[i] < v)
de j = j-1; while { aljl > v);
if (i »>= j) break;
x = alil; alil = a(jl; aljl = x;
}
1

Figure 2.1: A code fragnient to be translated

35

44 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

i=14+1
ti=al[i]

if t1 < v goto 1
i=3-1
t2=a [j]

if t2 > v goto 4
ifFalse 1 »>= j goto 9
goto 14
x=al[il

10: t3=alj1]

11: al[i] =t3

EoaR B IS AN ol

122 alj)l=x
13: goto 1
14:

Figure 2.2: Simplified intermediate code for the program fragment in Fig. 2.1

2.1 Introduction

The analysis phase of a compiler breaks up a source program into constituent
picces and produces an internal representation for it, called intermediale code.
The synthesis phase translates the intermediate code into the target program.

Analysis is organized around the “syntax” of the language to be compiled.
The syntez of a programming language describes the proper form of its pro-
grams, while the semantics of the language defines what its programs mean; that
is, what each program does when it executes. For specifying syntax, we present
a widely used notation, called context-free grammars or BNF (for Backus-Naur
Form) in Section 2.2. With the notations currently available, the semantics of
a language is much more difficuit to describe than the syntax. For specifying
semantics, we shall therefore use informal descriptions and suggestive examples.

Besides specifying the syntax of a language, a context-free grammar can be
used to help guidc the translation of programs. In Section 2.3, we introduce
a grammar-oriented compiltng technique known as syntex-directed translation.
Parsing or syntax analysis is introduced in Section 2.4.

The rest of this chapter is a quick tour through the model of a compiler
front end in Fig. 2.3. We begin with the parser. For simplicity, we consider the
syntax-directed translation of infix expressions to postfix form, a notation in
which operators appear after their operands. For example, the postfix form of
the expression 9 — 5+ 2 is 95 — 2+. Translation into postfix form is rich enough
to illustrate syntax analysis, vet simple enough that the translator is shown in
full in Section 2.5. The simple translator handles expressions like 9 — 5 + 2,
consisting of digits separated by plus and minus signs. One reason for starting
with such simple expressions is that the syntax analyzer can work directly with
the individual characters for operators and operands.

2.1. INTRODUCTION 41

source Lexical | tokens P syntax Intez\m:zld.tate three-address
S — - arser - Jode
program | Analyzer tree Generator cade
L B
ﬂ /
Symbol
Table
.

Figure 2.3: A model of a compiler front end

A lexical analyzer allows a translator to handle multicharacter constructs
like identifiers, which are written as sequences of characters, but are treated
as units called tokens during syntax analysis; for example, in the expression
count + 1, the identifier count is treated as a unit. The lexical analyzer in
Section 2.6 allows numbers, identifiers, and “white space” (blanks, tabs, and
newlines) to appear within expressions.

Next, we consider intermediate-code generation. Two forms of intermedi-
ate code are illustrated in Fig. 2.4. One form, called abstract syntax trees or
simply syntaz trees, represents the hierarchical syntactic structure of the source
program. In the model in Fig. 2.3, the parser produces a syntax tree, that
is further translaled into three-address code. Some compilers combine parsing
and intermediate-code generation into one component.

do-while 1: i=4i+1
2:tl=a[1]

body > 3: if t1 < v goto 1
| /N
assign [v (b)
/N /N
i + a i
/N
i 1

(2)

Figure 2.4: Tntermediate code for “do i=i+1; while (al[i] <v);”

The root of the abstract syntax tree in Fig. 2.4{a) represents an entire do-
while loop. The left child of the root represents the body of the loop, which
consists of only the assignment i=i+1;. The right child of the root repre-
sents the condition alil <v. An implementation of syntax trees appears in
Section 2.8(a).

The other common intermediate representation, shown in Fig. 2.4(b}, is a

42 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

sequence of “three-address” instructions; a more complete example appears in
Fig. 2.2. This form of intermediate code takes its name from instrnctions of
the form 2 = y op z, where op is a binary operator, y and z the are addresses
for the operands, and z is the address for the result of the operation. A three-
address instruction carries out at most one aperation, typically a computation,
a comparison, or a branch.

In Appendix A, we put the techniques in this chapter together to build a
compiler front end in Java. The front end translates statements into assembly-
level instructions.

2.2 Syntax Definition

In this section, we introduce a notation — the “context-free grammar,” or
“grammar” for short — that is used to sperify the syntax of a language. Gram-
mars will be used throughout this book to organize compiler front ends.

A grammar naturally describes the hierarchical structure of most program-
ming language constructs. For example, an if-else statement in Java can have
the form

if { expression) statement else statement

That is, an if-else statement is the concatenation of the keyword if, an open-
ing parenthesis, an expression, a closing parenthesis, a statement, the keyword
else, and another statement. Using the variable ezpr to denote an expres-
gion and the variable stmt to denote a statement, this structuring rule can be
expressed as

stmt — if (expr) stmt else stmi

in which the arrow may be read as “can have the form.” Such a rule is called a
production. In a production, lexical elements like the keyword if and the paren-
theses are called terminals. Variables like ezpr and stmt represent sequences of
terminals and are called nonterminals.

2.2.1 Definition of Grammars

A context-free grammar has four components:

1. A set of terminal synibols, sometimes referred to as “tokens.” The termi-
nals are the elementary symbols of the language defined by the grammar.

9. A set of nonterminals, sometimes called “syntactic variables.” Each non-
terminal represents a set of strings of terminals, in a manner we ghall
describe.

3. A set of productions, where each production consists of a nonterminal,
called the head or left side of the production, an arrow, and a sequence of

2.2. SYNTAX DEFINITION 43

Tokens Versus Terminals

In a compiler, the lexical analyzer reads the characters of the source pro-
gram, groups them into lexically meaningful units called lexemes, and pro-
duces as output tokens representing these lexcmes. A token consists of two
components, a token name and an attribute value. The 1oken names are
abstract symbols that are used by the parser for syntax analysis. Often,
we shall call these token names terminols, since they appear as terminal
symbols in the grammar for a programming language. The attribute value,
if present, is a pointer to the symbol table that contains additional infor-
mation about the token. This additional information is not part of the
grammar, so in our discussion of syntax analysis, often we refer to tokens
and terminals synonymously.

terminals and/or nonterminals, called the body or right side of the produc-
tion. The intuitive intent of a production is to specify one of the written
forms of a construct; if the head nonterminal represents a construct, then
the body represents a written form of the construct.

4. A designation of one of the nonterminals as the starf symbol.

We specify grammars by listing their productions, with the productions
for the start symbol listed first. We assume that digits, signs such as < and
<=_and boldface strings such as while are terminals. An italicized name is a
nonterminal, and any nonitalicized name or symbol may be assumned to be a
terminal.! For notational convenience, productions with the same nonterminal
as the head can have their bodies grouped, with the alternative bodies separated
by the symbol |, which we read as “or.”

Example 2.1: Scveral examples in this chapter use expressions consisting of
digits and plus and mims signs; e.g., strings such as 9-5+42, 3-1, or 7. Since a
plus or minus sign must appear between two digits, we refer to such expressions
as “lists of digits separated by plus or minus signs.” The following grammar
describes the syntax of these expressions. The productions are:

list — list + digit (2.1)
List — list - digit {2.2)
list — digit (2.3)
digit = 0|1|2)3|4|5]6|7|8]|9 (2.4)

Undividual italic letters will be used for additional purposes, especially when grammars
are studied in detail in Chapter 4. For example, we shall use X, Y, and Z to talk about a
symbol that is either a terminal or a nonterminal. However, any italicized name containing
two or more characters will continue to represent a nonterminal.

44 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

The bodies of the three productions with nonterminal lst as head equiva-
lently can be grouped:

list — list + digit | list - digit | digit
According to our conventions, the terminals of the grammar are the symbols

+-0123456678%9

The nonterminals arc the italicized narmes list and digit, with list being the start
symbol because its productions are given first. O

We say a production is for a nonterminal if the nontermiual is the head of
the production. A string of terminals is a sequence of zero or more terminals.
The string of zcro terminals, written as ¢, is called the empiy string.?

2.2.2 Dertvations

A grammar derives strings by beginning with the start symbol and repeatedly
replacing a nonterminal by the body of a production for that nonterminal. The
terminal strings that can be derived from the start symbol form the language
defined by the grammar.

Example 2.2: The language defined by the grammar of Example 2.1 consists
of lists of digits separated by plus and minus signs. The ten productions for the
nonterminal digit allow it to stand for any of the terminals 0,1,...,9. From
production (2.3), a single digit by itself is a list. Productions (2.1} and (2.2)
express the rule that any list followed by a plus or minus sign and then another

digit makes up a new list.
Productions (2.1) to (2.4) are all we need to define the desired language.

For example, we can deduce that 9-5+2 is a list as follows.

a) 9 is a kst by production (2.3), since 9 is a digit.
b) 9-5 is a list by production (2.2}, since 9 is a list and 5 is a digit.

¢) 9-5+2 is a list by production (2.1}, since 9-5 is a list and 2 is a digit.
O

Example 2.3: A somewhat different sort of list is the list of parameters in a
function call. In Java, the parameters are enclosed within parentheses, as in
the call nax(x,y) of function max with parameters x and y. One nuance of such
lists is that an empty list of parameters may be found between the terminals
{ and). We may start to develop a grammar for such sequences with the

productions:

2Technically, ¢ can be a string of zero symbols from any alphabet {collection of symbols).

2.2, SYNTAX DEFINITION 45

call — id (oplparams)
optpararns — params | €
params - params , param | parem

Note that the second possible body for optparams (“optional parameter list”)
is €, which stands for the empty string of symbols. That is, optparams can be
replaced by the empty string, so a enll can consist of a function name followed
by the two-terminal string (). Notice that the productions for params are
analogous to those for list in Example 2.1, with comma in place of the arithmetic
opcrator + or -, and param in place of digit. We have not shown the productions
for puram, since parameters arc really arbitrary expressions. Shortly, we shall
discuss the appropriate productions for the various language constructs, such
as expressions, statements, and so on. O

Parsing is the problem of taking a string of terminals and figuring out how
to derive it from the start symbol of the grammar, and if it cannot he derived
from the start symbol of the grammar, then reporting syntax crrors within the
string. Parsing is one of the most fundamental problems in all of compiling;
the main approaches to parsing are discussed in Chapter 4. In this chapter, for
simplicity, we begin with source programs like 9-5+2 in which each character
is a terminal; in general, a source program has multicharacter lexemes that are
grouped by the lexical analyzer into tokens, whose first components are the
terminals processed by the parser.

2.2.3 Parse Trees

A parse tree pictorially shows how the start symbol of a grammar derives a
string in the language. If nonterminal A has a production 4 -+ XY Z, then a
parse tree may have an interior node labeled A with three children labeled X,
Y, and Z, from left to right:

A
AN
x v z

Formally, given a context-free grammar, a parse tree according to the gram-
mar is a tree with the following properties:

1. The root is labeled by the start symbol.
2. Fach leaf is labeled by a terminal or by e,
3. Each interior node ig labcled by a nonterminal.

4. If Ais the nonterminal labeling some interior node and X3, X3,... , X, ate
the labels of the children of that node from left to right, then there must
be a production A — X;X,---X,. Here, X{, Xs,...,X, each stand

46 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Tree Terminology
Tree data structures figure prominently in compiling.

s A tree consists of onc or more nodes. Nodes may have labels, which
in this book typically will be grammar symbols. When we draw a
tree, we often represent the nodes by these labels only,

s Exactly one node is the rgot. All nodes except the root have a unique
parent; the root has no parent. When we draw trees, we place the
parent of a2 node above that node and draw an edge between them.
The root is then the highest (top) node.

* If node & is the parent of node M, then M is a ehild of N. The
children of one node are called siblings. They have an order, from
the left, and when we draw trees, we order the childen of a given
nade in this manner.

¢ A node with no children is called a leaf. Other nodes — those with
one or more children — are interior nodes.

o A descendant of a node N is either N itself, a child of N, a child of
a child of N, and so on, for any number of levels. We say node N is
an ancestor of node M if M is a descendant of N.

for a symbol that is either a terminal or a nonterminal. As a special case,
if A — €is a production, then a node labeled A may have a single child
labeled «.

Example 2.4: The derivation of 9-5+2 in Example 2.2 is illustrated by the
tree in Fig. 2.5. Each node in the tree is labeled by a grammar symbol. An
interior node and its children correspond to a production; the interior node
corresponds to the head of the production, the children to the body.

In Fig. 2.5, the root is labeled list, the start symbol of the grammar in
Example 2.1. The children of the root are labeled, from left to right, list, +,
and digit. Note that

list — list + diget

is a production in the grammar of Example 2.1. The left child of the root is
similar to the root, with a child labeled - instead of +. The three nodes labeled
digit cach have one child that is labeled by a digit. O

From left to right, the leaves of a parse tree form the yield of the tree, which
is the string generated or derived from the nonterminal at the root of the parse

2.2, SYNTAX DEFINITION 47

list digit
Iisi/ | \ds'g?]t
| i
digit |
| i |
9 - 5 + 2

Figure 2.5: Parse tree for 9-5+2 according to the grammar in Example 2.1

tree. In Fig. 2.5, the yield is 9-5+2; for convenience, all the leaves are shown
at the bottom level. Henceforth, we shall not necessarily line up the leaves in
this way. Any tree imparts a natural left-to-right order to its leaves, based on
the idea that if X and ¥ are two children with the same parent, and X is to
the left of Y, then all descendants of X are to the left of descendants of V.

Another definition of the lahguage generated by a grammar is as the set of
strings that can be gencrated by some parse tree. The process of finding a parse
tree for a given string of terminals is called parsing that siring.

2.2.4 Ambiguity

We have to be careful in talking about the structure of a string according to a
grammar. A4 grammar can have more Lthan one parse tree generating a given
string of terminals. Such a grammar is said to be ambiguous. To show that a
grammar is ambiguous, all we need to do is find a terminal string that is the
yield of more than one parse tree. Since a string with more than one parse tree
ugually has more than one meaning, we need to design unambiguous grammars
for compiling applications, or to use ambiguous grammars with additional rules
to resolve the ambiguities.

Examp]e 2.5: Suppose we used a single nonterminal string and did not dis-
tinguish between digits and lists, as in Example 2.1. We could have written the
grammar

string — string + string | string - séring | 01| 2| 3|4 |5|6]|7|8]9

Merging the notion of digif and Zist into the nonterminal string makes superficial
sense, because a single digit is a special case of a list.

However, Fig. 2.6 shows that an expression like 9-5+2 has more than one
parse tree with this grammar. The two trees for 9-5+2 correspond to the two
ways of parenthesizing the expression: (9-5)+2 and 9-(5+2). This second
parenthesization gives the expression the unexpected value 2 rather than the
customary value 8. The grammar of Example 2.1 does not permit this inter-
pretation. O

48 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

string string
string + siring string - siring
PN | f N
string ~ string 2 9 string + siring
| | l |
9 5 5 2

Figure 2.6: Two parse trees for 9-5+2

2.2.5 Associativity of Operators

By convention, 9+5+2 is equivalent to (9+5)+2 and 9-~5-2 is equivalent to
(9-5)-2. When an operand like 5 has operators to its lefl and right, con-
ventions are needed for deciding which operator applies to that operand. We
say that the operator + associates to the left, because an operand with plus signs
on hoth sides of it belongs to the operator to its left. In most programming
languages the four arithmetic operators, addition, subtraction, multiplication,
and division are left-associative,

Some common operators such as exponentiation are right-associative. As
another example, the assignment operator = in C and its descendants is right-
associative; that is, the expression a=b=c is treated in the same way as the
expression a=(b=c). '

Strings like a=b=c with & right-agsociative operator are generated by the
following grammar: '

right — letter= right | letter
letter — a|b| - |z

The contrast between a parse tree for a left-associative operator like - and
a parse tree [or a right-associative operator like = is shown by Fig. 2.7. Note
that the parse tree for 9-5-2 grows down towards the left, whereas the parse
tree for a=b=c grows down towards the right.

2.2.6 Precedence of Operators

Consider the expression $+5*2, Therc are two possible interpretations of this
expression: (9+5)*2 or 9+(5#2). The associativity rules for + and * apply to
occutrences of the same operator, so they do not resolve this ambiguity. Rules
defining the relative precedence of operators are needed when more than one
kind of operator is present.

We say that * has higher precedence than + if # takes its opemnds before +
does. In ordinary arithmetic, multiplication and division have higher precedence
than addition and subtraction. Therefore, 5 is taken by * in both 9+5%2 and
9#5+2; i.e., the expressions are equivalent to 9+(5+2) and (9%5)+2, respectively.

2.2. SYNTAX DEFINITION 49

list right
list - digit lefter = right
/ [\\ | | / | \

last - digit 2 a lefter = right
| | | 1
digit 5 b letter
| |
9 c

Figure 2.7: Parse trees for left- and right-associative grammars

Example 2.6: A grammar for arithmelic expressions can be constructed from
a table showing the associativity and precedence of operators. We start with
the four commaon arithmetic operators and a precedence table, showing the
operators in order of increasing precedence. Operators on the same line have
the same associativity and precedence:

left-associative: + -
left-associative: * /

We create two nonterminals expr and ferm for the two levels of precedence,
and an extra nonterminal factor for gencrating basic units in expressions. The
basic units in expressions are presently digits and parenthesized expressions.

factor — digit | (expr)

Now consider the binary operators, * and /. that have the highest prece-
dence. Since these operators associate to the lefi, the productions are sinilar
1o those for lists that associate to the left.

term — term ¥ factor
| term / facior
| factor

Similarly, expr generates lists of terms separated by the additive operators.
expr — expr+ lerm
| expr - term
| term

The resulting grammar is therefore

expr — expr+ term | ezpr - term | term
term — term x factor | term [/ factor | factor
factor — digit | (ezpr)

50 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Generalizing the Expression Grammar of Example 2.6

We can think of a factor as an expression that cannot be “torn apart” by
any operator. By “torn apart,” we mean that placing an operator next
to any factor, on either side, does not cause any piece of the factor, other
than the whole, to becorne an operand of that operator. If the factor is a
parenthesized expression, the parentheses protect against such “tearing,”
while if the factor is a single operand, it cannot be torn apart.

A term (that is not also a factor) is an expression that can be torn
apart by operators of the highest precedence: * and /, but not by the
lower-precedence operators. An expression {that is not a term or factor)
can be torn apart by any operator.

We can generalize this idea to any number n of precedence levels. We
need n+1 nonterminals. The first, like factor in Example 2.6, can never be
torn apart. Typically, the production bodies for this nonterminal arc only
single operands and parenthesized expressions. Then, for each precedence
level, there is one nonterminal representing expressions that can be tarn
apart only by operators at that level or higher. Typically, the productions
for this nonterminal have bodies representing uses of the operators at that
level, plus one body that is just the nonterminal for the next higher level.

With this grammar, an expression is a list of terms scparated by either + or
- signs, and a term is a list of factors separated by * or / signs. Notice that
any parenthesized expression ig a factor, so with parentheses we can develop
expressions that have arbitrarily deep nesting (and arbitrarily deep trees). O

Example 2.7: Keywords allow us to recognize statements, since most state-
ment begin with a keyword or a special character. Exceptions to this rule
inchide assignments and procedure calls. The statements defined by the (am-
biguous) grammar in Fig. 2.8 are legal in Java. '

In the first production for stmt, the terminal id represents any identifier.
The productions for ezpression are not shown. The assignment statements
specified by the first production are legal in Java, although Java treats = as an
assignment operator that can appear within an expression. For example, Java
allows a2 =b=c, which this grammar docs not.

The nonterminal stmis generates a possibly cmpty list of statements. The
sccond production for stmits generates the empty list e. The first production
generates a possibly empty list of statements followed by a statement.

The placement of semicolons is subtle; they appear at the end of every body
that does not end in s¢mt. This approach prevents the build-up of semicolons
after statements such as if- and while-, which end with nested substatements,
When the nested substatement is an assignment or a do-while, a semicolon will
be generated as part of the substatement. O

2.2. SYNTAX DEFINITION 51

if { expression) stmt

if (expression) stint else stmi
while (expression) stmi

do stmit while (ezpression) ;

stmt — id = expression ;
|
\
|
|
| { stmts}

stmts — stmis st
| €

Figure 2.8: A grammar for a subset of Java statcments

2.2.7 Exercises for Section 2.2
Exercise 2.2.1: Consider the context-free grammar
S - 55+ | S8« | a
a) Show how the string aa+a* can be generated by this grammar.
b) Construct a parse tree for this string.

¢) What language does this grammar generate? Justify your answer.

Exercise 2.2.2: What language is generated by the following grammars? In
each case justify vour answer.

a)§ - 05101
b)§ =+ +858 [-55|a
) § = S(5)5) e
d}8 - aSbsS | bSasS | ¢
ey S =+ a| S+5 | S5 |S5*|(5)
Exercise 2.2.3: Which of the grammars in Exercise 2.2.2 are ambiguous?

Exercise 2.2.4: Construct unambiguous context-free grammars for each of
the following languages. In each case show that your grammar is correct.

a} Arithmetic expressions in postfix notation.
b) Left-associative lists of identifiers separated by commas.
c) Right-associative lists of identifiers separated by commas.

d) Arithmetic expressions of integers and identifiers with the four binary
operators +, -, *, /.

52 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

!e) Add unary plus and minus to the arithmetic operators of (d).

Exercise 2.2.5;

a) Show that all binary strings gencrated by the following grammar have
values divisible by 3. Hint. Use induction on the number of nodes in a
parse tree.

num — 11 | 1001 | num 0 | num num
k) Does the gramimar generate all binary strings with values divisible by 37

Exercise 2.2.6: Construct a context-free grammar for roman numerals.

2.3 Syntax-Directed Translation

Syntax-directed translation is done by attaching rules or program fragments to
productions in a grammar. For example, consider an expression ezpr generated
by the production

expr — expr, + ferm

Here, expris the sum of the two subexpressions ezpr; and term. (The subscript
in expr, is used only to distinguish the instance of expr in the production body
from the head of the production). We can translate expr by exploiting its
structure, as in the following pseudo-code:

translate expr;
translate term;
handle +;

Using a variant of this pseudocode, we shall build a syntax tree for ezpr in
Section 2.8 by building syntax trees for expr, and term and then handling + by
constructing a node for it. For convenience, the example in this section is the
translation of infix expressions into postfix notation.

This section introduces two concepts rclated to syntax-directed translation:

o Attributes. An attribute is any quantity associated with a programming
construct. Examples of attributes are data types of expressions, the num-
ber of instructions in the generated code, or the location of the first in-
struction in the generated code for a construct, among many other pos-
sibilities. Since we use grammar symbols (nonterminals and terminals)
to represent programming constructs, we extend the notion of attributes
from constructs to the symbols that represent them.

2.3. SYNTAX-DIRECTED TRANSLATION 53

o (Syntaz-directed) translation schemes. A translation scheme is a notation
for attaching program fragments to the productions of a grammar. The
program fragments are executed when the production is used during syo-
tax analysis. The combined result of all these fragment executions, in
the order induced by the syntax analysis, produces the translation of the
program to which this analysis/synthesis process is applied.

Syntax-directed translations will be used throughout this chapter to trans-
late infix expressions into postfix notation, to evaluate expressions, and to build
syntax trees for programming constructs. A more detailed discussion of syntax-
directed formalisms appears in Chapter 5.

2.3.1 Postfix Notation

The examples in this section deal with translation into postfix notation. The
posthiz notation for an expression E can be defined inductively as follows:

1. If E is a variable or constant, then the postfix notation for E is F itself.

2. If E is an expression of the form F; op E;, where op is any binary
operator, then the postfix notation for E is B E} op, where E| and Ej
are the postfix notations for B, and Es, respectively.

3. I E is a parenthesized expression of the form (FE;), then the postfix
notation for F is the same as the postfix notation for Fy.

Example 2.8: The postfix notation for {(9-5)+42 is 95-2+. That is, the trans-
lations of 9, 5, and 2 are the constants themselves, by rule (1). Then, the
translation of 9-5 is 95— by rule (2). The translation of (9-5) is the same
by rule (3). Having translated the parcnthesized subexpression, we may apply
rule (2) to the entire expression, with (9-5) in the role of E; and 2 in the role
of B3, to get the result 95-2+.

As another example, the postfix notation for 9-(5+2) is 962+~. That is, 5+2
is first translated into 52+, and this expression becomes the second argument
of the minus sign. O

No parentheses are needed in postlix notation, because the position and
arity (number of arguments) of the operators permits only one decoding of a
postfix expression. The “trick” is to repeatedly scan the postfix string from the
left, until you find an operator. Then, iook to the left for the proper number
of operands, and group this operator with its operands. Evaluate the operator
on the operands, and replace them by the result. Then repeat the process,
continuing to the right and searching for another operator.

Example 2.9: Consider the postfix expression 952+-3%. Scanning from the
left, we first encounter the plus sign. Looking to its left we find operands 5 and
2. Their sum, 7, replaces 62+, and we have the string 97-3%. Now, the leftmost

54 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

operator is the minus sign, and its operands are 9 and 7. Replacing these by
the resuit of the subtraction leaves 23+, Last, the multiplication sign applies to
2 and 3, giving the result 6. O

2.3.2 Synthesized Attributes

The idea of associating quantities with programming constructs —for example,
values and types with expressions - can be expressed in terms of grammars. We
associate attributes with nonterminals and terminals. Then, we attach rules to
the productions of the grammar; these rules describe how the attributes are
computed at those nodes of the parse tree where the production in question is
used to relate a node to its children.

A syntaz-directed definition associates

1. With each grammar symbol, a set of atéributes, and

2. With cach production, a set of semantic rules for computing the values of
the attributes associated with the symbols appearing in the production.

Attributes can be evaluated as follows. For a given input string z, construct
a parse tree for z. Then, apply the semantic rules to evaluate atiributes at each
node in the parse tree, as follows.

Suppose a node N in a parse tree is labeled by the grammar symbol X. We
write X.a to denote the value of attribute a of X at that node. A parse tree
showing the attribute values at each node is called an annotated parse free. For
example, Fig. 2.9 shows an annotated parse tree for 9-5+2 with an attribute
t associated with the nonterminals ezpr and term. The value 95-2+ of the
attribute at the root is the postfix notation for 9-5+2. We shall sec shortly how
these expressions are computed.

expr.t = 95-2+
P
expr.t = 95~ + term.t = 2
[|
exprt = - lerm.i =5 2
| |
term.t =9 b

Figure 2.9: Attribute values at nodes in a parse tree

An attribute is said to be synthesized if its value at a parse-tree node N is de-
termined from attribute values at the children of NV and at N itself. Synthesized

2.3, SYNTAX-DIRECTED TRANSLATION 53

attributes have the desirable property that they can he evaluated during a sin-
gle bottom-up traversal of a parse tree. In Section 5.1.1 we shall discuss another
important kind of attribute: the “inherited” attribute. Informally, inherited at-
tributes have their value at a parse-tree node determined from attribute values
at the node itself, its parent, and its siblings in the parse tree.

Example 2.10: The annotated parse tree in Fig. 2.9 is based on the syntax-
directed definition in Fig. 2.10 for translating expressions consisting of digits
separated by plus or minus signs into postfix notation. Fach nonterminal has a
string-valued attribute ¢ that represents the postfix notation for the expression
generated by that nonterminal in a parse tree. The symbol || in the semantic
rule is the operator for string concatenation.

PRODUCTION SEMANTIC RULES

expr — expry + term | exprit = expryt || termt || ¥
expr — expry - term | exprt = expr.id {| termit || '’
expr — term exprit = term.t .

term — 0 term.t = 0’

term — 1 termt = ‘1’

term —+ 9 termt = '9'

Figure 2.10: Syntax-directed definition for infix to postfix translation

The postfix form of a digit is the digit itself; e.g., the semantic rule associ-
ated with the production ferm — 9 defines term.t to be 9 itself whenever this
production is used at a node in a parse tree. The other digits are translated
similarly. As another example, when the production empr — term is applied,
the value of term.t becomes the value of expr.t.

The production ezpr — ezpry + term derives an expression containing a plus

operator.® The left operand of the plus operator is given by expr, and the right
operand by term. The scinantic rule

exprit = expry.t || term.t || '+

associated with this production constructs the value of attribute expr.t by con-
catenating the postfix forms ezpr; .t and term.t of the left and right operands,

respectively, and then appending the plus sign. This rule is a formalization of
the definition of “postfix expression.” O

5In this and many ather rules, the same nonterminal {expr, here) appcars several times.
The purpose of the subscript 1 in expr is to disiinguish the two occurrences of expr in the

production; the “1” is not part of the nenterminal. See the box on “Convention Distinguishing
Uses of a Nonterminal® for more details,

56 CHAPTER 2. A SIMPLFE SYNTAX-DIRECTED TRANSLATOR

Convention Distinguishing Uses of a Nonterminal

In rules, we often have a need to distinguish among several uses of the
same nonterminal in the head and/or body of a production; e.g., see Ex-
ample 2.10. The reason is that in the parse tree, different nodes labeled
by the same nonterminal usually have different values for their transla-
tions. We shall adopt the following convention: the nonterminal appears
unsubscripted in the head and with distinct subscripts in the body. These
are all occurrences of the same nonterminal, and the subscript is not part
of its name. However, the reader should be alert to the difference be-
tween examples of specific translations, where this convention is used, and
generic productions like 4 = X;3X,,..., X, where the subscripted X’s
represent an arbitrary list of grammar symbols, and are not instances of
one particular nonterminal called X,

2.3.3 Simple Syntax-Directed Definitions

The syntax-directed definition in Example 2.10 has the following important
property: the string representing the translation of the nonterminal at the head
of cach production is the concatenation of the translations of the nonterminals
in the production body, in the samc order as in the production, with some
optional additional strings interleaved. A syntax-directed definition with this
property is termed simple.

Example 2.11: Consider the first production and semantic rule from Fig. 2.10:

PRODUCTION SEMANTIC RULE

- 2.5
expr —+ expry + term exprd = expry.t || termt || '+ 23)

Here the translation czpr.f is the concatenation of the translations of expr; and
term, followed by the symbol +. Notice that expr; and term appear in the
same order in both the production body and the semantic rule. There are no
additional symbols beforc or between their translations. In this example, the
only extra symbol occurs at the end. 0O

When translation schemes are discussed, we shall see that a simple syntax-
directed definition can be implemented by printing only the additional strings,
in the order they appear in the definition.

2.3.4 Tree Traversals

Tree traversals will be used for describing attribute evaluation and for specifying
the execution of code fragments in a translation scheme. A fraversal of a tree
starts at the root and visits each node of the tree in some order.

2.3. SYNTAX-DIRECTED TRANSLATION 57

A depth-first traversal starts at the root and recursively visits the children
of each node in any order, not necessarily from left to right. Tt is called “depth-
firsi” because it visits an unvisited child of a node whenever it can, so it visits
nodes as far away from ihe root (as “deep”) as quickly as it can.

The procedure visit(N) in Fig. 2,11 is a depth first traversal that visits the
children of a node in left-to-right order, as shown in Fig. 2.12. In this traversal,
we have included the action of evaluating translations at each node, just before
we finish with the node (that is, after translations at the children have surely
been computed). In general, the actions associated with a traversal can be
whatever we choose, or nothing at all.

procedure uisit{node N) {
for (each child ¢ of N, from left to right) {
vigit{C'};
}

evaluate semantic rules at node N;

Figure 2.11: A depth-first traversal of a tree

Figure 2.12: Example of a depth-first traversal of a tree

A syntax-directed definition does not impose any specific order for the cval-
uation of attributecs on a parse tree; any evaluation order that computes an
attribute o after all the other attributes that a depends on is acceptable. Syn-
thesized attributes can be evaluated during any bottom-up traversal, that is, a
traversal that evaluates attributes at a node after having evaluated attributes
at its children. In general, with both synthesized and inherited attributes, the
matter of evaluation order is quite complex; see Section 5.2.

2.3.5 Translation Schemes

The syntax-directed definition in Fig. 2.10 builds up a translation by attaching
strings as attributes to the nodes in the parse trec. We now consider an alter-
native approach that does not need to manipulate strings; it produces the same
translation incrementally, by executing program fragments.

38 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Preorder and Postorder Traversals

Preorder and postorder traversals are two important special cases of depth-
first traversals in which we visit the children of each node from left to right.

Often, we traverse a tree to perform some particular action at cach
node. If the action is done when we first visit a node, then we may refer
to the traversal as a preorder traversal. Similarly, if the action is done
just beforc we leave a node for the last time, then we say it is a postorder
traversal of the tree. The procedure visit(N) in Fig. 2.11 is an example of
a postorder traversal.

Preorder and postorder traversals define corresponding orderings on
nodes, based on when the action at a node would be performed. The
preorder of a (sub}tree rooted at node NV consists of NV, followed by the
preorders of the subtrees of cach of its children, if any, from the left. The
postorder of a (sub)ree rooted at NV consists of the postorders of each of
the subtrees for the children of N, if any, from the left, followed by N
itself.

A gsyntax-directed translation scheme is a notation for specifying a transla-
tion by attaching program fragments to productions in a grammar. A transla-
tion scheme is like a syntax-directed definition, except that the order of evalu-
ation of the semantic rules is cxplicitly specified.

Program fragments embedded within production bodies are called semantic
actions. The position at which an action is to be executed is shown by enclosing
it between curly braces and writing it within the production body, as in

rest — + term {print("+'}} rest;

We shall see such rules when we consider an alternative form of grammar for
expressions, where the nonterminal rest represents “everything but the first
term of an expression.” This form of grammar is discussed in Section 2.4.5.
Again, the subscript in rest; distinguishes this instance of nonterminal rest in
the production body from the instance of rest at the head of the production.

When drawing a parse tree for a translation scheme, we indicate an action
by constructing an extra child for it, connected by a dashed line to the node
that corresponds to the head of the production. For example, the portion of
the parse tree for the above production and action is shown in Fig. 2.13. The
node for a semantic action has no children, so the action is performed when
that node is first seen.

Example 2,12: The parse tree in Fig. 2.14 has print stafcments at extra
leaves, which arc attached by dashed lines to interior nodes of the parse tree.
The translation scheme appears in Fig. 2.15. The underlying grammar gen-
erates expressions consisting of digits separated by plus and minus signs. The

2.3. SYNTAX-DIRECTED TRANSLATION 59

resi

~
~

+ term {print('+'}} rest,

Figure 2.13: An extra leaf is constructed for a semantic action

actions embedded in the production bodies translate such expressions into post-
fix notation, provided we perform a left-to-right depth-first traversal of the tree
and execute each print statement when we visit s leaf.

expr . _

expr :: + term o ?{f)rint('#)}
N T /
expr - term {oprint{'-"1} 2 {print('2'}}
| /
term & {print{'s')}

~
~
~

9 {pri\nt {'9)}

Figurc 2.14: Actions translating 9-5+2 intc 95-2+

expr — expr; + term {print('+'}}
expr — expry - term {print{’-'}}
expr — term

term — 0 {print('0"}}
term — 1 {print('17)}
term — 9 {print('¢'}}

Figure 2.15: Actions for translating into postfix notation

The root of Fig. 2.14 represents the first production in Fig. 2.15. In a
postorder traversal, we first perform all the actions in the leftmost subtree of
the root, for the left operand, also labeled expr like the root. We then visit the
leaf + at which there is no action. We next perform the actions in the subtree
for the right operand term and, finally, the semantic action { print("+') } at the
extra node.

Since the productions for term have only a digit on the right side, that digit
is printed by the actions for the productions. No output is necessary for the
production ezpr — term, and only the operator needs to be printed in the

60 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

action. for each of the first two productions. When executed during a postorder
traversal of the parse tree, the actions in Fig. 2.14 print 856-2+, O

Note that although the schemes in Fig. 2.10 and Fig. 2.15 produce the same
translation, they construct it differently; Fig. 2.10 attaches strings as attributes
to the nodes in the parse tree, while the schetne in Fig. 2.15 prints the translation
incrementally, through semantic actions.

The semantic actions in the parse tree in Fig. 2.14 translate the infix ex-
pression 9-5+42 into 95-2+ by printing each character in 9-5+2 exactly once,
without using any storage for the translation of subexpressions. When the out-
put is created incrementally in this fashion, the order in which the characters
are printed is siguificant.

The implementation of a transtation scheme must ensure that semantic ac-
tions are performed in the order they would appear during a postorder traversal
of a parse tree. The implementation need not actually construct a parse tree
{often it does not), as long as it ensures that the semantic actions are per-
formed as if we constructed a parse tree and then executed the actions during
a postorder traversal.

2.3.6 Exercises for Section 2.3

Exercise 2.3.1: Construct a syntax-directed translation scheme that trans-
lates arithmetic expressions from infix notation into prefix notation in which an
operator appears before its operands; e.g., —xy is the prefix notation for £ —y.
Give annotated parse trees for the inputs 9-5+2 and 9-5*2.

Exercise 2.3.2: Construct a syntax-directed translation scheme that trans-
lates arithmetic expressions from postfix nofation into infix notation. Give
annotated parse trees for the inputs 95-2% and 952x%-.

Exercise 2.3.3: Construct a syntax-directed translation scheme that trans-
lates integers into roman nurmerals,

Exercise 2.3.4: Construct a syntax-directed translation scheme that trans-
lates roman numerals into integers.

Exercise 2.3.5: Construct a syntax-directed translation scheme that trans-
lates postfix arithmetic expressions into equivalent infix arithmetic expressions.

2.4 Parsing

Parsing is the process of detcrmining how a string of terminals can be generated
by a grammar. In discussing this problem, it is helpful to think of a parse tree
being constructed, even though a compiler may not construct one, in practice,
However, a parser must be capable of constructing the tree in principle, or else
the translation cannot be guaranteed correct.

2.4. PARSING 61

This scction introduces a parsing method called “recursive descent,” which
can be used both to parse and to implement syntax-directed translators. A com-
plete Java program, implementing the translation scheme of Fig. 2.15, appears
in the next section. A viable alternative is to nse a softwarc tool to generate
a translator directly from a translation scheme. Section 4.9 describes such a
tool — Yace; it can implement the translation scheme of Fig, 2.15 without
modification.

For any context-frec grammar there is a parser that takes at most O(n?)
time to parse a string of n terminals. But cubic time is generally too expen-
sive. Fortunately, for real programming langnages, we can generally design a
grammar that can be parsed quickly. Linear-time algorithms suffice to parse
essentially all languages that arise in practice. Programming-language parsers
almost always make a single left-to-right scan over the input, looking ahead one
terminal at a time, and constructing picces of the parse tree as they go.

Most parsing methods fall into one of two classes, called the fop-down and
bottom-up methods. These terms refer to the order in which nodes in the parse
tree are constructed. In top-down parsers, construction starts at the root and
proceeds towards the leaves, while in bottom-up parsers, construction starts at
the leaves and proceeds towards the root. The popularity of top-down parsers
is due to the fact that efficient parsers can be constructed more easily by hand
using top-down methods. Bottom-up parsing, however, can handle a larger class
of grammars and translation schemes, so software tools for generating parsers
directly from grammars often use bottom-up methods.

2.4.1 Top-Down Parsing

We introduce top-down parsing by considering a grammar that is well-suited
for this class of methods. Later in this section, we considet the construction
of top-down parsers in general. The grammar in Fig, 2.16 generates a subset
of the statements of C or Java. We use the boldface terminals if and for for
the keywords “if” and “for”, respectively, to emphasize that these character
sequences are treated as units, i.e., as single terminal symbols. Further, the
terminal expr represents expressions; a more complete grammar would use a
nonterminal ezpr and have productions for nonterminal expr. Similarly, other
is a terminal representing other statement. constrycts.

The top-down construction of a parse tree like the one in Fig. 2.17, is done
by starting with the root, labeled with the starting nonterminal stmf, and re-
peatedly performing the following two steps.

1. At node ¥, labeled with nonterminal A, select one of the productions for
A and construct children at IV for the symbols in the production bedy.

2. Find the next node at which a subtree is to be constructed, typically the
leftmost unexpanded nonterminal of the tree.

For some grammars, the above steps can be implemented during a single
left-to-right scan of the input string. The current terminal being scanned in the

62 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR,

stmt — expr ;
| if (expr) stmt
| for (optespr ; optespr ; optezpr) stmt
[other

optexpr — ¢
| expr

Figure 2.16: A grammar for some statements in C and Java

_ = stmi
/’7/ N
OpfeJ:'p? i optezpr optempr) stmt
| | |
€ expr expr other

Figure 2.17: A parse tree according to the gramrmar in Fig. 2.16

input is frequently referred to as the lookahead symbol. Initially, the lookahead
symbol ig the first, i.e., leftmost, terminal of the input string. Figure 2.18
illustrates the construction of the parse tree in Fig. 2.17 for the input string

for (; expr ; expr)} other

Initially, the terminal for is the lockahead symbol, and the known part of the
parse tree consists of the root, labeled with the starting nonterminal stnt in
Fig. 2.18(a). The objective is to construct the remainder of the parse tree in
such a way that the string generated by the parse trec masches the input string,

For a match to occur, the nonterminal stmt in Fig. 2.18(a) must derive a
string that starts with the lookahead symbol for. In the grammar of Fig. 2.16,
there is just one production for st that can derive such a string, so we select it,
and construct the children of the root labeled with the symbols in the production
body. This expansion of the parse tree is shown in Fig. 2.18(b).

Each of the three snapshots in Fig. 2.18 has arrows marking the lookahcad
symbol in the input and the node in the parse tree that is being considered.
Once children are constructed at a node, we next consider the leftmost child. In
Fig. 2.18(h), children have just been constructed at the root, and the leftmost
child labeled with for is being considered.

When the node being considered in the parse tree is for a terminal, and
the terminal matches the lookahead symbol, then we advance in both the parse
tree and the inpul. The next terminal in the input becomes the new lookahead
symbol, and the next child in the parse tree is considered. In Fig. 2.18(c), the
arrow in the parse tree has advanced to the next child of the root, and the arrow

2.4, PARSING 63

PARSE stmt
TREE ¢
(a)
INPUT for (; expr ; expr) other
PARSE strnt
TREE /// ‘ \\\\
optexpr ; opiezpr ; oplepr) simi
e
(b)
INPUT for (;i expr : expr other
PARSE stmi _
TREE /7 \\\
N .
for i optezpr ; opierpr ; oplerpr } stmi
(c}
INPUT for i ; expr ; expr) other

Figure 2.18: Fop-down parsing whilc scanning the input from left to right

in the input has advanced io the next terminal, which is (. A further advance
will take the arrow in the parse tree to the child labeled with nonterminal
aptexpr and take the arrow in the input to the terminal ;

At the nonterminal node labeled optexpr, we repeal the process of selecting a
production for a nonterminal. Productions with € as the body (“e-productions”)
require special treatment. For the moment, we use them as a default when
no other production can be used; we return to them in Section 2.4.3. With
nontermingal eptezpr and lookahead ;, the e-production is ysed, since ; does
not match the only other production for optezpr, which has ferminal expr as
its body.

In general, the selection of a production for a nonterminal may involve trial-
and-error; that is, we may have to try a production and backtrack to try ancther
production if the first is found to be unsuitable, A production is unsuitable
if, after using the production, we cannot complete the tree to match the input

64 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

string. Backtracking is not needed, however, in an important special case called
predictive parsing, which we discuss next.

2.4.2 Predictive Parsing

Recursive-descent parsing is a top-down method of syntax analysis in which
a set of recursive procedures is used to process the input.” One procedure is
associated with each nonterminal of a grammar. Here, we consider a simple form
of recursive-descent parsing, called predictive parsing, in which the lookahead
symbol unambiguously determines the flow of control through the procedure
body for each nonterminal. The sequence of procedure calls during the analysis
of an input string implicitly defines a parsc tree for the input, and can be used
to build an explicit parse tree, if desired. _

The predictive parser in Fig. 2.19 consists of procedures for the nonterini-
nals stmi and optezpr of the grammar in Fig. 2.16 and an additional procedure
match, used to simplify the code for stmt and optexpr. Procedure match(t) com-
pares its argument ¢ with the lookahcad symbol and advances to the next input
terminal if they match. Thus match changes the value of variable lookahead, a
global variable that holds the currently scanned input terminal.

Parsing beging with a call of the procedure for the starting nonterminal sémd.
With the same input as in Fig. 2.18, lookahead is initially the first terminal for.
Procedure stmt executes code corresponding to the production

stint — for (optexpr ; opiexpr ; optezpr) stmi

In the code for the production body — that is, the for case of procedure stmt —
each terminal is matched with the lookahead symbol, and each nonterminal
leads to a call of its procedure, in the following sequence of calls:

match{for); match(’');
optexpr(); match(’;'); optexpr(); match(’;'); optexpr();
match{(')'); stmt();

Predictive parsing relies on information about the first symbols that can be
generated by a production body. More precisely, let « be a string of grammar
symbols (terminals and/or nonterminals). We define FIRST(a) to be the set of
terminals that appear as the first symbols of one or more strings of terminals
generated from a. H a is € or can generate €, then € is also in FIRST(a).

The details of how one computes FIRST{a) are in Section 4.4.2. Here, we
shall just use ad hoc rcasoning to deduce the symbols in FIRST(a); typically, a
will either begin with a terminal, which is therefore the only symbol in FIRST(a),
or o will begin with a nonterminal whose production bodies begin with termi-
nals, in which case these terminals are the only members of FIRST(c).

For example, with respect to the grammar of Fig. 2.16, the following are
correct calculations of FIRST.

2.4. PARSING 65

void stmt(} {
switch (lookahead) {

case expr:
match(expr); match(’;'); break;

cage ift
match(if); match(' ('); match{expr); match(')’); stmt(};
break;

case for:

mateh(for); match(’ (');
optexpr(); match(’;’); optezpr(); mateh(’;'); optezpr();
match(’)'); stmt(); break;
case other;
match({other); break;
defauls:
report("syntax error™);
i

}

void optezpr(} {
if (lookahead == expr) match(expr);
3

void match{terminal t) {
if (lookahead == t) lookohead = nextTerminal;
clse report(Msyntax error"};

Figure 2.19: Pseudocode for a predictive parser

FIRST(stmit) = {expr, if, for, other}
FIRST(expr ;] = {expr}

The FIRST sets must be congidered if there are two productions 4 — o and
A — 3. Tgnoring e-productions for the moment, predictive parsing requires
FIRST{ax) and FIRST({7) to be disjoint. The lookahead symbol can then be used
to decide which production to use; if the lookahead symbol is in FIRST (o}, then
a is used. Otherwise, if the lookahead symbol is in FIRST(3), then 3 is used.

2.4.3 When to Use e-Productions

Our predictive parser uses an e-production as a default when no other produc-
tion can be used. With the input of Fig. 2.18, after the terminals for and { are
matched, the lockahcad symbol is ;. At this point procedure optezpr is called,
and the code

66 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

if (lookahead == expr) match(expr);

in its body is executed. Nonterminal optezpr has twa productions, with bodies
expr and ¢. The lookahead symbol “;” does not match the terminal expr, so
the production with body expr cannot apply. In fact, the procedure returns
without changing the lookahead symbol or doing anything else. Doing nothing
corresponds to applying an e-production.

More generally, consider a variant of the productions in Fig. 2.16 where
oplerpr generates an expression nonterminal instead of the terminal expr:

optezpr — expr
| ¢

Thus, optexpr either generates an expression uging nonterminal egpr or it gen-
erates e. While parsing optexpr, if the lookahead symbol is not in FIRST(expr},
then the e-praduction is used.

For more on when to use e-productions, see the discussion of LL(1) grammars
in Section 4.4.3.

2.4.4 Designing a Predictive Parser

We can generalize the technique introduced informally in Section 2.4.2, to apply
ta any grammar that has disjoint FIRST sets for the production bodies belonging
to any nonterminal. We shall also see that when we have a translation scheme —
that is, a grammar with embedded actions - it is possible to cxecute those
actions as part of the procedures designed for the parser.

Recall that a predictive purser is a program consisting of a procedure for
every nonterminal. The procedure for nonterminal 4 does two things.

1. It decides which A-production to use by examining the lookahead symbol.
The production with body o (where « is not €, the empty string) is used
if the lookahead symbol is in FIRST{(a). If there is a conflict between
two nonempty bodies for any lookahead symbol, then we cannot use this
parsing method on this grammar. In addition, the e-production for A4, if
it exists, is used if the lookahead symbol is not in the FIRST set for any
other production body for A.

2. The procedure then mimics the body of the chosen production. That
is, the symbols of the body are “executed” in turn, from the left. A
nonterminal is “executed” by a call to the procéldure for that nonterminal,
and a terminal matching the lookahead symbol is “executed” by reading
the next input symbol. If at some point the terminal in the body does
not match the lookahead symbol, a syntax error is reported.

Figuire 2.19 is the result of applying these rules to the grammar in Fig. 2.16.

24. PARSING 67

Just as a translation scheme is formed by extending a grammar, a syntax-
directed translator cau be formed by extending a predictive parser. An algo-
rithm for this purpose is given in Section 5.4. The following limited construction
suffices for the present:

1. Construct a predictive parser, ignoring the actions in productions.

2. Copy the actions from the translation scheme into the parser. If an action
appears after grammar symbol X in production p, then it is copied after
the implemoentation of X in the code for p. Otherwise, if it appears at the
beginning of the production, then it is copied just before the code for the
production body.

We shall construct such o translator in Section 2.5.

2.4.5 Left Recursion

It is possible for a recursive-descent parser to loop forever. A problem arises
with “left-recursive” productions like

expr — eXpr + lerm

where the leftmost symbol of the bady is the same as the nonterminal at the
head of the production. Suppose the procedure for expr decides to apply this
production. The body begins with ezpr so the procedure for expr is called
recursively. Since the lockahead symbol changes only when & terminal in the
body is malched, no change to the input took place between recursive calls of
expr. As a result, the second call to expr does exactly what the first call did,
which means a third call to ezpr, and so on, forever.

A left-recursive production can be eliminated by rewriting the offending
production. Consider a nonterminal 4 with two productions

A = Aa|p

where a and J are sequences of terminals and nonterminals that do not start
with A. For example, in

expr — expr+ term | term

nenterminal A = ezpr, string « = + term, and string 8 = term.

The nonterminal 4 and its production are said to be left recursive, because
the production A = Aa has A itsclf as the lefumost symbol on the right side.*
Repeated application of this production builds up a sequence of a's to the right
of A, as in Fig, 2.20(a}. When A is finally replaced by 3, we have a 3 followed
by a sequence of zere or more a's.

The same effect can be achieved, as in Fig. 2.20(b), by rewriting the pro-
ductions for A in the following manner, using 4 new nonterminal R:

In a general left-recursive grammar, instead of a produciion A — Aeq, the nonterminal A
may derive A through intermediate productions.

68 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

A\
A R
@) d g (b)
~
- |
/A ™~
A R
~ K
i |
[8lafaf - [a] [(8lalo] - [eo]e

Figure 2.20: Left- and right-recursive ways of generating a string

A —= PSR
R — aRje«

Nonterminal R and its proeduction B = aR are right recursive because this pro-
duction for K has R itself as the last symbol on the right side. Right-recursive
productions lead to trees that grow down towards the right, as in Fig. 2.20(b).
Trees growing down to the right make it harder to translate expressions con-
taining left-associative operators, such as minus. In Section 2.5.2, however, we
shall see that the proper translation of expressions into postfix notation can
still be attained by a careful design of the translation scheme,

In Section 4.3.3, we shall consider more general forms of left recursion and
show how all left recursion can be eliminated from a grammar.

2.4.6 Exercises for Section 2.4

Exercise 2.4.1: Construct recursive-descent parsers, starting with the follow-
ing grammars:

a) § - +S8 | -85 1a
h) S = 5(8)S5 | ¢
e} § - 051] 01

2.5 A Translator for Simple Expressions

Using the techniques of the last three sections, we now construct a syntax-
directed translator, in the form of a working Java program, that translates
arithmetic expressions into postfix form. To keep the initial program manage-
ably small, we start with expressions consisting of digits separated by binary
plus and minus signs. We extend the program in Section 2.6 to translate ex-
pressions that include numbers and other operators. Tt is worth studying the

2.5. A TRANSLATOR FOR SIMPLE EXPRESSIONS 69

translation of expressions in detail, since they appear as a construct in 8o many
languages.

A syntax-directed Lranslation scheme often serves as the specification for
a translator. The scheme in Fig. 2.21 (repeated from Fig. 2.15) defines the
translation to be performed here.

expr — expr+ term | print('+'} }
| ezpr-term { print(’~’) }

| term

term — 0 { print('0’) }
| 1 { print{’1") }
| 9 { primt('9") }

Figure 2.21: Actions for translating into postfix notation

Often, the underlying grammar of a given scheme has to be modified before
it can be parsed with a predictive parser. In particular, the grammar underlying
the scheme in Fig. 2.21 is left recursive, and as we saw in the last section, a
predictive parser cannot handle a left-recursive grammar.

We appear to have a conflict: on the one hand we need a grammar that
facilitates translation, on the other hand we need a significantly different gram-
mar that facilitates parsing. The solution is to begin wilth the grammar for
easy translation and carefully transform it to facilitate parsing. By eliminating
the left recursion in Fig. 2.21, we can obtain a grammar suitable for use in a
predictive recursive-descent translator.

2.5.1 Abstract and Concrete Syntax

A useful starting point for designing a translator is a data structure called
an abstract syntax tree. In an ebstract syniex tree for an expression, each
interior node represents an operator; the children of the node represent the
operands of the operator. More generally, any programming construct can be
handled by making up an operator for the construct and treating as operands
the semantically meaningful componenis of that construct.

In the abstract syntax tree for 9-5+2 in Fig. 2.22, the root represcnts the
operator +. The subtrees of the root represent the subexpressions 9-5 and
2. The grouping of 9-5 as an operand reflects the left-to-right evaluation of
operators at the same precedence level. Since - and + have the same precedence,
9-5+2 is equivalent to (9-5)+2.

Abstract. syntax trees, or simply syniar trees, resemble parse trees to an
extent. However, in the syntax tree, interior nodes represent programming
constructs while in the parsc tree, the interior nodes represent nonterminals.
Many nonterminals of a grammar represent programming constrizets, but others

70 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR
+
N
9 / \ b
Figure 2.22: Syntax tree for 9-~5+2

are “helpers” of one sort of another, such as those representing terms, factors,
or other variations of expressions. In the syntax tree, these helpers typically are
not needed and are hence dropped. To emphasize the contrast, a parse tree is
sometimes called a concreie syntax tree, and the underlying grammar is called
a concrefe syntaz for the language.

In the syntax tree in Fig. 2.22, each interior node is associated with an
operator, with no “helper” nodes for single productions (a production whose
body consists of a single nonterminal, and nothing else) like expr = term or for
e-productions like rest — e.

It ig desirable for a translation scheme to be based on a grammar whose parse
trecs are as cloge to syntax trees as possible. The grouping of subexpressions
by the grammar in Fig. 2.21 is similar to their grouping in syntax trees. For
example, subexpressions of the addition aperator are given by expr and term in
the production body expr+ term.

2.5.2 Adapting the Translation Scheme

The left-recursion-elimination technique sketched in Fig. 2.20 can also be ap-
plied to productions containing semantic actions. First, the technique extends
to multiple productions for A. In our example, A is expr, and there are two left-
recursive productions for expr and one that is not left recursive. The fechnique
transforms the productions 4 — Aa | AB | v into

A - R
R — aR|BR]|c¢

Second, we need to transform productions that have embedded actions, not
just terminals and nonterminals. Semantic actions etnbedded in the productions
are simply carried along in the transformation, as if they were terminals.

Example 2.13: Consider the translation scheme of Fig. 2.21. Let

A

expr
+ term { print('+) }
- term { print(*-’) }
= lerm

it

@
8
¥

2.5. A TRANSLATOR FOR SIMPLE EXPRESSIONS 71

Then the left-recursion-eliminating transformation produces the translation
scheme in Fig. 2.23. The expr productions in Fig. 2.21 have been transformed
into the productions for expr, and a new nonterminal rest plays the role of R.
The productions for term are repeated from Fig. 2.21. Figure 2.24 shows how
9-5+2 is translated nsing the grammar in Fig. 2,23, O

expr — term rest

rest — + term { print('+) } rest
| - term { print{’-"}) } rest
| e

term — O { priot('0") }
|1 { print{"t’) }

I 2 { print{'9") }

Figntre 2.23: Translation scheme after left-recursion elimination

enpr

term rest
/) / [
¢ {print('9’)} -7 term {ptint{’-")} = rest

A ~ . “_‘\
/ \\ J’/ ~.
5 {print(’s’)} +° term {print('+)} rest

Al
"

2" {princ(2)} ‘

Figure 2.24: Translation of 9-5+2 to 95-2+

Left-recursion elimination must be done carefully, to ensure that we preserve
the ordering of semantic actions. For example, the transformed scheme in
Fig. 2.23 has the actions { print(’+') } and { print(’~") } in the middle of
a production body, in each case between nonterminals term and rest. If the
actions were to be moved to the end, after rest, then the translations would
become incorrect. We leave it to the reader to show that 9-5+2 would then be
translated incorrectly into 952+-, the postfix notation for 9-(5+2), Instead of
the desired 95~2+, the postfix notation for (9-5)+2.

72 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

2.5.3 Procedures for the Nonterminals

Functions expr, rest, and term in Fig. 2.25 implement the syntax-directed trans-
lation scheme in Fig. 2.23. These functions mimic the production bodies of
the corresponding nonterminals. Function ezpr implements the production
expr — term rest by the calls term() followed by rest(). '

void ezxpr() {
term(); rest();
}

void rest() {
if (lookahend =="+"} {
match('+); term(); print(’+); rest();

}
else if (lookahead =="-') {
match("-"Y; term(); print{’-'); rest();

else { } /* do nothing with the input =/ ;

}

void term() {
if { lockahead is a digit)} {
t = lookahead; match(lookahead); print(t);
}

else report(”syntax error”);

Figure 2.25: Pseudocode for nonterminals expr, rest, and term.

Function rest implements the three productions for nonterminal rest in
Fig. 2.23. It applies the first production if the lookahead symbol is a plus
sign, the second production if the lookahead symbol is a minus sign, and the
production rest — ¢ in all other cases. The first two productions for rest are
implemented by the first two branches of the if-statement in procedure rest.
If the lookahead symbol is +, the plus sign is matched by the call mateh('+).
After the call ferm(), the semantic action is jmplemented by writing a plus
character. The second production is similar, with - instead of +. Since the
third production for rest has € as its right side, the last else-clause in function
rest does nothing.

The ten productions for term generate the ten digits, Since each of these
productions generates a digit and prints it, the same code in Fig. 2.25 imple-
ments them all. If the test succeeds, variable ¢ saves the digit represented by
Iookahead 50 it can be written after the call to match. Note that match changes

2.5. A TRANSLATOR FOR SIMPLE EXPRESSIONS T3

the lookahead symbol, so the digit needs to be saved for later prinsing®

2.5.4 Simplifying the Translator

Before showing a complete program, we shall make two simplifying transfor-
mations to the code in Fig. 2.25. The simplifications will fold procedure rest
into procedure ezpr. When expressions with multiple levels of precedence are
translated, such sitnplifications reduce the number of procedures needed.

First, certain recursive calls can be replaced by iterations. When the last
statement executed in a procedure body is a recursive call to the same proce-
dure, the call is said to be tail recursive. For example, in function resf, the
calls of rest{) with lookahead + and - are tail recursive because in each of these
branches, the recursive call to rest is the last statement executed by the given
call of rest.

For a procedure without parameters, a tail-recursive call can be replaced
simply by a jump to the beginning of the procedure. The code for rest can be
rewritten as the pseudocode of Fig. 2.26. As long as the lookahead symbol is
a plus or a minus sign, procedure rest matches the sign, calls term to match
a digit, and continues the process. Otherwise, it breaks out of while loop and
returns from rest.

void rest() {
while(true) {
if(lookahead =="+") {
match('+'); term{); print(’+"); continue;

else if (lookahead == "=) {
match{’-'}; term(); print(’-'); continue;

break ;

Figure 2.26: Eliminating tail recursion in the procedure rest of Fig. 2.25.

Second, the complete Java program will include one more change. Once
the tail-recursive calls to rest in Fig. 2.25 are replaced by iterations, the only
remaining call to rest is from within procedure expr. The two procedures can
thercfore be integrated into one, by replacing the call rest() by the body of
procedure rest.

5As a minor optimization, we could print before calling mateh to avold the need to save
the digit. Tn general, changing the order of actions and grammar syimnbols is risky, since it
could change what the transiation docs.

74 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

2.5.5 The Complete Program

The complete Java program for our translator appears in Fig. 2.27. The first
line of Fig. 2.27, beginning with impoxrt, provides access to the package java. io
for system input and output. The rest of the code consists of the two classes
Parser and Postfix. Class Parser contains variable lookahead and functions
Parser, expr, term, and match.

Execution begins with function main, which is defined in class Postfix.
Function main creates an instance parse of class Parser and calls its function
expr to parse an expression.

The function Parser, with the same namc as its class, is a constructor,
it is called automatically when an object of the class is created. Notice from
its definition at the beginning of class Parser that the constructor Parser
initializes variable lookahead by reading a token. Tokens, consisting of single
characters, are supplied by the system input routine read, which reads the next
character from the input file. Note that lookahead is declared to be an integer,
rather than a character, to anticipate the fact that additional tokens other than
single characters will be introduced in later sections.

Function expr is the result of the simplifications discussed in Section 2.5.4;
it implements nonterminals ezpr and rest in Fig. 2.23. The code for expr
in Fig. 2.27 calls term and then has a while-loop that forever tests whether
lockahead matches either '+ or *-?. Control cxits from thig while-loop when
it reaches the return statement. Within the loop, the input/output facilities of
the Systen class are used to write a character.

Function term uses the routine isDigit [rom the Java class Charac‘cer
to test if the lookahead symbol is a digit. The routine isDigit expects to
be applied to a character; however, lookahead is declared to be an integer,
anticipating future extensions. The construction (char)lookahead casts or
coerces lookahead to be a character. In a small change from Fig. 2.25, the
semantic action of writing the lookahead character occurs before the call to
match.

The function match checks terminals; it reads the next input terminal if the
lockahead symbol is matched and signals an error otherwise by executing

throw new Error("syntax error");

This code creates a new exception of class Error and supplies it the string
syntax error as an error message. Java does not require Error exceptions
to be declared in a throws clausc, since they are meant to be used only for
abnormal events that should never occur.®

8Error handling can be streamlined using the exception-handiing facilities of Java. One ap-
proach is to define a new exception, say SyataxError, that extends the system class Exception.
Then, throw SyntaxError instead of Error when an error is detected in either term or mateh.
Further, handle the cxception ini main by enclosing the call parse.expr() within a try state-
ment that catches exception SyntaxError, writes a message, and terminates. We would need
to add a class SyntazError to the program in Fig. 2,27, To complete the extension, in addition
to J0Exception, functions mateh and term must now declare that they can throw SyntazExrror.
Funetion expr, which calls them, mnst also declare that it can throw SyntaxError.

2.5. A TRANSLATOR FOR SIMPLE EXPRESSIONS 75

import java.io.*;
class Parser {
static int lookahead;

public Parser() throws I0Exception {
lookahead = System.in.read{);

}

void expr{) throws IDException {
tern();
while (true) {
if{ lockahead == *+°') {
match(’+?); term(); System.out.write(’+’};
}
else if{ lookahead == *-') {
match(’-?); term(); System.out.write(’-’);

}

else returp;

¥

void term() throws IOExceptien {
if(Character.isDigit{{char)lookahead) } {
System.out.write{{char)lookahead); match(lookahead);
}
else throw new Error("syntax error");

}

void match(int t) throws I0Exception {
if{ lockahead == t) lookahead = System,in.read(};
else throw new Error("syntax error"”);

}

public class Postfix {
public static void main(String(] args) throws IDExcepticn {
Parser parse = new Parser();
parse.expr(); System.out.write(’\n’);

Figure 2.27: Java program to translate infix expressions into postfix form

76 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

A Few Salient Features of Java

Those unfamiliar with Java may find the following notes on Java helpful
in reading the code in Fig. 2.27:

e A class in Java consists of a sequence of variable and function defi-
nitions.

¢ DParentheses enclosing function parameter lists are necded even if
there are no parameters; hence we write expr () and term{). These
functions are actually procedures, because they do not return values,
signified hy the keyword void before the function name,

¢ Functions communicate cither by passing parameters “by valuc”
or by accessing shared data. For example, the functions expr()
and term() examine the lockahead symbol using the class variable
lockahead that they can all access since they all belong to the same
class Parser.

¢ Like C, Java uses = for assignment, == for equality, and {= for in-
equality.

e The clause “throws IOFxception” in the definition of term() de-
clares that an exception called I0Exception can occur. Such an
exception occurs if there is no input to be rcad when the function
match uses the routine read. Any function that calls match must also
declare that an I0Exception can occur during its own execution.

2.6 Lexical Analysis

A lexical analyzer reads characters from the input and groups them into “token
objects.” Along with a terminal symbol that is used for parsing decisions,
a token object carries additional information in the form of attribute values.
So far, there has been no need to distinguish between the terms “token” and
“terminal,” since the parser ignores the attribute values that are carried by a
token. In this section, a token is a terminal along with additional information.

A sequence of input characters that comprises a single token is called a
lezeme. Thus, we can say that the lexical analyzer insulates a parser from the
lexeme representation of tokens.

The lexical analyzer in this section allows nunbers, identifiers, and “white
space” (blanks, tabs, and newlines) to appear within expressions. It can be used
to extend the expression translator of the previous section. Since the expression
grammar of Fig. 2.21 must be extended to allow numbers and identifiers, we

2.6. LEXICAL ANALYSIS 7

shall take this opportunity to allow multiplication and division as well. The
extended translation scheme appears in Fig. 2.28.

expr — expr+ term { print('+) }
| expr-term { print{’~)
| term

term —+ term * factor { print(’x") }
| term [factor { print(’/’)}
| factor

foctor — (expr)
| num { print{num.value) }
| id { print(id.lezeme) }

Figure 2.28: Actions for translating into postfix notarien

In Fig. 2.28, the terminal num is assumed to have an attribute num.velue,
which gives the integer value corresponding to this occurrence of num. Termi-
nal id has a string-valued attribute written as id.lezeme; we assume this string
is the actual lexeme comprising this instance of the token id.

The pseudocode fragments used to illustrate the workings of a lexical ana-
lyzer will be assembled into Java code at the end of this section. The approach
in this section is suitable for hand-written lexical analyzers. Section 3.5 de-
scribes a tool called Lex that generates a lexical analyzer from a specification.
Symbol tables or data structures for holding information about identifiers are
considered in Section 2.7.

2.6.1 Removal of White Space and Comments

The expression translator in Section 2.5 sees every character in the input, so
extraneous characters, such as blanks, will cause it to fail. Most languages
allow arbitrary amounts of white space to appear between tokens. Comments
are likewise ignored during parsing, so they may also be treated as white space.

If white space is eliminated by the lexical analyzer, the parser will never
have to consider it. The alternative of modifying the grammar to incorporate
white space into the syntax is not nearly as easy to implement.

The pseudocode in Fig. 2.29 skips white space by reading input characters
as long as it sces a blank, a tab, or a newline. Variable peek holds the next
input character. Line numbers and context are useful within error messages to
help pinpoint errors; the code uses variable line to count newline characters in
the input.

78 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

for (; ; peek = next input character } {
if { peek is a blank or & tab) do nothing;
else if { peek is a newline) line = line+1;
else break;

Figure 2.29: Skipping white space

2.6.2 Reading Ahead

A lexical analyzer may need to read ahead some characters before it can decide
on the token to be returned to the parser. For example, a lexical gnalyzer for
C or Java must read ahead after it sees the character >. If the next character
is =, then > is part of the character sequence >=, the lexerne for the token for
the “greater than or equal t6” operator. Otherwise > itself forms the “greater
than” operator, and the lexical analyzer has read one character too many.

A general approach to reading ahead on the input, is to maintain an input
buffer from which the lexical analyzer can read and push back characters. Input
buffers can be justified on efficiency grounds alone, since fetching a block of
characters is usually more efficient than fetching one character at a time. A
pointer keeps track of the portion of the input that has been analyzed; pushing
back a character is implemented by moving back the pointer. Techniques for
input buffering are discussed in Section 3.2.

One-character read-ahead usually suffices, 80 a simple solution is to use a
variable, say peek, to hold the next input character. The lexical analyzer in
this section reads ahead one character while it collects digits for numbers or
characters for identifiers; e.g., it reads past 1 to distinguish between 1 and 10,
and it reads past t to distinguish between t and true.

The lexical analyzer reads ahead only when it must. An operator like * can
be identified without reading ahead. In such cases, peek is set to a blank, which
will be skipped when the lexical analyver is called to find the next token. The
invariant assertion in this section is that when the lexical analyzer returns a
token, variahle peek either holds the character beyond the lexeme for the current
token, or it holds a blank.

2.6.3 Constants

Anytime a single digit appears in a grammar for expressions, it secms reasonable
to allow an arbitrary integer constant in its place. Imteger constants can be
allowed either by creating a terminal symbol, say num, for such constants or
by incorporating the syntax of integer constants into the grammar. The job
of collecting characters into integers and computing their collective numerical
value is generally given to a lexical analyzer, so numbers can be treated as single
units during parsing and translation.

2.6. LEXICAL ANALYSIS 79

When a sequence of digits appears in the input stream, the lexical analyzer
passes to the parser a token consisting of the terminal num along with an
integer-valued attribute computed from the digits. If we write tokens as tuples
enclosed between {), the input 31 + 28 + 59 is transformed into the sequence

(num, 31} {(+) (num,28) (+} {(num, 5%

Hete, the terminal symbol + has no attributes, so its tuple is simply (+). The
pseudocode in Fig. 2.30 reads the digits in an integer and accumulates the value
of the integer using variable v.

if { peek holds a digit) {
v = O
do {
v = v#*10 + integer value of digit peek;
peek = next input character;
} while (peek holds a digit);
return token {num, v);

Figure 2.30: Grouping digits into iritegers

2.6.4 Recognizing Keywords and Identifiers

Most languages use fixed character strings such as for, de, and if, as punctua-
tion marks or to identify constructs. Such character strings are called keywords.

Character strings are also used as identifiers to name variables, arrays, func-
tions, and the like. Grammars routinely treat identifiers as terminals to sim-
plify the parser, which can then expect the same terminal, say id, each time
any identifier appears in the input. For example, on input

count = count + increment; (2.6)

the parser warks with the terminal stream id = id + id. The token for id has
an attribute that holds the lexeme. Writing tokens as tuples, we see that the
tuples for the input stream (2.6) are

(id, "count") (=} (id, "count”) {+) {id, "increment") {;)

Keywords generally satisfy the rules for forming identifiers, so a mechanism
is needed for deciding when a lexeme forms a keyword and when it forms an
identificr. The problem is easier to resolve if keywords are reserved; i.e., if they
cannot be used as identifiers. Then, a character string forms an identifier only
if it is not a keyword.

80 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

The lexical analyzer in this section solves two problems by using a table {o
hold character strings:

o Single Representation. A string table can insulate the rest of the compiler
from the representation of strings, since the phases of the compiler can
work with references or pointers to the string in the table. References can
also be manipulated more efficiently than the strings themselves.

e heserved Words. Reserved words can be implemented by initializing the
string table with the reserved strings and their tokens. When the lexical
analyzer reads a string or lexeme that conid form an identifier, it first
checks whether the lexeme is in the string table. If so, it returns the
token from thec table; otherwise, it returns a token with terminal id.

In Java, a string table can be implemented as a hash table using a class
called Hashtable. The declaration

Hashiable words = new Hashtable();

sets up words as a default hash table that maps keys to values. We shall use it
to map lexemes to tokens. The pseudocode in Fig. 2.31 uses the operation get
to look up reserved words.

if (peek holds & letter) {

collect letters or digits into a buffer b;

s = gtring formed from the characters in b

w = token returned by words.get(s);

if { wis not null) return w;

else {
Enter the key-value pair (s, {id, s}) into words
return token {id, s);

Figure 2.31: Distinguishing keywords from identifiers

This pseudocode collects from the input a string s consisting of letters and
digits boginning with a letter. We assume that s is made as long as possible;
i.e., the lexical analyzer will continue reading from the input as long a¢ it
encounters letters and digits. When something other than a letter or digit, e.g.,
white space, is encountered, the lexeme is copied into a buffer b. If the table
has an entry for s, then the token retrieved by words.get is returned. Here, s
could be either a keyword, with which the werds table was initially seeded, or
it could be an identifier that was previously entered into the table. Otherwise,
token id and attribute s are installed in the table and returned.

2.6. LEXICAL ANALYSIS 81

2.6.5 A Lexical Analyzer

The pseudocode fragments so far in this scetion fit together to form a function
scarn that returns token objects, as follows:

Token scan() {
skip white space, as in Section 2.6.1;
handle numbers, as in Section 2.6.3;
handle reserved words and identifiers, as in Section 2.6.4;
/# if we get here, treat read-ahead character peek as a token */
Token ¢ = new Token(peek);
peek = blank /= initialization, as discussed in Section 2.6.2 %/ ;
return t;

}

The rest of this seclion implements function scan as part of a Java package
for lexdical analysis, The package, called lexer has classes for tokens and a class
Lexer containing function scan.

The classes for Lokens and their ficlds are illustrated in Fig., 2.32; their
methods are not shown. Class Token has a field tag that is used for parsing
decisions. Subclass Num adds a field value for an integer value. Subclass Word
adds a field lexeme that is used for reserved words and identifiers.

‘class Token

linl‘. lag l
\
class Num class Word
|int walye] |5tring lexeme |

Figure 2.32: Class Token and subclasses Num and Word

Each class is in a file by itself. The file for class Token is as follows:

1) package lexer; /! File Token.java
2) public class Token {

3) public final int tag;

4) public Teken(int t) { tag = t; }

5) }

Line 1 identifies the package lexer. Field tag is declared on line 3 to be final
s0 it cannot be changed once it is set. The constructor Token on line 4 is used
to create token ohjects, as in

new Token(’+?)

which creates a new object of class Token and sets its field tag to an integer
representation of ’+°. (For brevity, we omit the customary method toString,
which would return a string suitable for printing.)

82 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Where the pseudocode had terninals like num and id, the Java code uses
integer constants. Class Tag implements such constants:

1) package lexer; // File Tug.java

2) public class Tag {

3) public final static int

4) NUM = 266, ID = 257, TRUE = 258, FALSE = 259;
5) }

In addition to the integer-valued fields NUM and ID, this class defines two addi-
tional fields, TRUE and FALSE, for future use; they will be used to illustrate the
treatment of reserved keywords.”

The fields in class Tag are public, so they can be used outside the package.
They are static, 8o there is just one instance or copy of these fields. The
fields are final, so thev can: be set just once. In effect, these fields represent
constants. A similar effect is achieved in C by using deﬁne—statements to allow
names such as NUM to be used as symbolic constants, e.g.:

#define NUM 256

The Java code refers to Tag.NUM and Tag. ID in places where the pseudocode
referred to terminals num and id. The only requirement is that Tag.NUM and
Tag.ID must be initialized with distinct values that differ from each other and
from the constants repregenting single-character tokens, such as *+? or *#7.

1} package lexer; // File Num.java

2) public class Num extends Token {

3) public final int value;

4) public Num(int v) { super(Tag.NUM); valus = v; }
5) }

1) package lexer; // File Word.java

2) public class Word extends Token {

3) public final String lexeme;

4) public Word(int t, String s) {

3) super(t}; lexeme = new String(s);
6) }

7}

Figure 2.33: Subclasses Num and Word of Token

Classes Num and Word appear in Fig. 2.33. Class Num extends Token by
declaring an integer field value on line 3. The constructor Num on line 4 calls
super{Tag.NUM), which sets field tag in the superclass Token to Tag.NUM.

TASCII characters are typica.lly converted into integers between 0 and 255. We therefore
use integers greater than 255 for terminals.

2.6. LEXICAL ANALYSIS 83

1) package lexer; // File Lexer java
2) import java.io.*; import java.util.*;

3) public class Lexer {

4) public int line = 1;

5) private char peek = ' ’;

6) private Hashtable words = new Hashtable();

) void reserve(Word t) { words.put(t.lexeme, t); }
8) public Lexer() {

9 reserve(new Word(Tag.TRUE, "true"} J;

10) reserve(new Word(Tag.FALSE, "false"));

11) }

12) public Token scan() throws IOException {

13) for(: ; peek = (char)System.in.read()) {
14) if (peek == * 7 || peek == ’\t’ } continue;
15) else if(peek == ’\n’) line = line + 1;
16) else break;

17) }

/* continues in Fig. 2.35 */
Figure 2.34: Code for a lexical analyzer, part 1 of 2

Class Word is used for both reserved words and identifiers, so the constructor
Word on line 4 expects two parameters: a lexeme and a corresponding integer
value for tag. An object for the rescrved word true can be created by executing

new Word(Tag.TRUE, "true")

which creates a new objeet with field tag set to Tag. TRUE and field lexeme set
to the string "true”.

Class Lexer for lexical analysis appears in Figs. 2.34 and 2.35. The integer
variable 1ine on line 4 counts input lines, and character variable peek on line 5
holds the next input character.

Reserved words are handled on lines 6 through 1}. The table words is
declared on line 6. The helper function reserve on line 7 puts a string-word
pair in the table. Lines 9 and 10 in the constructor Lexer initialize the table.
They use the constructor Word to create word objects, which are passed to the
helper function reserve. The table is therefore initialized with reserved words
*true” and "false" hefore the first call of scan.

The code for scan in Fig. 2.34-2.33 implements the pscudocode fragments
in this section. The for-statement on lines 13 through 17 skips blank, tab,
and newlinc characters. Control leaves the for-statement with peek holding a
non-white-space character.

The code for reading a sequence of digits is on lines 18 through 25. The
funetion jsDigit is from the built-in Java class Character. It is used on
line 18 to check whether peek is a digit. If so, the code on lines 19 through 24

84 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

18) if(Character.igDigit(peek)) {

19) int v = 03

20) do {

21) v = 10%v + Character.digit{(peek, 10);
22) peek = (char)System.in.read();
23) } while(Character.isDigit{pesk));
24) return new Num(v);

25) }

26) if { Character.isLetter(peek}) {

27) StringBuffer b = new StringBuffer();
28) do {

29) b.append(peek) ;

30) peek = (char)System.in.read{);
an } while({ Character.isLetterOrDigit (peek) };
32) String & = b.toString();

33) Word w = (Word)words.get{s);

34) if(w != null } return w;

33) v = nev Word(Tag.ID, 8);

36) words.put(s, w);

an return w;

38) ¥

39) Token t = new Token(peek);

40} peek = 7 7}

41) return t;

42) }

43) }

Figure 2.35: Code for a lexical analyzer, part 2 of 2

accumulates the integer value of the sequence of digits in the input and returns
a new Num object.

Lines 26 through 38 analyze reserved words and identifiers. Keywords true
and false have already been reserved on lines 9 and 10. Therefore, line 35 is
reached if string s is not reserved, so it must be the lexeme for an identifier.
Line 35 therefore returns a new word object with lexeme set to s and tag set
to Tag. ID. Finally, lines 39 through 41 return the current character as a token
and set peek to a blank that will be stripped the next time scan is called.

2.6.6 Exercises for Section 2.6

Exercise 2.6.1: Extend the lexical analyzer in Section 2.6.5 to remove com-
ments, defined as follows:

2.7. SYMBOL TABLES 85

a) A commenl begins with // and includes all characters until the end of
that line.

b} A comment beging with /* and includes all characters through the next
occurrence of the character sequence */.

Exercise 2.6.2: Extend the lexical analyzer in Section 2.6.5 to recognize the
relational operators <, <=, ==, 1=, >=, >,

Exercise 2.6.3: Extend the lexical analyzer in Section 2.6.5 to recognize float-
ing point numbers such as 2., 3.14, and .5.

2.7 Symbol Tables

Symbol tables are data structures that are used by compilers to hold information
about source-program constructs. The information is collected inerementally by
the analysis phases of a compiler and used by the synihesis phases to generate
the target code. Entries in the symbol table contain information about an
identifier such as its character string (or lexeme), its type, its position in storage,
and any other relevant information. Syvmbol tables typically need to support
multiple declarations of the same identifier within a program.

From Section 1.6.1, the scope of a declaration is the portion of a program
to which the declaration applics. We shall implement scopes by setting up a
separate symbol table for each scope. A program block with declarations® will
have its own symbol table with an entry for each declaration in the block. This
approach also works for other constructs thal set up scopes; for example, a class
would have its own table, with an entry for each field and method.

This section contains a symbol-table module suitable for use with the Java
translator fragments in this chapter. The module will be used as is when we
put together the translator in Appendix A. Meanwhile, for simplicity, the main
example of this section is a stripped-down language with just the key constructs
that touch symbol tables; namely, blocks, declarations, and factors. All of the
other statement and expression constructs are omitted so we can foeus on the
symbol-table operations. A program consists of blocks with opticnal declara-
tions and “statements” consisting of single identifiers. Each such statement
represents a use of the identifier. Here is a sample program in this language:

{ int x; char y; { beol y; x; y; } x; v; } (2.7)

The examples of block structure in Section 1.6.3 dealt with the definitions and
uses of names; the input (2.7) consists solely of definitions and uses of names.

The task we shall perform is to print a revised program, in which the decla-
rations have been removed and each “statement” has its identifier followed by
a colon and its type.

2n ¢, for instance, program blocks are either functions or sections of functions that are
separated by curly braces and that have one or more declarations within them.

86 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Who Creates Symbol-Table Entries?

Symbol-table entries are created and used during the analysis phase by the
lexical analyzer, the parser, and the semantic analyzer. In this chapter,
we have the parser create entries. With its knowledge of the syntactic
structure of a program, a parser is often in a better position than the
lexical analyzer to distinguish among different declarations of an identifier.

In some cases, a lexical analyzer can create a symbol-tabie entry as
soon as it sees the characters that make up a lexeme. More often, the
lexical analyzer can only return to the parser a token, say id, along with
a pointer to the lexeme. Only the parser, however, can decide whether to
use a previously created symbol-table entry or create a new one for the
identifier.

Example 2.14: On the above input (2.7), the goal is to produce:
{ { z:im%t; y:bool; } x:int; y:char; }

The first x and y are from the inner block of input (2.7). Since this use of x
refers to the declaration of x in the outer block, it is followed by int, the type
of that declaration. The use of y in the inner block refers to the declaration of
y in that very block and therefore has boolean type. We also see the uses of x
and y in the outer block, with their types, as given by declarations of the outer
block: integer and character, respectively. O

2.7.1 Symbol Table Per Scope

The term “scope of identifier z” really refers to the scope of a particular dec-
laration of z. The term scope by itself refers to a portion of a program that is
the scope of one or more declarations.

Scopes are important, because the same identifier can be declared for differ-
ent purposes in different parts of a program. Common names like i and x often
have multiple uses. As another example, subclasses can redeclare a method
name to override a method in a superclass.

If blocks can be nested, several declarations of the same identifier can appear
within a single block. The following syntax results in nested blocks when stmis
can generate a block:

block — '{’ decls stmts '}

(We quote curly braces in the syntax to distinguish them from curly braces for
semantic actions.) With the grammar in Fig. 2.38, decls generates an optional
sequence of declarations and stmis generates an optional sequence of statements.

2.7. SYMBOL TABLES 87

Optimization of Symbol Tables for Blocks

Implementations of symbol tables for blocks can take advantage of the
most-closely nested rule. Nesting ensures that the chain of applicable
symbol tables forms a stack. At the top of the stack is the table for
the current block. Below it in the stack are the tables for the enclosing
blocks. Thus, symbol tables can be allocated and deallocated in a stack-
like fashion.

Some compilers maintain a single hash table of accessible entries; that
is, of entries that are not hidden by a declaration in a nested block. Such
a hash table supports essentially constant-time lookups, at the expense of
inserting and deleting entries on block entry and exit. Upon exit from a
block B, the compiler must undo any changes to the hash table due to
declarations in block B. It can do so by using an auxiliary stack to keep
track of changes to the hash table while block B is processed.

Moreover, a statement can be a block, so our language allows nested blocks,
where an identifier can be redeclared.

The most-closely nested rule for blocks is that an identifier x is in the scope
of the most-closely nested declaration of z; that is, the declaration of z found
by examining blocks ingide-out, starting with the block in which z appears.

Example 2.15: The following psendocode uses subscripts to distinguish a-
mong distinet declarations of the same identifier:

1y { intz;; int y;

2) { int we; bool yz; int z3;

3) Sy sy ees By ey et Yo e ees o oeer
4) t

5) W ey e @y ey e Y1

6) 1}

The subscript is not part of an identifier; it is in fact the line number of the
declaration that applies to the identifier. Thus, all occurrences of z are within
the scope of the declaration on line 1. The occurrence of ¥ on line 3 is in the
scope of the declaration of y on line 2 since y is redeclared within the inner block.
The occurrence of y on line 5, however, is within the scope of the declaration
of y on line 1.

The ocecurrence of @ on line 5 is presumably within the scope of a declaration
of w outside this program fragment; its subscript 0 denotes a declaration that
is global or external to this block, . :

Finally, z is declared and used within the nested block, but cannot be used
on line 5, since the nested declaration applies only to the nested block. 0O

88 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

The most-closcly nested rule for blocks can be implemented by chaining
symbol tables. That is, the table for a nested block points to the table for its
enclosing block.

Example 2.16: Figure 2.36 shows symbol tables for the pseudocode in Exam-
ple 2.15. B, is for the block starting on line 1 and Bs is for the block starting at
line 2. At the top of the figure is an additional symbol table By for any global
or default declarations provided by the language. During the time that we are
analyzing lines 2 through 4, the environment is represented by a reference to
the lowest symbol table — the one for By. When we move to line 5, the symbol
table for B> becomes inaccessible, and the environment refers instead to the
symbol table for By, from which we can reach the global symbol table, but not
the table for By, 0O

B{) H

B, : | r |int
¥ |int

By |w|int
¥ hool
3 |int

Figure 2.36: Chained symbol tables for Example 2.15

The Java implementation of chained symbol tables in Fig. 2.37 defines a
class Env, short for environment.? Class Env supports three operations:

o Create a new symbol table. The constructor Env(p) on lines 6 through
& of Fig, 2.37 creates an Env object with a hash table named table,
The object is chained to the environment-valued parameter p by setting
field next to p. Although it is the Env objects that form a chain, it is
convenient to talk of the tables being chained.

e Put a new entry in the current table. The hash table holds key-value
pairs, where:
~ The key is a string, or rather a reference to a string. We could
alternatively use refercnces to token objects for identifiers as keys.

— The walue is an entry of class Symbol. The code on lines 9 through
11 does not need to know the structure of an entry; that is, the code
is independent of the fields and methods in class Symbol.

9 4Environment” is another term for the collection of symbol tables that are relevant at a
point in the program.

2.7. SYMBOL TABLES 89

1) package symbols; // File Envjove

2) import java.util.*;

3) public class Env {

4) private Hashtable table;

3) protected Env prev;

6) public Env(Env p) {

7) table = new Hashtable()}; prev = p;

8) }

9) public void put(String s, Symbol sym} {

10} table.put(s, sym);

1)}

12} public Symbol get(String s) {

13 for{ Env e = this; e !'= null; e = e.prev) {
14) Symbol found = (Symbol)(e.table.get(s));
13) if(found '= null } return found;

16) }

17) return null;

18) +

19) 1

Figure 2.37: Class Env implements chained symbol tables

e (et an entry for an identifier by searching the chain of tables, starting
with the table for the current block. The code for this operation on lines
12 through 18 returns either a symhbol-table entry or null,

Chaining of symbol tables results in a tree structure, since more than one
hlock can be nested inside an enclosing block. The dotted lines in Fig. 2.36 are
a reminder that chained symbol tables can [orm a tree.

2.7.2 The Use of Symbol Tables

In effect, the role of a symbol table is to pass information from declarations to
uses. A semantic action “puts” information about identifier # into the symbaol
table, when the declaration of z is analyzed. Subsequently, a semantic action
associated with a production such as fecfor — id “gets” information about
the identifier from the symbol table. Since the translation of an expression
E, op E., for a typical operator op, depends only on the translations of E; and
Fs, and does not directly depend on the symbol table, we can add any number

of operators without changing the basic flow of information from declarations
to uses, through the symbol {able.

Example 2.17: The translation scheme in Fig, 2.38 illustrates how class Eno
can be used. The translation scheme concentrates on scopes, declarations, and

90 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

uses. It implements the translation deseribed in Example 2.14. As noted earlier,
on input

program — { top = null; }
block
block — '{ { saved = top;
top = new Env(top);
print("{ n);}
decls stmis 'Y { top = saved;
print("} ll);}
decls — decls decl
I«
deel — typeid; { 8 = new Symbol;
s.type = type.lezeme
top.put(id.lezeme, s); }
simis — stmis stmi
| «
stmt — block
| factor ; { print("; *); }
foctor — id { 5 = top.get{id.lezeme);
© print{id.lezeme);
print(":"); }

print(s. type);
Figure 2.38: The use of symbol tables for translating a language with blocks

{ int x; char y; { boel y: x; y; + x; v; }
the translation scheme strips the declarations and produces
{ { x:int; y:bool; } x:int; y:char; }

Notice that the bodies of the productions have been aligned in Fig. 2.38
so that all the grammar symbols appear in one column, and all the actions in
a second column. As a result, components of the body are often spread over
several lincs. '

Now, consider the semantic actions, The translation scheme creates and
discards symbol tables upon block entry and exit, respectively. Variable top
denotes the top table, at the head of a chain of tables. The first production of

2.8. INTERMEDIATE CODE GENERATION 91

the underlying grammar is program — block. The semantic action before dlock
initializes #op to null, with no entries.

The second production, block — '{' decls stmts’}, has actions upon block
entry and exit. On block entry, before derls, a semantic action saves a reference
to the current table using a local variable seved. Each use of this producticn
has its own local variable saved, distinct from the local variable for any other
use of this production. In a recursive-descent parser, saved would be local to
the procedure for block. The treatment of local variables of a recursive function
is discussed in Section 7.2. The code

top = new Enuv(top);

sets variable top Lo a newly created new table that is chained to the previous
value of fop just before block entry. Variable fop is an object of class Eny; the
code for the constructor Enw appears in Fig. 2.37.

On block cxit, after '}, a semantic action restores top to its value saved on
block entry. In effect, the tables form a stack; restoring top to its saved value
pops the effect of the declarations in the block.*® Thus, the declarations in the
black are not vigible outside the block.

A declaration, decls — type id results in a new entry for the declared iden-
tifier. We assume that tokens type and id cach have an associated attribute,
which is the type and lexeme, respectively, of the declared identifier. We shall
not go into all the fields of a symhol object s, but we assume that there is a
field fype that gives the type of the symbol. We create a new symbol object s
and assign its type properly by s.fype = type.lezeme. The complete entry is
put into the top symbol table by top.put(id.lezeme, s).

The semantic action in the production factor — id uses the symbol table
to get the entry for the identifier. The get operation searches for the first entry
in the chain of tables, starting with top. The retrieved entry contains any
information needed about the identifier, such as the type of the identificr. 0O

2.8 Intermediate Code Generation

The front end of a compiler constructs an intermediate representation of the
source program from which the back end generates the target program. In
this section, we consider intermediate representations for expressions and state-
ments, and give tutorial examples of how to produce such representations.

2.8.1 Two Kinds of Intermediate Representations

As was suggested in Section 2.1 and especially Fig. 2.4, the two most important
Intermediate representations are:

1nstead of explicitly savin g and restoring tables, we could alternatively add stalic opera-
tions push and pop to class Env.

92 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

e Trees, including parse trees and (abstract) syntax trees.

» Linear representations, especially “three-address code.”

Abstract-syntax trees, or simply syntax trees, were introduced in Section
2.5.1, and in Section 5.3.1 they will be reexamined more formally. During
parsing, syntax-tree nodes are created to represent significant programming
constructs. As analysis proceeds, information is added to the nodes in the form
of attributes associated with the nodes. The choice of attributes depends on
the translation to be performed.

Three-address code, on the other hand, is a sequence of clementary program
steps, such as the addition of two values. Unlike the tree, there is no hierarchical
structure. As we shall see in Chapter 9, we need this repregentation if we are
to do any significant optimization of code. In that case, we break the long
sequence of three-address statements that form a program into “basic blocks,”
which are sequences of statements that are always executed one-after-the-other,
with no branching.

In addition to creating an intermediate representation, a compiler front end
checks that the source program follows the syntactic and semantic rules of the
source language. This checking is called static checking; in gencral “static”
means “done by the compiler.”!! Static checking assures that certain kinds
of programming errors, including type mismatches, are detected and reported
during compilation.

It is possible that a compiler will construct a syntax tree at the same time
it emits steps of three-address code. However, it is common for compilers to
emit the three-address code while the parser “goes through the motions” of
constructing a syntax tree, without actually constructing the complete tree
data structure. Rather, the compiler stores nodes and their attributes needed
for semantic checking or other purposes, along with the data structure used for
parsing. By so doing, those parts of the syntax tree that are needed to construct
the three-address code are available when needed, but disappear when no longer
needed. We take up the details of this process in Chapter 5.

2.8.2 Construction of Syntax Trees

We shall first give a translation scheme that constructs syntax trees, and later,
in Section 2.8.4, show how the scheme can be modified to emit three-address
code, along with, or instead of, the syntax tree.

Recall from Section 2.5.1 that the syntax tree

%45 opposite, “dynamic,” means “while the program is running.” Many languages also
make certain dynamic checks. For instance, an objeci-oriented language like Java sometimes
must check types during program execuiion, since the method applied to an object may
depend on the particular subclass of the object.

2.8. INTERMEDIATE CODE GENERATION 93

op
/ \
B

Ey

represents an expression formed by applying the operator op to the subexpres-
sions represented by By and Ey. Syntax trees can be created for any construct,
not just expressions. Each comstruct is represented by a node, with children
for the semantically meaningful components of the construct. For example, the
semantically meaningful components of a C while-statement:

while (expr) stmt

are the expression ezpr and the statement stmt.}? The syntax-tree node for such
a while-statement has an operator, which we call while, and two children—the
syntax trees for the ezpr and the stmt.

The translation scheme in Fig. 2.39 constructs syniax trees for a repre-
sentative, but very limited, language of expressions and statements. All the
nonterminals in the translation scheme have an attribute n, which is a node of
the syntax tree. Nodes are implemented as objects of class Node.

Class Node has two immediate subclasses: Fxpr for all kinds of expressions,
and Stmt for all kinds of statements, Each type of statement has a corresponding
subclass of Stmt; for example, operator while corresponds to subclass While,
A syntax-tree node for operator while with children x and y is created by the
pseudocode

new While{z,y)

which creates an object of class While by calling constructor function While,
with the same name as the class. Just as constructors correspond to operators,
constructor parameters correspond to operands in the abstract syntax.

When we study the detailed code in Appendix A, we shall see how methods
are placed where they belong in this hierarchy of classes. In this section, we
shall discuss only a few of the meihods, informally.

We shall consider each of the productions and rules of Fig. 2.39, in turn.
First, the productions defining different types of statements are explained, fol-
lowed by the productions that define our limited types of expressions.

Syntax Trees for Statements

For each statement construct, we define an operator in the abstract syntax. For
constructs that begin with a keyword, we shall use the keyword for the operator.
Thus, there is an operator while for while-statements and an operator do for
do-while statements. Conditionals can be handled by defining two operators

12The right parenthesis serves only to separate the expression from the statement. The left
parcnthesis actually has no meaning; it is there only to please the eye, since without it, C
would allow unbalanced paremiheses.

94

Program
block

stmis

stmit

expr

rel

add

term

factor

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

__>

— 4

block
' stnts 'Y

stmis) simi
€

expr |

{ return block.n; }
{ block.n = stmis.n; }

{ stmts.n = new Seq(stmis;.n, stmin); }
{ stmts.n = null; }

{ stmt.n = new Euval{ezpr.n); }

if { expr) atmiy

{ stmtn = new If(exprmn, stmh .n); }

while (ezpr) stmiy

{ stmt.n = new While (ezpr.n, stmiy.n); }

do stmit; while (expr);

Hock

rel = expry
rel

rel; < wdd
rel; <= add
add

addy + term
term

term, * factor
factor

{ expr)
num

{ stmt.n = new Do (stmi;.n, exprn); }
{ stmt.n = block.m; }

{ expr.n = new Assign('=', reln, expry.n); }
{ expro = reln; }

{ reln = new Rel('<',rely.n, add.n); }
{ reln = new Rel('<', rely.n, addn); }
{ rel.n = add.n; }

{ addn = new Op{'+', addy .n, term.n); }
{ add.n = term.n; }

{ term.n = new Op('+', termy.n, factorn); }
{ term.n = factormn; }

{ factor.n = ezprn; }
{ factor.n = new Num(num.vaelue); }

Figure 2.39: Construction of syntax trees for expressions and statements

2.8. INTERMEDIATE CODE GENERATION 95

ifelse and if for if-statements with and without an else part, respectively. In our
simple example language, we do not use else, and so have only an if-statement.
Adding else presents some parsing issues, which we discuss in Section 4.3.2.

Each statement operator has a corresponding class of the same name, with
a capital first letter; e.g., class If corresponds to if. In addition, we define
the subclass Seq, which represents a sequence of statements. This subclass
corresponds to the nonterminal s#m#s of the grammar. Each of these classes are
subclasses of Stmt, which in turn is a subclass of Node.

The translation scheme in Fig. 2.39 illustrates the construction of syntax-
tree nodes. A typical rule is the one for if-statements:

stmt — it (expr) stmty { stmtn = new If{exprn, stmt .n); }

The meaningful components of the if-statement are expr and stm#. The se-
mantic action defines the node stmtn as a new object of subclass If The cods
for the constructor If is not shown. It creates a new node labeled if with the
nodes expr.n and stmiy n as children.

Expression statements do not begin with a keyword, so we define a new op-
erator eval and class Eval, which is a subclass of Stmt, to represent expressions
that are statements. The relevant rule is:

stmt — expr; { stmin = new Eval(ezpran); }

Representing Blocks in Syntax Trees

The remaining statement construct in Fig. 2.39 is the block, consisting of a
sequence of statements. Consider the rules:

stmt — block { stmt.n = block.n; }
block — '{' stmts'Y { block.n = simts.n; }

The first says that when a statement is a block, it has the same syntax tree as
the block. The second rule says that the syntax tree for nonterminal block is
simply the syntax tree for the scquence of statements in the block.

For simplicity, the language in Fig. 2.39 does not include declarations. Even
when declarations are included in Appendix A, we shall see that the syntax
tree for a block is still the syntax tree for the statements in the block. Since
information from declarations is incorporated into the symbol table, they are
not needed in the syntax tree. Blocks, with or without declarations, therefore
appear to be just another statement construct in intermediate code.

A sequence of statements is represented by using a leaf null for an empty
statement and a operator seq for a sequence of statements, as in

stmis — simts stmt { stmisn = new Seq(stmis, .n, stmt.n); }

96 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

Example 2.18: In Fig. 2.40 we see part of a syntax tree representing a block
or statement list. There are two statements in the list, the first an if-statement
and the second a while-statement. We do not show the portion of the tree
above this statement list, and we show only as a triangle each of the necessary
subtrees: two expression trees for the conditions of the if- and while-statements,
and two statement trees for their substatements. O

some
tree for a
statement

tree for an
expression

sOIne
tree for a
statement

tree for an
expresgion

Figure 2.40: Part of a syntax tree for a statement list comsisting of an if-
statement and a while-statement

Syntax Trees for Expressions

Previously, we handled the higher precedence of * over + by using three non-
terminsls ezpr, term, and factor. The number of nonterminals is precisely one
plus the number of levels of precedence in expressions; as we suggested in Sec-
tion 2.2.6. In Fig. 2.39, we have two comparison operators, < and <= at one
precedence level, as well as the usual + and * operatlors, s we have added one
additional nonterminal, called add.

Abstract syntax allows us to group “similar” operators to reduce the number
of cases and subelasses of nodes in an implementation of expressions. In this
chapter, we take “siinilar” to mean that the type-checking and code-generation
rules for the operators are similar. For example, typically the operators + and #
can be grouped, since they cah be handled in the same way — their requirements
regarding the types of operands are the same, and they cach result in a single
three-address instruction that applies one operator to two values. In gencral,
the grouping of operators in the abstract syntax is based on the needs of the
later phases of the compiler. The table in Fig. 2.41 specifies the correspondence
between the coucrete and abstract syntax for several of the operators of Java,

In the concrete syntax, all operators are left associative, except the assign-
ment operator =, which is right associative. The operators on a line have the

2.8, INTERMEDIATE CODE GENERATION 97

CONCRETE SYNTAX ABSTRACT SYNTAX
= assign
| cond
&% cond

== I= rel

< <= »= > rel

+ - op

* /% op

! not
~unary minus
L] access

Figure 2.41: Concrete and abstract syntax for several Java operators

same precedence; that is, == and != have the same precedence. The lines are
in order of increasing precedence; e.g., == has higher precedence than the oper-
ators && and =. The subscript urary in -, 4. i8 solely to distinguish a leading
unary minus sign, as in -2, from a binary minus sign, as in 2-a. The operator
[] represents array access, as in ali].

The abstract-syntax column specifies the grouping of operators. The assign-
ment operator = is in a group by itself. The group cond contains the conditional
boolean operators && and | |. The group rel contains the relational comparison
operators on the lines for == and <. The group op contains the arithmetic
operators like + and *. Unary minus, boolean negation, and array access are in
groups by themselves, '

The mapping between concrete and abstract syntax in Fig. 2.41 can be
implemented by writing a translation scheme. The productions for nonterminals
expr, rel, add, term, and factor in Fig. 2.39 specify the concrete syntax for a
representative subset of the operators in Fig. 2.41. The semantic actions in
these productiouns create syntax-tree nodes. For example, the rule

term — termy * factor { term.n = new Op('x’, termy .n, factormn); }

creates a node of class Op, which implements the operators grouped under op
in Fig. 2.41. The constructor Op has a parameter '+’ to identify the actual
operator, in addition to the nodes term,.n and factern for the subexpressions.

2.8.3 Static Checking

Static chiecks are consistency checks that are done during compilation. Not only
do they assure that a program can be compiled successfully, but they also have
the potential for catching programming errors early, before a program is run.
Static checking includes:

¢ Syntactic Checking. There is more to syntax than grammars. For ex-
ample, constraints such as an identifier being declared at most once in a

98 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

scope, or that a break statement must have an enclosing loop or switch
statement, are syntactic, although they are not encoded in, or enforced
by, a grammar used for parsing.

o Type Checking. The type rules of a language assure that an operator or
function is applied to the right number and type of operands. If conversion
between types is necessary, e.g., when an integer is added to a float, then
the type-checker can insert an operator into the syntax tree to represent
that conversion. We discuss type conversion, using the common term
“coercion,” below,

L-values and R-values

We now consider some simple static checks that can be done during the con-
struction of a syntax tree for a source program. In general, complex static checks
may nced to be done by first constructing an intermediate representation and
then analyzing it.

There is a distinction between the meaning of identifiers on the left and
right sides of an assignment. In each of the assignments

= b;
i+ 1;

j

the right side specifies an integer value, while the left side specifies where the
value is to be stored. The terms lvelue and r-vaelue refer to values that are
appropriate on the left and right sides of an assignment, respectively. That is,
r-values are what we usually think of as “values,” while Lvalues are locations.

Static checking must assure that the left side of an assignment denotes an
Lvalue. An identifier like i has an lvalue, as does an array access like a[2].
But a constant like 2 is not appropriate on the left side of an assignment, since
it has an r-value, but not an Fvalue.

Type Checking

Type checking assures that the type of a construct matches that expected by
its context. For example, in the if-statement

if (expr) stmi

the expression ezpr is expected to have type boolean.

Type checking rules follow the operator/operand structure of the abstract
syntax. Assume the operator rel represents relational operators such as <=,
The type rule for the operator group rel is that its two operands must have the
same type, and the result has type boolean. Using attribute type for the type
of an expression, let F consist of rel applied to E) and E;. The type of E can
bie checked when its node is constructed, by executing code like the following:

2.8. INTERMEDIATE CODE GENERATION 99

if (E\.type == Eq.type) E.type = boovlean;

else error;

The idea of matching actnal with expected types continues to apply, even
in the following situations:

e Coercions. A coercion occurs if the type of an operand is automatically
converted to the type expected hy the operator. In an expression like
2%3.14, the usual transformation is to convert the integer 2 inic an
equivalent Hloating-peint number, 2.0, and then perform a floating-point
operation on the resulting pair of floating-point operands. The language
definition specifies the allowable coercions. For example, the actual rule
for rel discussed above might be that E).type and E.type are convertible
to the same type. In that case, it would be legal to compare, say, an
integer with a float.

¢ QOverloading. The operator + in Java repregsents addition when applied
to integers; it means concatenation when applied to strings. A symbol is
said to be overloaded if it has different meanings depending on its context.
Thus, + is overloaded in Java. The meaning of an overloaded operator is
determined by considering the known tyvpes of its operands and results,
For example, we know that the + in z=x+y is concatenation if we know
that any of %, y, or z is of type string. However, if we also know that
another one of these is of type integer, then we have a type error and
there is no meaning to this use of +.

2.8.4 Three-Address Code

Once syntax trees are constructed, further analysis and synthesis can be done
by evaluating attributes and executing code fragments at nodes in the tree.
We illustrate the possibilities by walking syntax trees to generate three-address
code. Specifically, we show how to write functions that process the syntax tree
and, as a side-effect, emit the necessary three-address code.

Three-Address Instructions

Three-address code is a sequence of instructions of the form

T=yopz
where z, y, and 7 are names, constants, or compiler-generated temporaries; and
op stands for an operator.

Arrays will be handled by using the following two variants of instructions:

zlyl=2z2
x=ylz2]

100 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

The first puts the value of z in the location z{y|, and the second puts the value
of y[#] in the location z.

Three-address instructions are executed in numerical sequence unless forced
to do otherwise by a conditional or unconditional jump. We choose the following
instructions for control flow:

ifFalse xgoto L if wis false, next execute the instruction labeled L
ifTrue zgote L if zis true, next execute the instruction labeled L
goto L next execute the instruction labeled L

A label L can be attached to any instruction by prepending a prefix L:. An
instruction can have more than one label.

Finally, we need instructions that copy a value. The following three-address
instruction copies the value of ¥ into x:

r=y

Translation of Statements

Statements are translated into three-address code by using jump instructions
to implement the flow of control through the statement. The fayout in Fig. 2.42
illustrates the translation of if ezpr then sim#;. The jump instruction in the
layout,

ifFalse x goto after

jumps over the translation of stmt; if ezpr evaluates to false. Other statement
constructs are similarly translated using appropriate jumps around the code for
their components.

code to compute
erpr into =

ifFal=e ¢ goto after

code for stmi

Figure 2.42: Code layout for if-statements

For concretencss, we show the pseudocode for class If in Fig. 2.43. Class
If is a subclass of Stmi, as are the classes for the other statement construcis.
Each subclass of Stmt has a constructor — If in this case — and a function gen
that is called to generate three-address code for this kind of statement.

2.8, INTERMEDIATE CODE GENERATION 101

class If extends Stmt {
Ezpr E; Stmt S
public If (Expr z, Stmt y) { E = z; 8§ = y; after = newlabel(); }
public void gen() {
Ezpr n = E.rvalue();
emit(“ifFalse” + n.toString() + © goto 7 + after);
S.gen();
emit(after + “:7);

Figure 2.43: Function gen in class If generates three-address code

The constructor If in Fig. 2.43 creates syntax-tree nodes for if-statements.
It is called with two parameters, an expression node r and a statement node
y, which it saves as attributes F and S. The constructor also assigns attribute
after a unique new label, by calling function newlabel(). The label will be used
according to the layout in Fig. 2.42.

Once the entire syntax tree for a source program is constructed, the function
gen is called at the root of the syntax tree. Since a program is a block in
our simple language, the root of the syntax trec ropresents the sequence of
statements in the block. All statement classes contain a function gen.

The pseudocode for function gen of class If in Fig. 2.43 is representative. It
calls E.rvalue() to translate the expression E (the hoolean-valued expression
that is part of the if-statements) and saves the result node returned by E.
Translation of cxpressions will be discussed shortly. Function gen then emits a
conditional jump and calls S.gen() to translate the substatement S.

Translation of Expressions

We now illustrate the translation of expressions by considering expressions con-
taining binary operators op, array accesses, and assignments, in addition to
constants and identifiers. For simplicity, in an array access y[z], we require that
y be an identifier.!® For a detalled discussion of intermediate code generation
for expressions, see Section 6.4.

We shall take the simple approach of generating one threc-address instruc-
tion for each operator node in the syntax tree for an expression. No code is
generated for identifiers and constauis, since they can appear as addresses in
instructions. If a node # of class Expr has operator op, then an instruction is
emitted to compute the valne at node « into a compiler generated “temporary”
name, say ¢. Thus, i-j+k translates into two instructions

13This simple language supperts alalnll, but not afm)[n]. Note that ala[n]] has the
form alE], where F ig a[n].

102 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

ti=1i- j
t2 tl + k

I

With array accesses and assignments comes the need to distinguish between
tvalues and r-values. For example, 2*a[i] can be translated by computing the
r-value of a[i] into a temporary, as in

tl=a[i]
2 = 2 % t1

But, we cannot simply use a temporary in place of a[i], if a[i] appears on
the left side of an assignment.

The simple approach uses the two functions lvelue and rvalue, which appear
in Fig. 2.44 and 2.45, respectively. When function rvalue is applied to a nonleaf
node z, it. generates instructions Lo compute x into a temporary, and returns
a new node representing the temporary. When function lvelue is applied to a
nonleaf, it also generates instructions to compute the subtrees below @, and
returns a node representing the “address” for z.

We describe function Ivalue first, since it has fewer cases. When applied
to a node z, function wefue simply returns x if it is the node for an identifier
(i.e., if # is of class Id). In our simple language, the only other case where
an expression has an I-value occurs when x represents an array access, such as
al[i]. In this case, £ will have the form Access(y, z), where class Access is a
subclass of Ezpr, y represents the name of the accessed array, and z represents
the offset (index) of the chosen element in that array. From the psendo-code
in Fig. 2.44, function lvalue calls rvalue(z) to generate instructions, if needed,
to compute the r-value of z. It then constructs and returns a new Access node
with children for the array name y and the rvalue of z.

Ezpr lvalue(z : Expr) {
if { z is an Id node) return z;
else if (¢ is an Access(y, z) node and y is an Jd node) {
return new Access (y, realue(z));
1

else error;

Figure 2.44: Pseudocode for function lvalue

Example 2.19: When node » represents the array access a[2+k], the call
lvalue(z) generates an instruction

t=2=*k

and returns a new node z' representing the Fvalue a[t], where © is a new

temporary name.
In detail, the code fragment

2.8. INTERMEDIATE CODE GENERATION 103

return new Access (y, rvalue(z));

is reached with y heing the node for a and z being the node for expression 2*k.
The call rvalue(z) generates code for the expression 2k (i.e., the three-address
statement t = 2 * k) and returns the new node z’ representing the temporary
name t. That node z' hecomes the value of the sccond field in the new Access
node 2’ that is created. O

Ezpr rvalue(z : Exzpr) {

if (x is an Id or a Constant node) return z;

else if (xz is an Op(op,y,z) or a Rel(op,y, z) node) {
t = new temporary;
emit string for ¢ = rvalue(y) op rvalue(z);
return a new node for #;

llse if (= i8 an Access(y, z) node) {
1 = new temporary,
call lvalwe(x), which returns Aecess(y,z");
emit string for ¢ = Access (y, 2');
return a new node for #;

ilse if (= is an Assign(y, z) node) {
2! = roalue(z);
emit string for alue(y) = 2,
return z/;

Figure 2.45: Pseudocode for function ryniue

Function rvalue in Fig. 2:45 generates instructions and returns a possibly
new node. When & represents an identifier or a constant, rvalue returns z itself.
In all other cases, it returns an Id node for a new temporary t. The cases are
as follows:

o When x represents y op z, the code first computes y' = rvalue(y) and
Z' = rvalue(z). It creates a new temporary ¢ and generates an instruc:
tion £ = ' op z’ (inore precisely, an instruction formed from the string
representations of t, ', op, and z'). It returns a node for identifier .

¢ When z represents an array access y[z], we can reuse function Ivalue.
The call lvafue(z) returns an access y[2'], where 2 represents an identifier
holding the offset for the array access. The code creates a new temporary
t, generates an instruction based on ¢ = y{z']1, and returns a node for ¢.

104 CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

e When & represents y = 2, then the code first computes 2’ = rvalue(z). It
generates an instruction based on Ivelue(y) = 2 and returns the node 2.

Example 2.20: When applied to the syntax tree for
alil = 2xal[j-x]

function reelue generates

3 =3 -k
t2=a [t3]
tl = 2 % t2

alil=tl

That is, the root is an Assign node with first argument a[i] and second ar-
gument 2*xa[j-k]. Thus, the third casc applics, and function reafue recursively
evaluates 2%a[j-k]. The root of Lhis subtree i3 the Op node for *, which causes
a new temporary t1 to be created, before the left operand, 2 is evaluated, and
then the right operand. The constant 2 generates no three-address code, and
its r-value is returned as a Constant node with value 2.

The right operand a[j-k] is an Aeccess node, which causes a new temporary
t2 to be created, hefore function lvalue is called on this node. Recursively,
roalue is called on the expression j-k. As a side-effect of this call, the three-
address statement t3 = j - k is gencrated, after the new temporary t3 is
created. Then, returning to the call of lvaiize on a(j-k], the temporary t2 is
asgigned the r-value of the entire access-expression, that is, t2 = a [t3 1.

Now, we return to the call of rvalue on the Op node 2*alj-k1, which carlier
created temporary t1, A three-address statement t1 = 2 * t2 is generated as
a side-effect, to evaluate this multiplication-expression. Last, the call to rvalue
on the whole expression completes by calling Ivalue on the left side alil and
then generating a threc-address instruction a [1] = t1, in which the right
side of the assignment is assigned to the loft side. O

Better Code for Expressions

We can improve on function rvalue in Fig. 2.45 and generate fewer three-address
instructions, in several ways:

e Beduce the number of copy instructions in a subsequent optimization
phase. For example, the pair of instructions t = i+1 and 1 = t can be
combined into i = i1+1, if there arc no subsequent uses of t.

e Generate fewer instructions in the first place by taking context into ac-
count. For example, if the left side of a three-address assignment is an
array access a[t], then the right side must be a name, a constant, or a
temporary, all of which use just one address. But if the left side is a name
x, then the right side can be an opcration y op z that uses two addresses.

2.9. SUMMARY OF CHAPTER 2 105

We can avoid some copy instructions by modilying the translation functions
to generate a partial instruction that computes, say j+k, but does not. commit
to where the result is to be placed, signified by a null address for the result:

mill = j + & (2.8)

The muall result address is later replaced by either an identifier or a temporary,
as appropriate. It is replaced by an identifier if j+% is on the right side of an
assigriment, as in 1=3+k;, in which case (2.8) becomes

i=j+k
But, if j+k is a subexpression, as in j+k+1, then the null result address in (2.8)
is replaced by a new temporary t, and a new partial instruction is generated

t=j+k
null = &t + 1
Many compilers make every effort to generate code that is as good as or bet-
ter than hand-written assembly code produced by experts. If code-optimization
techniques, such as the ones in Chapter 9 are used, then an effective strategy

may well be to use a simple approach for intermediate code gencration, and
rely on the code optimizer to eliminale unnecessary instructions.

2.8.5 Exercises for Section 2.8
Exercise 2.8.1: For-statements in C and Java have the form:

for (expry ; expry ; expry) stmit

The first expression is executed before the loop; it is typically used [or initializ-
ing the loop index. The second expression is a test made before each iteration
of the loop; the loop is exited if the expression becomes 0. The loop itself can be
thought of as the statement {stmt exprs;}. The third expression is executed
at the end of cach iteration; it is typically used to increment the loop index.
The meaning of the for-statement is similar to

expr;; while (expry) {stmi expry; }
Define a class For for for-statements, similar to class If in Fig. 2.43.
Exercise 2.8.2: The programming language C does not have a boolean type.
Show how a C compiler might iranslale an if-statement into three-address code.
2.9 Summary of Chapter 2

The syntax-directed techniques in this chapter can be used to construct compiler
front ends, such as those illusirated in Fig. 2.46.

106

CHAPTER 2. A SIMPLE SYNTAX-DIRECTED TRANSLATOR

if{ peek == \n’) line = line + 1:

'

Lexical Analyzer

'

(if) () (id, "peek") (eq) {const, '\n’} (3}
{id, "line") {assign) {id, "1line"} (+} {mum, 1} {;}

v

Syntax-Directed Translator
' or '

if tl = {int} ’\n’
/ \ . ifFalse peek == tl1 goto 4
e assi
/N ZAN

peek (int) line +
| /

line = line + 1

Lol v

N\

‘\n* line 1

Figure 2.46: Two possible translations of a statement

The starting point for a gyntax-directed translator is a grammar for the
source language. A grammar describes the hierarchical structure of pro-
grams. It is defined in terms of elementary symbols called terminals and
variable symbols called nonterminals. These symbols represent language
constructs. The rules or productions of a graminar consist of a noaterminal
called the head or lefi side of a production and a sequence of terminals
and nonteiminals called the body or right side of the production. One
nonterminal is designated as the start symbol.

In specifying a translator, it is helpful to attach attributes to programming
construct, where an ottribute is any quantity associated with a construct.
Since constructs arc represented by grammar symbols, the concept of
attributes extends to grammar symbols. Examples of attributes include
an integer value associated with a terminal num representing numbers,
and a string associated with a terminal id representing identifiers.

A lexical analyzer rcads the input one character at a time and produces
as output a stream of fokens, where a token consists of a terminal symbol
along with additional information in the form of attribute values. In
Fig. 2.46, tokens are written as tuples enclosed between {). The token
{id, "peek"} consists of the terminal id and a pointer to the symbol-table
eniry containing the string "peek". The translator uses the table to keep

2.9 SUMMARY OF CHAPTER 2 107

srack of reserved words and identifiers that have already been scen.

4 Parsing is the problem of figuring out how a string of terminals can be
derived from the start symbol of the grammar by repeatedly replacing a
nonterminal by the body of one ol its productions. Conceptually, a parser
builds a parse tree in which the root is labeled with the start symbol,
each nonleaf corresponds to a production, and each leaf is labeled with
a terminal or the empty string . The parse tree derives the string of
terminals at the leaves, read from left to right.

4 FEfficient parsers can be built by hand, using a top-down (from the root to
the leaves of a parse tree) method called predictive parsing. A predictive
parser has a procedure for each nonterminal; procedure bodies mimic the
productions for nonterminals; and, the flow of control through the pro-
cedure badies can be determined unambiguously by locking one symbol
ahead in the input stream. See Chapter 4 for other approaches to parsing.

4+ Syntax-directed translation is done by attaching either rules or program
fragments to productions in a grammar. In this chapter, we have consid-
ered only synthesized attributes — the value of a synthesized attribute at
any node & can depend only on attributes at the children of z, if any. A
syntaz-directed definition attaches rules to productions; the rules compute
attribute vales. A {tramnslation scheme embeds program fragments called
semantic actions in production bodies. The actions are executed in the
order that productions are used during syntax analysis.

4 The result of syntax analysis is a representation of the source program,
called intermediate code. Two primary forms of intermediate code are il-
lustrated in I'ig. 2.46. An abstract syntax tree has nodes for programming
constructs; the children of a node give the meaningful subconstructs. Al-
ternatively, three-address code i3 a sequence of instructions in which each
instruction carries out a single operation.

¢ Symbol tables are data structures that hold information about identifiers.
Information is put into the symbol table when the declaration of an iden-
tifier is analyzed. A semantic action gets information from the symbol
table when the identifier is subsequently used, for example, as a factor in
an expression.

Chapter 3

Lexical Analysis

In this chapter we show how to construct a lexical analyzer. To implement a
lexical analyzer by hand, it helps to start with a diagram or other description for
the lexemes of each token. We can then write code o identify cach occurrence of
each lexeme on the input and to return information about the token identified.

We can also produce a lexical analyzer automatically by specifying the lex-
eme patterns to a lexical-analyzer generator and compiling those patterns into
code that functions as a lexical analyzer. This approach makes it easier to mod-
ify a lexical analyzer, since we have only to rewrite the affected patterns, not
the entire program. It also speeds up the process of implementing the lexical
analyzer, since the programimer specifies the software at the very high level of
patterns and relies on the generator Lo produce the detailed code. We shall
introduce in Section 3.5 a lexical-analyzer generator called Lexz (or Flex in a
more recent embodiment).

We begin the study of lexical-analyzer generators by introducing regular
expresgions, a convenient notation for specifving lexeme patterns. We show
how this notation can be transformed, first into nondeterministic automata
and then into deterministic automata. The latier two notations can be used as
input to a “driver,” that is, code which simulates these automata and uses them
as a guide to determining the next token. This driver and the specification of
the automaton form the nucleus of the lexical analyzer.

3.1 The Role of the Lexical Analyzer

Ag the first phase of a compiler, the main task of the lexical analyzer is to
read the input characters of the source program, group them into lexemes, and
produce as output a sequence of tokens for cach lexeme iu the source program.
The stream of tokens is sent to the parser for syntax analysis. It is common
for the lexical analyzer to interact with the symbol table as well. When the
lexical analyzer discovers a lexeme constituting an identifier, it needs to enter
that lexeme into the symbol table. In some cases, information regarding the

109

110 CHAPTER 3. LEXICAL ANALYSIS

kind of identificr may be read from the symbol table by the lexical analyzer to
assist it in determining the proper token it must pass to the parser.

These interactions are snggested in Fig. 3.1. Commenly, the interaction is
implemented by having the parser call the lexical analyzer. The call, suggested
by the getNextToken command, causes the lexical analyzer to read characters
from its input until it can identify the next lexeme and produce for it the next
token, which it returns to the parser.

Loken
source Lexical - to semantic
— Parser ——a— .
program Analyzer | analysis
getNextToken
Symbo!
Table

Figure 3.1: Interactions between the lexical analyzer and the parser

Since the lexical analyzer is the part of the compiler that reads the source
text, it may perform certain other tasks besides identification of lexemes. One
such task is stripping out comments and whitespace (blank, newline, tab, and
perhaps other characters that are used to separate tokens in the input). Another
task is correlating error inessages gencrated by the compiler with the source
program. For instance, the lexical analyzer may keep track of the number
of newline characters seen, so it can associate a line number with each error
message. In some compilers, the lexical analyzer makes a copy of the source
program with the error messages inserted at the appropriate positions. If the
source program uses a macro-preprocessor, the expansion of macros may also
be performed by the lexical analyzer.

Sometimes, lexical analyzers are divided into a cascacle of two processcs:

a) Scanning consists of the simple processes that do not require tokenization
of the input, such as deletion of comments and compaction of consecutive
whitespace characters into one.

b) Lexical analysis proper is the more complex portion, where the scanner

produces the sequence of tokens as output.

3.1.1 Lexical Analysis Versus Parsing

There are 4 nuruber of reasons why the analysis portion of a compiler is normally
separated into lexical analysis and parsing (syntax analysis) phases.

3.1, THE ROLE OF THE LEXICAL ANALYZER 111

1. Simplicity of design is the most important consideration. The separation
of lexical and syntactic analysis often allows us to simplify at least one
of these tasks. For example, a parser that had to deal with comments
and whitespace as syntactic units would be considerably more complex
than one that can assume comments and whitespace have already been
removed by the lexical analyzer. If we are designing a mew language,
separating lexical and syntactic concerns can lead to a cleaner overall
language design.

2. Compiler efficiency is improved. A separate lexical analyzer allows us to
apply specialized techniques that serve only the lexical task, not the job
of parsing. In addition, specialized buffering techniques for reading input
characters can speed up the compiler significantly.

3. Compiler portability is enhanced. Input-device-specific peculiarities can
he restricted to the lexical analyzer.

3.1.2 Tokens, Patterns, and Lexemes

When discussing lexical analysis, we nse three related but distinet terms:

¢ A token is a pair consisting of a token name and an optional attribute
value. The token name is an abstract symbol repregenting a kind of
lexical unit, e.g., a particular keyword, or a sequence of input characters
denoting an identifier. The token names arc the input symbols that the
parser processes. In what follows, we shall generally write the name of a
token in boldface. We will often refer 10 a token by its token name.

o A patternis a deseription of the form that the lexemes of a token may take.
In the case of a keyword as a token, the pattern is just the sequence of
characters that form the keyword. For identifiers and some other tokens,
the pattern is a more complex structure that is matched by many strings.

o A lexeme is a sequence of characters in the source program that matches
the pattern for a token and is identified by the lexical analyzor as an
instance of that token.

Example 3.1: Figure 3.2 gives some typical tokens, their informally described
patterns, and some sample lexemes. To sce how these concepts are used in
practice, in the C statcment

printf ("Total = %d\n", score);

both printf and score are lexemes matching the pattern for token id, and
"Total = %d\n" is a lexeme matching literal. O

In many programming langnages, the following classes cover most or all of
the tokens:

112 CHAPTER 3. LEXICAL ANALYSIS

TOKEN INFORMAL DESCHRIPIION SAMPLE LEXEMES
if characters i, £ if
else characters e, 1, 5, e else
comparison | < or > or <= or >= or == or != <=, 1=
id letter followed by letters and digits | pi, score, D2
number any nuineric constant 3.14159, 0, 6.02e23
literal anything but ", surrounded by ™'s | "core dumped"

Figurc 3.2: Examples of tokens

1. One token for each keyword. The pattern for a keyword is the same as
the keyword itseif.

2. Tokens for the operators, either individually or in classes such as the token
comparison mentioned in Fig. 3.2.

3. One token represcnting all identificrs.

4. One or more tokens representing constants, such as numbers and literal
strings.

5. Tokens for each punctuation symbol, such as left and right parentheses,
comina, and semicolon.

3.1.3 Attributes for Tokens

When more than one lexeme can match a pattern, the lexical analyzer must
provide the subsequent compiler phases additional information about the par-
ticular lexeme thal matched. For example, the pattern for token number
matches both 0 and 1, but it is extremely important for the code generator to
know which lexeme was found in the source program. Thus, in many cases the
lexical analvzer returns to the parser not only a token name, but an attribute
value that describes the lexeme represented by the token; the token name in-
fluences parsing decisions, while the attribute value influences translation of
tokens after the parse.

We shall assume that tokens have at most cne associated attribute, although
thig attribute may have a structure that combines several pieces of information.
The most important example is the token id, where we need to associate with
the token a great deal of information. Normally, information about an identi-
fler — e.g., its lexeme, its type, and the location at which it is first found (in
case an error message abott that identifier must be issued) — is kept in the
symbol table. Thus, the appropriate attribute value for an identificr is a pointer
1o the symbol-table entry for that identifier.

3.1. THE ROLE OF THE LEXICAL ANALYZER 113

Tricky Problems When Recognizing Tokens

Usually, given the pattern describing the lexemes of a token, it is relatively
simple to recognize matching lexemes when they occur on the input. How-
ever, in some languages it is not immediately apparcnt when we have seen
an instance of a lexeme corresponding to a token. The following example
is taken from Fortran, in the fixed-format still allowed in Fortran 90. In
the statement

DO 6 I =1.25

it is not apparent that the first lexeme is DO5I, an instance of the identifier
token, until we see the dot following the 1. Note that blanks in fixed-format
Fortran are ignored (an archaic convention). Had we scen a comma, inatcad
of the dot, we would have had a do-statement,

o5 I=1,25

in which the first lexeme is the keyword DO.

Example 3.2: The token names and associated attribute values for the For-
tran statement

E=M=x* C *x 2
are written below as a sequence of pairs.

<id, pointer to symbol-table entry for Ex>
<assign_op>>

<id, pointer to symbol-table entry for M>
<mult_op>

<id, pointer to symbol-table entry for C>
<exp_op>

<number, integer value 2>

Note that in certain pairs, especially operators, punctuation, and keywords,
there is no need for an attribute value. In this example, the token number has
been given an integer-valued attribute. In practice, a typical compiler would
instead store a character string representing thie constant and use as an attribute
value for number a pointer to that string. O

3.1.4 Lexical Frrors

It is hard for a lexical analyzer to tell, without the aid of other components,
that there is a source-code error. For instance, if the string £i is enconntered
for the first time in a C program in the context:

114 CHAPTER 3. LEXICAL ANALYSIS

fi (a == f(x))

a lexical analyzer cannot tell whether £i is a misspelling of the keyword if or
an undeclared function identifier. Since £i is a valid lexeme for the token id,
the lexical analyzer must return the token id to the parser and let some other
phase of the compiler — probably the parser in this case — handle an error
due to transposition of the letters.

However, suppose a situation arises in which the lexical analyzer is unable
to proceed because none of the patterns for tokens matches any prefix of the
remaining input. The simplest recovery strategy is “panic mode” recovery. We
delete successive characters from the remaining input, until the lexical analyzer
can find a well-formed token at the beginning of what input is left. This recovery
technique may confusc the parser, but in an interactive computing environment
it may be quite adequate.

Other possible error-recovery actions are:

1. Delete one character from the remaining input.

2. Insert a missing character into the remaining input.
3. Replace a character by another character.

4. Transpose two adjacent characters.

Transformations like these may be tried in an attempt to repair the input. The
simplest such strategy is to see whether a prefix of the remaining input can
be transformed into a valid lexeme by a single transformation. This strategy
makes sense, since in practice most lexical errors involve a single character. A
more general correction strategy is to find the smallest number of transforma-
tions needed to convert the source program into cne that consists only of valid
lexemes, but this approach is considered to¢ ¢xpensive in practice to be worth
the effort.

3.1.5 Exercises for Section 3.1
Exercise 3.1.1: Divide the following C++ program:

float limitedSquare(x) float x {
/* returns x-squared, but never more than 100 */
return {x<=-10.011x>=10.0)7100:x*x;

}

into appropriate lexemes, using the discussion of Section 3.1.2 as a guide. Which
lexemes should get associated lexical values? What should those values be?

Exercise 3.1.2: Tagged languages like HTML or XML are different from con-
ventional programming languages in that the punctuation {tags) are either very
numerous (as in HTML) or a uscr-definable set (as in XML). Further, tags can
often have parameters. Suggest how to divide the following HTML document:

3.2. INPUT BUFFERING 115

Here is a photo of my house:

<P>

See More Pictures if you
liked that one.<P>

inlo appropriate lexemecs. Which lexemes should get associated lexical values,
and what should those values be?

3.2 Input Buffering

Before disenssing the problem of recognizing lexemes in the input, let us examine
some ways thai the simple but important task of reading the source program
can be speeded. This tasgk is made difficult by the fact that we often have
to look one or more characters beyond the next lexeme before we can be sure
we have the right lexeme. The box on “Tricky Problems When Recognizing
Tokens” in Section 3.1 gave an extreme example, but there are many situations
where we need to look at least one additional character ahead. For instance,
we cannot be sure we've seen the end of an identifier until we see a character
that is not a letter or digit, and therefore is not part of the lexeme for id. In
C, single-character operators like -, =, or < could also be the beginning of 4
two-character operator like —>, ==, or <=, Thus, we shall introduce a two-buffer
scheme that handles large lookaheads safely. We then consider an improvement
involving “sentinels” that saves time checking for the ends of buffers.

3.2.1 Buffer Pairs

Because of the amount of time taken to process characters and the large number
of characters that must be processed during the compilation of a large source
program, specialized buffering techniques have been developed to reduce the
amount of overhead required to process a single input character. An impor-

tant scheme involves two buffers that are alternately reloaded, as suggested in
Fig. 3.3.

2 = wcrrze
T forward
lexemeBegin

Figure 3.3: Using a pair of input buffers

Each buffer is of the same size N, and N is usually the size of a disk block,
e.g., 4096 bytes. Using one system read command we can read N characters
into a buffer, rather than using one system call per character. If fewer than N
characters remain in the input file, then a special character, represcented by eof|

116 CHAPTER 3. LEXICAL ANALYSIS

marks the end of the source file and is different from any possible character of
the source program.
Two pointers to the input are maintained:

1. Pointer lexemeBegin, marks the beginning of the current lexeme, whose
extent we are attempting to determine,

2, Pointer forward scans ahead until a pattern match is found: the exact
strategy whereby this determination is made will be covered in the balance
of this chapter.

Once the next lexeme is determined, forward is set to the character at its right
end. Then, after the lexeme is recorded as an attribute value of a token returned
to the parser, lexemeBegin is set to the character immediately after the lexeme
just found. In Fig. 3.3, we see forward has passed the end of the next lexeme,
** (the Fortran exponentiation operator), and must be retracted one position
to its left.

Advancing forward requires that we first test whether we have reached the
end of one of the buffers, and if so, we must reload the other buffer from the
input, and move forward to the beginning of the newly loaded buffer. As long
as we never need to look so far ahead of the actual lexeme that the sum of the
lexeme’s length plus the distance we look ahead is greater than N, we shall
never overwrite the lexeme in its buffer before determining it.

3.2.2 Sentinels

If we use the scheme of Section 3.2.1 as described, we must check, each time we
advance forward, that we have not moved off one of the buffers; if we do, then
we must also reload the other huffer. Thus, for each character read, we make
two tests: one for the end of the buffer, and one to determine what character
is read (the latter may be a multiway branch). We can combinc the buffer-end
test with the test for the current character if we extend each buffer to hold a
sentinel character at the end. The sentinel is a special character that cannot
be part of the source program, and a natural cheice is the character eof.

Figure 3.4 shows the same arrangement as Fig. 3.3, but with the sentinels
added. Note chat eof retains its use as a marker for the end of the entire input.
Any eof that appears other than at the end of a buffer means that the input
is at an end. Figure 3.5 summarizes the algorithm for advancing forward.
Notice how the first test, which can be part of a multiway branch based on the
character pointed to by forward, is the only test we make, except in the case
where we actuaily are at the end of a buffer or the end of the input.

3.3 Specification of Tokens

Regular expressions are an important notation for specifying lexeme patterns.
While they cannot express all possible patterns, they are very effective in spec-

3.3. SPECIFICATION OF TOKENS 117

Can We Run Out of Buffer Space?

In most modern languages, lexemes arc short, and one or two characters
of lookahead is sufficient. Thus a buffer size N in the thousands is ample,
and the double-buffer scheme of Section 3.2.1 works without problem.
However, there are some risks. For example, if character strings can be
very long, extending over many lines, then we could face the possibility
that a lexeme is longer than N. To avoid problems with long character
strings, we can freat them as a concatenation of components, one from
each line over which the string is written. For instance, in Java it is
conventional to represent long strings by writing a piece on each line and
concatenating pieces with a + operator at the cnd of each picee.

A more difficult problem occurs when arbitrarily long lookahead may
be needed. For example, some languages like PL/I do not treat key-
words as reserved; that is, you can use identifiers with the same name as
a keyword like DECLARE. If the lexical analyzer is presented with text of a
PL/I program that begins DECLARE { ARG1, ARGZ2,... it cannot be sure
whether DECLARE is a keyword, and ARG1 and so on are variables being de-
clared, or whether DECLARE is a procedure name with its arguments. For
this reason, modern languages tend to reserve their keywords, However, if
not, one can treat a keyword like DECLARE as an ambiguous identifier, and
let the parser resolve the issue, perhaps in conjunction with symbol-table
lookup.

ifying those types of patterns that we actually need for tokens. In this section
we shall study the formal notation for regular expressions, and in Section 3.5
we shall see how these expressions arc used in a lexical-analyzer generator.
Then, Section 3.7 shows how to build the lexical analyzer by converting regular
expressions to automata that perform the recognition of the specified tokens.

3.3.1 Sirings and Languages

An alphabet is any finite set of symbols. Typical examples of symbols are let-
ters, digits, and punctuation. The set {0, 1} is the binary alphabet. ASCIIis an
important example of an alphabet; it is used in many software systems. Uni-

[m T T v ele v szl ew
T forward
lexemeBegin

Figure 3.4: Sentinels at the end of each buffer

118 CHAPTER 3. LEXICAL ANALYSIS

switch { *forward++) {
case eof:
if (forward is at end of first buffer) {
reload second buffer;
Jorward = beginning of second buffer;

else if (forward is at end of second buffer) {
reload first buffer;
Jorward = beginning of first buffer;

else /* eof within a buffer marks the end of input */
terminate lexical analysis;
break;
Cases for the other characters

Figure 3.5: Lookalicad code with sentinels

Implementing Multiway Branches

We might imagine that the switch in Fig. 3.5 requires many steps to exe-
cute, and that placing the case eof first is not a wise choice. Actually, it
doesn’t matter in what order we list the cases for each character. In prac-
tice, & multiway branch depending on the input character is be made in
one step by jumping to an address found in an array of addresses, indexed
by characters.

code, which includes approximately 100,000 characters from alphabets around
the world, is another important example of an alphabet.

A string over an alphabet is a finite sequence of symbels drawn from that
alphabet. In language theory, the terms “sentence” and “word” are often used
as synonyms for “string.” The length of a string s, usually written {g], is the
number of occurrences of symbols in s. For example, banana is a string of
length six. The empty string, dencted ¢, is the string of length zero.

A language is any countable set of strings over some fixed alphabet. This
definition is very broad. Abstract languages like @, the empty set, or {¢}, the
set containing only the empty string, are languages under this definition. So
too are the set of all syntactically well-formed C programs and the set of all
grammatically correct English sentences, although the latter two languages are
difficult to specify exactly. Note that the definition of “language” does not
require that any meaning be ascribed to the strings in the language. Methods
for defining the “meaning” of strings are discussed in Chapter 5.

3.3. SPECIFICATION OF TOKENS 119

Terms for Parts of Strings
The following string-related terms are commonly uscd:

1. A prefiz of string s is any string obtained by removing zero or more
symbols from the end of s. For example, ban, banana, and € are
prefixes of banana.

2. A suffir of string s is any string obtained by removing zero or more
symbols from the beginning of s. For example, nana, banana, and ¢
are suflixcs of banana.

3. A substring of s is obtained by deleting any prefix and any suffix
from s. For instance, banana, nan, and ¢ arc substrings of banana.

4, The proper prefixes, suffixes, and substrings of a string s are those,
prefixes, suffixes, and substrings, respectively, of s that are not e or
not equal to s itself.

5. A subsequence of s is any string formed by deleting zero or more
not necessarily consecutive positions of s. For cxample, baan is a
subsequence of banana.

If & and y are strings, then the concatenation of z and gy, denoted zy, is the
string formed by appending y to x. For example, if 2 = dog and y = house,
then xy = doghouse. The empty string is the identity under concatenation;
that is, for any string s, €8 = ge = 5.

If we think of concatenation as a product, we can define the “exponentiation”
of strings as follows. Define s to be ¢, and for all i > 0, define 8* to be i~ 1s.
Since €s = s, it follows that s* = 5. Then s? = ss, s* = 943, and so on.

3.3.2 Operations on Languages

In lexical analysis, the most important operations on languages are union, con-
catenation, and closure, which are defined formally in Fig. 3.6. Union is the
familiar operation on sets, The concatenation of languages is all strings formed
by taking a string from the first language and a string from the second lan-
guage, in all possible ways, and concatenating them. The (Kleene) closure of a
language L, denoted L*, is the set of strings you get by concatenating L zero
or more times, Note that L°, the “concatenation of L zero times,” is defined to
be {e}, and inductively, L? is L~ L. Finally, the positive closure, denoted L™,
is the same as the Kleene closure, but without the term L. Thar is, € will not
be in LT unless it is in L itself.

120 CHAPTER 3. LEXICAL ANALYSIS

OPERATION . DEFINITION AND NOTATION
Union of L and M LUuM={s|sisin Lorsisin Af}
Concatenation of Land M | LM = {st | sisin L and ¢ is in M}
Kleene closure of L L* =Uz, L
Positive elosure of L Lt =02, Lt

Figure 3.6: Definitions of operations on languages

Example 3.3: Let L be the sct of letters {A,B,...,Z,a,b,...,z} and let L
be the set of digits {0,1,...9}. We may think of L and D in two, essentially
equivalent, ways. One way is that L and D arc, respectively, the alphabets of
uppercase and lowercase letters and of digits. The second way is that L and D
are languages, all of whose strings happen to be of length one. Here are some
other langnages that can be constructed from langnages L and D, using the
operators of Fig. 3.6:

1. L U D is the set of letters and digits — striclly speaking the language
with 62 strings of length one, each of which strings is either one letter or
one digit.

2. LD is the sct of 520 strings of length two, each consisting of one letter
followed by one digit.

3. L* is the set of all 4-letter strings.
4. L* is the set of all strings of letters, including €, the empty string.

5. L{L U D" is the set of all strings of letters and digits beginning with a
letter,

6. D7 is the set of all strings of one or more digits.

O

3.3.3 Regular Expressions

Suppose we wanted to describe the set of valid C identifiers. It is almost ex-
actly the language described in item (5) above; the only difference is that the
underscore is included among the letters.

In Example 3.3, we were able to describe identifiers by giving names to sets
of letters and digits and using the language opcrators union, concatenation,
and closure. This process is so useful that a notation called regular ezpressions
has come into common use for describing all the languages that can be built
from these operators applied to the symbols of some alphabet. In this notation,
if letter is established to stand for any letter or the underscore, and digif_ is

3.3 SPECIFICATION OF TOKENS 121

egtablished to stand for any digit, then we could describe the langnage of C
identifiers biy:

letter. { letter_ | digit }*

The vertical bar above means union, the parentheses are used to group subex-
pressions, the star means “zero or more occurrences of,” and the juxtaposition
of letter_ with the remainder of the expression signifies concatenation.

The regular expressions are built recursively out of smaller regular expres-
sions, using the rules described below. Each regular expression r denotes a
language L{r), which is also defined recursively from the languages denoted by
r’s subexpressions. Here aré the rules that define the regular expressions over
some alphabet ¥ and the langnages that those expressions denote.

BASIS: There are two rules that form the basis:

1. € is a regular expression, and L{e) is {e}. that is, the language whose sole
member is the empty string.

2. If a is a symbol in ¥, then a is a regular expression, and L{a) = {a}, that
is, the language with one string, of length one, wilth @ in its one position.
Note that by convention, we use italics for symbols, and holdface for their
corresponding regular expression.!

INDUCTION: There are four parts to the induction whereby larger regular
expressions are built from smaller ones. Suppose r and s are regular expressions
denoting languages L(r) and L(s), respectively.

1. (r}|(s) is a regular expression denoting the language L{r) U L(s).

*

- (r)
2. {r)(s} is a regular expression denoting the language L{r)L(s).
. {r)" is a regular cxpression denoting (L(r))

-

r) is a regular expression denoting L{r). This last rule says that we can
add additional pairs of parentheses arcund expressions without changing
the langunage they denote.

As defined, regular expressions often contain unnecessary pairs of paren-

theses. We may drop certain pairs of parentheses if we adopt the cenventions
that:

a) The unary operator * has highest precedence and is left, associative.

b} Cencatenation has second highest precedence and is left associative.

'However, when talking about specific characters from the ASCII character set, we shall
generally use teletype font for both the character and its regular expression.

122

CHAPTER 3. LEXICAL ANALYSIS

¢} | has lowest precedence and is left associative,

Under these conventions, for example, we may replace the regular expression
(a}|{(b)*(c)) by a[b’c. Both expressions denote the set of strings that are either
a gingle o or are zero or more b's followed by one ¢,

Example 3.4: Let X = {a,b}.

1.

2.

The regular expression alb denotes the language {«, b}.

(a|b}(a|b} denotes {aa, ab, ba, bb}, the language of all strings of length two
over the alphabet £. Another regular expression for the same language is
aalablba|bb. '

a® denotes the language consisting of all strings of zero or more a’s, that
is, {€, 2,00, 00a,...}.

. (a]b)* denotes the set of all strings consisting of zero or more instances

of a or b, that is, all strings of a’s and ¥'s: {¢,a,d, aa, ab, ba, bb, acq,. .. }.
Another regular expression for the same language is (a*b*)*.

aja*h denotes the language {a, b, ab,aab,aaad, ...}, that is, the string a
and all strings consisting of zero or more @’s and ending in b.

A language that can be defined by a regular expression is called a reqular
set. If two regular expressions r and s denote the same regular set, we say they
are equivalent and write r = s. For instance, (a/b) = (b|a). There are a number
of algebraic laws for regular expressions; each law asserts that expressions of
two different forms are equivalent. Figure 3.7 shows some of the algebraic laws
that hold for arbitrary regular expressions r, s, and £.

Law DESCRIPTION
rls = s|r | is commutative
r|(st) = (r|s)|t | is associative
r{st) = (rs)i Concatenation is associative
r(s|t) = rs|rt; (s|t)r = sr|tr | Concatenation distributes over |
' fr=re=r ¢ is the identity for concatenation
™ = (r|e)” € is guaranteed in a closure
o=t * {s idempotent

Figure 3.7: Algebraic laws for regular expressions

3.3. SPECIFICATION OF TOKENS 123

3.3.4 Regular Definitions

For notational convenience, we may wish to give names to certain regular ex-
pressions and use those names in subsequent expressions, as if the names were
themselves symbols. If ¥ is an alphabet of basic symbols, then a regular defi-
nition is a sequence of definitions of the form:

dl — 1
d2 —+ [

dy, — ry
where:

1. Each d; is a new symbol, not in ¥ and not the same as any other of the
d’s, and

2. Each r; is a regular expression over the alphabet T U {d\,d»,... ,di_1 }.

By restricting r; to ¥ and the previously defined d's, we avoid recursive defini-
tlons, and we can construct a regular expression over I alone, for cach r;. We
do so by first replacing uses of dy in ry (which cannot use any of the d's except
for dy), then replacing uses of dy and d» in r3 by 1 and (the substituted) ra,
and so on. Finally, in r, we replace each d;, for 1 = 1,2,... ,n — 1, by the
substituted version of r;, each of which has only symbols of X.

Example 3.5: C identifiers are strings of letters, digits, and underscores. Here
is & regular definition for the language of C identifiers. We shall conventionally
use italics for the symbols defined in regular definitions.

letter. — A{B|---|Z]a|b]| - |z]-
digit — O0]1]|---|9
id — letter_ (letter_ | digit)*
a

Example 3.6: Unsigned numbers (integer or floating point) arc strings such
as 5280, 0. 01234, 6.336E4, or 1.89E-4. The regnlar definition

digit — G|1]---19
digits -~ digil digit
optionalFraction — . digits | ¢

optionalEzponent — (E(+|-|e€) digits) | ¢
number — digils optionalFraction optionalExponent

is a precise specification for this set of strings. That is, an eptionalFraction is
either a decimal point (dot} followed by one or more digits, or it is missing (the
empty string). An optionalEzponent, if not missing, is the letter E followed by
an optional + or — sign, followed hy one or more digits. Note that at least one

digit must follow the dot, so number does not match 1., but does match 1.0,
O

124 CHAPTER 3. LEXICAL ANALYSIS

3.3.5 [Extensions of Regular Expressions

Since Kleene introduced regular expressions with the basic operators for union,
concatenation, and Kleene closure in the 1950s, many extensions have been
added to regular expressions to enhance their ability to specify string patterns.
Here we mention a few notational extensions that were first incorporated into
Unix utilities such as Lex that are particularly useful in the specification lexical
analyzers. The references to this chapter contain a discussion of some regular-
expression variants in use today.

1. One or more instances. The unary, postfix operator 7 represents the
positive closure of a regular expression and iis language. That is, if r is a
regular expression, then (r)* denotes the language [L(r))+. The operator
T has the same precedence and associativity as the operator *. Two useful
algebraic laws, r* = rT|e and T = rr* = r*r relate the Kleene closure
and positive closure.

2. Zere or one instance. The unary postix operator 7 mecans “zcro or one
occurrence.” That is, #7 is equivalent to rle, or put another way, L{(r?) =
L{r) U {e}. The 7 operator has the same precedence and associativity as

* and +.

3. Choracter classes. A regular expression ay|ag|---|a,, where the a;’s
are each symbols of the alphabet, can be replaced by the shorthand
[@1az---a,]. More importantly, when a;,@s,...,a, form a logical se-

guence, e.g., consecutive uppercase letters, lowercase letters, or digits, we
can replace them by a;-ay,, that ig, just the first and last separated by
a hyphen. Thus, [abe] is shorthand for alble, and [a-z] is shorthand for
alb|---|z.

Example 3.7: Using these shorthands, we can rewrite the regular definition
of Example 3.5 as:

letter. — [A-Za-z]
digit — [0-9]
id = letter. { letter | digit)*

The regular definition of Example 3.6 can also be simplificd:
digit. = [0-9]

digits — digitt
number — digits (. digits)? (E [+-]7 digits)?

3.3. SPECIFICATION OF TOKENS 125

3.3.6 Exercises for Section 3.3

Exercise 3.3.1: Consult the language reference manuals to determine (i) the
sets of characters that form the input alphabet (excluding those that may only
appear in character strings or comments), (ié} the lexical form of numerical
constants, and (#ié) the lexical form of identifiers, for each of the following
languages: (a) C (b) C++ {(c) C# (d) Fortran (e} Java (f} Lisp (g) SQL.

! Exercise 3.3.2: Describe the languages denoted by the following regular ex-
pressions:

a) ala/b)*a.
b) ((ela)b™)*.
c) (a[b)"a(a{b)(alb).
d) a*ba*ba*ba*.
" e) (aa|bb)*((ablba}(aa|bb}*(ab|ba)(aa|bb)*)*.
Exercise 3.3.3: In a string of length n, how many of the following are there?
a} Prefixes.
b} Suffixes.
¢} Proper prefixes.
!'d) Substrings.
! e} Subsequences.

Exercise 3.3,4: Mosi languages are cuse sensitive, 30 keywords can be written
only one way, and the regular expresgions describing their lexeme is very simple.
However, some languages, like SQL, are case insensitive, so a keyword can be
written either in lowercase or in uppercase, or in any mixture of cases. Thus,
the SQL keyword SELECT can also be written select, Select, or sE1EcT, for
instance. Show how to write a regular expression for a keyword in a case-
insensitive language. Ilustrate the idea by writing the expression for “selert”

in SQL.
! Exercise 3.3.5: Write regular definitions for the following languages:

a) All strings of lowercase letters that contain the five vowels in order.

b} All strings of lowercasc letters in which the letters are in ascending lexi-
cographic order.

¢) Comments, consisting of a string surrounded by /% and */, without an
intervening */, unless it is inside double-quates ().

126 CHAPTER 3. LEXICAL ANALYSIS

11d) All strings of digits with no repeated digits. Hint: Try this problem first
with a few digits, such as {0,1,2}.

e} All strings of digits with at most one repeated digit.

11 £} All strings of a’s and b’s with an even number of a’s and an odd number
of b's.

g} The set of Chess moves, in the informal notation, such as p-k4 or kbpxqun.
1"'h) Ali strings of a’s and d’s that do not contain the substring abb.

i) All strings of a's and b's that do not confain the subsequence abb.
Exercise 3.3.6: Write characler classes for the following sets of characters:

a} The first ten letters (up to %"} in either upper or lower case.

b) The lowercase consonants.

¢) The “digits” in a hexadecimal number (choose either upper or lower case
for the “digits” above 9).

d) The characters that can appear at the end of a legitimate English sentence
(e.g., exclamation point).

The following exercises, up to and including Exercise 3.3.10, discuss the
extended regular-expression notation from Lex [{the lexical-analyzer generator
that wo shall discuss extensively in Section 3.5). The extended notation is listed
in Fig. 3.8.

Exercise 3.3.7: Note that these regular expressions give all of the following
symbaols (operator characters) a special meaning:

AP 2 N B 3 AR 8 2N v

Their special meaning must be turned off if they are needed to represent them-
selves in a character string, We can do 8o by quoting the character within a
string of length one or more; e.g., the regular expression "#*" matches the string
**_ We can also get the literal meaning of an operator character by preceding
it by a backslash. Thus, the regular expression ** also matches the string
%, Write a regular expression that matches the string "\.

Exercise 3.3.8: In Lex, a complemenied character closs epresents any char-
acter except the ones listed in the character class. We denote a complemented
class by using ~ as the first character; this symbol {caret} is not itself part of
the class being complemented, unless it is listed within the class itself. Thus,
{~A-Za-z] matches auy character that is not an uppercase or lowercase letter,
and [*\"] represents any character but the caret {or newline, since newline
cannot be in any character class). Show that for every regular expression with
complemented character classes, there is an equivalent regular expression with-
ont complemented character classes.

3.3. SPECIFICATION OF TOKENS

127

EXPRFSSION MATCHES | EXAMPLE
e the one non-operator character ¢ a

\e character ¢ literally \¥

ra" string s literally NEE L

. any character but newline a.*b

" beginning of a line “abc

3 cnd of a line abc$

[¢] any one of the characters in string s | [abc)
["4] any one character not in string s [~abcl
Hie S zero or more strings matching r a*

7 one or more sirings matching r a+

r? ZEro Or one a?
r{m,n} between . and n occurrences of r ali,5]
172 an followed by an ro ab

r1 | T2 an v or an ry alb

(r) same as r (alb)
/7] r; when followed by 5 abe/123

Figure 3.8: Lex regular expressions

! Exercise 3.3.9: The regular expression r{m,n} matches from m to n occur-
rences of the pattern r. For cxample, a[1,5] matches a siring of one to five a's.
Show that for every regular expression containing repetition operators of this
form, there is an equivalent regular expression without repetition operators.

I Exercise 3.3.10: The operator ~ matches the left end of a line, and $ matches
the right end of a line. The operator ~ is aiso used to introduce complemented
character clagses, but the context always makes it clear which meaning is in-
tended. For example, ~[~aeiou]*$ matches any complete linc that does not
contain a lowercase vowel.

a) How do you tell which meaning of " is intended?

b) Can you always replace a regular expression using the * and $ aperators
by an equivalent expression that does not use either of these aperators?

! Exercise 3.3.11: The UNIX shell command sh uses the operators in Fig. 3.9
in filename expressions to describe sets of file names. For example, the filename
expression *.o matches all file names ending in .o; sort1.7? matches all file-
names of the form sort.e, where ¢ is any character. Show how sh filename

128 CHAPTER 3. LEXICAL ANALYSIS

EXPRESSION MATCHES EXAMPLE
‘g string s literally 1\

\¢ character ¢ literally | \’

* any string *,0

? any character sortl.?

[s] any character in s | sort1. [cso]

Figure 3.9: Filename expressions used by the shell command sh

expressions can be replaced by equivalent regular expressions using only the
basic union, concatenation, and closure operators.

Exercise 3.3.12: SQL allows a rudimentary form of patterns in which two
characters hiave special meaning: underscore (_) stands for any one character
and percent-sign (%) stands for any string of 0 or more characters. In addition,
the programhmer may define any character, say e, to be the escape character, so
e preceding ani e preceding ., %, or another e gives the character that follows its
literal meaning. Show how to express any SQL pattern as a regular expression,

given that we know which character is the escape character.

3.4 Recognition of Tokens

In the previous section we learned how to express patterns using regular expres-
sions. Now, we must study how to take the patterns for all the needed tokens
and build a piece of code that examines the input string and finds a prefix that
is a lexeme matching one of the patterns, Our discussion will make use of the
following running example.

stmt -+ if expr then stmi
| if expr then stmit else stmi

| ¢

expr — termrelop term
| term

term — id
| number

Figure 3.10: A grammar for branching statements

Example 3.8: The grammar fragment of Fig. 3.10 describes a simple form
of branching statements and conditional expressions. This syntax is similar to
that of the language Pascal, in that then appears explicitly after conditions.

3.4. RECOGNITION OF TOKENS 129

For relop, we use the comparison operators of languages like Pascal or SQL,
where = is “equals” and <> is “not equals,” because it presents an interesting
structure of lexemes.

The terminals of the grammar, which are if. then, else, relop, id, and
number, are the names of tokens as far as the lexical analyzer is concerned. The
patterns for these tokens are described using regular definitions, as in Fig. 3.11.
The pattcrns for ¢d and number are similar to what we saw in Example 3.7.

digit — [0-9]
digits — digit*
number — digits (. digits)? (E [+-]7 digits)7
letter — [A-Za-zZ]
id — letter { letter | digit)*
¥ - if
then — then
else — eolse
relop — <|>|<=[>=]=] <

Figure 3.11: Patterns for tokens of Example 3.8

For this language, the lexical analyzer will recognize the keywords if, then,
and else, as well as lexemes that match the patterns for relop, id, and number.
To simplify matters, we make the common assumption that keywords are also
reserved words: that is, they are not identifiers, ¢ven though their lexemes
match the pattern for identifiers.

In addition, we assign the lexical analyzer the job of siripping out white-
space, by recognizing the “token™ ws defined by:

ws — { blank | tab | newline)*

Here, blank, tab, and newline are abstract symbols that we use to express
the ASCII characters of the same names. Token ws is different from the other
tukens in that, when we recognize it, we do not return it. to the parser, but rather
restart the lexical analysis from the character that follows the whitespace. It is
the following token that gets retnrned to the parser.

Our goal for the lexical analyzer is summarized in Fig. 3.12. That table
shows, for each lexeme or family of lexemes, which token name is returned to
the parser and what aitribute value, as discussed in Section 3.1.3, is returned.
Note that for the six relational operators, symbolic constants LT, LE, and so
on are used as the attribute value, in order to indicate which instance of the

token relop we have found. The particular operator found will influence the
code that is output from the compiler, O

130 CHAPTER 3. LEXICAL ANALYSIS

LEXEMES TOKEN NAME ATTRIBUTE VALUE
Any ws - -
if if -
thei then -
else else -
Any id id Pointer to table entry
Any number number Pointet to table entry
< relop LT
<= relop LE
= relop EQ
<> relop NE
> relop GT
>e= relop GE

Figure 3.12: Tokens, their patterns, and attribute values

3.4.1 Transition Diagrams

As an intermediate step in the construction of a lexical analyzer, we first convert
patterns into stylized flowcharts, called “transition diagrams.” In this section,
we perform the conversion from regular-expression patterns to transition dia-
grams by hand, but in Section 3.6, we shall see that there is a mechanical way
to construct these diagrams from collections of regular expressions,

Transition diacgrams have a collection of nodes or circles, called states. Each
state represents a condition that could occur during the process of scanning
the input looking for a lexeme that matches one of several patterns. We may
think of & state as summarizing all we need to know about what characters we
have seen between the lezemeBegin pointer and the forward pointer (as in the
situation of Fig. 3.3).

Edges are directed from one state of the transition diagram to another.
Each edge is labeled by a symbal or set of symbols. If we are in some state
8, and the next input symbol is @, we look for an edge out of state s labeled
by @ (and perhaps by other symbols, as well). If we find such an edge, we
advance the forward pointer arid enter the state of the tramsition diagram to
which that edge leads. We shall assume that all our transition diagrams are
deterministic, meaning that there is never more than one edge out of a given
state with a given symbol among its labels. Starting in Section 3.5, we shall
relax the condition of determinism, making life much easier for the designer
of a lexical analyzer, although trickier for the implementer. Some important
conventions about transition diagrams are:

1. Certain states are said to be accepting, or final. These states indicate that
a lexeme has been found, although the actial lexeme may not consist of
all positions between the lezemeBegin and forward poiuters. We always

3.4. RECOGNITION OF TOKENS 131

indicate an accepting state by a double circle, and if there is an action
to be taken - typicaily returning a token and an attribute value to the
parser — we shall attach that action to the accepting state.

2. In addition, if it is necessary to retract the forward pointer one position
(i.e., the lexeme does not include the symbol that got us to the accepting
stale), then we shall additionally place a * near that accepting state. In
our example, it is never necessary to retract forward by more than one
position, but if it were, we could attach any number of *'s to the accepting
siate.

3. One state is designated the start state, or initial state; it is indicated by
an edge, labeled “start,” entering from nowhere. The transition diagram
always begins in the start state before any input symbols have been read.

Example 3.9: Figurc 3.13 is a transition diagram that recognizes the loxemes
matching the token relop. We begin in state 0, the start state. If we see < as the
first input symbol, then among the lexemes that match the pattern for relop
we can only be looking at <, <>, or <=. We therelore go to stale 1, and look at
the next character. If it is =, then we recognize lexeme <=, enter state 2, and
return the token relop with attribute LE, the symbolic constant representing
this particular comparison opcrator. If in state 1 the next character is >, then
instead we have lexeme <>, and enter state 3 to return an indication that the
not-equais operator has been found. Omn any other character, the lexeme is <,
and we enter state 4 to return that information. Note, however, that state 4
has a * to indicate thai we must reiract the input one position.

start < =
i ‘=® @ return(relop, LE)
\ >
@ return{ relop, NE)
-k
othe
' \@ return{ relop, LT)

@ return (relop, EQ)

retarn(relop. GE)

#

other @' return{ relop GT)

Figure 3.13: Transition diagram for relop

On the other hand, if in state 0 the first character we see is =, then this one
character must be the lexeme. We immediately return thai fact from state 5.

132 CHAPTER 3. LEXICAL ANALYSIS

The remaining possibility is that the first character is >. Then, we must enter
state 6 and decide, on the basis of the next character, whether the lexeme is »=
(if we next see the = sign}, or just > {on any other character). Note that if, in
state 0, we see any character besides <, =, or >, we can not possibly be seeing
a relop lexeme, so this transition diagram will not be used. O

3.4.2 Recognition of Reserved Words and Identifiers

Recognizing keywords and identificrs presents a problem. Usually, keywords like
if or then are reserved (as they are in our running example), so they are not
identifiers even though they look like identifiers. Thus, although we typically
use a transition diagram like that of Fig. 3.14 to search for identifier lexemes,
this diagram will also recognize the keywords if, then, and else of our running
example.

letter or digit

start letter O other *
retun{gerToken(), insalliD())

Figure 3.14: A transition diagram for id’s and keywords

There are two ways that we can handle reserved words that Jook like iden-
tifiers:

1. Install the reserved words in the symbol table initially. A field of the
symbol-table entry indicates that these strings are never ordinary identi-
fiers, and tells which token they represent. We have supposed that this
method is in use in Fig. 3.14. When we find an identifier, a call to instelllD
places it in the symbol table if it is not already there and returns a pointer
to the symbol-table entry for the lexeme found. Of course, any identifier
not in the symbo! table during lexical analysis cannot be a reserved word,
so its token is id. The function getToken examnines the symbol table entry
for the lexeme found, and returns whatever token name the symbol table
says this lexeme represents — either id or one of the keyword tokens that
was initially installed in the table.

2. Create separate transition diagrams for each keyword; an example for
the keyword then is shown in Fig. 3.15. Note that such a transition
diagram consists of states representing the situation after each successive
letter of the keyword is seen, followed by a test for a “nonletter-or-digit,”
i.e., any character that cannot be the continuation of an identifier. It is
necessary to check that the identifier has ended, or else we would return
token then in situations where the correct token was id, with a lexeme
like thenextvalue that has then as a proper prefix. If we adopt this
approach, then we must prioritize the tokens so that the reserved-word

3.4. RECOGNITION OF TOKENS 133

tokens are recognized in preference to id, when the lexeme matches both
patterns. We do not use this approach in our example, which is why the
states in Fig. 3.15 are unnumbered.

start t h e : n nonlet/dig © %

Figure 3.15: Hypothetical transition diagram for the keyward then

3.4.3 Completion of the Running Example

The transition diagram for id’s that we saw in Fig. 3.14 has a simple structure.
Starting in state 9, it checks that the lexeme begins with a letter and goes to
state 10 if so. We stay in state 10 as long as the input contains letters and digits.
When we first encounter anything but a letter or digit, we go to state 11 and
accept the lexeme found. Since the last character is not part of the identifier,
we must Tetract the input one position, and as discussed in Section 3.4.2, we
enter what we have found in the symbol table and determine whether we have
a keyword or a true identifier.

The transition diagram for token number is shown in Fig. 3.16, and is so
far the most complex diagram we have scen. Beginning in state 12, if we sec a
digit, we go to state 13. In that state, we can read any number of additional
digits. However, if we see anvthing but a digit or a dot, we have seen a number
in the form of an integer; 123 is an example. That case is handled by entering
state 20, where we return token number and a pointer to a table of constants
where the found lexeme is entered. These mechanics are not shown on the
diagram but are analogous to the way we handled identifiers.

digit digit dipit

SQ——E_..GG \ii' othe

E digit
other * other *
D *®

Figure 3.16: A transition diagram for unsigned numbers

If we instead sec a dot in state 13, then we have an “optional fraction.”
State 14 is entered, and we look for one or more additional digits; state 15 is
used for that purpose. If we see an E, then we have an “optional exponent,”
whose recognition is the job of states 16 through 19. Should we, in state 15,
instead see anything but E or a digit, then we have come to the end of the
fraction, there is no exponent, and we return the lexeme found, via state 21.

*

134 CHAPTER 3. LEXICAL ANALYSIS

The final transition diagram, shown in Fig. 3.17, is for whitespace. In that
diagram, we look for one or more “whitespace” characters, represented by delim
in that diagram — typically these characters would be blank, tab, newline, and
perhaps other characters that are not considered by the Janguage design to be
part of anv token.

delim

slart . p
delim other *

Figure 3.17: A transition diagram for whitespace

Note that in state 24, we have found a block of consecutive whitespace
characters, followed by a nonwhitcspace character, We retract the input to
begin at the nonwhitespace, but we do not return to the parser. Rather, we
must restart the process of lexical analysis after the whitespace.

3.4.4 Architecture of a Transition-Diagram-Based Lexical
Analyzer

There are several ways that a coliection of transition diagrams can be used
to build a lexical analyzer. Regardless of the overall strategy, each state is
represented by a piece of code. We may lnagine a varlable state helding the
number of the current state for a transition diagram. A switch based on the
value of state takes us to code for cach of the possible states, where we find
the action of that state. Often, the code for a state is itself a switch statement
or multiway branch that determines the next state by reading and examining
the next input character.

Example 3.10: In Fig. 3.18 we see a sketch of getRelop(}, a C++ function
whose job is to simulate the transition diagram of Fig. 3.13 and return an object
of type TOKEN, that is, a pair consisting of the token name (which must be relop
in this case) and an attributc value (the code for one of the six comparison
operators in this case). getRelop() first creates a ncw object retToken and
initializes its first component to RELOP, the symbolic cade for token relop.

We see the typical behavior of a state in case 0, the case where the current
state is 0. A function nextChar () obtains the next character from the input
and assigns it to local variable . We then check ¢ for the three characters we
expect to find, making the state transition dictated by the transition diagram
of Fig. 3.13 in each case. For example, if the next input character is =, we go
to state 5.

If the next input character is not one that can begin a comparison operator,
then a function £ail () is called. What fail() does depends on the gliobal error-
recovery strategy of the lexical analyzer. It should resct the forward pointer
to lexemeBegin, in order to allow another transition diagram to be applied to

3.4. RECOGNITION OF TOKENS 135

TOKEN getRelop()

{
TOKEN retToken = new(RELOP);
while{1l) { /#* repeat character processing until a return
or failure occurs */
switch(state) {
case 0: ¢ = nextChar();
if { ¢ == <’) state = 1;
else if (c == '=? } gtate = b;
else if (¢ == ?>’) state = 6;
else fail(); /* lexeme is not a relop */
break;
case 1:
case 8: retract();
retToken.attribute = GT;
return(retTcken);
}
1
}

Figure 3.18: Sketch of implementation of relop trangition diagram

the true beginning of the unprocessed input. It might then change the value
of state to be the starl state for another transition diagram, which will search
for another token. Alternatively, if there is no other transition diagram that
remains unused, fail() could initiate an error-correction phase that will try
to repair the input and find a lexeme, as discussed in Section 3.1.4.

We also show the action for state 8 in Fig. 3.18. Because state & bears a *,
we must retract the input pointer one position (i.e., put ¢ back on the input
stream}. That task is accomplished by the funcrion retract (). Since state 8
represents the recognition of lexeme >=, we set the second coinponent of the
returned object, which we suppose is named attribute, to GT, the code for this
operator. [

To place the simulation of onc transition diagram in perspective, let us
consider the ways code like Fig. 3.18 conld fit into the entire lexical analyzer.

1. We could arrange for the transition diagrams for each token to be tried se-
quentially. ‘Then, the function £ail () of Example 3,10 resets the pointer
forward and starts the next transition diagram, each time it is called.
This method allows us to use transition diagrams for the individual key-
words, like the onc suggested in Fig. 3.15. We have only to use these
before we ise the diagram for id, in order for the keywords to be reserved
words.

136 CHAPTER 3. LEXICAL ANALYSIS

2. We could run the various transition diagrams “in parallel,” feeding the
next input character to all of them and allowing each one to make what-
ever transitions it required. If we use this strategy, we must be careful
to resolve the casc where one diagram finds a lexeme that matches its
pattern, while one or more other diagrams are still able to process input.
The normal strategy is to take the longest prefix of the input that matches
any pattern. That rule allows us to prefer identifier thenext to keyword
then, or the operator ~> to -, for example.

3. The preferred approach, and the one we shall take up in the following
sections, is to combine all the transition diagrams into one. We allow the
transgition diagram to read input until there is no possible next state, and
then take the longest lexeme that matched any pattern, as we discussed
in item (2) above. In our running example, this combination is easy,
because no two tokens can start with the same character; Le., the first
character immediately tells us which token we are looking for. Thus, we
could simply combine states 0, 9, 12, and 22 into one start state, leaving
other transitions intact. However, in general, the problem of combining
transition diagrams for several tokens is more complex, ag we shall see
shortly.

3.4.5 Exercises for Section 3.4

Exercise 3.4.1: Provide tramsition diagrams to recognize the same languages
as each of the regular expressiong-in Exercise 3.3.2.

Exercise 3.4.2: Provide transition diagrams to recognize the same languages
as each of the regular expressions in Exercise 3.3.5.

The following exercises, up to Excreise 3.4.12, introduce the Aho-Corasick
algorithm for recognizing a coliection of keywords in a text string in time pro-
portional to the length of the text and the sum of the length of the keywords.
This algorithm uses a special form of transition diagram called a frie. A trie is
a tree-structured transition diagram with distinct labels on the edges leading
from a node to its children. Leaves of the trie represent recognized keywords.

Knuth, Morris, and Pratt presented an algorithm for recognizing a single
keyword bybs - - - by, in a text string., Here the trie is a transition diagram with
n states, 0 through n. State 0 is the initial state, and state n represents ac-
ceptance, that is, discovery of the keyword. From each state s from 0 through
n —1, there is a transition to state s + 1, labeled by symbol b,4;. For example,
the trie for the keyword ababaa is: '

&

DD DD DS
In order to process text strings rapidly and search those strings for a key-

word, it is useful to define, for keyword biba - - - bp and position & in that keyword
(corresponding to state s of its trie), a failure function, f {s), computed as in

!

-

3.4. RECOGNITION OF TOKENS 137

Fig. 3.19. The objective is that biby -+ bs(s is the longest proper preflix of
by - - - by thal is also a suffix of b1 by - - - be. The reason f(s) is important is that
if we are trying to match a text string for by by - - by, and we have matched the
firsi. s positions, but we then fail (i.e., the next position of the text string does
not hold .11}, then f(s} is the longest prefix of ;14 - -+ b, that could possibly
matrh the text string up to the point we are at. Of course, the next character of
the text string must be by, or else we still have problems and must consider
a yet shorter prefix, which will be by z¢sy)-

) t=10

2) =10

3) for{s=Ls<ns++){

4) while (t > 0 && Bypn ' = buyr) ¢ = F(2);
3) if (bsy1 == betr) {

6) t=1t+1;

7) fs+n) =1,

8) else f(s+1) = 0;

Figure 3.19: Algorithm to compute the failure function for keyword bybs - -+ by

As an example, the failure funciion for the trie constructed above for ababaa

s 112134 6
fs) oo j1]2]3]1

ot

For instance, states 3 and 1 represent prefixes aba and a, respectively. f(3) =1
because a is the longest proper prefix of aba that is also a suffix of aba. Alsc,
f(2) = 0, because the longest proper prefix of ab that is also a suffix is Lhe
empty string.

Exercise 3.4.3: Construct the failure function for the strings:
a) abababaab.
b} aaaaaa.

c} abbaabb.

Exercise 3.4.4: Prove, by induction on s, that the algorithm of Fig. 3.19
correctly computes the failure function.

Exercise 3.4.5: Show that the assignment t = f(t) in line (4) of Fig. 3.19 is
executed at most n times. Show that therefore, the entire algorithm takes only
Ofn) time on a keyword of length .

1

138 CHAPTER 3. LEXICAL ANALYSIS

Having comiputed the failure function for a keyword b b - - - b,,, we can scan
a string ayaz - ¢y, in time Of{m) to tell whether the keyword occurs in the
string. The algorithm, shown in Fig. 3.20, slides the keyword along the string,
trying to make progress by matching the next character of the keyword with the
next character of the string. If it cannot do so after matching s characters, then
it “slides” the keyword right s — f(s) positions, so only the first f(s) characters
of the keyword are considered matched with the string.

1) s=0
2) for (i=1;i<m;i++){
3) while {¢ > 0 && a; ! = by} 5 = fs);
4) if (ai == bs+1) §=38+ 1,
5) if (s == n) return “yes”;
}

6) return “no”;

Figure 3.20;: The KMP algorithm tests whether siring g;ay -+, contains a
single keyword by by - - - b, 28 a substring in O(m + n) time

Exercise 3.4.6: Apply Algorithm KMP to test whether keyword ababaa is a
substring of:

a) abababaab.

b) abababbaa.

! Exercise 3.4.7: Show that the algorithm of Fig. 3.20 correctly tells whether

the keyword is a substring of the given string. Hint: proceed by induction on
i. Show that for all 4, the value of s after line (4) is the length of the longest
prefix of the keyword that is a suffix of ejasz - a;.

Exercise 3.4.8: Show that the algorithm of Fig. 3.20 runs in time O{m +n),
assuming that function f is already computed and its values stored in an array
indezed by s.

Exercise 3.4.9: The Fibonacci strings are defined as follows:
1. 51 =0.
2. 85 = a.

3. 8y = 8p_185—2 for k> 2.
For example, s; = ab, s4 = aba, and s; = abaab.

a) What is the Jength of 5,7

3.4. RECOGNITION OF TOKENS 139

b) Construct the failure function for sg.
¢) Construct the failure function for s7.

11 d) Show that the failure function for any s, can be expressed by f(1) =
F{2) =0, and for 2 < j < |s,|, f(j) is § — |sx—1|, where k is the largest
integer such that |sg| < 7+ 1.

11 e) In the KMP algorithm, what is the largest number of consecutive applica-
tions of the failure function, when we try to determine whether keyword
§p appears in text string sz 7

Aho and Corasick generalized the KMP algorithm to recognize any of a
set. of keywords in a text string. Iu this case, the trie is a true tree, with
branching from the root. There is one state for every string that is a prefix
{(not necessarily proper) of any keyword. The parent of a state corresponding
to string bybs - --by is the state that corresponds to bibs---bg_i. A state is
accepting if it corresponds to a complete keyword. For example, Fig. 3.21
shows the trie for the keywords he, sha, hig, and hers.

@ " -(D) _P‘____(@) - (&) ° _.

Figure 3.21: Trie for keywords he, ghe, his, hers

The failure function for the general trie is defined as follows. Suppose s
is the state that corresponds to string b;bo - --b,. Then f{s) is the state that
corresponds to the longest proper suffix of bybe -- - b, that is also a prefix of
some keyword. For example, the failure tunction for the trie of Fig. 3.21 is:

s J1[2(3]4]5][6[7]8T9
fe Jojofoli]2]0]3({0o73

Exercise 3.4.10: Modify the algorithm of Fig. 3.19 to compute the failure
function for general tries. Hint: The major difference is that we cannot simply
test for equality or inequality of #,1 and byy; in lines (4) and (5) of Fig. 3.19.
Rather, from any state there may be several transitions out on several charac-
ters, as there are transitions on both e and i from state 1 in Fig. 3.21. Any of

140 CHAPTER 3. LEXICAL ANALYSIS

those transitions could lead to a state that represents the longest suffix that is
also a prefix.

Exercise 3.4.11: Construct the tries and compute the failure function for the
following sets of keywords:

a) aaa, abaaa, and ababaaa,
b) all, fall, fatal, 1lama, and lame.
¢} pipe, pet, item, temper, and perpetual.

Exercise 3.4.12: Show thal your algorithm from Exercise 3.4.10 still runs in
time that is linear in the sum of the lengths of the keywords.

3.5 The Lexical-Analyzer Generator Lex

In this section, we introduce a tool called Lex, or in a more recent implemen-
tation Flex, that allows one to specify a lexical analyzer by specifying regular
cxpressions to describe patterns for tokens. The input notation for the Lex toal
is referred to as the Lex longuage and the tool itself is the Lex compiler. Behind
the scenes, the Lex compiler transforms the input patterns into a transition
diagram and generaties code, in a file called lex.yy.¢, that simulates this tran-
sition diagram. The mechanics of how this translation from regular expressions
to transition diagrams occurs is the subject of the next secticns; here we only
learn the Lex language.

3.5.1 Use of Lex

Figure 3.22 suggests how Lex is used. An input file, which we call lex.1, is
written in the Lex langnage and describes the lexical analyzer to he generated.
The Lex compiler transforms lex.l to a C program, in a file that is always
named lex.yy.¢. The latter file is compiled by the C compiler into a file called
a.out, as always. The C-compiler output. is a working lexical analyzer that can
take a stream of input characters and produce a stream of tokens.

The normal usc of the compiled C program, referred to as a.out in Fig. 3.22,
is as a subroutine of the parser, 1t is a C function that returns an integer, which
is a code for one of the possible toker names. The attribute value, whether it
he another numeric code, a pointer to the symbal table, or nothing, is placed
in a global variable yylval,? which is shared between the lexical analyzer and
parser, thereby making it simple to return both the name and an attribute value
of a token.

ZIncidentally, the yy that appears in yylval and lex.yy.c refers to the Yacc parser-
generator, which we shall describe in Section 4.9, and which is comrmonly ysed in conjunction

with Lex.

3.5. THE LEXICAL-ANALYZER GENERATOR LEX 141

Lex source program
1 pl e — Lex' | » lex.yy.c
ex. compiler
c |
lex.¥y¥y.¢ — u| L g Aa.out
compiler |
|
Input stream] a.ou:::}»,‘_., Sequence of lwkens

Figure 3.22: Creating a lexical analyzer with Lex

3.5.2 Structure of Lex Programs

A Lex program has the following form:

declarations

Y

translation rules
W

auxiliary functions

The declarations section includes declarations of variables, manrifest constants
(identifiers declared to stand for a constant, e.g., the name of a token), and
regular definitions, in the style of Section 3.3.4.

The translation rules each have the form

Pattern { Action }

Each pattern is a regular expression, which may use the regular definitions of
the declaration section. The actions are fragments of code, typically written in
C, althcugh many variants of Lex using other languages have been created.

The third section holds whatever additional functions are used in the actions.
Alternatively, these functions can be compiled separately and loaded with the
lexical analyzer.

The lexical analyzer created by Lex behaves in concert with the parser as
follows. When calied by the parser, the lexical analyzer begins reading its
remaining input, one character at a time, until it finds the longest prefix of the
input that matches one of the patterns ;. It then executes the associated action
A;. Typically, 4; will return to the parser, but if it docs not (e.g., because P;
describes whitespace or comments), then the lexical analyzer proceeds to find
additional lexemes, until one of the corresponding actions causes a return to
the parser. The lexical analyzer returns a single value, the token name, to
the parser, hut uses the shared, integer variable yylval to pass additional
information about the lexeme found, if needed.

142 CHAPTER 3. LEXICAL ANALYSIS

Example 3.11: Figure 3.23 is a Lex program that recognizes the tokens of
Fig. 3.12 and returns the token found. A few observations about this code will
introduce us to many of the important features of Lex,

In the declarations section we see & pair of special brackets, %{ and %}.
Anything within these brackets is copied directly to the file lex.yy.c, and is
not treated as a regular definition. It is common to place there the definitions of
the manifest constants, using C #define statements to agsociate unique integer
codes with each of the manifest constants. In our example, we have listed in a
comment the names of the manifest constants, LT, IF, and so on, but have not
shown them defined to be particular integers.®

Also in the declarations section is a sequence of regular definitions. These
use the extended notation for regular expressions described in Section 3.3.5.
Regular definitions that are used in later definitions or in the patterns of the
translation rules are surrounded by curly braces. Thus, for instance, delim is
defined to be a shorthand for the character class consisting of the blank, the
tah, and the newline; the latter two are represented, ag in all UNIX commands,
by backslash followed by t or n, respectively. Then, ws ig defined to be one or
more delimiters, by the regular expression {delim}+.

Notice that in the definition of id and number, parentheses are used as
grouping metasymbols and do not stand for themselves. In contrast, E in the
definition of number stands for itsolf. If we wish to use one of the Lex meta-
symbols, such as any of the parentheses, +, *, or ?, to stand for themselves, we
may precede them with a backslash. For instance, we see \. in the definition of
number, to represent the dot, since that character is a metasymbol representing
“any character,” as usual in UNIX regular expressions.

In the auxiliary-function section, we see two such functions, installID()
and installNum(}. Like the portion of the declaration section that appears
between %{...%}, everything in the anxiliary seciion is copied directly to file
lex.yy.c, but may be used in the actions.

Finally, let us examine some of the patterns and rules in the middle section of
Fig. 3.23. First, ws, an identifier declared in the first section, has an associated
empty action. If we find whitespace, we do not return to the parser, but look
for another lexeme. The second token has the simple regular expression pattern
if. Should we see the two lctters if on the input, and they are not followed
by another letter or digit (which would causc the lexical analyzer to find a
longer prefix of the input matching the pattern for id}, then the lexical analyzer
consumes these two letters from the input and returns the token name IF, that
is, the integer for which the manifest constant IF stands. Keywords then and
else are treated similarly.

The fifth token has the pattern defined by id. Note that, although keywords
like if match this patiern as well as an earlier pattern, Lex chooses whichever

2If Lex is used along with Yace, thea it would be normal to define the manifest constants
in the Yacc program and use thern without definition in the Lex program. Since lex.yy.c is
compiled with the Yacc output, the constants thus will be available to the actions in the Lex
program.

3.5.

THE LEXICAL-ANALYZER GENERATOR LEX 143

W

/* definitions of manifest constants
LT, LE, ER, NE, GT, GE,
IF, THEN, ELSE, ID, NUMBER, RELQP #/

13

/* regular definitions =/

delim
We
letter
digit
id
number

h

{ws}
if
then
else
{id}
{number}
II<I|
e
n=u
II<> n
!I>tl

Myt

wh

[\t\nl

{delim}+

[A-Za-z]

[0-9}

{letter}({letter}|{digit})*
{digit}+(\.{digit}+) 7 (E[+-17{digit}+)?

{/* no action and no return */}
{return(IF};}

{return{THEN) ;}
{return(ELSE);}

{yylval
{yylval

{yylval =

{yylval
{yylval

{yylval =

{yylval

{yylval =

int installID() {/*

¥

(int) installID{); return(ID};}
(int) installNum(); return(NUMBER);}
LT; return(RELOP):}

LE; return(RELOP):;}

EQ; return(RELOP);}

NE; return{RELOP);}

GT; return(RELOP);}

GE; return{RELCP);}

function to install the lexeme, whose
first character is pointed tbo by yytext,
and whese length is yyleng, into the
symbol table and return a pointer
thereto */

int installNum(} {/* similar to installID, but puts numer-

}

ical constants into a separate table */

Figure 3.23: Lex program for the tokens of Fig. 3.12

144 CHAPTER 3. LEXICAL ANALYSIS

pattern is listed first in situations where the longest matching prefix matches
two or more patterns. The action taken when id is matched is threefold:

1. Function installID() is called to place the lexeme found in the symbol
table.

2. This function returns a pointer to the symbol table, which is placed in
global variable yylval, where it can be usced by the parser or a later
component of the compiler. Note Lhat installID() has available to it
two variables that are set automatically by the lexical analyzer that Lex
generates:

(a) yytext is a pointer to the beginning of the lexeme, analogous to
lexemeBegin in Fig. 3.3.

{(b) yyleng is the length of the lexeme found.

3. The token name ID is returned to the parser.

The action taken when a lexeme matching the pattern number is similar, using
the apxiliary function installNum(). O

3.5.3 Conflict Resolution in Lex

We have alluded to the two rules that Lex uses to decide on the proper lexeme
to select, when several prefixes of the input match one or more patterns:

1. Always prefer a longer prefix to a shorter prefix.

2. If the longest possible prefix matches two or more patterns, prefer the
pattern listed first in the Lex program.

Example 3.12: The first rule tells us to continue reading letters and digits to
find the longest prefix of these characters to group as an identifier. It also tells
us to treat <= as a single lexeme, rather than selecting < as one lexeme and =
as the next lexeme. The second rule makes keywords reserved, if we list the
keywords before id in the program, For instance, if then is determined to be
the longest, prefix of the input that matches any pattern, and the pattern then
precedes {id}, as it does in Fig. 3.23, then the token THEN is returned, rather

than ID. OO

3.5.4 The Lookahead Operator

Lex automatically reads one character ahead of the last character that forms
the sclected lexeme, and then retracts the input so only the lexeme itself is
consumed from the input. However, sometimes, we want a certain pattern to
be matched to the input only when it ig followed by a certain other characters.
If so, we may use the slash in a pattern to indicate the end of the part of the

3.5. THE LEXICAL-ANALYZER GENERATOR LEX 145

pattern that matches the lexeme. What follows / is additional pattern that
must be matched before we can decide that the token in question was seen, but
what matches this second patiern is not part of the lexeme.

Example 3.13: In Fortran and some other languages, keywords are not re-
served. That situation creates problems, such as a statement

IF(I,I) =3

where IF is the name of an array, not a keyword. This statement contrasts with
statements of the form

IF(condition) THEN ...

where IF is a keyword. Fortunatcly, we can be sure that the keyword IF is
always followed by a left parenthesis, some text — the condition that may
contain parentheses, a right parenthesis and a letier. Thus, we could write a
Lex rule for the keyword IF like:

IF / NC % \) {letter}

This rule says that the pattern the lexeme matches is just the two letters IF.
The slash says that additional pattern follows but does not malch the lexeme.
In this pattern, the first character is the left parentheses. Since that character is
a Lex metasymbol, it must be preceded by a backslash to indicate that it has its
literal meaning. The dot and siar match “any string without a newline.” Note
that the dot is a Lex metasymbo!l meaning “any character except newline.” It
is followed by a right parenthesis, again with a backslash to give that character
ity litcral meaning. The additional pattern is followed by the symbol letter,
which is a regular definition representing the character class of all letters.

Note that in order for this pattern to be foolproof, we must preprocess
the input to delete whitespace. We have in the pattern neither provision for
whitespace, nor can we deal with the possibility thal the condition extends over
lincs, since the dot will not match a newline character.

For instance, suppose this pattern is asked to match a prefix of input:

IF(A<(B+C)*D)THEN...

the first two characters match IF, the next character matches \ (, the next nine
characters match . *, and the next two match \) and letier. Note the fact that
the first right parenthesis (after C) is not followed by a letter is irrelevant; we
only need to find some way of matching the input to the pattern. We conclude

that the letters IF constitute the lexeme, and they are an instance of token if.
O

—

146 CHAPTER 3. LEXICAL ANALYSIS

3.5.5 Exercises for Section 3.5

Exercise 3.5.1: Describe how to make the following modifications to the Lex
program of Fig. 3.23:

a) Add the keyword while.
b} Change the comparison operators to be the C operators of that kind.
c) Allow the underscore () as an additional letter.

''d) Add a new pattern with token STRING. The pattern consists of a double-
quote ("), any string of characters and a final double-quote. However,
if a double-quote appears in the string, it must be escaped by preceding
it with a backslash (\), and therefore a backslash in the string must be
represented by two backslashes. The lexical value, which is the string
without the surrounding double-quotes, and with backslashes used to es-
cape a character removed. Strings are to be installed in a table of strings.

Exercise 3.5.2: Write a Lex program that copies a file, replacing each non-
empty sequence of white space by a single blank.

Exercise 3.5.3: Write a Lex program that copies a C program, replacing each
instance of the keyword float by double.

Exercise 3.5.4: Write a Lex program that converts a file to “Pig latin.”
Specifically, assume the file is a sequence of words (groups of letters) separated
by whitespace. Every time you encounter a word:

1. If the first letter is a consonant, move it to the end of the word and then
add ay.

2. If the first letter is a vowel, just add ay to the end of the word.

All nonletters are copied intact to the output.

Exercise 3.5.5: In SQL, keywords and identifiers are case-insensitive. Write
a Lex program that recognizes the keywords SELECT, FROM, and WHERE (in any
combination of capital and lower-case letters), and token ID, which for the
purposes of this exercise you may take to be any sequence of letters and digits,
beginning with a letter. You need not install identifiers in a symbol table, but
tell how the “install” function would differ from that described for case-sensitive

identifiers as in Fig. 3.23.

3.6. FINITE AUTOMATA 147

3.6 Finite Automata

We shall now discover how Lex turns its input program into a lexical analyzer.
At the heart of the transition is the formalism known as finite automata. These
are essentially graphs, like transition diagrams, with a few differences:

1. Finite antomata are recognizers; they simply say “yes” or “no” about each
possible input string.

2. Finite automata come in two favors:

(a) Nendeterministic finite automata (NFA) have no restrictions on the
labels of their edges. A symbol can label several edges out of the
same statc, and ¢, the empty string, is a possible label.

(b) Deterministic finite automata (DFA) have, for each state, and for
each symbol of its input alphabet exactly onc cdge with that symbol
leaving that state.

Both deterministic and nondeterministic finite automata are capable of rec-
opnizing the same languages. In fact these languages are exactly the same
languages, called the regular languages, that regular expressions can describe.?

3.6.1 Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) consists of:

1. A finite set of states 5.

2. A set of input symbols I, the inpuf olphabet. We assume that e, which
stands for the empty string, is never & member of .

3. A {ransition function that gives, for cach state, and for each symbol in
Z U {e} a set of nert states.

4. A state sg from S that is distinguished as the start state (or initial state).

5. A sct of states F', a subset of 5, that is distinguished as the accepting
states (or final states).

We can represent either an NFA or DFA by a transition graph, where the
nodes arc states and the labeled edges represent the transition function. There
is an edge labeled « from state s to state ¢ if and only if ¢ is one of the next
states for state s and input a. This graph is very much like a transition diagram,
except:

4There iz a small lacuna: as we defined them, regular expressions cannot describe the
empty langoage, since we would never want to use this pattern in practice. However, finite
antomata can define the empty language. 1n the theory, 0 is treated as an additional regular
expression for the sole purposa of defining the empty language.

148 CHAPTER 3. LEXICAL ANALYSIS

a) The same symbol can label edges from one state to several different, states,
and

b) An edge may be labeled by ¢, the empty string, instead of, or in addition
to, symbols from the input alphabet.

Example 3.14: The transition graph for an NFA recognizing the lauguage
of regular expression {a|b)*abb is shown in Fig. 3.24. This abstract example,
describing all strings of a's and ¥#'s ending in the particular string abb, will be
used throughout this scction. It is similar to regular expressions that describe
languages of real interest, however. For instance, an expression describing all
files whose name ends in .o is any*.o, where any stands for any printable

character.
o
““W D)

b

Figure 3.24: A nondeterministic finite automaton

Following our convention for transition diagrams, the double circle around
state 3 indicates that this state is accepting. Notice that the only ways to get
from the start state 0 to the accepting state is to follow some path that stays
in state 0 for a while, then goes to states 1, 2, and 3 by reading abh from the
input. Thus, the only strings getting to the accepting state are those that end
in abb. O

3.6.2 Transition Tables

We can also represent an NFA by a fransition table, whose rows correspond to
states, and whose columns correspond to the input symbols and e. The entry for
a given state and input is the value of the transition function applied to those
arguments. If the transition function has no information about that state-input
pair, we put @ in the table for the pair.

Example 3.15: The transition table for the NFA of Fig. 3.24 is shown in
Fig. 3.25. O

The transition tahle has the advantage that we can easily find the transitions
on a given state and input. Its disadvantage is that it takes a lot of space, when
the input alphabet is large, yet most states do not have any moves on most of
the input symbols.

3.6. FINITE AUTOMATA 149

STATE a b €
0 {0,1} {0}]
1] {2})
2] 3y @
3 0} i @

Figure 3.25: Transilion table for the NFA of Fig. 3.24

3.6.3 Acceptance of Input Strings by Automata

An NFA accepts input string z if and only if there is some path in the fransition
graph from the start state to one of the accepting states, such that the symbols
along the path spell out . Note that e labels along the path are effectively
ignored, since the empty string does not contribute to the string constructed
along the path.

Example 3.16: The string aabb is accepted by the NFA of Fig. 3.24. The
path labeled by aabb from state 0 to state 3 demonstrating this fact is:
b
0 0 ——=1 -2 -3
Note that several paths labeled by the same string may lead to different states.
For instance, path

4 a b b
0 -0 - — = g 0
is another path from state 0 labeled by the string aabb. This path leads to
state (0, which is not accepting. However, remember that an NFA accepts a
string as long as some path labeled by that string leads from the start state

to an accepting state. The existence of other paths leading to a nonaccepting
state is irrelevant. O

The language defined (or accepted) by an NFA is the set of strings labeling
some path from the start to an accepting state. As was mentioned, the NFA of
Fig. 3.24 defiues the same language as does the regular expression (a|b)*abb,
that is, all strings from the alphabet {a, 5} that end in abb. We may use L(4)
to stand for the language accepted by automaton A.

Example 3.17: Figure 3.26 is an NFA accepting L{aa*|bb*). String aaa is

accepted because of the path

a] d
H—————= | ——————= 2 -7 -]

Note that €’s “disappear” in a concatenation, so the label of the path is aaa.
O

3.6.4 Deterministic Finite Automata

A deterministic finite automaton (DFA) is a special case of an NFA where:

150 CHAPTER 3. LEXICAL ANALYSIS

Figure 3.26: NFA accepting aa*[bb”

1. There are no moves on input €, and

2. For each state s and input symbol a, there is exactly one edge out of s
labeled 4.

If we are using a trangition table to represent a DFA, then each entry is a single
state. we may therefore represent this state without the curly braces that we
use to form sets.

While the NFA is an abstract representation of an algorithm to recognize
the strings of a certain language, the DFA is a simple, concrete algorithin for
recognizing strings. It is fortunate indeed that every regular expression and
every NFA can be converted to a DFA accepting the same language, becanse it
is the DFA that we really implement or simulate when building lexical analyzers.
The following algorithm shows how to apply a DFA to a string,

Algorithm 3.18: Simulating a DFA.

INPUT: An input string & terminated by an end-of-file character eof. A DFA
D with start state sg, accepting states F, and transition function move.

OUTPUT: Answer “yes” if D accepts x; “no” otherwise.

METHOD: Apply the algorithm in Fig. 3.27 to the input string z. The function
move(s,c) gives the state to which there is an edge from state s on input c.
The function nextChar returns the next character of the input string . O

Example 3.19: In Fig. 3.28 we see the transition graph of a DFA accepting
the language (ab)*abb, the same as that accepted by the NFA of Fig. 3.24.
Given the input string ababb, this DFA entcrs the sequence of states 0,1,2,1,2,3
and returns “yes.” [0

3.6. FINITE AUTOMATA

8 = Sp;
¢ = nextChar{);
while (¢ != eof) {
5 = move(s,);
¢ = nextChar();

if { sisin F) return "yes";
else return "no";

Figure 3.27: Simulating a DFA

a

b
e O)

Figure 3.28: DFA accepting (alb)"abb

3.6.5 Exercises for Section 3.6

151

! Exercise 3.6.1: Figure 3.19 in the exercises of Section 3.4 computes the failure
function for the KMP algorithm. Show how, given thai failure function, we
can construct, from a keyword b1bs - - by, an n + l-state DFA that recognizes
Hb1bs -« - by, where the dot stands for “any character.” Moreover, this DFA can

be constructed in O(n) time.

Exercise 3.6.2: Design finite automata (deterministic or nondeterministic)

for each of the languages of Exercise 3.3.5.

Exercise 3.6.3: For the NFA of Fig. 3.29, indicate all the paths labeled aabb.

Does the NFA accept aabb?

XD ——D— ()

Figure 3.29: NFA for Exercise 3.6.3

152 . CHAPTER 3. LEXICAL ANALYSIS

Figure 3.30: NFA for Exercisc 3.6.4

Exercise 3.68.4: Repeat Exercise 3.6.3 for the NFA of Fig. 3.30.

Exercise 3.6.5: Give the transition tables for the NFA of:

a) Exercise 3.6.3.
b} Exercise 3.6.4.
¢} Figure 3.26.

3.7 From Regular Expressions to Automata

The regular expression is the notation of choice for describing lexical analyzers
and other pattern-processing software, ag was reflected in Section 3.5. How-
ever, implementation of that software requires the simulation of a DFA, as in
Algorithm 3.18, or perhaps simulation of an NFA. Because an NFA often has a
choice of move on an input symbol (as Fig. 3.24 does oh input a from state 0)
or on € (as Fig. 3.26 does from state 0}, or even a choice of making a transition
on € or on a real input symbol, its simulation is less straightforward than for a
DFA. Thus often it is important to convert an NFA to a DFA that accepts the
same language.

In this section we shall first show how to convert NFA's to DFA’s. Then, we
use this technique, known as “the subset construction,” to give a useful algo-
rithm for simulating NFA’s directly, in situations (other than lexical analysis)
where the NFA-to-DFA conversion takes more time than the direct simuiation.
Next, we show how to convert regular expressions to NFA’s, from which a DFA
can be constructed if desired. We conclude with a discussion of the time-space
tradeoffs inherent in the various methods for implementing regular expressions,
and see how to choose the appropriate method for your application,

3.7.1 Conversion of an NFA to a DFA

The general idea behind the subset construction is that each state of the
constructed DFA corresponds to a set of NFA states. After reading input

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA 153

@182 - - - Gn, the DFA is in that state which corresponds to the set of states that
the NFA can rcach, from its start state, following paths labeled ajas - - - @n.

It is possible that the number of DFA statcs is exponential in the number
of NFA states, which could lead to difficulties when we try to implement this
DFA. However, part of the power of the automaton-based approach io lexical
analysis is that for real languages, the NFA and DFA have approximately the
same number of states, and the exponential behavior is noi seen.

Algorithm 3.20: The subset consiruction of a DFA from an NFA,
INPUT: An NFA N,
OUTPUT: A DFA D accepting the same language as V.

METHOD: Our algorithm constructs a transition table Diren for D. Each
stale of D is a set of NFA states, and we construct Dirgn so D will simulate
“in parallel” all possible moves N can make on a given input string. Our first
problem is to deal with etransitions of N properly. In Fig. 3.31 we see the
definitions of several functions that describe basic computations on the states
of N that are needed in the algorithm. Note that s 1s a single state of N, while
T is a set of states of V. '

OPERATION DESCRIPTION

e-closure(s) | Set of NFA states reachable from NFA state s

on e-transitions alone.

e-closure(T) | Set of NFA states reachable from some NFA state s
in set T on e-transitions alone; = Us in T €-closure(s).
maove(T, a) Set of NFA states to which there is a transition on
input symbol e from some state s in 7.

Figure 3.31: Operations on NFA states

We mnist explore those sets of states that IV can be in after seeing some input
string. As a basis, before reading the first input symbol, N can be in any of the
states of e-closure(sg), where sg is its start state. For the induction, suppose
that IV can be in set of states T after reading input string z. If it next reads
input o, then N can immediately go to any of the states in move(T, a). However,
after reading o, it may also make several e-transitions; thus N could be in any
state of e-closure{move(T, a)) after reading input za. Following these ideas, the
construction of the set of D’s states, Dstates, and its transition function Dtran,
is shown in Fig. 3.32.

The start state of D is e-closure(sg), and the accepting states of D are all
those sets of N’s states that include at least one accepting state of N. To
complete our deseription of the subset construction, we need only to show how

154 CHAPTER 3. LEXICAL ANALYSIS

mitially, e-closure(sg) is the only state in Dstates, and it is unmarked;
while { there is an unmarked state T in Dstates) {
mark T
for (each input symbol a } {
U = e-closure{move(T, a)};
if (U is not in Dstates)
add U7 as an unmarked state to Dstates;
Dtran(T,a] = U,

Figure 3.32: The subset construction

e-closure(T) is computed for any set of NFA states T'. This process, shown in
Fig. 3.33, is a straightforward search in a graph from a set of states. In this
case, imagine that only the e-labeled edges are available in the graph. 0O

push all states of T onto stack;
initialize e-closure(T) to T
while { stack is not empty } {
pop %, the top element, off stack;
for (each state u with an edge from ¢ to u labeled €)
if { u is not in e-closure(T)) {
add u to e-closure(T);
push « onto stack;

Figure 3.33: Computing e-closure(T)

Example 3.21: Figure 3.34 shows another NFA accepting (a|b)*abb; it hap-
pens to be the one we shall construct directly from this regular expression in
Section 3.7. Let ug apply Algorithm 3.20 to Fig. 3.29.

The start state 4 of the equivalent DFA is e-closure(0), or 4 = {0,1,2,4,7},
since these arc cxactly the states reachable from state 0 via a path all of whose
edges have label e. Note that a path can have zero edges, so state 0 is reachable
from itself by an e-labeled path. '

~ The input alphabet is {a,b}. Thus, our first step is to mark A and compute
Diran]A,a) = e-closure(move(A,a)) and Dtran{A,b] = e-closure{move(4,b)).
Ameong the states 0, 1, 2, 4, and 7, only 2 and 7 have transitions on a, to
3 and 8, respectively. Thus, move(4,a) = {3,8}. Also, e-closure({3,8} =
{1,2,3.4,6,7,8}, so we conclude

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA 155

Figure 3.34: NFA N for {a|b)*abb

Diran[A, a] = e-closure(move(A, a)) = e-closure({3,8}) = {1,2,3,4,6,7,8}

Let us call this set B, so Diran[4,a] = B.
Now, we must compute Diren{4,bl. Among the states in A, only 4 has a
transition on &, and it goes to 5. Thus,

Diran[A,b] = e-closure({5}) = {1,2,4,6,7}
Let us call the above set ', so Dtran[A,b] = C.

NFA STATE DFA STATE | a | b
{0,1,2,4,7} 4 B|C
{1,2,3,4,6,7,8} B B | D
{1,2,4,5,6,7} C B|cC
{1,2,4,5,6,7,9} D B | E
{1,2,3,5,6,7,10} E B|C

Figure 3.35: Transition table Dtran for DFA D

If we continue this process with the unmarked sets B and €, we evertually
reach a point where all the states of the DFA are marked. This conclusion is
guaranteed, since there are “only” 2!' different subsets of a set of eleven NFA
states. The five different DFA states we actually construct, their correspond-
ing sets of NFA states, and the transition table for the DFA D are shown in
Fig. 3.35, and the transition graph for I is in Fig. 3.36. State A is the start
state, and state E, which contains state 10 of the NFA, is the only accepting
state,

Note that D has one more state than the DFA of Fig. 3.28 for the same lan-
guage. States A and C have the same move function, and so can be merged. We

discuss the matter of minimizing the number of states of a DFA in Section 3.9.6.
a

156 CHAPTER 3. LEXICAL ANALYSIS

Figure 3.36: Result of applyving the subset construction to Fig. 3.34

3.7.2 Simulation of an NFA

A strategy that has been used in a number of text-editing programs is to con-
struct an NFA from a regular expression and then simulate the NFA using
something like an on-the-fly subset construction. The simulation is outlined
below.

Algorithm 3.22: Simulating an NFA.

INPUT: An input string z terminated by an end-of-file character eof. An NFA
N with start state 8o, accepting states F, and transition function move.

OUTPUT: Answer “ves” if M accepts &; “no” otherwise.

METHOD: The algorithm kecps a sei of current states S, those that are reached
from sg following a path labeled by the inputs read so far. If ¢ is the next inpuf
character, read by the function nextChar(), then we first compute move(S, c)
and then close that set using e-closure{). The algorithm is sketched in Fig. 3.37.
O

1) S = e-closure(sy);
2) ¢ = nextChar{);
3) while (¢!= eof) {

4) 8 = e-closure(move(S, ¢} };
3) ¢ = nextChar(};
6)

}
7) ({SNF!=0)return "yes";
8) else return "no";

Figure 3.37: Simulating an NFA

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA 157

3.7.3 Efficiency of NFA Simulation

If carefully implemented, Algorithm 3.22 can be quite efficient. As the ideas
involved are useful in a number of similar algorithms involving search of graphs,
we shall look at this implementation in additional detail. The data structures
we need are:

1. Two stacks, each of which holds a set of NFA states. One of these stacks,
oldStates, holds the “current” set of stales, i.e., the value of S on the right
side of line (4) in Fig. 3.37. The second, newStates, holds the “next” set
of states S on the left side of line {4). Unseen is a step where, as we
go around the loop of lines (3) through (8), newStates is transferred to
oldStates.

2. A boolean array alfreadyOn, indexed by the NFA states, to indicate which
gtates are in newStates. While the array and stack hold the same infor-
mation, it is much faster to interrogate elreadyOn(s] than to search for
state s on the stack newStates. It is for this efficiency that we maintain
both represeutations.

3. A two-dimensional array move|s, a] holding the transition table of the
NFA. The entries in this table, which are sets of states, are represented
by linked lists.

To implement line (1) of Fig. 3.37, we need to set each entry in array al-
readyOn to FALSE, then for each state s in e-closure(sy}, push s onto oldStates
and set alreadyOnfs] to TRUE. This operation on state s, and the implementation
of line (4) as well, are facilitated by a function we shall call addState(s). This
function pushes state s onto newStates, sets alreadyOm[s] to TRUE, and calls
itself recursively on the states in meuve]s, €] in order o further the computation
of e-elosure(s). However, to avoid duplicating wark, we must be careful never
to call addState on a state that is already on the stack newStates. Figure 3.38
sketches this function.

9) addState(s) {

1G) push s onto newStates;
11) olreadyOnls] = TRUE;

12) for { ¢ on move[s, €])
13) if { tafreadyOn(t))
14) addState(t);
15))

Figure 3.38: Adding a new state s, which is known not to be on newStates

We implement line (4) of Fig. 3.37 by looking at each state s on eldStates.
We first find the set of states mowve(s, ¢], where ¢ is the next input, and for each

158 CHAPTER 3. LEXICAL ANALYSIS

of those states that is not already on newStates, we apply addState to it. Note
that eddState has the effect of computing the e-closure and adding all those
states to newStates as well, if they were not already on. This sequence of steps
is summarized in Fig. 3.39.

16) for (s on oldStates) {

17) for (t on movels,])
18) if { lelreadyOn(t])
19) addState(t);
20) pop ¢ from oldStates;
2y}

22) for (s on newStates) {

23) pop s from newStates;
24) push s onto oldStates;
25) alreadyOns] = FALSE;
26)

Figure 3.39: lmplementation of step {(4) of Fig. 3.37

Now, suppose that the NFA N has n states and m transitions; i.e., m is the
sum over all states of the number of symbols {or €) on which the state has a
transition out. Not counting the call to addState at line (19) of Fig. 3.39, the
time spent in the loop of lines {16) through (21) is O(n). That is, we can go
around the loop at most n times, and each step of the loop requires constant
wark, except for the time spent in addState. The same is true of the loop of
lines (22) through (26).

During one execution of Fig. 3.39, i.e., of step (4) of Fig. 3.37, it i3 only
possible to call addState on a given state once. The reason is that whenever
we call addState(s), we set alreadyOn[s] to TRUE at line {11) of Fig. 3.39. Once
alreadyOn[s] is TRUE, the tests at line (13) of Fig. 3.38 and line (18) of Fig. 3.39
prevent another call,

The time spent in one call to addState, exclusive of the time speat in recur-
sive calls at line (14), is Q(1) for lines (10) and (11). For lines {12} and (13),
the time depends on how many e-transitions there are out of state s. We do
not, know this number for a given state, but we know that there arc at most m
transitions in total, out of all states. As a result, the aggregate time spent in
lines {11} over all calls to addState during one execution of the code of Fig, 3.39
is O(m). The aggregate for the rest of the steps of addState is O(n), since it is
a constant per call, and there are at most n calls.

We conclude that, implemented properly, the time to execute line (4) of
Fig. 8.37 is O(n +m). The rest of the while-loop of lines {3} through (6) takes
O(1) time per iteration. If the input « is of length &, then the total work in
that loop is O((k{(rn + m)). Line (1) of Fig. 3.37 can be exernted in Ofn + m)
time, since it is essentially the steps of Fig. 3.39 with old5tates containing only

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA 159

Big-Oh Notation

An expression like O(n) is a shorthand for “at most some constant times
n.” Technically, we say a function f(n), perhaps the running time of some
step of an algorithm, is O(g{n)) if there are constants ¢ and no, such that
whenever n > ng, it is true that f{n) < cg(r). A useful idiom is “0(1),”
which means “some constant.” The use of this big-oh netation enables
us to avoid getting too far into the details of what we count as a unit of
execution time, yet lets us express the rate at which the running time of
an algorithm grows.

the state sg. Lines (2), (7), and (8) each take O(1) time. Thus, the running
time of Algorithm 3.22, properly implemented, is O({k(n + m)). That is, the
time taken is proportional to the length of the input times the size (nodcs plus
edges) of the transition graph.

3.7.4 Construction of an NFA from a Regular Expression

We now give an algorithm for converting any rcgular expression to an NFA
that defines the same language. The algorithm is syntax-direcied, in the sense
that it works recursively up the parse tree for the regular expression. For each
subexpression the algorithm constructs an NFA with a single accepting state.

Algorithm 3.23: The McNaughton-Yamada-Thornpson algorithm to convert
a regular expression to an NFA,

INPUT: A regular expression r over alphabet Z.
OUTPUT: An NFA N accepting L{r).

METHOD: Begin by parsing » into its constituent subexpressions. The rules
for constructing an NFA consist of basis rules for handling subexpressions with
no gperators, and inductive rules for constructing larger NFA’s from the NFA's
for the immediate subexpressions of a given expression.

BASIS: For expression ¢ construct the NFA

start @ :

Here, i is a new state, the start state of this NFA, and f is another new state,
the accepting state for the NFA.

For any subexpression a in 'E, construct the NFA

start : a :

160

CHAPTER 3. LEXICAL ANALYSIS

where again ¢ and f are new states, the start and accepting states, respectively.
Note that in both of the basis constructions, we coristruct a distinct NFA, with
new states, for every aceurrence of € or some o as a subexpression of r.

INDUCTION: Suppose N(s) and N(¢) are NFA’s for regular expressions s and
t, respectively.

a)

b}

Suppose r = s|t. Then N(r), the NFA for r, is constructed as in Fig. 3.40.
Here, { and f are new states, the start and accepting states of N(r),
respectively, There are e-transitions from i to the start states of N(s)
and N(#}, and each of their accepting states have e-transitions to the
accepting state f. Note that the accepting states of N{s) and N(#) are
not accepting in N(r). Since any path from i to f must pass through
either N{s) or N(t) exclusively, and since the label of that path is not
changed by the ¢’s leaving ¢ or entering f, we conclude that N(r) accepts
L(s) U L{¢), which is the same as L{r). That is, Fig. 3.40 is a correct
construction for the union operator.

Figure 3.40: NFA for the union of two regular expressions

Suppose r = st. Then construct N(r) as in Fig. 3.41. The start state of
N{s) becomies the start state of N(r}), and the accepting state of N(2) is
the only accepting state of N(r). The accepting state of N(s) and the
start state of N(#) are merged into a single state, with all the transitions
in or out of either state. A path from i to f in Fig. 3.41 must go first
through N(s), and therefore its label will begin witli some string in L(s).
The path then continues through N (f), so the path’s label finishes with a
string in L{#). As we shall soon argue, accepting states never have edges
out and start states never have edges in, so it i8 not possible for a path to
re-enter N(s) after leaving it. Thus, N(r) accepts exactly L(s)L(t), and
is a correct NFA for r = st.

(D we @ M) @)

Figure 3.41: NFA for the concatenation of two regular expressions

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA 161

¢} Supposer = s*. Then for r we construct the NFA N{r) shown in Fig. 3.42.
Here, i and f are new states, the start state and lone accepting state of
N(r). To get from i to f, we cah either follow the introduced path labeled
¢, which takes care of the one string in L{s)", or we can go to the start
state of N(s), through that NFA, then from its accepting statc back to
its start state zcro or more times. These options allow N(r) to accept all
the strings in L{s)!, L{)?, and so on, 50 the entire set of strings accepted
by N(r}is L(s")

Figure 3.42: NFA for the closure of a regular expression

d) Finally, suppose r = (s). Then L{r) = L(s), and we can use the NFA
N(s) as N(r).

The method description in Algorithm 3.23 contains hints as to why the
inductive construction works as it should. We shall not give a formal correctness
proof, but we shall list several properties of the constructed NFA’s, in addition
to the all-important fact that N{r) acccpts language L(r). These properties
arc interesting in their own right, and helpful in making a formal proof.

1. N(r) has at most twice as many states as there are operators and operands
in 7. This bound follows from the fact that each step of the algorithm
creates al most two now states.

2. N(r) has one start state and one accepting state. The accepting state has
no outgoing fransitions, and the start state has no incoming transitions.

3. Bach state of N{(r) other than the accepting state has either one outgoing
transition on a symbol in ¥ or two outgoing transitions, both on e.

Example 3.24: Let us use Algorithm 3.23 to construct an NFA for r =
(a|b}*abb. Figure 3.43 shows a parse tree for » that is analogous to the parse
trees constructed for arithmetic expresgions in Section 2.2.3. For subexpression
r1, the first a, we construct the NFA:

162 CHAPTER 3. LEXICAL ANALYSIS

//m\r
SN i
SN
SN
/\

/l\

Figure 3.43: Parse tree for (ajb)*abb

start a
2

State numbers have been chosen for consistency with what follows. For ra we

construct:
@)

We can now combine N{ri) and N{ry), using the construction of Fig. 3.40 to
obtain the NFA for r3 = ry|re; this NFA is shown in Fig. 3.44.

Figure 3.44: NFA for ry

The NFA for 74 = (r3) is the same as that for r3. The NFA for ry = (rs)* is
then as shown iri Fig. 3.45. We have used the construction in Fig. 3.42 to build
this NFA from the NFA in Fig. 3.44.

Now, consider subexpression rg, which is another a. We use the basis con-
struction for @ again, but we must use new states. It is not permissible to reuse

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA 163

start

|
‘f/
©

O~{)

-..__,_‘________,_.——-'
E

Figure 3.45: NFA for r;

the NFA we constructed for vy, even though r and rg arc the same expression.

The NFA for rg is:
start

" ()
To obtain the NFA for ry = rgrg, we apply the construction of Fig. 3.41. We
merge states 7 and 7, yielding the NFA of Fig. 3.46. Continuing in this fashion
with new NFA’s for the two subexpressions b called rg and ryp, we eventually
construct the NFA for (a|b)*abb that we first met in Fig. 3.34. 0O

Figure 3.46: NFA for ry

3.7.5 Efficiency of String-Processing Algorithms

We observed that Algorithm 3.18 processes a string « in time Of|2|), while in
Section 3.7.3 we concluded that we could simulate an NFA in time proportional
to the product of |z| and the size of the NFA’s transition graph. Obviously, it

164 CHAPTER 3. LEXICAL ANALYSIS

is faster to have a DFA to simulate than an NFA, so we might wonder whether
it ever makes sense to simulate an NFA,

One issue that may favor an NFA is that the subset construction can, in the
worst case, exponentiate the number of states. While in principle, the number
of DFA states does not influence the running time of Algorithm 3.18, should
the number of statcs become so large that the transition table does not fit in
main memory, then the true running time would have to include disk I/0 and
therefore rise noticeably.

Example 3.25: Consider the family of languages described by regular expres-
sions of the form L, = (a[b)*a(a|b)™"1, that is, each language L, consists of
strings of a’s and b’s such that the nth character to the left of the right end
holds @¢. An n + l-state NFA is easy to construct. It stays in its initial state
under any input, but also has the option, on input a, of going o state 1. From
state 1, it goes to state 2 on any input, and so on, unti! in state n it accepts.
Figure 3.47 suggests this NFA.

&

start a o a b o a b a,LOib_(@
b

Figure 3.47: An NFA that has many fewer states than the smallest equivalent
DFA

However, any DFA for the language L, must have at least 2™ states. We
shall not prove this fact, but the idea is that if two strings of length n can
get the DFA to the same state, then we can exploit the last position where
the strings differ {and therefore one must have a, the other b) to continue the
strings identically, until they arc the same in the last n — 1 positions. The DFA
will then be in a state where it must both accepl and not accept. Fortunately,
as we mentioned, it is rare for lexical analysis to involve patterns of this type,
and we do not expect to encounter DFA’s with outlandish numbers of states in
practice. 2

However, lexical-analyzer generators and other siring-processing systems
often start with a regular expression. We are faced with a choice of converting
the regular expression to an NFA or DFA. The additional cost of going to a DFA
is thus the cost of executing Algorithm 3.23 on the NFA (one could go directly
from a regular expression to a DFA, but the work is essentially the same). If
the string-processor is one that will be executed many times, as is the case for
lexical analysis, then any cost of converting to a DFA is worthwhile. However,
in other string-processing applicasions, such as grep, where the user specifies
one regular expression and one or several files to be searched for the patiern

3.7. FROM REGULAR EXPRESSIONS TO AUTOMATA 165

of that expression, it may be more efficient to skip the step of constructing a
DFA, and sitnulate the NFA direcily.

Let us consider the cost of converting a regular expression r to an NFA by
Algorithm 3.23. A key stcp is constructing the parse tree for ». In Chapter 4
we shall see several methods that are capable of constructing this parse tree in
linear time, that is, in time O(|r|), where |r| stands for the size of r — the sum
of the number of operators and operands in r. It is also easy to check that each
of the basis and inductive constructions of Algorithm 3.23 takes constant time,
so the entire time spent by the conversion to an NFA is O(lr|).

Moreover, as we observed in Section 3.7.4, the NFA we construct has at
most |r| states and at most 2|r| transitions. That is, in terms of the analysis
in Section 3.7.3, we have n < |r| and m < 2|r|. Thus, simulating this NFA on
an input string = takes time O{|r| x |x]). This time dominates the time taken
by the NFA construetion, which is O{|r|), and therefore, we conclude that it is
possible to take a regular expression r and string z, and tell whether x is in
L{r) in time O(|r| x |z|).

The time taken by the subset construction is highly dependent on the num-
ber of states the resulting DFA has. To begin, notice that in the subset con-
struction of Fig. 3.32, the key step, the construction of a set of states I/ from
a get of states T' and an inpul symbo! «, s very much like the construction of
a new set of states from the old set of states in the NFA simulation of Algo-
rithm 3.22. We already concluded that, properly implemented, this step takes
time at most proportional to the number of states and transifions of the NFA.

Suppose we start with a regular expression r and convert it to an NFA. This
NFA has at most |r| states and at most 2{r| transitions. Moreover, there are
at most |r| input symbols. Thus, for every DFA state constructed, we must
construct at most |r| new states, and each one takes at most O(|r| +2}¢|) time.
The time to construct & DFA of s states is thus Of|r{%s).

In the common case where s is about [r|, the subset construction takes time
O(jr{?). However, in the worst case, as in Example 3.25, this time is O(|r|221r|)‘
Figure 3.48 summarizes the options when oue is given a regular expression r
and wants to produce a recognizer that will tell whether one or more strings
are in L{r).

AUTOMATON INITIAL PER STRING
NFA O(jr) O(lr| x |=f)
DFA typical case | O{Jr|*) O(lz|)
DFA worst case | O(|r22I7)) O}

Figure 3.48: Initial cost and per-string-cost of various methods of recognizing
the language of a regular expression

If the per-string cost dominates, as it does when we build a lexical analyzer,

166 CHAPTER 3. LEXICAL ANALYSIS

we clearly prefer the DFA. However, in commands like grep, where we run the
automaton on only one string, we generally prefer the NFA. It is not until |z
approaches |r]® that we would even think about converting to a DFA.

There is, however, a mixed strategy that is about as good as the better of
the NFA and the DFA strategy for each expression r and string x. Start off
simulating the NFA, but remember the sets of NFA states (i.e., the DFA states)
and their transitions, as we compute them. Before processing the current set, of
NFA states and the current input symbol, check to see whether we have already
computed this transition, and use the information if so.

3.7.6 Exercises for Section 3.7
Exercise 3.7.1: Convert to DFA’s the NFA’s of:
a) Fig. 3.26.
b) Fig. 3.29.
¢) Fig. 3.30.
Exercise 3.7.2: use Algorithm 3.22 to simulate the NFA's:
a) Fig. 3.29.
b) Fig. 3.30.
on input achb.

Exercise 3.7.3: Comnvert the following regular expressions to deterministic
finite automata, using algorithms 3.23 and 3.20:

a) (a|b}*.

b) (a*|b”)*.

c) ((elayb™)”.

d) (a|b)*abb(alb}*.

3.8 Design of a Lexical-Analyzer Generator

In this section we shall apply the techniques presented in Section .3.7 1o see
how a lexical-analyzer generator such as Lex is architected. We discuss two
approaches, based on NFA's and DFA’s; the latter is esgsentially the implemen-

tation of Lex.

3.8. DESIGN OF A LEXICAL-ANALYZER GENERATOR 167

3.8.1 The Structure of the Generated Analyzer

Figure 3.49 overviews the architecture of a lexical analyzer generated by Lex.
The program that serves as the lexical analyzer includes a fixed program that
simulates an automaton:; 4t this point we leave open whether that antomaton
is deterministic or nondeterministic. The rest of the lexical analyzer consists of
components that are created from the Lex program by Lex itself.

Input buffer

[,]
fexemy |

i
lexemeBegin \

Automaton
simulator

forward

Lex Lex Transition
— -)
program compiler table

Actions

Figure 3.49: A Lex program is turned into a transition table and actions, which
are used by a finite-automaton simulator

These coniponents are:

1. A transition table for the automaton.

2. Those functions that are passed directly through Lex to the output (see
Section 3.5.2).

3. The actions from the input program, which appear as fragments of code
to be invoked at the appropriate time by the automaton simulator.

To construct the automaton, we begin by taking each regular-expression
pattern in the Lex program and converting it, using Algorithm 3.23, to an NFA,
We heed a single automaton that will recognize lexemes matching any of the
patterns in the program, so we combine all the NFA’s into one by introducing
a new start state with e-transitions to each of the start states of the NFA's N,
for pattern p;. This construction is shown in Fig. 3.50.

Example 3.26: We shall illustrate the ideas of this section with the following
simple, abstract example:

168 CHAPTER 3. LEXICAL ANALYSIS

N(Pl } ©

Figure 3.50: An NFA constructed from & Lex program

a { action A; for pattern p; }
abb { action Ay for pattern pp }
a*b™ { action Ay for pattern py }

Note that these three patierns present some conflicts of the type discussed
in Section 3.5.3. In particular, string obb matches both the second and third
patterns, but we shall consider it a lexeme for pattern po, since that pattern
is listed first in the above Lex program. Then, input strings such as agbbb---
have many prefixes that mateh the third pattern. The Lex rule is to take the
longest, so we continne reading ¥’s, until another @ is met, whereupon we report
the lexeme to be the initial a’s followed by as many &'s as there are,

Figure 3.51 shows shree NFA's that rccognize the three patterns. The third
is a simplification of what would come out of Algorithm 3.23. Then, Fig. 3.52
shows these three NFA’s combined into a single NFA by the addition of start
state 0 and three e-transitions. O

3.8.2 Pattern Matching Based on NFA’s

If the lexical analyzer simulates an NFA such as that of Fig. 3.52, then it mmst
read input beginning at the point on its input which we have rcferred to as
lexemeBegin. As it moves the pointer called forward ahead in the input, it
calculates the set of states it is in at each point, following Algorithin 3.22.

Eventually, the NFA simulation reaches a peoint on the input where there
are no next states. At that point, there is no hape that any longer prefix of the
input would ever get the NFA to an accepting siate; rather, the set of states
will always be empty. Thus, we are ready to decide on the longest prefix that
is a lexeme matching some patiern.

3.8. DESIGN OF A LEXICAL-ANALYZER GENERATOR 169

start a //_‘ .
D)

5“'1’@ a C b’@: b (@)

Figure 3.51: NFA’s for a, abb, and a*b™

E /@_a%@

/

O |

Figure 3.52: Cumbined NFA

%t
@ a a*b ™

. a b
E T - - none
4
7

7]

Figure 3.53: Sequence of scts of states entered when processing input aaba

170 CHAPTER 3. LEXICAL ANALYSIS

We look backwards in the sequence of sets of states, until we find a set. that
includes one or more accepting statcs. If there are several accepting states in
that set, pick the one associated with the earliest pattern p; in the list from
the Lex program. Move the forward pointer back to the end of the lexeme, and
perform the action A; associated with pattern p;.

Example 3.27: Suppose we have the patterns of Example 3.26 and the input
beging aaba. Figure 3.53 shows the sets of states of the NFA of Fig. 3.52 that
we enter, starting with e-closure of the initial state 0, which is {0,1,3,7}, and
proceeding from there. After reading the fourth input symbal, we are in an
empty set of states, since in Fig. 3,52, there are no transitions out of state & on
input a.

Thus, we need Lo back up, looking for a set of states that includes an ac-
cepting state. Notice that, as indicated in Fig. 3.53, after reading a we arc
in a set that includes state 2 and therefore indicates that the pattern a has
been matched. However, after reading cab, we are in state 8, which indicates
that a*b™ has been matched; prefix aab is the longest prefix that gets us to an
accepting state. We therefore select aab as the lexeme, and execute action ds,
which should include a return to the parser indicating that the token whose
pattern is p3 = a*b™ has been found. O

3.8.3 DFA’s for Lexical Analyzers

Another architecture, resembling the output of Lex, is to convert the NFA
for all the patterns into an cquivalent DFA, using the subsei construction of
Algorithm 3.20. Within each DFA state, if there are one or more accepting
NFA states, determine the first pattern whose accepting state is représented,
and make that pattern the cutput of the DFA state.

Example 3.28: Figure 3.54 shows a transition diagram based on the DFA
that is constructed by the subset construction from the NFA in Fig. 3.52. The
accepting states are labeled by the pattern that is identified by that state. For
instance, the state {6,8} has two accepting states, corresponding to patterns
abb and a*b*. Since the former is listed first, that is the pattern associated
with state {6,8}. O

We use the DFA in a lexical analyzer much as we did the NFA. We simulate
the DFA until at some point there is no next state (or strictly speaking, the
next state is @, the dead state corresponding to the empty set of NFA states).
At that point, we back up through the sequence of states we entered and, us
soon as we meet an accepting DFA state, we perform the action associated with
the pattern for that state.

Example 3.29: Suppose the DFA of Fig. 3.5¢ is given input abbe. The se-
quence of states entered is 0137,247, 58, 68, and at the final a there is no tran-
gition out of state 68. Thus, we consider the sequence from the end, and in this
case, B8 itself is an accepting statc that reports pattern p, =abb. O

3.8. DESIGN OF A LEXICAL-ANALYZER GENERATOR 17

Figure 3.54: Transition graph for DFA handling the patterns a, abb, and a*b™

3.8.4 Implementing the Lookahead Operator

Recall from Section 3.5.4 that the Lex lookahead operator / in a Lex pattern
1 /re is sometimes necessary, because the pattern ry for a particular token may
need to describe some trailing context rp in order to correctly identify the actual
lexeme. When converting the pattern r)/rg to an NFA, we treat the / as if it
were ¢, 50 we do not actually look for a / on the input. However, if the NFA
recognizes a prefix xy of the input buffer as matching this regular expression,
the end of the lexeme is not where the NFA entered its acvepting state. Rather
the end occurs when the NFA enters a state s such that

1. s has an e-transition on the {imaginary) /,

2. There is a path from the start state of the NFA to state s that spells out
.

3. There is a path from state s to the accepting state that spells out g.

4. 7 is as long as possible for any zy satisfving conditions 1-3.

If there is only one e-transition state on the imaginary / in the NFA, then
the end of the lexeme occurs when this state is entered for the last time as the
following example illustrates. If the NFA has more than one e-transition state
on the imaginary /, then the general problem of finding the correct state s is
much more difficult.

Example 3.30: An NFA for the pattern for the Fortran IF with lookahead,
from Example 3.13, is shown in Fig. 3.55. Notice that the e-transition from
state 2 to state 3 represents the lookahead operator. State 6 indicates the pres-
ence of the keyword IF. However, we find the lexeme IF by scanning backwards
to the last occurrence of state 2, whenever state 6 is entered. O

172 CHAPTER 3. LEXICAL ANALYSIS

Dead States in DFA’s

Technically, the automaton in Fig. 3.54 is not quite a DFA. The reason
is that a DFA has a transition from every state on every input symbol in
its input alphabet. Here, we have omitted transitions to the dead state
@, and we have therefore omitted the transitions from the dead state to
itself on every input. Previous NFA-to-DFA examples did not have a way
to get from the start state to @, but the NFA of Fig. 3.52 does.

However, when we construct a DFA for use in a lexical analyzer, it
is important that we treat the dead state differently, since we must know
when there is no longer any possibility of recognizing a longer lexeme.
Thus, we suggest. always omitting transitions to the dead state and elimi-
nating the dead state itself. In fact, the problem is harder than it appears,
since an NFA-to-DFA construction may yield several states that cannot
reach any accepting state, and we must know when any of these states
have been reached. Section 3.9.6 discusses how to combine all these states
into one dead staic, so their identification becomes easy. It is also inter-
esting to note that if we construct a DFA from a regular expression using
Algorithms 3.20 and 3.23, then the DFA will not have any states besides
{ that cannot lead to an accepting state.

any

o
start T g (/) 4) lette
O O O ORS OSS O 0)
Figure 3.55: NFA recognizing the keyword IF

3.8.5 Exercises for Section 3.8
Exercise 3.8.1: Suppose we have two tokens: (1) the keyword if, and (2) id-
entifiers, which are strings of letters other than if. Show:

a) The NFA for these tokens, and
b} The DFA for these tokens.

Exercise 3.8.2: Repeat Exercise 3.8.1 for tokeus consisting of (1) the keyword
while, {2) the keyword when, and (3) identifiers consisting of strings of letters
and digits, beginning with a letter.

! Exercise 3.8.3: Suppose we were to revise the definition of a DFA to allow
zero or one transition out of each state on each input symbol (rather than
exactly one such transition, as in the standard DFA definition). Some regular

!

"—

3.9. OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 173

expressions would then have smaller “DFA’s” ihan they do under the standard
definition of a DFA. Give an example of one such regular expression.

Exercise 3.8.4: Design an algorithm to rccognize Lex-lookahead patterns of
the form ry/rg, where vy and ry are regular expressions. Show how your algo-
rithm works on the following inputs:

a) {abcd|abe)/d
b) (a|ab)/ba

¢) aa * fax

3.9 Optimization of DFA-Based Pattern
Matchers

In this section we present three algorithms that have been used to implement
and optimize pattern matchers constructed from regular expressions.

1. The first algorithm is useful in a Lex compiler, because it constructs a
DFA directly from a regular expression, without constructing an interme-
diate NFA. The resulting DFA also may have fewer states than the DFA
constructed via an NFA,

2. The second algorithm minimizes the number of states of any DFA, by
combining states that have the same future behavior. The algorithm
itself is quite efficient, running in time O(nlogn), where n is the number
of states of the DFA.

d. The third algorithm produces more compact representations of transition
tables than the standard, two-dimensional table.

3.9.1 Important States of an NFA

To begin our discussion of how to go directly from a regular expression o a
DFA, we must first dissect the NFA construction of Algorithm 3.23 and consider
the roles played by various states. We call a state of an NFA important if it has a
non-¢ out-transition. Notice that the subset construction {Algorithm 3.20) uses
only the important states in a set T' when it computes e—c!osm‘e(move(T, a)), the
set of states reachable from T on input a. That is, the set of states move(s, a)
is nonempty only if state s is important. During the subset construction, two
sets of NFA states can be identified (treated as if they were the same set) if
they:

1. Have the same imporiant slates, and

2. Either hoth have accepting states or neither doeg.

174 CHAPTER 5. LEXICAL ANALYSIS

When the NFA is constructed from a regular expression by Algorithin 3.23,
we can say more about the important states. The only important states are
those introduced ag initial states in the basis part for a particular symbol posi-
tion in the regular expression. That is, each important state corresponds to a
particular operand in the regular expression.

The constructed NFA has only one accepting state, but this state, having
no out-transitions, 1 not an important state. By concatenating a unique right
endmarker # to a regular expression r, we give the accepting state for r a
transition on $, making it an important state of the NFA for (»)#. In other
words, by using the augmented regular expression (r)#, we can forget about
accepting states as the subset construction procecds; when the construction is
complete, any state with a transition on # must be an accepting state.

The important statcs of the NFA correspond directly to the positions in
the regular expression that hold symbols of the alphabet. 1t is useful, as we
shall see, to present the regular expression by its syntaz tree, where the leaves
correspond to operands and the interior nodes correspond to operators. An
interior node is called a cat-node, or-node, or ster-node if it is labeled by the
concatenation operator (dot), union operator |, or star operator , respectively.
We can construct a syntax tree for a regular expression just as we did for
arithmetic expressions in Section 2.5.1.

Example 3.31: Figure 3.56 shows the syntax tree for the regular expression
of our running example. Cat-nodes are represented by circles. O

/\
/
/\
/\

RS

|
a b
1 2
Figure 3.56: Syntax tree for (afb)*abb#

Leaves in a syntax trce are labeled by e or by an alphabet symbol. To each
leaf not labeled e, we attach a unique integer. We refer to this integer as the

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 175

position of the leaf and also as a position of its symbol. Note that a symbol
can have several positions; for instance, a has positions 1 and 3 in Fig. 3.56.
The positions in the syntax tree correspond to the important states of the
constructed NFA.

Example 3.32: Figure 3.57 shows the NFA for the same regular expression as
Fig. 3.56, with the important states numbered and other states represented by
letters. The numbered states in the NFA and the positions in the syntax tree
correspond in a way we shall soon see. [

Figure 3.57: NFA constructed by Algorithm 3.23 for {a|b}*abb#

3.9.2 Functions Computed From the Syntax Tree

To construct a DFA directly from a regular expression, we construct its syntax
tree and then compute four functions: nullable, firstpos, lustpos, and followpos,
defined as follows. Each definition refers to the syntax tree for a particular
augmented regular expression {r)#.

1. nullable(n) is true for a syntax-tree node n if and only if the subexpression
represented by n has € in its language. That is, the subexpression can be
“made null” or the empty string, even though there may be other strings
it can represent as well.

2. firstpos(nt) is the set of positions in the subtree rooted at n that corre-
spond to the first symbol of at least one string in the language of the
subexpression rooted at 7.

3. lastpos(n) is the set of positions in the subtree rooted at n that corre-
spond to the last symbol of at least one string in the language of the
suhexpression rooted at n,

176 CHAPTER 3. LEXICAL ANALYSIS

4. followpos{p), for a position p, is the set of positions g in the entirc syntax
tree such that there is some string z = a1a2 -, in L((r)#) such that
for some 1, there is a way to explain the membership of & in L{{(r)#) by
matching a; to position p of the syntax tree and a;4, to position g.

Example 3.33: Consider the cat-node n in Fig. 3.56 that corresponds te the
expression {a|b)*a. We claim nullable(n) is false, since this node generates all
strings of a's and b's ending inr an a; it does not generate e. On the other hand,
the siar-node below it is nuilal:le; it generates € along with all other strings of
a’s and b’s.

firstpos(n) = {1, 2,3}. In a typical generated string like aa, the first position
of the string corresponds to position 1 of the tree, and in a string like ba, the
first position of the string comes from position 2 of the tree. However, when
the string generated by the expression of node n is just @, then this a comcs
from position 3.

lastpos(n) = {3}. That is, no matier what siring is generated from the
expression of node n, the last position is the a from position 3 of the tree.

followpos 1 trickier to compute, but we shall see the rules for doing so
shortly. Here is an example of the reasoning: followpes(1) = {1,2,3}. Consider
astring - - -ac- - -, where the ¢ is either o or b, and the g comes from position 1.
That is, this a is one of those generated by the a in expression (a|b)*. This
a could be followed by another a or & coming from the same subexpressicn, in
which case ¢ comes from position 1 or 2. It is also passible that this ¢ is.the
last in the string generated by {a|b)*, in which case the symbol ¢ must be the
a that comes from position 3. Thus, 1, 2, and 3 are exactly the positions that
can follow position 1. O

3.9.3 Computing nullable, firstpos, and lastpos

We can compute nullable, firstpos, and lastpos by a straightforward recursion
on the height of the tree. The basis and inductive rules for nulluble and firstpos
are summarized in Fig. 3.58. The rules for lastpos are essentially the same as
for firstpos, but the roles of children ¢; and ¢; must be swapped in the rule for
a cat-node.

Example 3.34: Of all the nodes in Fig. 3.56 only the star-node is nullable.
We note from the tablic of Fig. 3.58 that none of the leaves are nullable, because
they each correspond 1o non-€ operands. The or-node is not nullable, because
neither of its children is. The star-node is nuilable, because every star-node is
nullable. Finally, each of the cat-nodes, having at least one nonnullable child,
is not nullable.

The computation of firstpos and lastpos for each of the nodes is shown in
Fig. 3.59, with firstpos(n) to the left of node n, and lastpos(n) to its right. Each
of the leaves has only itself for firstpos and lastpos, as required by the rule for
non-€ leaves in Fig. 3.58. For the or-node, we take the union of firstpos at the

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 177

NODE n nullable(n) i Jirstpos{n)
A leaf laheled € true ! @
A leaf with position ¢ false {:}
An or-node n = ¢jles | nullable(c:) or | firstpos{ei) U firstpos(cs}
nullable(ca)
A cat-node n = ¢jex | nullable(e,) and if { nullable(c;))
nullable(ry) Jirstpos(ey) U firstpos(cz)
else firstpos(cy)
A gtar-noden =" true firstposic))

Figure 3.58: Rules for computing nallable and firstpos

children and do the same for lastpos. The rule for the star-node says that we
take the value of firstpos or lastpos al the one child of that node.

Now, consider the lowest cat-node, which we shall call n. To compute
firstpos{n), we first consider whether the left operand is mllable, which it is
in this case. Therefore, firstpos for n s the union of firstpos for each of its
children, that is {1,2} U {3} = {1,2,3}. The rule for lastpes does not ap-
pear explicitly in Fig. 3.58, but as we mentioned, the rules are the same as
for firstpos, with the children interchanged. That is, to compute lastpes(n) we
must ask whether its right child {the leaf with position 3) is nullable, which it
is not. Therefore, lastpos(n) is the same as lostpos of the right child, or {3}.
(]

3.9.4 Computing followpos

Finally, we need to see how to compute followpes. There are only two ways
that a position of a regular expression can be made to follow another.

1, If n is a cat-node with lefi child ¢y and right child eg, then for every
position 7 in lastpos(c;), all positions in firstpos(cs) are in followpos(i).

2. If n is a star-node, and 1 is a position in lestpos(n), then all positions in
firstpos(n) are in followpos(i).

Example 3.35: Let us continue with our running example; recall that firstpos
and lasipos werc computed in Fig. 3.59. Rule 1 for followpos requires that we
lock at each cat-node, and put each position in firstpos of its right child in
fellowpas for each position in lasipes of its left child, For the lowest cat-node in
Fig. 3.59, that rule says position 3 is in followpos(1) and followpos(2). The next
cat-node above says that 4 is in followpos(3), and the remaining two cat-nodes
give us 5 in followpos(4} and 6 in fellowpos(b).

178 CHAPTER 3. LEXICAL ANALYSIS

(123} 6 {6}
{1.2.3} 5 15} {6} # {6}
1123) o {4) (5) &1(5)
{123} ¢ (3} (4) b (4)
(12) * (1.2} (3} a 13}

{12} 1 {12}

TN

{1} a {1} {21 b (2}

Figure 3.39: firstpos and lastpos for nodes in the syntax tree for (alb)*abb#

We must also apply rule 2 to the star-node. That rule tells us positions 1 and
2 are in both followpos(1) and followpos(2), since both firstpes and lastpes for
this node are {1,2}. The complete sets followpos are summarized in Fig. 3.60.
O

NODE = | followpos(n)
1 11,231
2 11,2,3}
3 4
4 {5}
5 6}
6]

Figure 3.60: The function followpos

We can represent, the function followpos by creating a directed graph with
a node for each position and an are from position ¢ to position j if and only if
7 is in followpos(?). Figure 3.61 shows this graph for the function of Fig. 3.60.

It should come as no surprise that the graph for followpos is almost an NFA
without e-transitions for the underlying regular expression, and would become
one if we:

1. Make all positions in firsipes of the root be initial states,

2. Label each arc from ¢ to j by the symbol at position i, and

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 179

/

Figure 3.61: Directed graph for the function followpos

3. Make the position associated with endmarker # be the only accepting
state.

3.9.5 Converting a Regular Expression Directly to a DFA
Algorithm 3.36: Coustruction of a DFA from a regular expression ».
INPUT: A regular cxpression 7.

OUTPUT: A DFA D that recoguizes L{r).

METHOD:

1. Construct a syntax tree T' from the augmented regular expression (r)+#.

2. Compute nullable, firstpos, lestpos, and followpos for T', using the methods
of Sections 3.9.3 and 3.9.4.

3. Construct Dstates, the set of states of DFA D, and Ditran, the transition
function for D, by the procedure of Fig. 3.62. The states of D are sets of
positions in T'. Initially, each state is “unmarked,” and a state becomes
“marked” just hefore we comsider its out-transitions. The start state of
D is firstpos(ng), where node ng is the root of 7. The accepting states
arc those containing the position for the endmarker symbol #.

Example 3.37: We can now put together the steps of our running example
to construct a DFA for the regular expression r = (a|b)*abb. The syntax trec
for (r)# appeared in Fig. 3.56. We observed that for this tree, nullable is true
only for the star-node, and we exhibited firstpos and lastpos in Fig. 3.59. The
valucs of followpos appear in Fig. 3.60.

The value of firstpss for the root of the tree is {1,2,3}, so this set i the
start state of D. Call this set of states 4. We must compute Diran|4,a]
and Dtran[A,b]. Among the positions of A, 1 and 3 correspond to a, while 2
corresponds to b. Thus, Dtran[A4, a] = followpos(1) U followpos(3) = {1,2,3,4},

180 CHAPTER 3. LEXICAL ANALYSIS

initialize Dstates to contain only the unmarked state firstpos(ng),
where ng is the root of syntax tree T for (r)#;
while (there is an unmarked state § in Dstates) {
mark 5,
for { each input symbol g) {
let U be the union of followpes(p) for all p
in § that correspond to q;
if (U is not in Dstates)
add U as an unmarked state to Dstates;
Dtran[S,a) = U,

Figure 3.62: Construction of a DFA directly from a regular expression

and Dtran[A,b] = followpos(2) = {1,2,3}. The latter is state A, and so does
not have to be added to Dstates, but the former, B = {1,2,3,4}, is new, so we
add it to Dstates and proceed to compute its transitions. The complete DFA is
shown in Fig. 3.63. O

Figure 3.63: DFA counstructed from Fig. 3.57

3.9.6 Minimizing the Number of States of a DFA

There can be many DFA’s that recognize the same language. For instance, note
that the DFA’s of Figs. 3.36 and 3.63 both recoguize language L({alb)*abb).
Not only do these automata have states with different names, but they don’t
even have the same pumber of states. If we implement a lexical analyzer as
a DFA, we would generally prefer a DFA with as few states as possible, since
each state requires entries in the table that describes the lexical analyzer.

The matter of the names of states is minor. We shall say that lwo automata
are the same up fo state names if one can be transformed into the other by doing
nothing more than changing the names of states. Figures 3.36 and 3.63 are not
the same up to state names. However, there is a close relationship between the

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 181

states of cach. States A and C of Fig. 3.36 are actually equivalent, in the sense
that neither is an accepting state, and on any input they transfer to the same
state — to B on input @ and to ' on input 4. Moreover, both statcs 4 and C
behave like state 123 of Fig. 3.63. Likewise, state B of Fig. 3.36 behaves like
state 1234 of Fig. 3.63, slate D behaves like statc 1235, and state E hehaves
like state 1236.

Ii turns out that there is always a unique (up to state names) minimum
state DFA for any regnlar language. Moreover, this minimum-state DFA can be
constructed from any DFA for the same language by grouping sets of equivalent
states. In the case of L({a|b)"abb), Fig. 3.63 is the minimum-state DFA, and it
¢an be constructed by partitioning the states of Fig. 3.36 as {A, CH{BHDHE}.

In order to understand the algorithm for creating the partition of states
that converts any DFA into its minimum-state equivalent DFA, we need to
see how input strings distinguish states from one another. We say that string
x distinguishes state s from state ¢ if exactly onc of the states reached from
s and t by following the path with label z is an accepting state. State s is
distinguishable from state ¢ if there is some string that distinguishes them.

Example 3.38: The empty string distinguishes any accepting state from any
nonaccepting state. In Fig. 3.36, the string bb distinguishes state A4 from state
B, since bb takes A to a nonaccepting stale C', but takes B to accepting state
E. O

The state-minimization algorithm works by partitioning the states of a DFA
into groups of states that cannot be distinguished. Fach group of states is then
merged into a single state of the minimum-state DFA. The algorithm works
by maintaining a partition, whose groups are sets of states that have not yet
been distinguished, while any two states from different groups are known to be
distinguishable. When the partition cannot be refined further by breaking any
group into smaller groups, we have the minimum-state DFA.

Initially, the partition consists of two groups: the accepting states and the
nonaccepting states. The fundamental step is to take some group of the current

partition, say A4 = {s}, s9,... ,8%}, and some input symbol a, and see whether
a can be nsed to distinguish between any states in group A. We examine the
transitions from each of s1, 89,... ,5; on inpul a, and if the states reached fall

into two or more groups ol the current partition, we split 4 into a collection of
groups, so that &; and s; are in the same group if and only if they go to the
same group on input a. We repeat this process of splitting groups, until for
no group, and for no input symbol, can the group be split further, The idea is
formalized in the next algorithm,

Algorithm 3.39: Minimizing the number of states of a DFA.

INPUT: A DFA D with set of states S, input alphabet T, state state sq, and
set of accepting states F.

OUTPUT: A DFA D' accepting the same language as D and having as few
states as possible.

182 CHAPTER 3. LEXICAL ANALYSIS

Why the State-Minimization Algorithm Works

We need to prove two things: that states remaining in the same group in
Ilgqa1 arc indistinguishable by any string, and that states winding up in
different groups are distinguishable. The first is an induction on ¢ that
if after the ith iteration of step (2) of Algorithm 3.39, s and ¢ are in the
same group, then there is no string of length ¢ or less that distinguishes
them. We shall leave the details of the induction to you.

The second is an induction on ¢ that if states s and ¢ are placed in
different groups at the #th iteration of step (2}, then there is a string that
distinguishes them. The basis, when s and ¢ are placed in different groups
of the initial partition, is easy: one must he accepting and the other not,
go e digtinguishes them. For the induction, there must be an input ¢ and
states p and ¢ such that s and ¢ go to states p and g, respectively, on input
a. Moreover, p and g must already have heen placed in different groups.
Then by the inductive hypothesis, there is some string = that distinguishes
p from g. Therefore, az distinguishes s from ¢.

METHOD:

1. Start with an initial partition II with two groups, F and S — F, the
accepting and nonaccepting states of D

2. Apply the procedure of Fig. 3.64 to construct a new partition Ifnew-

initially, let Ilhew = II;
for { cach group G of IT'} {
partition G into subgroups such that two states s and ¢
are in the same subgroup if and only if for all
input symbols a, states s and ¢ have transitions on a
to states in the same group of II;
/* at worst, a state will be in a subgroup by itself */
replace G in Hpew by the set of all subgroups formed;

Figure 3.64: Construction of ITnew

3. If Mpew = LI, let Igy, = I and continue with step (4). Otherwise, repeat
step (2) with Ipew in place of II.

4. Choose one state in each group of Ilgn.; as the representative for that
group. The representatives will be the states of the minimum-state DFA

D'. The other components of D' are constructed as follows:

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 183

Eliminating the Dead State

The minimization algorithm sometimes produces a DFA with one dead
state — one that is not accepting and transfers to itself on each input
symbol. This state is technically needed, because a DFA must have a
transition from every state on every sytubol. However, as discussed in
Section 3.8.3, we often want to know when there is no longer any possihility
of acceptance, so we can establish that the proper lexeme has already been
seen. Thus, we may wish to eliminate the dead state and use an automaton
that is missing soine transitions. This automaton has one fewer state than
the minimum-state DFA, but is strictly speaking not a DFA, because of
the missing transitions to the dead state.

(a) The state state of I’ is the representative of the group containing
the start state of D.

{(b) The accepting states of D' are the representatives of those groups
that contain an accepting state of 2. Note that each group contains
either only accepting states, or only nonaccepting states, because we
startcd by separating those two classes of states, and the procedure
of Fig. 3.64 always forms new groups that are subgroups of previously
constructed groups.

(¢} Let s be the representative of some group G of Mg,,l, and let the
transition of D rom s on input @ be to state . Let r be the rep-
resentative of +'s group H. Then in D', there is a transition from s
to r on input a. Note that in I3, every state in group G must go to
some state of group H on input a, or else, group G would have been
aplit according to Iig. 3.64.

Example 3.40: Let us reconsider the DFA of Fig, 3.36. The initial partition
consists of the two groups {4, B, C, D}{E}, which are respectively the nonac-
cepting states and the accepting states. To construct Hpeyw, the procedure of
Fig. 3.64 congiders both groups and inputs a and 6. The group {E} cannot be
split, because it has only one state, so {E} will remain intact in Ijew.

The other group {4, B,C, D} can be split, so we must consider the effect of
each input symbol. On input a, each of these states goes to state B, so there
is no way to distinguish these states using strings ihat begin with a. On input
b, states 4, B, and €' go to members of group {4, B, C, D}, while state D goes
to B, a member of another group, Thus, in ey, group {4, B,C, D} is split
into {4, B,C}{ D}, and Inew for this round is {4, B, C}{D}{E}.

184 ' CHAPTER 3. LEXICAL ANALYSIS

In the next round, we can split {4, B,C} into {4,C}{B}, since A and
C each go to a member of {A, B,C} on input b, while B goes to a member of
another group, { D'}, Thus, after the second round, Ipew = {4, CHBHD}ME}.
For the third round, we cannot split the one remaining group with more than
one state, since A4 and C' cach go to the same state (and therefore to the same
group) on each input. We conclude that gy = {4, C}HBY{D}{E}.

Now, we shall construct the minimum-state DFA, It has four states, corre-
sponding to the four groups of Ilg,,), and let us pick A, B, D, and E as the
representatives of these groups. The initial state is 4, and the only accepting
state is E. Figure 3.65 shows the transition function for the DFA, For instance,
the transition from state E' on input b is to A4, since in the original DFA, E goes
to C' on ihput b, and A is the representative of C's group. For the same reason,
the transition on b from state 4 1s to A itself, while all other transitions are as
in Fig. 3.36. O

STATE | @ | b
A Bl A
B B|D
D B | E
E Bl A

Figure 3.65: Transition table of minimum-state DFA

3.9.7 State Minimization in Lexical Analyzers

To apply the state minimization procedure to the DFA’s generated in Sec-
tion 3.8.3, we must begin Algorithm 3.39 with the partition that groups to-
gether all states that recognize a particular token, and also places in one group
all those states that do not indicate any token, An example should make the
extension clear.

Example 3.41: For the DFA of Fig. 3.54, the initial partition is

{0137, 71{247}{8, 58} {7} {68} {0}

That is, states 0137 and 7 belong together because neither aunounces any token.
States & and 58 belong together becaiise they both announce token a*ht. Note
that we have added a dead state @, which we suppose has transitions to itself
on inputs e aud b. The dead state is also the target of missing transitions on a
from states 8, 58, and 68.

We must split 0137 from 7, because they go to different groups on input a.
We also split. 8 from 58, because they go to different groups on b. Thus, all
states are in groups by themselves, and Fig. 3.54 is the minimum-state DFA

OPTIMIZATION OF DFA-BASED PATTERN MATCHERS 185

recognizing its three tokens. Recall that a DFA serving as a lexical analyzer
will normally drop the dead state, whilc we treat missing transitions as a signal
to end token recognition. O

3.9.8 Trading Time for Space in DFA Simulation

The simplest and fastest way to represent the transition function of a DFA is
a two-dimensional table indexed by states and characters. Given a state and
next input character, we access the array to find the next state and any special
action we must take, e.g., returning a token to the parser. Since a typical lexical
analyzer has several hundred states in its DFA and involves the ASCII alphabet
of 128 input characters, the array consumes less than a megabyie.

However, compilers are also appearing in very small devices, where even
a megabyte of storage may be too much. For such situations, there are many
methods that can be used to compact the transition table. For instance, we can
represent each state by a list of transitions — that is, character-state pairs —
ended by a default state that is to be chosen for any input character not on the
list. If we choose as the default the most frequently oceurring next state, we
can often reduce the amount of storage needed by a large factor.

There is a more subtle data structure that allows us to combine the speed
of array access with the compression of lisis with defaulis. We may think of
this structure as four arrays, as suggested in Fig. 3.66.% The base array is used
to determine the base location of the entries for state s, which are located in
the nezxt and check arrays. The default array is used to determine an alternative
base location if the check array tells us the one given by base[s] is invalid.

default base next check

Figure 3.66: Data structure for representing transition tables

To compute neztState(s, a), the transition for state s on input @, we examine
the nextand check entries in location [= base[s|+a, where character a is treated
as an integer, presumably in the range 0 to 127. If check{l] = s, then this entry

51n practice, there would be another array indexed by states to give the action associated
with that state, if any.

"—

186 CHAPTER 3. LEXICAL ANALYSIS

is valid, and the next state for state s on input a is neat[l]. If check[l] # s, then
we determine another state ¢ = defoult[s] and repeat the process as if ¢ were
the current state. More formally, the function nextState is defined as follows:

int nextState(s,a) {
if { checklbasels] + a] = 5) return next[base[s] + al;
else return nestState(default{s), a):

}

The intended use of the structure of Fig. 3.66 is to make the next-check
arrays short by taking advantage of the similaritics among states. For instance,
state t, the default for state s, might be the state that says “we are working on
an identifier.” like state 10 in Fig. 3.14. PPerhaps state s is entered after seeing
the letters th, which are a prefix of keyword then as well as potentially being
the prefix of some lexeme for an identifier. On input character e, we must go
from gtate s to a special state that remembers we have seen the, but otherwise,
state s behaves as ¢ does. Thus, we set check][base[s] + e] to s (to confirm that
this entry is valid for s} and we set nex#{base[s] + €] to the state that remembers
the. Also, defauli]s] is sct to &.

While we may not be able to choose base values so that no nezt-check entries
remain unused, cxperience has shown that the simple strategy of assigning base
values to states in turn, and assigning each basels] value the lowest integer so
that the special entries for state s are not previously occupicd utilizes little
more space than the minimum possible,

3.9.9 Exercises for Section 3.9

Exercise 3.9.1: Extend the table of Fig. 3.58 to include the operators (a) 7
and (b) T,

Exercise 3.9.2: Use Algorithm 3.36 to converl the regular expressions of Ex-
ercise 3.7.3 directly to deterministic finite automata.

Exercise 3.9.3: We can prove that two regular expressions are equivalent. by
showing that their minimum-state DFA’s are the same up to renaming of states.
Show in this way that the following regular expressions: (alb)*, (a*[b”)*, and
((e]a)b*]* are all equivalent. Note: You may have constructed the DFA’s for
these expressions in response to Fixercise 3.7.3.

Exercise 3.9.4: Construct the minimum-state DFA’s for the following regular
expressions:

a) (abjra(alb).
b) (ab}*afalb)(alb).
c) (alb)*a(alb)(a|b)(alb).

3.10. SUMMARY OF CHAPTER 3 187

Do you see a pattern?

It Exercise 3.9.5: To make formal the informal claim of Example 3.25, show
that any deterministic finite automaton for the regular expression

(alb)*a(alb)(alb) - - (alb)

where {a|b) appears n — | times at the end, must have al least 27 statcs, Hint:
Observe the pattern in Exercise 3.9.4. What condition regarding the history of
inputs does each state represent?

3.10 Summary of Chapter 3

4 Tokens. The lexical analyzer scans the source program and produces as
output a sequence of tokens, which are normally passed, one at a time to
the parser. Some tokens may consist only of a teken name while others
may also have an assoclated lexical value that gives information about
the particular instance of the token that has been found on the input.

¢ Leremes. Each time the lexical analyzer returns a token to the parser,
it has an asgociated lexeme — the sequence of input characters that the
token represents.

4 Buffering. Because it is often necessary to scan ahead on the input in
order to sce where the next lexeme ends, it is usually necessary for the
lexical analyzer to buffer its input. Using a pair of buffers cyclicly and
ending each buffer’s contents with a sentine! that warns of its end are two
techniquos that accelerate the process of scanning the input.

4 Paiterns. Each token has a pattern that describes which sequences of
characters can form the lexemes corresponding to that token. The set
of words, or strings of characters, that match a given pattern is called a
language.

+ Regular Ezpressions. These expressions arc commonly used to describe
patterns. Regular expressions are built from single characters, using
union, concatenation, and the Kleene closure, or any-numbcr-of, oper-
ator.

+ Regular Definitions. Complex collections of languages, such as the pat-
terns that describe the tokens of a programming language, are often de-
fined by a regular definition, which is a sequence of statements that each
define one variable to stand for some regular expression. The regular ex-
pression for one variable can use previously defined variables in its regular
expression,

188

CHAPTER 3. LEXICAL ANALYSIS

Eytended Regular-Expression Notation. A number of additional opera-
tors may appear as shorthands in regular expressions, to make it easier
to express patterns. Examples include the + operator {one-ar-more-of),
7 (zero-or-one-of}, and character clagses (the union of the strings each
consisting of one of the characters).

Transition Diagrams. The behavior of a lexical analyzer can often be
described by a transition diagram. These diagrams have states, each
of which represents something about the history of the characters seen
during the current search for a lexeme that matches onc of the possible
patterns. There are arrows, or transitions, from oue state to another,
each of which indicates the possible next input characters that cause the
lexical analyzer to make that change of state.

Finite Automata. These are a formalization of transition diagrams that
include a designation of a start state and onc or more aceepting states,
as well as the set of states, input characters, and transitions among
states. Accepting states indicate that the lexeme for some token has been
found. Unlike transition diagrams, finile autornata can make transitions
on empty input as well as on input characters.

Deterministic Finite Automats. A DFA is a special kind of finite au-
tomaton that has exactly one transition ot of each state for each input
symbol. Also, transitions on empty input are disallowed. The DF4 is
easily simulated and makes a good implemontation of a lexical analyzer,
similar to a transition diagrarm.

Nondeterministic Finite Automata. Automata that are not DFA’s are
called nondeterministic. NFA’s often are easier to design than are DEA’s.
Another possible architecture for a lexical analyzer is to tabulate all the
states that NFA’s for each of the possible patterns can be in, as we scan
the input characters.

Conwversion Among Pattern Representations. It is possible to convert any
regular expression into an NFA of about the same size, recognizing the
same language as the regular expression defines. Further, any NFA can
be converted to a DFA for the same pattern, although in the worst case
(never encountered in common programming languages) the size of the
automaton can grow exponentially. It is also possible to convert any non-
deterministic or deterministic finite automaton into a regular expression
ihat defines the same language recognized by the finite automaton.

Lex. There is a family of software systems, including Lex and Flex,
that are lexical-analyzer generators. The user specifies the patterns for
takens using an extended regular-expression notation. Lex converts these
expressions into a lexical analyzer that is cssentially a deterministic finite
automaton that recognizes any of the patterns.

3.11. REFERENCES FOR CHAPTER 3 189

+ Minimization of Finite Automata. For every DFA there is a minimum-
state DFA accepting the same language. Moreover, the minimum-state
DFA for a given language is unique except for the names given to the
various states.

3.11 References for Chapter 3

Regular expressions were first developed by Kleene in the 1950 [9]. Kleene was
interested in describing the events that could be represcnted by McCullough and
Pitts’ [12] finite-automaton model of neural activity. Since that lime regular
expressions and finite automata have become widely used in computer science.

Regular expressions in varions forms were used from the outset in many
popular Unix utilities such as awk, ed, egrep, grep, lex, sed, sh, and vi. The
TEEE 1003 and ISO/IEC 9945 standards documents for the Portable Operating
System Interface (POSIX) define the POSIX extended regular expressions which
arc similar to the original Unix regular expressions with a few exceptions such
as muemonic representations for character classes. Many scripting languages
such as Perl, Dython, and Tel have adopted regular expressions but often with
incompatible extensions.

The familiar finite-antomaton model and the minimization of finite au-
tomata, as in Algorithm 3.39, come from Huffman [6] and Moore [14]. Non-
deterministic finite automata were first proposed by Rabin and Scott {15]; the
subset, construction of Algorithm 3.20, showing the equivalence of deterministic
and nondeterministic finite automata, is from there.

McNaughton and Yamada [13] firsi gave an algorithm to convert regular
expressions directly to deferministic finite automata. Algorithm 3.36 described
in Section 3.9 was first used by Aho in creating the Unix regular-expression
matching tool egrep. This algorithm was also used in the regular-expression
pattern matching routines in awk (3]. The approach of using nondeterministic
automata as an intermediary is due Thompson [17]. The latter paper also con-
tains the algorithi for the direct sirmiation of nondeterministic finite automata
{Algorithm 3.22), which was used by Thompson in the text editor QED.

Lesk developed the first version of Lex and then Lesk and Schmidt created
a second version using Algorithm 3.36 [10]. Many variants of Lex have been
subsequently implemented. The GNU version, Flex, can be downlnaded, along
with documentation at [4]. Popular Java versions of Lex include JFlex [7] and
JLex [8].

The KMP algorithm, discussed in the exercises Lo Section 3.4 just prior to
Exercise 3.1.3, is from {11]. Its generalization to many keywords appears in [2]
and was used by Aho in the first implementation of the Unix utility fgrep.

The theory of finite automata and regular expressions is covered in [5]. A
survey of string-matching techniques is tn [1].

1. Aho, A. V., “Algorithins for finding patterns in strings,” in Handbook of
Theoretical Cornputer Science (J. van Leeuwen, cd.), Vol. A, Ch, 5, MIT

190

2.

10.

11.

12.

13.

14.

16.

17.

CHAPTER 3. LEXICAL ANALYSIS

Press, Cambridge, 1990.

Aho, A. V. and M. J. Coragick, “Efficient string matching: an aid to
bibliographic search,” Comm. ACM 18:6 (1975), pp. 333-340.

. Aho, A, V., B. W. Kernighan, and P. .J. Weinberger, The AWK Program-

ming Languoge, Addison-Wesley, Boston, MA, 1988.

. Flex home page http://www.gnu.org/software/flex/, Free Software

Foundation.

Hoperoft, J. E., R. Motwani, and J. D. Ullman, fntroduction o Automata
Theory, Languages, and Computation, Addison-Wesley, Boston MA., 2006,

Hufftnan, D. A., “The synthesis of sequential machines,” J. Franklin Inst.
257 (1954), pp. 34, 161, 190, 275~303.

JFlex home page http://jflex.de/ .

http://www.cs.princeton.edu/ appel/modern/java/Jlex .

. Kleene, 8. C., “Representation of events in uerve nets,” in [16], pp. 3 -40.

Lesk, M. E., “Lex a lexical analyzer generator,” Computing Science
Tech. Report 39, Bell Laboratories, Murray Hill, NJ, 1975. A similar
document with the same title but with E. Schimidt as a coauthor, appears
in Vol. 2 of the Uniz Programmer’s Manual, Bell laboratories, Murray Hill
NI, 1975; see http://dinosaur. compilertools.net/lex/index. html .

Knuth, D. E., J. H. Morris, and V. R. Pratt, “Fast pattern matching in
strings,” STAM J. Computing 6:2 (1977}, pp. 323-350.

McCullough, W. 8. and W. Pitts, “A logical calculus of the ideas imma-
nent in nervous activity,” Bull. Math. Biophysics 5 (1943}, pp. 115-133.

MeNaughton, R. and H. Yamada, “Regular expressions and state graphs
for automata,” IRE Trans. on Electronic Computers EC-9:1 (1960), pp.
38-47.

Moore, E. F., “Gedanken experiments on sequential machines,” in [16],
pp. 129 -153.

. Rabin, M. O. and D. Scott, “Finite automata and their decision prob-

lems,” IBM J. Res. and Dewel. 3:2 (1959}, pp- 114-125.

Shannon, C. and J. McCarthy (eds.), Automata Studies, Princeton Univ.
Press, 1956.

Thompson, K., “Regular expression search algorithm,” Comm. ACM 11:6
(1968), pp. 419 422

Chapter 4
Syntax Analysis

This chapter is devoted to parsing methods that are typically used in compilers.
We first present the basic concepts, then techniques suitable for hand implemen-
tation, and finally algorithms that have been used in automated tools. Since
programs may contain syntactic errors, we discuss extensions of the parsing
methods for recovery from common errors.

By design, every programming language has precise rules that prescribe the
syntactic structure of well-formed programs. In C, for example, a program is
made up of functions, a function cut of declarations and statements, a statement
out of expressions, and so on. The syntax of programming language constructs
can be specified by context-free grammars or BNF (Backns-Naur Form) nota-
tion, introduced in Section 2.2, Grammars offer significant benefits for both
language designers and compiler writers.

¢ A grammar gives a precise, yet easy-to-understand, syntactic specification
of a programming language.

¢ From certain classes of grammars, we can construct automatically an efii-
cient parser that determines the syntactic structure of a source program.
As a side benefit, the parser-construction process can reveal syntactic
ambiguities and trouble spots that might have slipped through the initial
design phase of a language.

e The structure imparted to a language by a properly designed grammar
is useful for translating source programs into correct object code and for
detecting errors.

» A grammar allows a language 10 be evolved or developed iteratively, by
adding new constructs to perform new tasks. These new constructs can
be integrated more easily into an implementation that follows the gram-
matical structure of the language.

191

192 CHAPTER 4. SYNTAX ANALYSIS

4,1 Introduction

In this section, we examine the way the parser fits into a typical compiler. We
then look at typical grammars for arithmetic expressions. Grammars for ex-
pressions suflice for iilustrating the essence of parsing, since parsing technigques
for expressions carry over to most programming constructs. This section ends
with a discussion of error handling, since the parser must respond gracefully to
finding that its input cannot be generated by its grammar.

4.1.1 The Role of the Parser

In our compiler model, the parser obtains a string of tokens from the lexical
analyzer, as shown in Fig. 4.1, and verifics that the string of token names
can be generated by the grammar for the source language. We expect the
parser to report any syntax errors in an intelligible fashion and to recover from
commonly occurring crrors to continue processing the remainder of the program.
Conceptually, for well-formed programs, the parser constructs a parse tree and
passes it to the rest of the compiler for further processing. In fact, the parse
tree need not be constructed explicitly, since checking and translation actions
can be interspersed with parsing, as we shall see. Thus, the parser and the rest
of the front end could well be implemented by a single module.

token | 1 .

source | Lexical |— | DParse ' Rest of | intermediaie
>[Parser t---- =t _ -
program| Analyzer —-——— ' tree ' Front End |representation
get nert _J' !
token ’ - -
Symbaol
Table

Figure 4.1: Position of parser in compiler model

There are three general types of parsers for grammars: universal, top-down,
and hottom-up. Universal parsing methods such as the Cocke-Younger-Kasami
algorithm and Earley's algorithm can parse any grammar (see the bibliographic
notes). These general methods are, however, too inefficient to use in production
compilers.

The methods commonly used in compilers can be classified as being either
top-down or bottom-up. As implied by their names, top-down methods build
parse trees from the top (root) to the bottom (leaves), while bottom-up methods
start from the leaves and work their way up to the root. In either case, the
input, to the parser is scanned from left to right, one symbol at a time.

4.1. INTRODUCTION 193

The most cfficient top-down and bettom-up methods work only for sub-
classes of grainmars, but several of these classes, particularly, LL and LR gram-
mars, are expressive enough to describe most of the syntactic constructs in
modern programming languages. Parsers implemented by hand often use LL
grammars; for example, the predictive-parsing approach of Section 2.4.2 works
for LL grammars. Darsers for the larger class of LR grammars are nsually
constructed using automated tools.

In thig chapter, we assume that the output of the parser is some represent-
ation of the parse tree for the stream of tokens that comes from the lexical
analyzer. In practice, there are a nmber of tasks that might be conducted
during parsing, such as collecting information about various tokens into the
symbol table, performing type checking and other kinds of semantic analysis,
and generating intermediate code. We have lumped all of these activities into
the “rest of the front end” box in Fig. 4.1. These activities will be covered in
detail in subsequent chaptors.

4.1.2 Representative Grammars

Some of the grammars that will be examined in this chapter are presented here
for ease of reference. Construcis thal begin with keywords like while or int, are
relatively easy to parse, because the keyword guides the choice of the grammar
production that must be applied to match the input. We therefore concentrate
on expressions, which present more of challcnge because of the associativity
and preccdence of operators.

Associativity and precedence are captured in the following grammar, which
is similar to ones used in Chapter 2 for describing expressions, terms, and
factors. E represents expressions consisting of terms separated by + signs, T
represents terms consisting of factors separated by * signs, and F represents
factors that can be cither parenthesized expressions or identifiers:

E - E+T7 7T
T - T+F|F (4.1)
Foo (E) | id

Expression grammar (4.1) belongs to the class of LR grammars that are suitable
for bottom-up parsing. This grammar can be adapted to handle additional
operators and additional levels of precedence. However, it cannot be used for
top-down parsing because it is left recursive.

The following non-left-recursive variant of the expression grammar (4.1) will
be used for top-down parsing:

E -+ TFE

E - +TF|

I - F7T (4.2}
T = *xFT | ¢

Fo= (E)|

194 CHAPTER 4. SYNTAX ANALYSIS

The following grammar treats + and alike, so it is useful for i]iustra,ting
techniques for handling ambiguities during parsing:

E - E+E|ExE|(E)|id (4.3)

Here, F represents expressions of al} types. Grammar (4.3) permits more than
one parse tree for expressions like g + b c.

4.1.3 Syntax Error Handling

The remainder of this section considers the nature of syntactic errors and gen-
eral strategies for error recovery. Two of these strategies, called panic-mode and
phrase-level recovery, are discussed in more detail in connection with specific
parsing methods.

If a compiler had 1o process only correct programs, its design and implemen-
tation would be simplified greatly. However, a compiler is expected to assist
the programmer in locating and tracking down crrors that inevitably creep into
programs, despite the programmer’s best efforts. Strikingly, few languages have
been designed with error handling in mind, even though errors are so commébn-
place. Qur civilization would hé radically different if spoken langnages had
the same requirements for syntactic accuracy as computer languages. Most
programming language specifications do not describe how a compiler should
respond to errors; error handiing is left to the compiler designer. Planning the
error handling right from the start can both simplify the structure of a compiler
and improve its handling of errors.

Common programming errors can occur at many different levels.

e Lexical errars include misspellings of identifiers, keywords, or operators —
e.g., the use of an identifier elipseSize instead of ellipseSize — and
missing quotes around text intended as a string.

¢ Syntactic errors include misplaced semicolons or extra or missing braces;
that is, “{” or “}.” As another example, in C or Java, the appearance
of a case statement without an enclosing switch is a syntactic error
(however, this situation is usually allowed by the parser and canght later
in the processing, as the compiler attempts to generate code).

e Semantic errors include type mismatches belween operators and operands.
An example is a return statement in a Java method with result type void.

e Logicel errors can be anything from incorrect reasoning on the part of
the programmer to the use in a C program of the assignment operator =
instead of the comparison operator ==. The program containing = may
be well formed; however, it may not reflect the programmer’s intent.

The precision of parsing methods allows syntactic errors to be detected very
efficiently. Scveral parsing methods, such as the LL and LR methods, detect

4.1. INTRODUCTION 195

an error as soon as possible; that is, when the stream of tokens from the lexical
analyzer cannot be parsed further according to the grammanr for the language.
More precisely, they have the wviable-prefiz property, meaning that they detect
that an error has occurred as soon as they see a prefix of the input that cannot
be completed to form a string in the language.

Another reason for emphasizing error recovery during parsing is that many
errors appear syvntactic, whatever their cause, and are exposed when parsing
cannot continue. A few semantic errors, such as type mismatches, can also be
detected efficiently; however, accurate detection of semantic and logical errors
at compile time is in general a difficult task.

The error handler in a parser has goals that are simple to state but chal-
lenging to realize:

¢ Report. the presence of ctrors clearly and accurately.
¢ Recover from each error quickly enough to detect subsequent errors.
¢ Add minimal overhead to the processing of correct programs.

Fortunately, common errors are simple ones, and a relatively straightforward
error-handling mechanism often suffices.

How should an error handler report the presence of an error? At the very
least, it must report the place in the source prograra where an error is detected,
because there is a good chance that the actual error occurred within the previous
few tokens. A common strategy is to print the offending line with a pointer to
the position at which an error is detected.

4.1.4 Error-Recovery Strategies

Once an error is detected, how should the parser recover? Although no strategy
has proven itself universally acceptable, a few methods have broad applicabil-
ity. The simplest approach is for the parscr to quit with an informative error
message when it detects the first error. Additional errors are often uncovered
if the parser can restore itself to a state where processing of the input can con-
tinue with reasonable hopes that the further processing will provide meaningful
diagnostic information. If errors pile up, it is better for the compiler to give
up after exceeding some error limit than to produce an annoying avalanche of
“spurious” errors,

The balance of this section is devoted to the following recovery strategies:
panic-mode, phrase-level, error-productions, and global-correction.

Panic-Mode Recovery

With this method, on discovering an error, the parser discards input symbols
one at a time until one of a designated set of synchronizing tokens is found.
The synchronizing tokens are nsually delimiters, such as semicolon or }, whose
role in the source program is clear and unambiguous. The compiler designer

196 CHAPTER 4. SYNTAX ANALYSIS

must select the synchronizing tokens appropriate for the source language. While
panic-mode correction often skips a considerable amount of input without check-
ing it for additional errors, it has the advantage of simplicity, and, unlike some
methods Lo be considered later, is guaranteed not to go into an infinite loop.

Phrase-Level Recovery

On discovering an error, a parser may perform local correction on the remaining
input; that is, it may replace a prefix of the remaining input by some string that
allows the parser to continue. A typical local correction is to replace a comma,
by a semicolon, delete an extrancous semicolon, or insert a missing semicolon.
The choice of the local correction is left 1o the compiler designer. Of course,
we must be careful to choose replacements that do not lead to infinite loops, as
would be the case, for example, i we always mserted something on the input
ahead of the current input symbol.

Phrase-level replacement has been used in several error-repairing compilers,
as it can correct any input string. Its major drawback is the difficulty it has in
coping with situations in which the actual error has occurred before the point
of detection.

Error Productions

By anticipating common errors that might be encountered, we can augment the
grammar for the language at hand with productions that generate the erroneous
constructs, A parser constructed from a grammar augmented by these error
productions deteets the anticipated errors when an error production is used
during parsing. The parser can Lhen generate appropriate error diagnostics
about the erroneous construct that has been recognized in the input.

Global Correction

Ideally, we would like a compiler to make as few changes as possible in processing
an incorrect input string. There are algorithms for choosing a minimal sequence
of changes to obtain a globally least-cost correction. Given an incorrect input
string and grammar ¢, these algorithms will find a parse tree for a related
string y, such that the number of insertions, deletions, and changes of tokens
required to transform z into y is as small as possible. Unfortunately, these
methods are in general too costly to implement in terms of time and space, so
these fcchniques are currently only of theoretical interest.

Do note thal a closest correct program may not be what the programmer had
in mind. Nevertheless, the notion of least-cost correction provides a vardstick
for evaluating error-recovery techniques, and has been used for finding optimal
replacement strings for phrase-level recovery.

4.2, CONTEXT-FREE CRAMMARS 197

4.2 Context-Free Grammars

Grammars were introduced in Section 2.2 to systematically describe the syntax
of programming language constructs like expressions and statements. Using
a syntactic variable simmf to denote stalements and variable ezpr to denote
expressiong, the production

st — if { expr) stmnt clse stmt {4.4)

gpecifies the structure of this form of conditional statement. Other productions
then define precisely what an ezpris and what else a sémt can be.

This section reviews the definition of a context-free grammar and introduces
terminology for talking ahout parsing. In particular, the notion of derivations
is very helpful for discussing the order in which productions are applied during
parsing,.

4.2.1 The Formal Definition of a Context-Free Grammar

From Section 2.2, a context-free grammar {gramrar for short) consists of ter-
minals, nonterminals, a start symbol, and produclions.

1. Terminals are the basic symbols from which strings are formed. The term
“token name” is a synonym for “terminal” and frequently we will use the
word “token” for terminal when it is clear that we are talking about just
the token name. We assume that the terminals are the first components
of the tokens output by the lexical analyzer. In (4.4}, the terminals are
the keywords if and else and the symbols “{” and “).”

2. Nonterminals are syntactic variables that denote sets of strings. In (4.4),
stmt and expr arc nonterminals. The sots of strings denoted by nontermi-
nals help define the Janguage gencrated by the grammar. Nonterminals
impose a hierarchical structure on the language thai is key to syntax
analysis and {ranslation.

3. In a grammar, one nonterminal is distinguished as the start symbol, and
the set of strings it denotes is the language generated by the grammar.
Conventionally, the productions for the start symbol are listed first.

4. The productions of a grammar specify the manner in which the termi-
nals and nonterminals can be combined to form strings. Each production
consists of

(a) A nonterminal called the khead or left side of the production; this
production defines some of the strings denoted by the head.
(b) The symbol —. Sometimes : := has been used in place of the arrow,

(c) A body or right side consisting of zero or more terminals and non-
terminals. The components of the body describe one way in which
strings of the nonterminal at the head can be constructed.

198 CHAPTER 4. SYNTAX ANALYSIS

Example 4.5: The grammar in Fig. 4.2 defines simple arithmetic expressions.
In this grammar, the terminal symbols are
d+ -/ ()

The nonterminal symbols are expression, term and factor, and expression is the
start symbol O

eIpression — exrpression + term
eTpression — eTpression — term
erpression — term
lerin — lerm * factor
term — term [factor
term — factor
factor — (expression)
factor = id

Figure 4.2: Grammar for simple arithmetic expressions

4.2.2 Notational Conventions

To avoid always having to state that “these are the terminals,” “these are the
nonterminals,” and so on, the following notational conventions for grammars
will be used throughout the remainder of this book.

1. These symbols are terminals:

(a) Lowcrcase letters early in the alphabet, such as «, b, ¢

(b) Operator symhols such as -+, *, and so on.

{¢) Punctuation symbols such as parentheses, comma, and so on.

(d) The digits 0,1,...,9.

(¢) Boldface strings such as id or if, each of which represents a single
terminal symbol.

2. These symbols are nonterminals:

{a) Uppercase letters early in the alphabet, such as A, B, C.
(b) The letter .S, which, when il appears, is usually the start symbol.
{¢) Lowercase, italic names such as expr or stmi.

(d) When discussing programming constructs, uppercase letters may be
used to represent nonterrninals for the constructs. For example, non-
terminals for expressions, terms, and factors are often represented by
E, T, and F, respectively.

4.2. CONTEXT-FREE GRAMMARS 199

3. Uppercase leiters late in the alphabet, such as X, ¥, Z, represent, grammar
symbols; that is, either nonterminals or terminals,

4. Lowercase letters late in the alphabet, chiclly w,v, ..., #, represent {pos-
gibly empty) strings of terminals.

5. Lowercase Greek letters, o, 3, v lor example, represent (possibly empty)
strings of grammar symbols. Thus, a generic production can be written
as 4 = a, where A is the head and o the body.

6. A set of productions A — oy, A = &g, ..., 4 = @ with a common head
A (call them A-productions), may be written A — a1 | e | -+ | ay. Call
(1, Qg,... , @ the alternatives for A,

7. Unless stated otherwise, the head of the first production is the start sym-
hol.

Example 4.6: Using these conventions, the grammar of Example 4.5 can he
rewritten conciscly as

E - E+T|E-T|T
T > T+F|T/F|F
F = (E)|id

The notational conventions tell us that E, T, and F are nonterminals, with ¥
the start symbol. The remaining symbols are terminals. O

4.2.3 Derivations

The construction of a parse tree can be made precise by taking a derivational
view, In which productions are treated as rewriting rules. Beginning with the
start symbol, each rewriting step replaces a nonterminal by the body of one of its
productions. This derivational view corresponds to the top-down construction
of a parse tree, but the precision afforded by derivations will be especially helpful
when bottom-up parsing is discussed., As we shall sce, botiom-up parsing is
related to a class of derivations khown as “rightinost” derivations, in which the
rightmost nonterminal is rewritten at each step,

For example, consider the following grammar, with a single nonterminal E,
which adds a production £ — — F to the grammar {4.3):

E - E+E|ExE| —E](F)|id (4.7)
The production ¥ - — E signifies that if E denotes an expression, then ~ E
must also denote an expression. The replacement. of a single F by — £ will be

described by writing

E= -F

200 CHAPTER 4. SYNTAX ANALYSIS

which is read, “E derives —E.” The production E — (E) can be applied
to replace any instance of E in any string of grammar symbols by (E), e.g.,
ExE= (E)*E or ExE = Ex(E). We can take a single £ and repeatedly
apply productions in any order to get a sequence of replacements. For example,

= -—E= -{E)= —(id)

We call such a sequence of replacements a derivation of —(id) from E. This
derivation provides a proof that the string —(id) is one particular instance of
an expression.

For a general definition of derivation, consider a nonterminal A in the middle
of a sequence of grammar symbols, as in ad3, where @ and 3 are arbitrary
strings of grammar symbols. Suppose A — v is a production. Then, we write
aAF = ay3. The symbol = means, “derives in one step.” When a sequence
of derivation steps a1 = az = -+ = ay rewrites a; to afn, we say o derives

. Often, we wish to say, “derweb in zero or more steps.” For this purpose,
we can use the symbol = . Thus,

L a3 a,for any string «, and
2. fa= fand 8= v, then a = ~.

Likewise, =J-r:> means, “derives in one or more steps.”

IS o, where S is the start symbol of a grammar &, we say that a is a
sentential form of G. Note that a sentential form may contain both terminals
and nonterminals, and may be empty. A sentence of G is a sentential form with
no nonterminals. The language generated by a grammar is its set of sentences.
Thus, a string of terminalg w is in L(F), the langunage gencrated by &, if and
only if w is a sentence of & {or § 5 w). A language that can be generated by
a grammar is said to be a context-free language. If two grammars generate the
same language, the grammars are said to be equivalent.

The string —(id + id) is a sentence of grammar (4.7) because there is a
derivation

E=-—E=—(E)=>—(E+E)=> —(id+E) > -(id+id) (48)

The strings E, —E, ~(E),... ,—~(id + id) are all sentential forms of this gram-
mar. We write E = —(id + id) to indicate that —(id + id) can be derived
from E.

At each step in a derivation, there are two choices to be made. We need
to choose which nonterminal to replace, and having made this choice, we must
pick a production with that nouterminal as head. For example, the following
alternative derivation of —(id + id) differs from derivation (4.8) in the last two

steps:

E= E=—(E)>—(E+E)=> —(E+id)= —(id+id) (49)

4.2. CONTEXT-FREE GRAMMARS 201

Each nonterminal is replaced by the same body in the two dcrivations, but the
order of replacements is different.

To understand how parsers work, we shall consider derivations in which the
nonterminal to be replaced at each step is chosen as follows:

1. In leftmest derivations, the leftmost nonterminal in each sentential is al-
ways chosen. If & = g is a step in which the leftmost nonterminal in « is
replaced, we write o ;:> 3.

m

2. In rightmost derivations, the rightmost nonterminal is always chosen; we

write o« = [in this case.

rm

Derivation (4.8} is leftmost, so it can be rewritten as
E:> E:>—(E):> E+E):> (id+E)z=> ~(id + id}

Note that {4.9) is a rightmost derivation.
Using our notational conventions, every leftmost step can be written as
wAy = wdvy, where w consists of ferminals only, A — 4 is the production

{
a,pphegln and v is a string of gramumar | symbois. To emphasize that o derives 2

by a leftmost derivation, we write o :> R) =, @, then we say that @ is a
11
left-sentential form of the grammar at ha.nd

Analogous definitions hold for rightmost derivations. Rightmost derivations
are sometimes called canonicel derivations.

4.2.4 Parse Trees and Derivations

A parse tree is a graphical representation of a derivation that filters out the
order in which productions are applied to replace nonterminals. Each interior
node of a parse tree represents the application of a produetion. The interior
node is labeled with the nonterminal 4 in the head of the production; the
children of the node are labeled, from left to right, by the symbols in the body
of the production by which this 4 was replaced during the derivation.

For example, the parse tree for —(id + id) in Fig. 4.3, results from the
derivation (4.8) as well as derivation (4.9).

The leaves of a parse tree are labeled by nonterminals or terminals and, read
from left to right, constitute a scatential form, called the yield or frontier of the
tree,

To see the relationship between derivations and parse trees, consider any
derivation a; = ag = -+ = @,, where a; is a single nonterminal 4. For each
sentential form ¢; in the derivation, we can construct a parse tree whose yield
is er;. The process is an induction on 4.

BASIS: The tree for ay = 4 is a single node labeled 4.

202 CHAPTER 4. SYNTAX ANALYSIS

Figure 4.3: Parse tree for —(id + id}

INDUCTION: Suppose we already have constructed a parse tree with vield
;1 = X1 Xy -+ X} (note that according to our notational conventions, each
grammar symbol X; is either a nonterminal or a terminal). Suppose «; is
derived from «;_1 by replacing X;, a nonterminal, by 8 = ¥1Y3---¥,,. That
is, at the ith step of the derivation, production X; — 8 is applied to @i to
derive oy = X1 Xy - X5 18X, - Xy,

To model this step of the derivation, find the jth leaf from the left in the
current parse tree. This leaf is labeled X;. Give this leaf m children, labeled
¥1,Y2, ..., Y, from the left. As a special case, if m = 0, then 3 = ¢, and we
give the jth leaf one child labeled e.

Example 4.10: The sequence of parse trees constructed from the derivation
(4.8) is shown in Fig. 4.4. In the first step of the derivation, £ = —&. To
made] this step, add two children, labeled — and E, to the root E of the initial
tree. The result is the second tree.

In the second step of the derivation, —E = —(£). Consequently, add three
children, labeled (, E, and), to the leaf labeled E of the second tree, to
obtain the third tree with yield —=(£). Continuing in this fashion we obtain the
complete parse tree as the sixth tree. O

Since a parse tree ignores variations in the order in which symbols in senten-
tial forms are replaced, there is a many-to-one relationship between derivations
and parse trees. For example, both derivations (4.8) and (4.9), are associated
with the same final parse tree of Fig, 4.4.

In what follows, we shall frequently parse by producing a leftmost or a
rightmost derivation, since there is a one-to-one relationship betwcen parse
trees and either lefimost or rightmost derivations. Both leftmost and righumost
derivations pick a particular order for replacing symbols in sentential forms, so
they too filter out variations in the order. It is not hard to show that every parse
tree has associated with it a unique leftmost and a unique rightmost derivation.

4.2. CONTEXT-FREE GRAMMARS 203

B

K = E
/N /N
- B - E

F i = E
VRN N\ VRN
— B E B

/J;\ RN VA RN

{) (E_) (E_)
VRN RN RN
E + E }|3 + F £|7,' + }1}7,‘

id id id

Figure 4.4: Sequence of parse trees for derivation (4.8)

4.2.5 Ambiguity

From Section 2.2.4, a grammar that produces more than one parse tree for some
sentence is said to be ambiguous. Put another way, an ambiguous gramnmar is
one that proeduces more than one leftmost derivation or more than one rightmost
derivation for the same sentence.

Example 4.11: The arithmetic expression grammar {4.3) permits two distinct
leftmost derivations for the sentence id + id » id;

E = E+F F = EsxE
= id+ £ = E+FExE
= d+ExE = d+ExE
= id+id=*FE = id+id*FE
= id+id=xid = id+id=id

The corresponding parse trees appear in Fig. 4.5,

Note that the parse tree of Fig. 4.5(a) reflects the commonly assumed prece-
dence of + and #, while the tree of Fig. 4.5(b} does not. That s, it is customary
to treat operator * as having higher precedence than +, corresponding to the
tact that we would normally evaluate an expression like a + b+ c asa + (b*¢),
rather than as {a + b)) *c. O

For most parsers, it is desirable that the grammar be made unambiguons,
for if it is not, we cannot uniguely determine which parse tree to select for a
sentence. In other cases, it is convenient to use carefully chosen ambiguous
grammars, together with disembiguating rules that “throw away” undesirable
parse trees, leaving only one trec for each sentence.

204 CHAPTER 4. SYNTAX ANALYSIS

PARN E/T\E
RPN SN

id K * B id
|] | |
id id id id
(a) (b)

Figure 4.5: Two parse trees for id+id*id

4.2.6 Verifying the Language Generated by a Grammar

Although compiler desighers rately do so for a complete programming-language
grammar, it is useful to be able to reason that a given set of productions gener-
ates a particular language. Troublesome constructs can be studied by writing
a concise, abstract grammar and studying the language that it generates. We
shall construet such a grammar for conditional statements below.

A proof that a grammar & generates a language L has two parts: show that
every string generated by & is in L, and conversely that every string in I can
indced be generated by G.

Example 4.12: Consider the following grammar:
S5(85)5 | ¢ (4.13)

It may not be initially apparent, but this simple grammar generates all
strings of balanced parentheses, and only such strings. To see why, we shall
show first that every sentence derivable from S is balanced, and then that every
balanced string is derivable from . To show that every sentence derivable from
S is balanced, we use an inductive proof on the number of steps n in a derivation.

BASIS: The hasis is n = 1. The only string of terminals derivable from § in
one step is the empty string, which surely is balanced.

INDUCTICGN: Now assumc that all derivations of fewer than n steps produce
balanced sentences, and consider a leftmost derivation of exactly n steps. Such
a derivation must be of the form

S= (5153 @8 (v)y
im frn Im

The derivations of and y from S take fewer than n steps, so by the inductive
hypothesis # and y are balanced. Therefore, the string (z}y must be balanced.
That is, it has an equal number of left and right parentheses, and cvery prefix
has at least as many lef, parentheses as right.

4.2. CONTEXT-FREE GRAMMARS 205

Having thus shown that any string derivable from S is balanced, we must
next show that every balanced string is derivable from S. To do so, use induction
on the length of a string,

BASIS: If the string is of length 0, it must be ¢, which is balanced.

INDUCTION: First, observe that every balanced string has even length. As-
sume that every balanced string of length less than 2n is derivable from S,
and consider a balanced string w of length 2r, n > 1. Surely w begins with a
left parenthesis. Let (x) be the shortest nonempty prefix of w having an equal
number of left and right parentheses. Then w can be written as w = (x)y where
both z and y are balanced. Since z and y are of length less than 2n, they are
derivable from & by the inductive hypothesis. Thus, we can find a derivation
of the form

S=(5)S2 (@8> (@)y

proving that « = (2)y is also derivable from 5. O

4.2.7 Context-Free Grammars Versus Regular
Expressions

Before leaving this section on grammars and their properties, we establish that
grammars are a more powerful notation than regular expressions. Every con-
gtruct that can be described by a regular expression can be deseribed by a gram-
mar, but not vice-versa. Alternatively, every regular language is a context-free
language, but not vice-versa.

For example, the regular expression (a|b)*abb and the grammar

Ay — G.Au ' bAU ‘ ady
Al - bAg

A2 —F bAg

Ay = €

deseribe the same language, the set of strings of a’s and &’s ending in abb.

We can construct mechanically a grammar to recognize the same language
as a nondeterministic finite automaton (NFA). The grammar above was con-
structed from the NFA in Fig. 3.24 using the following construction:

1. For each state ¢ of the NFA, create a nonterminal A;.

2. If state ¢ has a transition to state j on input a, add the production 4; —
aAj. I state i goes to statc j on input ¢, add the production 4; —+ A;.

3. If ¢ is an accepting state, add 4; — e.

4. If i is the start state, make A; be the start symbol of the grammar.

206 CHAPTER 4. SYNTAX ANALYSIS

On the other hand, the language L = {a"b" | n > 1} with an equal number
of a’s and b’s is a prototypical exampie of a language that can be described
by a grammar but not by a regular expression. To see why, suppose L were
the language defined by some regnlar expression. We could construct a DFA D
with a finite number of states, say k, to accept L. Since D has only k states, for
an input beginning with more than k @’s, D must euter some state twice, say
s;, as in Fig. 4.6. Suppose that the path from s; back to itself is labeled with
a sequence o/~*, Since a*}’ is in the language, therc must be a path labeled &
from s; to an accepting state f. But, then there is also a path from the initial
state sp through s; to f labeled u?b?, as shown in Fig. 4.6. Thus, I also accepts
a’b*, which is not in the language, contradicting the assumption that L is the
language accepted by D.

path labeled o/ ¢

. path lubeled af path labeled bt .

Fignre 4.6: DFA D accepting both a*h* and o¥'.

Colloquially, we say that “finite automata cannot count,” meaning that
a finite automaton cannot accept a language like {a™H" |n > 1} that would
require it t¢ keep count of the number of a’s before it sees the ¥'s. Likewise, “a
grammar can count two items but not three,” as we shall see when we consider
non-context-free language constructs in Section 4.3.5.

4.2.8 TExercises for Section 4.2

Exercise 4.2.1: Consider the context-free grammar:
5 - 5585+ 1885+]a

and the string aa + a*.
a) Give a leftinost derivation for the string.
b) Give a rightmost derivation for the string.
¢) Give a parse tree for the string.
! d) Is the grammar ambiguous or unambiguous? Justify your answer.
! &) Describe the language generated by this grammar.

Exercise 4.2.2: Repeat Exercise 4.2.1 for each of the following grammars and
strings:

4.2. CONTEXT-FREE GRAMMARS 207

a) § — 081]01 with string 000111.

by § — + S| * S5 with string + * ano.

1e) § = S(8) 8| e with string (()()).

td)S - S+ S185S51(8)]8 % | awith string (a + a) *c.

'e) S —» (L)|aand L L, S| S with string ((a,a),a,{a))-
NS - aS5bS|b85aS|ewith string aabbab.

! g) The following grammar for baclean expressions:

bexpr — bexpr or bierm | bterm
bterm — bterm and bfactor | bfector
bfacior - not bfactor | (bezpr) | true | false

Exercise 4.2.3: Design grammars for the following languages:

a) The set of all strings of Os and 1s such that cvery 0 is immediately followed
by at least one 1.

! b) The sel of all strings of Os and 1s that are pelindromes; that ig, the string
reads the same backward as forward.

!'¢) The set of all strings of 0s and 1s with an equal number of 0s and 1s.
11'd) The set of all strings of 0s and 1s with an unequal number of 0s and 1s.

te) The set of all strings of 0s and 1s in which 011 does not appear as a
substring.

1 £) The set of all strings of Os and 1s of the form zy, where & # y and z and
y are of the same length.

! Exercise 4.2.4: There is an extended grammar notation in common use. In
this notation, square and curly braces in production bodies are metasymbols
(like = or) with the following meanings:

i) Square braces around a grammar symbol or symbols denotes that these
constructs are optional. Thus, production 4 - X [V] Z has the same
effect as the two productions A =+ XV Z and 4 = X Z.

i) Curly braces around a grammar symbol or symbols says that these sym-
hols may be repeated any number of tires, including zero times. Thus,
A — X {Y Z} has the same effect as the infinite sequence of productions
A X A-XY Z A5 XY ZY Z, and s0 on.

208 CHAPTER 4. SYNTAX ANALYSIS

Show that these two extensions do not add power to grammars; that is, any
langnage that can be generated by a grammar with these extensions can be
generated by a grammar without the extensions.

Exercise 4.2.5: Use the braces described in Excrcige 4.2.4 to simplify the
following grammar for statement blocks and conditional statements:

stmt = if expr then stmt else stmi
| if sttt then stmt
| begin stmtList end
stmitlist — stmiy stmtList | stmt

! Exercise 4.2.6: Exiend the idea of Exercise 4.2.4 to allow any regular expres-
sion of grammar symbols in the body of a production. Show that this extension
does not allow grammars to define any new languages.

! Exercise 4.2.7: A grammar symbol X ({terminal or nonterminal) is useless if
there is no derivation of the form § = wXy = waxy. That is, X can never
appear in the derivation of any sentence.

a) Give an algorithm to eliminate from a grammar all productions containing
useless symbols.

b) Apply vour algorithm to the grammar:

S —= 0]A
A = AB
B = 1

Exercise 4.2.8: The grammar in Fig. 4.7 generates declarations for a sin-
gle numerical identifier; these declarations involve four different, independent
properties of numbers. '

stmt — declare id optionList
optionList — optionList option | €

option — mode | scale | precision | base
mode — real | complex

scale —+ fixed | floating

precision — single | double

base — binary | decimal

Figure 4.7: A grammar for multi-attribute declarations

a) Generalize the grammar of Fig. 4.7 by allowing n options A;, for some
fixed n and for i = 1,2...,n, where 4; can be either a; or &. Your
grammar should use only O(n) grammar symbols and have a total length
of productions that is G{n).

4.3. WRITING A GRAMMAR 209

! b) The grammar of Fig. 4.7 and its generalization in part () allow declara-
tions that are contradictory and/or redundant, such as:

declare foo real fixed real floating

We could insist that the syuntax of the language forbid such declarations;
that is, every declaration generated by the grammar has exactly one value
for each of the n options. If we do, then for any fixed n there is only a finite
number of legal declarations. The language of legal declarations thus has
a grammar (and also a regular expression), as any finite language does.
The obvious grammar, in which the start symbol has a production for
cvery legal declaration has n! productions and a total preduction length
of O(n x n!). You must do better: a total production length that is
Q(n2™),

! ¢) Show that any grammar for part {(b) must have a total production length
of at least 2™,

d) What does part {c) say aboul the feasibility of enforcing honredundancy
and noncontradiction among options in declarations via the syntax of the
programming language?

4.3 Writing a Grammar

Grammars are capable of describing most, but not all, of the syntax of pro-
gramming languages. For instanee, the requirement, that identifiers be declared
hefore they are used, cannot be described by a context-free grammar. Therefore,
the scquences of tokens accepted by a parser form a superset of the program-
ming language; snbsequent phases of the compiler must analyze the output of
the parser to ensure compliance with rules that are not checked by the parser.
This section beging with a discussion of how to divide work between a lexical
analyzer and a parser. We then consider several transformations that could be
applied to get a grammar more suitable for parsing. One technique can elim-
inate ambiguity in the grammar, and other techmiques — left-recursion elimi-
nation and left factoring — are useful for rewriting grammars so they become
suitable for top-dewn parsing. We conclude this section by considering some
programming language constructs that cannot be described by any grammar.

4.3.1 Lexical Versus Syntactic Analysis

As we observed in Section 4.2.7, everything that can he described by a regular
expression can also be described by a grammar. We may therefore reasonably
ask: “Why use regular expressions to define the lexical syntax of a language?”
There are several reasons.

210 CHAPTER 4. SYNTAX ANALYSIS

1. Separating the syntactic structure of a language into lexical and non-
lexical parts provides a convenient way of modularizing the front end of
a compiler into two manageable-sized components.

2. The lexical rules of a language are frequently quite simple, and to describe
them we do not need a notation as powerful as grammars,

3. Regular expressions generally provide a more concise and eagier-to-under-
stand notation for tokens than grammars.

4. More efficient lexical analyzers can be constructed automatically from
regular expressions than from arbitrary grammars.

There are no firm guidelines as to what to put into the lexical rules, as op-
posed to the syntactic rules. Regular expressions are most useful for describing
the structure of constructs such as identifiers, constants, keywords, and white
space. Graminars, on the other hand, are most useful for describing nested
structures such as balanced parentheses, matching begin-end’s, corresponding
if-then-else’s, and so on. These nested structures cannot be described by regular
expressions,

4.3.2 FEliminating Ambiguity

Sometimes an ambiguous grammar can be rewritten to eliminate the ambiguity.
As an example, we shall eliminate the ambiguisy from the following “dangling-
else” grammar:

stmt — if expr then stmt
| if expr then stmt else simt {(4.14)
| other

Here “other” stands for any other statement. According to this grammar, the
compotind conditional statement

if E; then 5, else if F» then 5, else 53

then simf else sim!
By Sz S3

Figure 4.8: Parse tree for a conditional statement

4.3. WRITING A GRAMMAR 211

has the parse tree shown in Fig. 4.8.' Grammar {4.14) is ambiguous since the
string

if E| then if E, then S; else 5 (4.15)

has the two parse trees shown in Fig. 4.9.

stind

/ \
if r then st
L NS
expr then stmi else strrt
By 5 S
st
—/ \\\\
if erpr then atmi else gtmi

eapr_ hen stmt

PN

E; S

Figure 4.%: Two parse trees for an ambiguous sentence

In all programming languages with conditional statements of this form, the
first parse tree is preferred. The general rule is, “Match each else with the
closest unmatched then.”? This disambiguating rule can theoretically be in-
corporated directly into a grammar, but in practice it is rarely built into the
productions.

Example 4.16: We can rewrite the dangling-else grammar {4.14) as the fol-
lowing unambiguous grammar. The idea is that a statement appearing between
a then and an else must be “matched”; that is, the interior statement must
not end with an unmatched or open then. A matched statement is either an
il-then-else statement containing no open statements or it is any other kind
of unconditional statement. Thus, we may use the grammar in Fig. 4.10. This
grammar generates the same strings as the dangling-else grammar (4.14), but
it allows only one parsing for string (4.15); namely, the one that associates each
else with the closest previous unmatched then, O

IThe subscripts on & and $ are just to distinguish different occurrences of the same
nonterminal, and do not imply distinet nonterminals.

2We should note that C and its derivatives are included in this class. Even though the ¢
family of [anguages do not use the keyword then, its role is played by the ¢losing parenthesis
for the condition that follows if.

212 CHAPTER 4. SYNTAX ANALYSIS

simi — matched stmt
| open_simt
matched_stmt — if expr then matched_stmt else matched. stmt
| other
open_stmt — if expr then stmt
| if expr then malched.stmit else open_stmt

Figure 4.10: Unambiguous grammar for if-then-else statements

4.3.3 Elimination of Left Recursion

A grammar is left recursive if it has a nonterminal 4 such that there is a
derivation 4 & Aq for some string n. Top-down parsing methods cannot
handle left-recursive grammars, so a transformation is needed to eliminate left
recursion. In Section 2.4.5, we discussed immediate left recursion, where there
is a production of the form 4 — Aa. Here, we study the general case. In
Section 2.4.5, we showed how the left-recursive pair of productions 4 - da | 8
could be replaced by the non-left-recursive productions:

Ao BA
A Sad | e

without changing the strings derivable from 4. This rule by itself suffices for
many gramiars.

Example 4.17: The non-left-recursive expression grammar (4.2}, repeated
here,

ETEFE

Es5+TF

TFT

T+ FT

Fo{({FE) | id
is obtained by eliminating immediate left recursion from the expression gram-
mar (4.1). The left-recursive pair of productions E — E + T | T are replaced
by E— T E' and E' - + T E' | €. The new productions for T and T are
chtained similarly by eliminating immediate left recursion. O

Immediate left recursion can be eliminated by the following technique, which
works for any number of A-productions. First, group the productions as

A'—)‘Aﬂ'} I Aag] l Aam I .61 | ,62 l t ,Sn

where no 3; begins with an A. Then, replace the A-productions by

4.3. WRITING A GRAMMAR 213

A= BA | BA]] A
Ao a A | apd | - | and’ | €

The nonterminal A4 generates the same strings as before but is no longer left
recursive. This procedure eliminates all left recursion from the A and A’ pro-
ductions (provided no a; is €), but it does not eliminate left recursion involving
derivations of two or more steps. For example, consider the grammar

S—>Aa | b

4,18
Asdc| Sd|e (4.18)
The nonterminal S is left recursive because S = Aa = Sdea, but it is not
immediately left recursive.

Algorithm 4.19, helow, systematically eliminates left recursion from a gram-
mar. It is guaranteed to work if the grammar has no cycles (derivations of the
form A 5 A) or e-productions (productions of the form 4 — €). Cycles can be
eliminated systematically {rom a grammar, as can e-productions {see Exercises
4.4.6 and 4.4.7).

Algorithm 4.19: Eliminating left recursion.
INPUT: Grammar G with no cycles or e-productions.
OUTPUT: An cquivalent grammar with no left recursion.

METHOD: Apply the algorithm in Fig. 4.11 to . Note that the resulting
non-left-recursive grammar may have e-productions. 0O

1) arrange the nonterminals in some order 4y, As, ..., A,.
2) for (eachifrom1ton) {
3 for { each jfrom1toi—1) {
4) replace each production of the form A; — A;7 by the
productions 4; = &7y | dav | --- | dpry, where
_ } Aj =+ b1] da| --- | 8y are all current A;-productions
3}
6) eliminate the immediate left recursion among the 4;-productions
7o

Figure 4.11: Algorithm to eliminate left recursion from a grammar

The procedurc in Fig. 4.11 works as follows. In the first iteration for i =
1, the outer for-loop of lines (2) through (7) eliminates any immediate left
recursion among A,-productions. Any remaining 4, productions of the form
A; — A must therefore havel > 1. After the 4 — 1st iteration of the outer for-
loop, all nonterminals A, where & < ¢, are “cleaned”; that is, any production
Ap = Ay, must have ! > k. As a result, on the ith iteration, the inner loop

214 CHAPTER 4. SYNTAX ANALYSIS

of lines (3) through (5} progressively raises the lower limit in any production
Ai = Ao, until we have m > 4. Then, climinating immediate left recursion
for the A; productions at line (6) forces m 1o be greater than ¢.

Example 4.20: Let us apply Algorithm 4.19 to the grammar (4.18). Techni-
cally, the algorithm is not guaranteed to work, because of the e-production, but
in this case, the production A — € turns out to be harmless.

We order the nonterminals S, A. There is no immediate left recursion
among the S-productions, so nothing happens during the outer loop for ¢ = 1.
For i = 2, we substitute for §in 4 — § d to obtain the following 4-productions.

AaAc | Aad | bd | ¢

Eliminating the immediate left recursion among these A-productions yields the
following grammar.

S—>Aa | b
AsbdA | A
A A | add | e

O

4.3.4 Left Factoring .

Left factoring is a grammar transformation that is useful for producing a gram-
mar suitable for predictive, or top-down, parsing. When the choice between
two alternative A-productions is not clear, we may be able to rewrite the pro-
ductions to defer the decision until cnough of the input has been seen that we
can make the right choice.

For example, if we have the two productions

stmt — if expr then stmi else stmt
| if expr then stmi

on seeing the input if, we cannot immediately tell which production to choose
to expand stmt. In general, if A — af; | afs are two A-productions, and the
input begins with a nonempty string derived from a, we do not know whether
to expand A to a8, or af;. However, we may defer the decision by expanding
A to aA'. Then, after seeing the input derived from o, we expand 4' to 3y or
to 8. That is, lefi-factored, the original productions become

A= ad

A= 8 | B
Algorithm 4.21: Left factoring a grammar.
INPUT: Grammar G.
OUTPUT: An equivalent left-factored grammar.

4.3. WRITING A GRAMMAR 215

METHOD: For each nonterminal A, find the longest prefix a common to two
or more of its alternatives. If @ # ¢ -— i.e., there is a nontrivial common
prefix - - replace all of the A-productions A =+ ¢/) afz | --- | ads | v, where
«y represents all alternatives that do not begin with «, by

A—-ad’ | v
A =B L B | B

Here A’ is a new nontcrminal. Repeatedly apply this transformation until no
two alternatives for a nonterminal have a common prefix. O

Example 4.22: The following grammar abstracts the “dangling-else” prob-
lem:

§—iEBEtS|iEtSeS | a

e (4.23)

Here, 7. £, and e stand for if, then, and else; E and § stand for “conditional
expression” and “statement.” Left-factored, this grammar becomes:

S+iEtSS | a
S'=e8 | e {4.24)
E-b

Thus, we may expand S to 1EtSS’ on input 4, and wait until iEtS has been
seen to decide whelher to expand 5 to ¢S or to e, Of course, these grammars
are both ambiguous, and on input e, it will not be clear which alternative for
&' should be chogsen. Example 4.33 discusses a way out of this dilemma, O

4.3.5 Non-Context-Free Language Constructs

A few syntactic constructs found in typical programming languages cannot be
specified using gramruars alone. Here, we consider two of these construets,
using simple abstract languages to illustrate the difficulties.

Example 4.25: The language in this example abstracts the problem of check-
ing that identifiers are declared before they are used in a program. The language
consists of strings of the form wew, where the first w represents the declaration
of an identifier w, ¢ represents an intervening program fragment, and the second
w represents the use of the identifier. '

The abstract language is L1 = {wew | w is in (ajb)*}. L; consists of
all words composed of a repeated string of a’s and b’s separated by e, such
as agbcoab. While it is beyond the scope of this book to prove it, the non-
coniext-freedom of L, directly implies the non-context-frecdom of programming
languages like C and Java, which require declaration of identifiers before their
use and which allow identifiers of arbitrary length.

For this reason, a grammar for C or Java does not distinguish among identi-
fiers that are different character strings. Instead, all identifiers are represented

216 CHAPTER 4. SYNTAX ANALYSIS

by a token such as id in the grammar. In a compiler for such a language,
the semantic-analysis phase checks that identifiers are declared before they are
used. O

Example 4.26: The non-context-free language in this example abstracts the
problem of checking that the number of formal parameters in the declaration of a
function agrees with the number of actual parameters in a use of the function,
The language consists of strings of the form a®b™c*d™. (Recall ¢® means a
written n times.) Here o™ and ™ could represent the formial-parameter lists of
two furictions declared to have n and m arguments, respectively, while ¢” and
d™ represent the actual-parameter lists in calls to these two functions.

The abstract language is Ly = {a®™c"d™ | n > 1 and m > 1}. That is, Ly
consists of strings in the language generated by the regular expression a*b*c*d*
such that the number of o’s and ¢'s arc equal and the number of &'s and d’s are
equal. This language is not context free.

Again, the typical syntax of function declarations and uses does not concern
itself with counting the number of parameters. For example, a function call in
(-like language might be specified by

stmt — id (expr.list)
expr list — expr_list , expr
| expr

with suitable productions for expr. Checking that the number of parameters in
a call is correct is usually done during the semantic-analysis phase. O

4.3.6 IExercises for Section 4.3

Exercise 4.3.1: The following is a grammar for regular expressions over sym-
bols @ and b only, using + in place of | for union, to avoid conflict with the use
of vertical bar as a metasymbol in grammars:

PETPT - rexpr + rierm | rierm
rierm = rterm rfactor | vfactor
rfactor — rfactor = | rprimary
rprimary — al| b

a) Left factor this grammar.
b) Does left factoring make the grammar suitable for top-down parsing?

¢) In addition to left factoring. eliminate left recursion from the original
grammar.

d) Is the resulting grammar suitable for top-down parsing?

Exercise 4.3.2: Repeat Exercise 4.3.1 on the following grammars:

4.4. TOP-DOWN PARSING 217

a) The grammar of Exercise 4.2.1.

b) The grammar of Exercise 4.2.2(a).
¢) The grammar of Exercise 4.2.2(c).
d) The grammar of Exercise 4.2.2(e).
e} The grammar of Exercise 4.2.2(g).

! Exercise 4.3.3: The following grammar is proposed to remove the “dangling-
else ambiguity” discussed in Section 4.3.2:

stmi — if expr then st
| matchedStmt

matchedStmt — if expr then matchedStmt else stmi
| other

Show that this grammar is still ambiguous.

4.4 Top-Down Parsing

Top-down parsing can be viewed as the problem of constructing a parse tree for
the input string, starting from the root and creating the nodes of the parse tree
in preorder {depth-first, as discussed in Section 2.3.4). Equivalently, top-down
parsing can be viewed ag finding a leftmost derivation for an input string.

Example 4.27: The sequence of parse trees in Fig. 4.12 for the input id-+id+id
is a top-down parse according to grammar (4.2), repeated here:

E = TE
E - +TE|¢
T = FT (4.28)

" — *xFT | e
Fow (B} id

This sequence of trees corresponds to a leftmost derivation of the input. O

At cach step of a top-down parse, the key problem is that of determining
the production to be applied for a nonterminal, say 4. Once an A-production
is chosen, the rest of the parsing process consists of “matching” the terminal
symbols in the production body with the input string.

The scction begins with a general form of top-down parsing, called yecursive-
descent parsing, which may require backtracking to find the correct A-produc-
tion to be applied. Section 2.4.2 introduced predictive parsing, a special case of
recursive-descent parsing, where no backtracking is required. Predictive parsing
chooses the correct A-production by looking ahead at the input a fixed nnmber
of symbols, typically we may look only at one (that is, the next input symbol).

218 CHAPTER 4. SYNTAX ANALYSIS

E = E A 4
o f Jf:?:; VA i /ﬁ\ i /E\ m /E\
T E' T E T K T FE T E
| A AN A1 /1N
F T F o7 zlr -1;*’ ;r’ 3|"' + T E
i'd id e id «
E = B
im / \ Im / Im /E\
T E' T E T g
/I, SN VATV 1NN
T 1 T FE F T + T B T + T E
[7N [7N [RN
id € F T id € 1|‘7' id ¢ ;F' !
id id « pf o
in T/E\E - T/E b e
! E i E
/I’ AR S SN SN T
F T 4 T F FT 4+ T FE FT'+ T ol
_L { F/ \T! '(|;1 | F/ \T’ '(|:1 F/ \T’ [
1 € 1
/1IN R 7 AN IS N
id = }|'7' T id » }]3' 1|"' id = }|‘" ’II'"
id id e id ¢

Figure 4.12; Top-down parse for id + id «id

For example, consider the top-down parse in Fig. 4.12, which constructs
a tree with two nodes labeled E'. At the first E' node (in preorder), the
production E' — +T E' is chosen; at the second E' node, the production E' — ¢
is chosen. A predictive parser can choose between E'-productions by locking
at the next input symbaol.

The class of grammars for which we can construct predictive parsers looking
k symbols ahead in the input is sometimes called the LL(k) class. We discuss the
LL{1) class in Section 4.4.3; but introduce certain computations, called FIRST
and FOLLOW, in a preliminary Section 4.4.2. From the FIRST and FOLLOW
sets for a grammar, we shall construct “prediclive parsing tables,” which make
explicit the choice of production during top-down parsing. These sets are also
useful during bottom-up parsing,

In Section 4.4.4 we give a nonrecursive parsing algorithm that maintains
a stack explicitly, rather than implicitly via recursive calls. Finally, in Sec-
tion 4.4.5 we discuss error recovery during top-down parsing.

4.4, TOP-DOWN PARSING 219

4.4.1 Recursive-Descent Parsing

void A() {
1) Choose an A-production, 4 ~ X X -+ Xp;
2) for (i=1ttok){
3 if (X, is a nonterminal }
4) call procedure X;();
5) else if { X; equals the current input symbol a)
6) advance the input to the next symbol;
7) else /* an error has occurred */;

Figure 4.13: A typical procedure for a nonterminal in a top-down parser

A recursive-descent parsing prograrm consists of a set of procedures, one for cach
nonterminal. Execution begins with the procedure for the start symbol, which
halts and announces success if its procedure body scans the entire input string,
Pseudocode for a typical nonterminal appears in Fig. 4.13. Note that this
pseudocode is nondeterministic, since it begins by c¢hoosing the A-production
1o apply in a manner that is not specified.

(GGeneral recursive-descent may require backtracking; that is, it may require
repeated scans over the input. However, backiracking is rarely needed to parse
programming language construets, so backtracking parsers are not seen fre-
quently. Even for situations like natural language parsing, backtracking is not
very efficient, and tabular methods such as the dynamic programming algo-
rithm of Exercise 4.4.9 or the method of Earley (see the bibliographic notes)
are preferred.

To allow backtracking, the code of Fig. 4.13 needs to be modified. First, we
cannot. choose a unique A-production at line (1), so we must try each of several
productions in some order. Then, failure at line {7) is not ultimate failure, bus
suggests only that we need to return to line (1) and try another A-production.
Only if there are no more 4-productions to try do we declare that an input
error has been found. In order to try another A-production, we need to be able
to reset the input pointer to where it was when we first reached line (1). Thus,
a local variable is needed to store this input pointer for future use.

Example 4.29: Consider the grammar

S -5 cAd
A = ab|oa

To construct a parse tree top-down for the input string w = cad, begin with a
tree consisting of a single node labeled S, and the input pointer pointing to ¢,
the first symbol of w. S has only one production, so we use it to expand § and

220 CHAPTER 4. SYNTAX ANALYSIS

obtain the tree of Fig. 4.14(a). The leftmost leaf, labeled ¢, matches the first
gytubol of input w, so we advance the input pointer to a, the second symbol of
w, and consider the next leaf, labeled A.

c/j\d c/j\d r/j\d
VAN]

@

(a) {b) {c)

Figure 4.14: Steps in a top-down parsc

Now, we expand A using the first alternative A — ¢ b to obtain the tree of
Fig. 4.14(b). We have a match for the second input symbol, a, so we advance
the input peinter to d, the third input symbol, and compare d against the next
leaf, labeled b. Since & does nat match d, we report failure and go back to 4 to
see whether there is another alternative for A that has not been tried, but that
might produce a match.

In going back to A, we must reset the input pointer to position 2, the
position it had when we first came to 4, which means that the procedure for 4
must store the input pointer in a local variable.

The second alternative for 4 produces the tree of Fig. 4.14(c). The leaf
a matches the second symbol of w and the leaf d matches the third symbol.
Since we have produced a parse tree for w, we halt and announce siceessful
completion of parsing. O

A left-recursive grammar can cause a recursive-descent parser, even one
with hackiracking, to go into an infinite loop. That is, when we try to expand
a nonterminal A, we may eventually find ourselves again trying to cxpand A
without having consumed any input.

4.4.2 FIRST and FOLLOW

The construction of both top-down and bottom-up parsers is aided by two
functions, FIRST and FOLLOW, associated with a grammar G. During top-
down parsing, FIRST and FOLLOW allow us to choose which production to
apply, based on the next input symbol. During panic-mode error recavery, scts
of tokens produced by FOLLOW can be uscd as synchronizing tokens.

Define FIRST(wv), where « is any slring of grammar symbols, to be the set
of terminals that begin strings derived from . If a 2 ¢, then ¢ is also in
F1RST(a). For example, in Fig. 4.15, 4 5 @y, s0 ¢ 18 in FIRST{A).

For a preview of how FIRST can be used during predictive parsing, consider
two A-productions A — a | 3, where FIRST{a) and FIRST() are disjoint sets.
We c¢an then choose belween these A-productions by looking at the next input

4.4, TOP-DOWN PARSING 221
_ 5
4 A a %
BN
[
~
Figure 4.15: Terminal ¢ i3 in FIRST{A) and a is in FOLLOW{A}

symbol a, since @ can be in at most one of FIRST{(a) aud FIRST(H), not both.
For instance, if a is in FIRST({3) choose the production A4 —+ J. This idea will
be explored when LL({1) grammars are defined in Section 4.4.3.

Define FoLLOW(A), for nonterminal 4, to be the set of terminals ¢ that can
appear immediately to the right of A in some sentential form; that is, the set
of terminals @ such that there exists a derivation of the form § = aAag, for
some o and 3, as in Fig. 4.15. Note that there may have been symbols between
A and a, at some time during the derivalion, but if so, they derived € and
disappeared. In addition, if A4 can be the rightmost symbol in some sentential
form, then $ is in FOLLOW(A); recall that § is a special “endmarker” symbol
that is agsumed not to be a symbol of any grammar.

'To compute FIRST(X) for all grammar symbols X, apply the following rules
until no more terminals or € can be added to any FIRST set.

1. It X is a terminal, then FIRST{X) = {X}.

2. If X is anonterminal and X — Y1Y3 -+ ¥} 1s a production for some & > 1,
then place a in FIRST(X) il for some ¢, a ig in FIRST(Y}), and ¢ is in all of
PIRST(Y}),... ,FIRST(Y;_,); that is, ¥; - - ¥;_; = ¢ If¢isin FIRST(Y})
for all § = 1,2,... ,k, then add € tc FIRST(X). For example, everything
in F1rs1{Y1) is surely in FIRST{X }. If ¥7 does not derive ¢, then we add
nothing more to FIRST(X), but if ¥} 2 ¢, then we add FIRST(Y3), and
g0 on.

3. If X — ¢ is a production, then add ¢ to FIRST(X).

Now, we can compute FIRST for any string X; X5 --- X, as follows. Add to
FIRST{X1.Xs - - Xy;) all non-e symbols of FIRST(X;). Also add the non-¢ sym-
bols of FIRST(X3), if € is in FIRST(X)); the non-e symbols of FIRST(X3), if ¢ is
in FIRST(X;) and FIRST(X?); and so on. Finally, add ¢ to FIRST(X; X -+ X)
if, for all £, € is in FIRST(X;).

To compute FOLLOW({A) for all nonterminals A, apply the following rules
until nothing can be added to any FOLLOW sct.

i. Place § in FOLLOW(S), where S is the start symbol, and § is the input
right endmarker.

222 CHAPTER 4. SYNTAX ANALYSIS

2. If there is a production 4 — aBj, then everything in FIRS1(3) except ¢
is in FOLLOW(R).

3. If there is a production A — «B, or a production 4 — aBj, where
FIRST({) contains e, then everything in FOLLOW(A) is in FOLLOW(B).

Example 4.30: Consider again the non-left-recursive grammar {4.28). Then:

1. FIRST(F) = FIRST(T') = FIRST(E) = {{,id}. To see why, note that the
two productions for F' have bodies that start with these two terminal
symbols, id and the left parenthesis. T has only one production, and its
body starts with F'. Since F' does not derive e, FIRST{T") must be the
same as FIRST(F). The same argument covers FIRST(F).

2. FIRST(E') = {+,€}. The reason is that one of the two productions for £’
has a body that begins with terminal +, and the other’s body is e. When-
ever a nounterminal derives €, we place € in FIRST for that nonterminal.

3. FIRST{T') = {*,¢}. The reasoning is analogous to that for FIRST(E").

4. FOLLOW(E) = FOLLOW(E') = {},$}. Since E ig the start symbol,
FOLLOW(E) must contain $. The production body (£) cxplains why the
right parenthesis is in FOLLOW(E). For F', note that this nonterminal
appcars only at the ends of bodies of E-productions. Thus, FOLLOW(E")
must be the same as FOLLOW(E).

5. FOLLOW(T) = FOLLOW(T") = {+,),$}. Notice that T appears in bodies
only followed by E’. Thus, everything except € that is in SIRST(E’) must
be in FOLLOW(T'); that explains the symhol +. However, since FIRST(E")
contains € (ic., B/ =), and E' is the entire string following T in the
bodies of the E-productions, everything in FOLLOW(E) must also be in
FOLLOW(T). That explains the symbols § and the right parenthesis. As
for T, since it appears only at the ends of the T-productions, it must be
that FOLLOW(T"} = FOLLOW{T).

6. FOLLOW(F) = {+,%,),%}. The reasoning is analogous to that for T in
point {5}.

(]

4.4.3 LL(1) Grammars

Predictive parsers, that is, recursive-descent parsers needing no backtracking,
can be constructed for a class of grammars called LL(1). The first “L” in LL(1)
stands for scanning the input from left to right, the second “L” for producing
a leftmost derivation, and the “1” for using one input symbol of lookahead at
each step to make parsing action decisions.

4.4, TOP-DOWN PARSING 223

Transition Diagrams for Predictive Parsers

Transition diagrams are useful for visualizing predictive parsers, For exam-
ple, the transition diagrams for nonterminals and E' of grammar (4.28)
appear in Fig. 4.16(a). To construct the transition diagram from a gram-
mar, first eliminate left recursion and then left factor the grammar. Then,
for each nonterminal A,

1. Create an initial and final {rcturn) state,

2. For each production A — X; X, - - - Xy, create a path from the initial
to the final state, with edges labeled X3, Xg,... , X T A — ¢, the
path is an edge labeled .

Transition diagrams for predictive parsers differ from those for lexical
analyzers. Parsers have one diagram for each nonterminal. The labels of
edges can be tokens or nonterminals. A transition on a token (terminal)
means that we take that transition if that token is the next input symbol.
A transition on a nonterminal A is a call of the procedure for A.

With an LL{1) grammar, the ambiguity of whether or not o take an
e-edge can be regolved by making e-transitions the default choice.

Transition diagrams can be simplified, provided the sequence of gram-
mar symbols along paths is preserved. We may also substitute the dia-
gram for a nonterminal 4 in place of an edge labeled A. The diagrams in
Fig. 4.16(a} and (b) are equivalent: if we tracc paths from E to an accept-
ing state and substitute for E, then, in both sets of diagrams, the grammar
symbols along the paths make up strings of the form T+ T +---+T. The
diagram in (b) can be obtained from {a) by transformations akin to those
in Section 2.3.4, where we used tail-recursion removal and substitution of
procedure bodies to optimize the procedure for a nonterminal.

The class of LL{1) grammars is rich ¢nough to cover most programming
constructs, although care is needed in writing a suitable grammar for the source
language. For example, no left-recursive or ambiguous grammar can be LL(1).

A grammar G is LL(1} if and only if whenever A — « | 3 arc two distinct
productions of &, the following conditions hold:

1. For no terminal a do both « and 3 derive strings beginning with a.
2. At most one of & and 3 can derive the empty string.
3. If 35 ¢ then a does not derive any string beginning with a terminal

in FOLLOW(A). Likewise, if @ = e, then 3 does not derive any string
beginning with a terminal in FOLLOW({A4).

224 CHAPTER 4. SYNTAX ANALYSIS

E. +

E @
(a) (b)

Figure 4.16: Transition diagrams for nonterminals £ and E’ of grammar 4.28

The first two conditions are equivalent to the statement that FIRST{a@) and
FIRST(A) are disjoint sets. The third condition is equivalent to stating that if
¢ is in FIRST(8), then FIRST(c) and FOLLOW(A) are disjoint sets, and likewise
if € is in FIRST{ax).

Predictive parsers can be constructed for LL(1) grammars since the proper
production to apply for a nonterminal can be selected by looking only at the
curtent input symbol. Flow-of-control constructs, with their distinguishing key-
words, generally satisfy the LL(1) constraints. For instance, if we have the
productions

stmt — i (expr) simi else simi
| while (expr) stmt
| L stmt list}

then the keywords if, while, and the symbal { tell us which alternative is the
only one that could possibly succecd if we are to find a statement.

The next algorithm collects the information from FIRST and FOLLOW sets
into a predictive parsing table M[A4,a], a two-dimensional array, where 4 is a
nonterminal, and & is a terminal or the symbol $, the input endmarker. The
algorithm is based on the following idea: the production A — a is chosen if
the mext input symbol a is in FIRST{a). The only complication occurs when
a = ¢ or, more generally, o 2 ¢. In this case, we should again choose A = a;
if the current input symbol is ih FOLLOW(A}, or if the $ on the input has been
reached and § is in FOLLOW(A).

Algorithm 4.31: Construction of & predictive parsing table.

INPUT: Grammar G.

OUTPUT: Parsing table M.

METHOD: For each production A — a of the grammar, do the following:
1. For cach termiﬁa] o in FIRST{A4), add A — o to M[4,a].

2. If ¢ is in FIRST(a), then for each terminal b in FOLLOW(A), add 4 — a
to M[A,b). If € is in FIRST(e) and $ is in FOLLOW(A), add A = a to

MI[A, 3] as well.

4.4. TOP-DOWN PARSING 225

If, after performing the above, there is no production at all in M{A4, e], then
set M[A,qa] to error (which we normally represent by an empty entry in the
table). O

Example 4.32: For the expression grammar {4.28), Algorithm 4.31 produces
the parsing table in Fig. 4.17. Blanks are error entries; nonblanks indicate a
production with which to expand a nonterminal.

NON - INPUT SYMBOL
TERMINAL id 4 % () %
E E > TE ETE
E E' — +TFE E w¢|F —e¢
T T — FT' T = FT'
T T —e |T —«FT T —e|T 2e
F F—id F— (ELL

Figure 4.17: Parsing table A4 for Exampic 4.32

Consider production £ — T'E’. Since
FIRST(TE'Y = TIRsT(T) = {(,id}

this production is added to M[E, (} and M[E,id]. Production E' = +TE" is
added to M[E', 4] since FIRST(+TE') = {+}. Since roLLOW(E") = {},$},
production E' — ¢ is added to M[E’,)] and M[E',§]. O

Algorithm 4.31 can be applied to any grammar G to produce a parsing table
M. For every LL{l) grammar, each parsing-table entry uniquely identifies a
production or signals an error. For some grammars, however, M may have
some entries that are multiply defined. For example, if (& is left-recursive or
ambiguous, then M will have at least one multiply defined entry. Although left-
recursion elimination and left factoring are easy to do, there are some grammars
for which no amount of alteration will produce an LL({1) grammar.

The language in the following example has no LL(1) grammar at all.

Example 4.33: The following grammar, which abstracts the dangling-else
problem, Is repeated here from Example 4.22:

S5 — iEtSS |a
S = eSe
E = b

The parsing table for this grammar appears in Fig. 4.18. The entry for M[S', ¢]
contains both §" — ¢S and 8" — e.

The grammar is ambiguous and the ambiguity is manifested by a choice in
what production to use when an e {(else) is scen. We can resolve this ambiguity

226 CHAPTER 4. SYNTAX ANALYSIS

NON - INPUT SYMBOL
TERMINAL a b . ; P g
s S—a S - iFEtSs
5! S e o=
5 5 e8
E E—b

Figure 4.18: Paising table M for Example 4.33

by choosing $' — &S. This choice corresponds to associating an else with the
closest previous then. Note that the choice §” — € would prevent & from ever
being put on the stack or removed from the input, and is surely wrong. O

4.4.4 Nonrecursive Predictive Parsing

A nonrecursive predictive parser can be huilt by maintaining a stack explicitly,
rather than implicitly via recursive calls. The parser mimics a leftmost deriva-
tion. If w is the input that has been matched so far, then the stack holds a
sequence of grammar symbols a such that

The table-driven parser in Fig. 4.19 has an input buffer, a stack containing a
sequence of grammar symbols, a parsing table constructed by Algorithm 4.31,
and an output stream. The input buffer contains the string to be parsed,
followed by the endmarker §. We reuse the symbol $ to mark the bottom of the
stack, which initially contains the start symbol of the grammar on top of §.

The parser is controlled by a program that cousiders X, the symbol on top
of the stack, and a, the current inpui symbol. If X is a nonterminal, the parser
chooses an X-production by consulting entry M[X, a] of the parsing table M.
(Additional code could be executed here, for example, code to construct a node
in a parse tree.) Otherwise, it checks for a match between the terminal X and
current input symbol a.

The behavior of the parser can be described in terms of its configurations,
which give the stack contents and the remainirig input. The next algorithm
describes how configurations are manipulated.

Algorithm 4.34: Table-driven predictive parsing.
INPUT: A string w and a parsing table M for grammar G.

ouTPUT: i w is in L{G), a leftmost derivation of w; otherwise, an error
indication.

4.4. TOP-DOWN PARSING 227

mpu [[[] jal+lo]s]

Predictive
Parsing = (Output
Program

Stack

Y

Parsing
Table
M

Figure 4.19: Model of a table-driven predictive parser

METHOD: Initially, the parser is in a configuration with w§ in the input buffer
and the start symbol S of G on top of the stack, above §. The program in
Fig. 4.20 uses the predictive parsing table M to produce a predictive parse for
the input. O

set #p to point to the first symbol of w;
set X to the top stack symbol;
while { X # 8) { /* stack s not empty */
if { X i3 a) pop the stack and advance ip;
else if (X is a terminal) error(};
ebse if { M[X, ¢] is an error entry) ervor();
else if (M[X,a]=X -1 Y2--- ¥) {
output the production X = ¥1¥5 - ¥y,
pop the stack;
push ¥i,¥i1,..., Y] onto the stack, with ¥7 on top;

}

set X to the top stack symbol;

Figure 4.20: Predictive parsing algorithm

Example 4.35: Consider grammar {4.28); we have already seen its the parsing
table in Fig. 4.17. On input id + id % id, the nonrecursive predictive parser
of Algorithm 4.34 makes the sequence of moves in Fig. 4.21. These moves
correspond to a leftmost derivation (see Fig. 4.12 for the full derivation):
E= TE' = FT'E's dT''=> dE' = id+TE = ...
im im tm i

I frnr T

228 CHAPTER 4. SYNTAX ANALYSIS

MATCHED STACK INpUT ACTION

E$ id +id«id$
TE'S id+id+id$ output E —» TE’

FT'E'S id+id+id$§ output T — FT
id T"E'$ id +id+id$ output F — id

id T E'$ +id «id$ match id

id E'§ +id «id$ output I/ — ¢

id + TE'S +id #id$ output £ = + TE'
id + TE'S id #id$ match +

id + FT'E'$ idxid$ output T — FT’
id + id T'E'$ id % id$ output F -3 id

id +1id T'E'S *id$ match id

id +id * FT'E'$ *id$ output T — = F'TV
id + id * FT'E'$ id$ match *

id +id * id T'E'S id$ output F — id

id +id = id T'E'S $ matchid

id +id = id E'$ $ output 7" — ¢

id +id xid $ $ output E' + ¢

Figure 4.21: Moves made by a predictive parser on input id +id % id

Note that the sentential forms in this derivation correspond to the input that
has already been matched (in column MaTCHED) followed by the stack contents.
The matched input is shown only to highlight the correspondence. For the same
reason, the top of the stack is to the left; when we consider bottom-up parsing,
it will be more natural to show the top of the stack to the right. The input
pointer points to the leftmost symbol of the string in the INPUT column. O

4.4.5 Error Recovery in Predictive Parsing

This discussion of error recovery refers to the stack of a table-driven predictive
parser, since it makes explicit the terminals and nonterminals that the parser
hopes to match with the remainder of the input; the techniques can also be
uged with recursive-descent parsing.

An error is detected during predictive parsing when the terminal on top of
the stack does not match the next input symbol or when nonterminal A is on
top of the stack, @ is the next input symbol, and M[A,q] is error (i.e, the

parsing-table entry is empty).

Panic Mode

Panic-mode crror recovery is based on the idea of skipping symbols on the
the input until a token in a selected set of synchronizing tokens appears. Iis

4.4. TOP-DOWN PARSING 229

effectiveness depends on the choice of synchronizing set. The sets should be
chosen so that the parser recovers quickly from errors that are likely to oceur
in practice. Some heuristics arc as follows:

1. As a starting point, place all symbols in FOLLOW(A) into the synchro-
nizing set for nonterminal A. If we skip tokens until an element of
FOLLOW(A) 15 seen and pop A from the stack, it is likely that parsing
can continue.

2. It is not enough to use FOLLOW({A) a8 the synchronizing set for A, For
example, if semicolons terminate statements, as in C, then keywords that
begin statements may not appear in the FOLLOW set of the nontermi-
nal representing expressions. A missing semicolon after an assignment.
may therefore result in the keyword beginning the next statement be-
ing skipped. Often, there is a hierarchical structure on constructs in a
language; for example, expressions appear within statements, which ap-
pear within blocks, and so0 an. We can add to the synchronizing set of a
lower-level construct the symboals that begin higher-level constructs. For
example, we might add keywords that begin statements to the synchro-
nizing sets for the nonterminals generating expressions.

3. If we add symbols in FIRST{A) to the synchrenizing set for nonterminal
A, then it may be possible to resume parsing according to A if a symbol
in FIRST(A) appears in the input.

4. If a nonterminal can generate the empty string, then the production de-
riving € can be used as a default. Doing so may postpone some crror
detection, but cannot cause an error to be missed. This approach redunces
the number of nonterminals that have to be considered during error re-
covery.

o

. If a terminal on top of the stack cannot be matched, a simple idea is to
pop the terminal, issue a message saying that the terminal was inserted,
and continue parsing. In effcet, this approach takes the synchronizing set
of a token to consist of all other tokens.

Example 4.36: Using FIRST and FOLLOW symbals as synchronizing tokens
works reasonably well when expressions are parsed according to the nsnal gram-
mar (4.28). The parsing table for this grammar in Fig. 4.17 is repeated in
Fig. 4.22, with “synch” indicating synchronizing tokens obtained from the
FOLLOW set of the nonterminal in question. The FOLLOW sets for the non-
terminals are cbtained from Example 4.30).

The table in Fig. 4.22 is to be used as follows. If the parser looks up entry
M[A, a} and finds that it is blank, then the input symbol a is skipped. If the
entry is “synch,” then the nonterminal on top of the stack is popped in an
attempt to resume parsing. M a token on top of the stack does not match the
input symbol, then we pop the token from the stack, as mentioned above.

230 CHAPTER 4. SYNTAX ANALYSIS

NON - INPUT SYMBOL
TERMINAL id + 4] (y g
E E—TE E = TE'| synch | synch
FE E - +TFE Ese|E—c
T T — FT synch T — FT' | synch | synch
T T we [T o +FT T —elT e
F F-oid synch synch F — (E) | synch | synch

Figure 4.22: Synchronizing tokens added to the parsing table of Fig. 4.17

Ou the erronecus input)id % + id, the parser and error recovery mechanism
of Fig. 4.22 behave as in Fig. 423. O

STACK InpUT REMARK
E$)idx+id§ error, skip)
E$ idx+id$§ idisin FIRST{F)
TE'$S id++id$§
FT'E'$ id=+id$
id T'E'$ id*-+id$
TE'S *+id 8
* FT'E'$ x+id $
FT'E'§ +id $ error, M[F,+] = synch
T'E'$ +id$ F has been popped
E'S +id §
+TE'S +id $
TE'$ id$
FT'E'§ id $
idI'E' § id$
TE'§ $
E'$ $
$ $

Figure 4.23: Parsing and error recovery moves made by a predictive parser

The above discussion of panic-mode recovery docs not address the important
issue of error messages. The compiler designer must supply informative error
messages that not only describe the error, they must draw attention to where
the error was discovered.

-
—

4.4, TOP-DOWN PARSING 231

Phrase-level Recovery

Phrase-level error recovery is implemented by filling in the blank entries in
the predictive parsing table with pointers to error routincs. These routines
may change, insert, or delete symbols on the input and issue appropriate crror
messages. They may also pop from the stack. Alteration of stack symbols or the
pushing of new symbols onto the stack is questionable for several reasons. First,
the steps carried out by the parser might then not correspond to the derivation
of any word in the language at all. Second, we must cnsure that there is no
possibility of an infinite loop. Checking that any recovery action eventually
results in an inpul symbol being consumed (or the stack being shortened if the
end of the input has heen reached) is a good way to protect against such loops.

4.4.6 Exercises for Section 4.4

Exercise 4.4.1: For each of the following grammars, devise predictive parsers
and show the parsing tables. You may left-factor and/or eliminate left-recursion
from your grammars first.

a) The grammar of Exercise 4.2.2(a).
b) The grammar of Exercise 4.2.2(b).
¢} The grammar of Exercise 4.2.2(¢).
d) The grammar of Exercise 4.2.2(d).
e) The grammar of Fxercise 4.2.2(e).
f) The grammar of Exercise 4.2.2(g).

Exercise 4.4.2: Is it possible, by modifying the grammar in any way, to con-
struet a predictive parser for the language of Exercise 4.2.1 (postfix expressioris
with operand a)?

Exercise 4.4.3: Compute FIRST and FOLLOW for the grammar of Exercise
4.2.1.

Exercise 4.4.4: Compute FIRST and FOLLOW for each of the grammars of
Exercise 4.2.2,

Exercise 4.4.5: The grammar § — o S a | a e generates all even-length
strings of a’s. We can devise a recursive-descent parser with backirack for this
grammar. If we choose to expand by production S —~ 2 « first, then we shall
only recognize the string aa. Thus, any reasonable recursive-descent parser will
try § — a S a first.

a) Show that this recursive-descent parser recognizes inputs aa, aaaa, and
acaaanac, bt not aaaaqa.

232 CHAPTER 4. SYNTAX ANALYSIS

1! b) What language does this recursive-descent parser recognize?

The following exercises are useful steps in the construction of a “Chomsky
Normal Form” grammar from arbitrary grammars, as defined in Exercise 4.4.8.

! Exercise 4.4.6: A grammar is &-free if no production body is € (called an
e-production).

a) Give an algorithm to convert any grammar into an e-free grammar that
generates the same language {with the possible exception of the cmpty
string — no e-free grammar can generate). '

b) Apply your algorithm to the grammar S — a5bS | bSaS | e. Hini: First
find all the nonterminals that are nullable, meaning that they generate ¢,
pethaps by a long derivation.

! Exercise 4.4.7: A single production is a production whose body is a single
nonterminal, i.e., a production of the form 4 — A.

a) Give an algorithm to convert any grammar into an e-free gramnmar, with
no single productions, that generates the same language (with the possible
exception of the empty string) Hint: First eliminate e-productions, and
then find for which pairs of nonterminals 4 and B does 4 = B by a
sequence of single productions.

b) Apply your algorithm to the grammar (4.1) in Section 4.1.2.

¢) Show that, as a consequence of part (a), we tan convert a grammar into
an equivalent grammar that has no cycles (derivations of one or more
A . * .
steps in which 4 = A for some nonterminal A).

!! Exercise 4.4.8: A grammar is said to be in Chomsky Normal Form (CNF) if
every production is either of the form 4 — BC or of the form A — a, where
A, B, and C are nonterminals, and a is a terminal. Show how to convert
any grammar into a CNF grammar for the same language {with the possible
exception of the empty string — no CNF grammar can generate e}.

-

Exercise 4.4.9: Every language that has a contexc-frec grammar can be rec-
ognized in at most O(n®) time for sirings of length n. A simple way to do so,
called the Cocke- Younger-Kasami (or CYK) algorithm is based on dynamic pro-
gramming. That is, given a string ajap - - - an, we construct an n-by-n table T'
such that 7}; is the set of nonterminals that generate the substring a;8:11 - - 6;.
If the underlying grammar is in CN¥ (see Exercise 4.4.8), then one table entry
can be filled in in Ofn) time, provided we fill the entries in the proper order:
lowest. value of § — ¢ first, Write an algorithm that correctly fills in the entries
of the table, and show that your algorithm takes O(n®) time. Having filled in
the table, how do yon determine whether aias - - - @y is in the language?

4.5. BOTTOM-UP PARSING 233

! Exercise 4.4,10: Show how, having filled in the table as in Exercise 4.4.9,
we can in O(n) time recover a parse tree for ayay---an. Hint: modify the
table so it records, for each nonterminal A in each table entry T3;. some pair of
nonterminals in other table entries that justified putting A in Tj;.

! Exercise 4.4.11: Modify your algorithm of Exercise 4.4.9 so that it will find,
for any string, the smallest number of insert, delete, and mutate crrors (each
error 4 single character) needed to turn the string into a string in the language
of the underlying grammar.

stmt — if ¢ then stmt stmtTail
| while ¢ do stmt
| begin list end
| s
stmtTail — else stmt
| e
list — stmt listTail
ListTail —— ; list
- €

Figure 4.24: A grammar for certain kinds of staternents

! Exercise 4.4,12: In Fig. 4.24 {s a grammar for certain statements. You may
take e and s to be terminals standing for conditional expressions and “other
statements,” respectively. If we resolve the conflict regarding expansion of
the optional “else” (nonterminal stmt7Taif) by preferring to comsume an else
from the input whenever we see one, we can build a predictive parser for this
grammar. Using the idea of synchronizing symbols described in Section 4.4.5:

a) Build an error-correcting predictive parsing table for the grammar.

b) Show the behavior of your parser on the following inputs:

(¢) ife then s;ife then s end
(¢4) while e do begin s ; if ¢ then s ; end

4.5 Bottom-Up Parsing

A bottom-up parse corresponds to the construction of a parse tree for an input
string beginning at the leaves (the bottom) and working up towards the root
(the top). It is convenient to describe parsing as the process of building parse
trees, although a front end may in fact carry out a translation directly without
building an explicit tree. The sequence of tree snapshots in Fig. 4,25 illustrates

234 CHAPTER 4. SYNTAX ANALYSIS

id * id Foxid T % id T« K T E

] |] /N 1

id B F id T F T

A |] /1N
id id .T’ id ’T" # [

|
id 1T‘ id

id

Figure 4.25: A boltom-up parse for id *id

a bottom-up parse of the token stream id id, with respect to the expression
grammar (4.1}.

This section introduces a general style of bottom-up parsing known as shift-
reduce parsing. The largest class of grammars for which shift-reduce parsers can
be built, the LR grammars, will be discussed in Sections 4.6 and 4.7. Although
it is too much work to build an LR parser by hand, tools called automatic parser
generators make it easy to construct efficient LR parsers from suitable gram-
mars. The concepts in this section are helpful for writing suitable grammars
to make effective use of an LR parser generator. Algorithms for implementing
parser generators appear in Section 4.7,

4.5.1 Reductions

We can think of bottom-up parsing as the process of “reducing” a string w to
the start symbol of the grammar. At each reduction step, a specific substring
matching the body of a production is replaced by the nonterminal at the head
of that production.

The key decisions during bottom-up parsing are about when to reduce and
about what production to apply, as the parse proceeds.

Example 4.37: The snapshots in ¥Fig. 4.25 illustrate a sequence of reductions;
the grammar is the expression grammar (4.1). The reductions will be discussed
in terms of the sequence of strings

id«id, F=id, T«id, TxF, T, E

The strings in this sequence are formed from the roots of all the subtrees in the
snapshots. The scquence starts with the input string id *id. The first reduction
produces F *id by reducing the leftmost id to F, using the production # — id.
The second reduction produces T * id by reducing F to T

Now, we have a choice between reducing the string T, which is the body
of E — T, and the string consisting of the second id, which is the body of
F — id. Rather than reduce T to E, the second id is reduced to 7', resulting
in the string T * F. This string then reduces to 7. The parse completes with
the reduction of T to the start symbol £. O

4.5. BOTTOM-UP PARSING 235

By definition, a reduction is the reverse of a step in a derivation (recall that
in a derivation, a nonterminal in a sentential form is replaced by the bady of
one of its productions). The goal of bottom-up parsing is therefore to construct
a derivation in reverse. The following derivation corresponds to the parse in
Fig. 4.25:

E=2T=3T+sFa3Txid= Frid=id+id

This derivation is in fact a rightmost derivation.

4.5.2 Handle Pruning

Bottom-up parsing during a left-to-right scan of the input construets a right-
most derivation in reverse. Informally, a “handle” is a substring that matches
the body of a production, and whose reduction represents one step along the
reverse of a rightmost derivation.

For example, adding subscripts to the tokens id for clarity, the handles
during the parse of id; # idy according to the expression grammar (4.1) are as
in Fig. 4.26. Although T is the body of the production £ — T, the symbol T is
not a handle in the sentential form T *id,. If T were indeed replaced by E, we
would get the string E +ids, which cannot be derived from the start symbol E.
Thus, the leftinost substring that matches the body of some production need
not be a handle.

RIGHT SENTENTIAL FORM HaNDLE REDUCING PRODUCTION

id; = id, id; F—id
Fxid, F T F

T *xid, id, F—id
TxF T«F E=Tx« F

Figure 4.26: Handles during a parse of id; # ids

Formally, if § > adw = ofw, as in Fig. 4.27, then production 4 — 3

in the position foli(;nwing ois a hondle of afw. Alternatively, a handle of a
right-sentential form v is a production A — 3 and a position of v where the
string 3 may be found, such that replacing 8 at that position by A produces
the previous right-sentential form in a rightmost derivation of ~.

Notice that the string w to the right of the handle must contain only terminal
symbols. For convenience, we refer to the body /3 rather than 4 — J as a handle.
Note we say “a handle” rather than “the handle,” because the grammar could
be ambiguous, with more than one rightmost derivation of afw. If a grammar
is unambiguous, then every right-sentential form of the grammar has exactly
one handle.

A rightmost derivation in reverse can be ohtained by “handle pruning.”
That is, we start with a string of terminals w to be parsed. If w is a sentence

236 CHAPTER 4. SYNTAX ANALYSIS

5

“‘L
LN

3 w

Figure 4.27: A handle A — 4 in the parse tree for afw

[0}

of the grammar at hand, then let w = 7, where =, is the nth right-sentential
form of some as yet unknown rightmost derivation

S=0= N2> 1> > a1 =W
i T ™ ™m ™m

To reconstruct this derivation in reverse order, we locate the handle 3, in
v and replace S, by the head of the relevant production 4, — 5, to obtain
the previous right-sentential form <,._1. Note that we do not yet know how
handles arc to be found, but we shall see methods of doing so shertly.

We then repeat this process. That is, we locate the handle 3, in y,—; and
reduce this handle to obtain the right-sentential form ~,—s. If by continuing this
process we produce a right-sentential form consisting only of the start symbol
5, then we halt and announce successful completion of parsing. The reverse of
the sequence of productions used in the reductions is a rightmost derivation for
the input string.

4.5.3 Shift-Reduce Parsing

Shift-reduce parsing is a form of bottom-up parsing in which a stack holds
grammar symbols and an input buffer holds the rest of the string to be parsed.
As we shall see, the handle always appears at the top of the stack just before
it is identified as the handle.

We use § to mark the bottom of the stack and also the right end of the
input. Conventionally, when discussing bottom-up parsing, we show the top of
the stack on the right, rather than on the left as we did for top-down parsing.
Initially, the stack is empty, and the string w is on the input, as follows:

STACK INPUT
$ w S

During a left-to-right scan of the input string, the parser shifts zero or more
input symbols onto the stack, until it is ready to reduce a string 3 of grammar
symbols on top of the stack, It then reduces § to the head of the appropriate
production. The parser repeats this cycle until it has detected an error or until
the stack contains the start symbol and the input is empty:

4.5. BOTTOM-UP PARSING 237

STACK INpUT
$5 3

Upon entering this configuration, the parser halts and announces successful
completion of parsing. Figure 4.28 steps through the actions a shift-reduce
parser might take in parsing the input siring id, xid; according to the expression
grammar (4.1).

STACK INPUT ACTION

$ id, *ido § shift

$id, xids $ reduce by F — id
§F xidy$ reduceby T —+ F
§T xid; § shift

§T « ids $ shift

§7T xids § reduce by F —id
$TxF $ reduceby T =T+ F
§T $ reduceby E—=T
$E $ accept

Figure 4.28: Configurations of a shift-reduce parser on input id;*id;

While the primary operations are shift and reduce, there are actually four
possible actions a shift-reduce parser can make: (1) shift, {2) reduce, (3) accept,
and (4) error.

1. Shift. Shift the next input symbol onto the top of the stack.

2. Reduce. The right end of the string to be reduced must be at the top of
the stack. Locate the left end of the string within the stack and decide
with what nonterminal to replace the string,.

3. Aceept. Announce successful completion of parsing.
4. Error. Discover a syntax error and call an error recovery routine.

The use of a stack in shift-reduce parsing is justified by an important fact:
the handle will always eventually appear on top of the stack, never inside. This
fact can be shown by considering the possible forms of two successive steps
in any rightmost derivation. Figure 4.29 illustrates the two possible cases. In
case (1), 4 is replaced by 3By, and then the rightmost nonterminal B in the
body 3By is replaced by +. In case (2}, A is again expanded first, but this time
the body is a string y of terminals only, The next rightmost nonterminal B will
be somewhere to the left of y.

In other words:

(1) S adz=> afByz = aByyz
T'*m e T

(2) S= aBzAz= aBryz=> ayryz

Tin rm

T

238 CHAPTER 4. SYNTAX ANALYSIS

<

a B v oy =
Case (1) Case (2)

e

>

Figure 4.29: Cases for two successive steps of a rightmost derivation

Consider case (1) in reverse, where a shift-reduce parser has just reached the
configuration

STACK INPUT
$asy yz$

The parser reduces the handle ¥ to B to reach the configuration
$asB yz$

The parser can now shifl the string ¥ onto the stack by a sequence of zero or
more shift moves to reach the configuration

SaBBy z$

with the handle 8By on top of the stack, and it gets reduced to A.
Now consider case (2). In configuration

Sy zyz$

the handle ~ is on top of the stack. After reducing the handle 4 to B, the parser
can shift the string zy to get the next handle y on top of the stack, ready to be

reduced to A:
$aBzy 28

In both cascs, after making a reduction the parser had to shift zero or more
symbols to get the next handle onto the stack. It never had to go into the stack
to find the handle.

4.5.4 Conflicts During Shift-Reduce Parsing

There are contexi-frec grammars for which shift-reduce parsing cannot be used.
Every shift-reduce parser for such a grammar can reach a configuration in which
the parser, knowing the entire stack contents and the next input symbol, cannot
decide whether to shift or to reduce (a shift/reduce conflict}, or cannot decide

4.5. BOTTOM-UP PARSING 239

which of several reductions to make (a reduce/reduce conflict). We now give
sonte examples of syntactic constructs that give rise to such grammars. Techni-
cally, these grammars are not in the LR(k) class of grammars defined in Section
4.7; we refer to them as non-LR grammars. The kin LR(%) refers to the number
of symbols of lookahead on the input. Grammars used in compiling usually fall
in the LR(1) class, with one symbol of lookahead at most.

Example 4.38: An ambiguous grammar can never be LR. For example, con-
sider the dangling-else grammar (4.14) of Section 4.3:

stmt — if expr then stmi
| if ezpr then stmi else stmt
| other

If we have a shift-reduce parser in configuration

STACK INpUT
- if expr then stmif else ---§

we cannot tell whether if ezpr then stmt is the handle, no matter what appears
below it on the stack. Here there is a shift /reduce conflict. Depending on what
follows the else on the input, it might be correct to reduce if expr then sémé
to stmi, or it might be correct to shift else and then to look for another st
to complete the alternative if expr then sitmt else stmd.

Note that shift-reduce parsing can be adapted to parse certain ambigu-
ous grammars, such as the if-then-else grammar above. If we resolve the
shift /reduce conflict on else in favor of shifting, the parsér will behave as we
expect, associating cach else with the previous unmatched then. We discuss
parsers for such ambiguous grammars in Section 4.8. [

Another common setting for conflicts occurs when we know we have a han-
dle, but the stack contents and the next input symbol are insufficient to de-
termire which production should be used in a reduction. The next example
illustrates this situation.

Example 4.39: Suppose we have a lexical analyzer that returns the token
name id for all names, regardless of their type. Suppose also that our lan-
guage invokes procedures by giving their names, with parameters surrounded
by parentheses, and that arrays are referenced hy the same syntax. Since the
translation of indices in array references and parameters in procedure calls
are different, we want to use different productions to generate lists of actual
parameters and indices. Our grammar might therefore have (among others}
productions such as those in Fig. 4.30.

A statement beginning with p(i,j) would appear as the token stream
id(id,id} to the parser. Aftcr shifting the first three tokens onto the stack,
a shift-reduce parser would be in configuration

240 CHAPTER 4. SYNTAX ANALYSIS

(1) stmt — id (perameter_list)

(2) stmt — expr := expr

(3) paremeter_list — parameter_list , parameter
(4) parameter_list — parameter

(5 pereameter — id

(6) expr — id (expr kst)

(7) expr — id

(R) exprlist — expr.list , expr

(9) expr list — expr

IMigure 4.30: Productions involving procedure calls and array references

STACK InpUT
-id (id Lid) ---

It is cvident that the id on top of the stack must be reduced, but by which
production? The correct choice Is produetion (3) if p is a procedure, but pro-
duction (7) if p is an array. The stack does not teil which; information in the
symbol table obtained from the declaration of p must be used.

One solution is to change the token id in production (1) to procid and to
use a more sophisticated lexical analyzer that returns the token name procid
when it recognizes a lexcme that is the name of a procedure. Doing so would
require the lexical analyzer to consult the symbol table before returning a token.

If we made this modification, then on processing p(i,j) the parser wonld
be either in the configuration

STACK ' INPUT
-+ procid (id s id) -

or in the configuration above. In the former case, we choose reduction by
production (5); in the latter case by production (7). Notice how the symbol
third from the top of the stack determines the reduction to bec made, even
though it is not involved in the reduction. Shift-reduce parsing can utilize
information far down in the stack to guide the parse. O

4.5.5 Exercises for Section 4.5

Exercise 4.5.1: For the grammar § — 0 S 1|0 1 of Exercise 4.2.2(a)},
indicate the handle in each of the following right-sentential forms:

a) 000111.
b) 00811.

Exercise 4.5.2 : Repeat Exercise 4.5.1 for the grammar § — S5+ |55+« |a
of Exercise 4.2.1 and the following right-sentential forms:

4.6. INTRODUCTION TO LR PARSING: SIMPLE LR 241

a) SS5+ax*+.
b) §5+ax*a+.
c) aaax o+ +.

Exercise 4.5.3: Give bottom-up parses for the following input strings and
gramrnars:

a) The input 000111 according to the grammar of Exercise 4.5.1.

b) The input aaa * a + + according to the grammar of Exercise 4.5.2.

4.6 Introduction to LR Parsing: Simple LR

The most prevalent type of bottom-up parser today is based on a concept called
LR(k} parsing; the “L” is for left-to-right scanning of the input, the “R” for
constructing a rightmost derivation in reverse, and the % for the number of
input symbols of lookahead that are used in making parsing decisions. The
cases k = 0 or k = 1 are of practical interest, and we shall only consider LR
parsers with & < 1 here. When (k) iIs omitted, k is assumed to be 1.

This section introduces the basic concepts of LR parsing and the easiest
method for constructing shift-reduce parsers, called “simple LR” (or SLR, for
short). Some familiarity with the basic concepts is helpful even if the LR
parser itself is constructed using an automatic parser generator. We begin with
“items” and “parser states;” the diagnostic output from an LR parser generator
typically includes parser states, which can be used to isolate the sources of
parsing conflicts.

Section 4.7 introduces two, more complex methods — canonical-LR and
LALR — that are used in the majority of LR parsers.

4.6.1 Why LR Parsers?

LR parsers are table-driven, much like the nonrecursive LL parsecrs of Sec-
tion 4.4.4. A grammar for which we can construct a parsing table using one of
the methods in this section and the next is said to be an LR grammar. Intu-
itively, for a grammar to be LR it is sufficient that a left-to-right shift-reduce
parser be able to recognize handles of right-sentential forms when they appear
on top of the stack.

LR parsing is attractive for a variety of reasons:

¢ LR parsers can be constructed to recognize virtually all programming-
language constructs for which contexi-free grammars can be written. Non-
LR context-free grammars exist, but these can generally be avoided for
typical programming-language constructs.

242 CHAPTER 4. SYNTAX ANALYSIS

¢ The LR-parsing method is the most gencral nonbacktracking shift-reduce
parsing method known, yet it can be implemented as efficiently as other,
more primitive shift-reduce methods (see the bibliographic notes).

¢ An LR parser can detect a syntactic error as soon as it is possible to do
so on a left-to-right scan of the input.

e The class of grammars that can be parsed using LR methods is a proper
superset of the class of grammars that can be parsed with predictive or
LL methods. For a grammar to be LR(k), we must be able to recognize
the occurrence of the right side of a production in a right-sentential form,
with % input symboels of loockahead. This requirement is far less stringent
than that for LL(k) grammars where we must be able to recognize the
use of a production seeing only the first k symbols of what its right side
derives. Thus, it should not be surprising that LR grammars can describe
more languages than LL grammars.

The principal drawback of the LR method is that it is too much work to
construct an LR parser by hand for a typical programming-language grammar.
A specialized tool, an LR parser generator, is needed. Fortunately, many such
generators are available, and we shall discuss one of the most commonly used
ones, Yacc, in Section 1.9. Such a generator takes a context-free grammar and
automatically produces a parser for that grammar. If the grammar containg
ambignities or other constructs that are difficult to parse in a left-to-right scan
of the input, then the parser generator locates these constructs and provides
detailed diagnostic messages.

4.6.2 Items and the LR(0) Automaton

How does a shift-reduce parser know when to shift and when to reduce? For
example, with stack contents $T and next input symbol x in Fig. 4.28, how
does the parser know that T on the top of the stack is not a handle, so the
appropriate action is to shift and not to reduce T to E?

An LR parser makes shift-reduce decisions by maintaining states to keep
track of where we are in a parse. States represent sets of “itcms.” An LR(0)
item (item for short) of a grammar G is a production of G' with a dot at some
pasition of the body. Thus, production 4 — XYZ yields the four items

A= -XYZ
A XYZ
A= XY.Z
A— XYZ-

The production 4 — ¢ generates only one item, A — - .

Intuitively, an item indicates how much of a production we have seen at a
given point in the parsing process. For example, the item A — -XY Z indicates
that we hope to sce a string derivable from XY Z next on the input. Item

4.6. INTRODUCTION TO LR PARSING: SIMPLE LR 243

Representing Item Sets

A parser generator that produces a bottom-up parser may need to rep-
resent items and scts of items conveniently. Note that an item can be
represented by a pair of integers, the first of which is the number of one
of the productions of the underlying grammar, and the second of which is
the position of the dot. Sets of items can be represented by a list of these
pairs. However, as we shall see, the nccessary sets of items often include
“closure” items, where the dot is at the beginning of the body. These can
always he reconstructed from the other items in the set, and we do not
have o include them in the list.

A = XY Z indicates that we have just seen on the input a string derivable from
X and that we hope next to see a string derivable from ¥ Z. Item 4 -+ XY 2.
indicates that we have seen the body XY Z and that it may be time to reduce
XY Z to 4.

One collection of sets of LR(() items, called the canonicel LR{0) collection,
provides the basis for constructing a deterministic finite antomaton that is used °
to make parsing decisions. Such an auntomaton is called an LE(?) automaton.®
In particular, each state of the LR{0) antomaton represents a set of items in
the canonical LR{0} collection. The automaton for the expression grammar
(4.1}, shown in Fig. 4.31, will sexve as the running example for discussing the
canonical LR(0) collection for a grammar.

To construet the canonical LR{0) collection for a grammar, we define an
augmented grammar and two functions, CLOSURE and GOTO. If (7 is a grammar
with start symbol S, then 7/, the augmented grammar for G, is G with a new
start symbol S’ and production S — S. The purpose of this new starting
production is to indicate to the parser when it should stop parsing and announce
acceptance of the input. That is, acceptance occurs when and only when the
parser is about to reduce by §' = 5.

Closure of Itemn Sets

If I'is a set of items for a grammar &, then CLOSURE(]) is the set of items
constructed from I by the two rules:

1. Initially, add every itcm in I to CLOSURE(]).

2. I A - aBfis in CLOSURE(]) and B — « is a production, then add the
iten B — -y to CLOSURE(]), if it is not already there. Apply this rule
until no more new jtems can be added to CLOSURE(T).

2Technically, the automaton misses being deterministic according (o the definition of Sec-
tion 3.6.4, because we do not have a dead state, corresponding to the empty set of items. As
a result, there are some state-input pairs for which no next stale exists,

244 CHAPTER 4. SYNTAX ANALYSIS

Figure 4.31: LR(0) automaton for the expression grammar (4.1}

Intuitively, 4 = a-B# in CLOSURE(]) indicates that, at some point in the
parsing process, we think we might next see a substring derivable from B/
as input. The substring derivable from BA will have a prefix derivable from
B by applying one of the B-productions. We therefore add items for all the
B-productions; that is, if B — v is a production, we also include B — -y in
CLOSURE(]).

Example 4.40: Consider the augmented expression grammar:
E - E
E - E+T | T
T —- T«F | F
E - ()] id

If I is the set of one item {[E' — -E}}, then CLOSURE(]) contains the set
of items I in Fig. 4.31,

4.6. INTRODUCTION TO LR PARSING: SIMFLE LR 245

To see how the closure is computed, £ — -E is put in CLOSURE(]) by
rule (1). Since there is an E immediately to the right of a dot, we add the
E-productions with dots at the left ends: E — -E+T and E — -T. Now there
is a T immediately to the right of & dot in the latter item, so we add T — T+ F
and T — -F. Next, the F to the right of a dot forces us to add F — +(E) and
F — -id, but no other items need to be added. O

The closure can be computed as in Fig. 4.32. A convenient way to imple-
ment the function closure is to keep a boolean array added, indexed by the
nonterminals of G, such that added[B] is set to true if and when we add the
item B — -v for each B-production B — -,

SetOftems CLOSURE({) {
J =1
repeat
for (each item 4 = o-B3in J)
for (each production B — v of G }
if { B— ~yisnotin J)
add B = -y to J;

until no more items are added to J ou one round;
return J;

Figure 4.32: Computation of CLOSURE

Note that if onc B-production is added to the closure of I with the dot at the
left end, then all B-productions will be similarly added to the closure. Hence,
it is not necessary in some circumstances actually to list the items B — -y
added to I by CLOSURE. A list of the nonterminals B whose productions were
so added will suffice. We divide all the sets of items of interest into two classes:

1. Kernel #tems: the initial item, §' = -8, and all items whose dots are not
at the left end.

2. Nonkernel items: all items with their dots at the left end, except for
S =S,

Moreover, each set of items of interest is formed by taking the closure of a set
of kernel items; the items added in the closure can never be kernel items, of
course. Thus, we can represent the sets of items we are really interested in
with very little storage if we throw away all nonkernel items, knowing that they
could be regencrated by the closure process. In Fig. 4.31, nonkernel items are
in the shaded part of the box for a state.

246 CHAPTER 4. SYNTAX ANALYSIS

The Function GOTO

The second useful function is GOTO(I, X) where T is a set of items and X is a
grammar symbol. GOTO(I, X) is defined to be the closure of the set of all items
[A = aX 3] such that [4 - «- X 3] is in I. Intuitively, the GOTO function
is used to define the transitions in the LR{() antomator for a grammar. The
states of the automaton correspond to sets of items, and GOTO(I, X} specifies
the transition from the state for I under input X.

Example 4.41: If T is the set of two items {[E' — E\|, [E & E- + T}, then
GOTO{I, +) contains the items

ESE+T
T TxF
T—.-F
F = -(E)
F—id

We computed GOTO(I,+)} by examining [for items with + immediately to
the right of the dot. E' — E- is not such an item, but E —+ E- + T is. We
moved the dot over the + to get E — E 4+ -T" and then took the closure of this

singleton set. 0O

We are now ready for the algorithm to construct ¢, the canomical collection
of sets of LR{0) items for an augmented grammar G’ — the algorithm is shown
in Fig. 4.33.

void items(G") {
C = cLOSURE({[S' — -§]});
repeat
for (each set of items I in C)
for { each grammar symbol X)
if { @oTo(I, X) is not empty and not in €')
add goro(l, X) to C;
until no new sets of items are added to € on a round;

Figure 4.33: Compnutation of the canonical collection of scts of LR{0) items

Example 4,42: The canonical collection of sets of LR(D) items for grammar
(4.1) and the GOTO function are shown in Fig. 4.31. GOTO is encoded by the

trangitions in the figure. O

4.6. INTRODUCTION T(LR PARSING: SIMPLE LR 247

Use of the LR(0) Automaton

The central idea behind “Simple LR,” or SLR, parsing is the construction from
the grammar of the LR(0) antomaton. The states of this automaton are the
sets of items from the canonical LR(0) collection, and the transitions are given
by the GOTO function. The LR(0) automaton for the expression grammar (4.1)
appeared earlier in Fig. 4.31.

The start state of the LR(0) automaton is CLOSURE({[S’ — S}}}, where &'
is the start symbol of the augmented grammar. All states arc accopting states.
We say “stale 77 to refer to the state corresponding to the set of items ;.

How can LR{0) automata help with shift-reduce decisions? Shift-reduce
decisions can be made as follows. Suppose that the string v of grammar symbols
takes the LR(0) automaton from the start state 0 to some statc j. Then, shift
on next input symbol a if state 7 has a transition on a. Otherwise, we choose
to reduce; the items in state § will tell us which production to use.

The LR-parsing algorithm to be introduced in Section 4.6.3 uses its stack to
keep track of states as well as grammar symbols; in fact, the grammar symbol
can be recovered from the state, so the stack holds states. The next example
gives a preview of how an LR(0) automaton and a stack of states can be used
to make shift-reduce parsing decisions.

Example 4.43: Figure 4.34 illustrates the actions of a shift-reduce parser on
input id * id, using the LR{0) automaton in Fig. 4.31. We use a stack o hold
states; for clarity, the grammar symbols corresponding to the states on the
stack appear in column SYMBOLS. At line (1), the stack holds the start state 0
of the automaton; the corresponding symbol is the hottom-of-stack marker §.

LINE STACK SYMBOLS INPUT ACTION
(1) |0 $ id«id $ | shift to 5
(2) |05 $id #1d$ | reduce by F — id
(3 03 $F *id$ | reduce by T' = F
(4) 02 §r *1d § | shift to 7
(5) (027 $T + id $ | shift to 5
(6) | 0275 }§T«id $ | reduce by F — id
(7Y | 02710 | §T+F $ | reduceby T 5T * F
(8) (02 $T $ | reduce by E—= T
9 |01 $E $ | accept

Figure 4.34: The parsc of id = id

The next input symbol is id and state 0 has a transition on id to state 5.
We therefore shift. At line (2), state 5 (symbol id) has been pushed onto the
stack. There is no transition from state 3 on input *, so we reduce. From item
[F — id'] in state 5, the reduction is by production F — id.

248 CHAPTER 4. SYNTAX ANALYSIS

With symbals, a reduction is implemented by popping the body of the pro-
duction from the stack (on line (2), the body is id) and pushing the head of
the production (in this case, F'), With states, we pop state 5 for symbol id,
which brings statc 0 to the top and look for a transition on F, the head of the
production. In Fig. 4.31, state 0 has a transition on F to statc 3, so we push
state 3, with corresponding symbol F'; see line (3).

As another example, consider line (5), with state 7 (symbol *) on top of the
stack. This state has a transition to state 5 on input id, so we push state 5
{symbol id). State 5 has no transitions, so we reduce by F — id. When we
pop state 5 for the body id, state 7 comes to the top of the stack. Since state 7
has a transition on F' to state 10, we push state 10 {symbol F). O

4.6.3 The LR-Parsing Algorithmn

A schematic of an LR parser is shown in Fig. 4.35. It consists of an input,
an output, a stack, a driver program, and a parsing table that has two parts
{ACTION and GOTQ). The driver program is the same for all LR parsers; only
the parsing table changes from one parser to another. The parsing program
reads characters from an inpuf buffer one at & time. Where a shift-reduce parser
would shift a symbol, an LR parser shifts a stete. Each state summarizes the
information contained in the stack below it.

Input ‘al‘--- |as ‘{ln‘$]
LR
Stack S [Parsing —— Output
3m—1‘. Program

$ VAN
}Z]TION GOTO

Figure 4.35: Model of an LR parser

The stack holds a sequence of states, 8g8) - - - $m, where 5, is on top. In the
SLR method, the stack holds states from the LR(0) automaton; the canonical-
LR and LALR methods are similar. By construction, each state has a corre-
sponding grammar symbol. Recall that states correspond to sets of items, and
that there is a transition from state i to state j if GOTO(L;, X) = I;. All tran-
sitions to state j must be for the same grammar symbol X. Thus, each state,
except the start state 0, has a unique grammar symbol associated with it

4The converse need not hold; that is, more than onc state may have the same grammar

4.6. INTRODUCTION TO LR PARSING: SIMPLE LR 249

Structure of the LR Parsing Table

The parsing table consists of two parts: a parsing-action function ACTION and
a goto function GOTO.

1. The ACTION function takes as arguments a state 7 atid a terminal a (or
$, the input endmarker). The value of ACTION[i,a] can have one of four
forms:

(a) Shift j, where j is a state. The action taken by the parser effectively
shifts input @ to the stack, but uses state j to represent q.

(b) Reduce A — 8. The action of the parser effectively reduces 3 on the
top of the stack to head A.

{c) Accept. The parser accepts the input and finishes parsing:

{(d) Error. The parser discovers an error in its input and takes some
corrective action. We shall have more to say about how such error-
recovery routines work in Sections 4.8.3 and 4.9.4.

2. We extend the COTO function, defined on sets of ifems, to states: if
GOTO[{;, A] = I;, then GOTO also maps a state 4 and a nonterminal A to
state j.

LR-Parser Configiurations

To describe the behavior of an LR parser, it helps to have a notation repre-
senting the complete state of the parser: its stack and the remaining input. A
configuration of an LR parser is a pair:

(8051 S, Qifbiyq v ﬂ-n$)

where the first component is the stack contents (top on the right), and the
second component is the remaining input. This configuration represents the
right-sentential form

X Xg-- Xon@itigs -y

in essentially the same way as a shift-reduce parser would; the only difference is
that instead of grammar symbols, the stack holds states from which grammar
symbols can be recovered. That is, X; is the grammar symbol represented
by state s;. Note that sg, the start state of the parser, does not represent a
grammar symbal, and serves as a bottom-of-stack marker, as well as playing an
important role in the parse.

symbol. See for example states 1 and § in the LR{0) aulomaton in Fig. 4.31, which are both
entered by transitions on E, or states 2 and 9, which are hoth entered by transitions on T.

250 CHAPTER 4. SYNTAX ANALYSIS

Behavior of the LR Parser

The next move of the parser from the configuration above is determined by
reading a;, the current input symbol, and s,,, the state on top of the stack,
and then consulting the entry ACTION[s,,a;] in the parsing action table. The
configurations resulting after each of the four types of move are as follows

1. If ACTION([sp,, ;] = shift s, the parser executes a shift move; it shifts the
next state s onto the stack, entering the configuration

(5081 <+ * S8, Qipr1 -~ - @ §)

The symbol @; need not be held on the stack, since it can be recovered
from s, if needed (which in practice it never is). The current input symbol
is nOwW 1.

2. If ACTION[spm,a;] = reduce 4 — 3, then the parser executes a reduce
move, entering the configuration

(8081 " 8m—r8) QG311 " B S)

where r is the length of 8, and s = GOTO[8y,—r, A]. Here the parscr
first popped r state symbols off the stack, exposing state sp;—r. The
parser then pushed s, the entry for GOTO[sy,_y, 4], onto the stack. The
current input symbol is not changed in a reduce move. For the LR parsers
we shall construct, X,,_py1--- X, the sequence of grammar symbhols
corresponding to the states popped off the stack, will always match 3,
the right side of ithe reducing production.

The ontput of an LR parser is generated after a reduce move by executing
the semantic action associated with the reducing production. For the time
being, we shall assume the output consists of just printing the reducing
production.

3. If ACTION[sy,, @;] = accept, parsing is completed.

4. Tf ACTION[8ys, a5} = error, the parser has discovered an error and calls an
€rror recovery routine.

The LR-parsing algorithm is summarized below. All LR parsers hehave
in this fashion: the only difference hetween one LR parser and another is the
information in the AGTION and GOTO fields of the parsing table.

Algorithm 4.44: LR-parsing algorithm.

INPUT: An input string w and an LR-parsing table with functions ACTION and
GOTO for a grammar G.

4.6. INTRODUCTION TO LR PARSING: SIMPLE LR 251

ouUTPUT: If w is in L(G), the reduction steps of a bottom-up parse for w;
otherwise, an erroy indication.

METHOD: Initially, the parser has sy on its stack, where sq is the initial state,
and w$ in the input buffer. The parser then executes the program in Fig. 4.36.
O

let a be the first symbol of w$;
while(1) { /* repeat forever ¥/
let s be the state on top of the stack;
if (ACTION[s,a] = shift ¢) {
push # onto the stack;
let @ be the next input svmbal;
} else if { ACTION|s, 0] = reduce 4 =+ 3) {
pop |3] symbols off the stack;
let state ¢t now be on top of the stack;
push GOTO[t, 4] onto the stack;
output the production 4 -+ 3;
} else if (ACTION[s, @] = accept } break; /* parsing is done */
else call error-recovery routine;

Figure 4.36: LR-parsing program

Example 4.45: Figure 4.37 shows the ACTION and GOTO functions of an
LR-parsing table for the expression grammar {4.1), repeated here with the
productions numbered:

(1) E->E+T 4 T F
2 E-T (5) F - (E)
(3) T—oT+F (6) F—id

The codes for the actions are:
1. si means shift and stack state 1,
2. rj means reduce by the production numbered j,
3. acc means accept,

4. blank means error.

Note that the value of GOTO[s, a] for terminal o is found in the ACTION
field connected with the shift action on input @ for state s. The GoTO field
gives GOTO[s, A] for nonterminals 4. Although we have not yet explained how
the entries for Fig. 4.37 were selccted, we shall deal with this issue shortly.

252 CHAPTER 4. SYNTAX ANALYSIS

STATE ACTION GOTO
d + x) $ E T F

0 85 s4 1 2 3
1 36 acc

2 2 87 t2 12

3 rd rd rd 4

4 8b g4 8 2 3
a r6 16 b b

6 85 54 9 3
7 85 54 10
8 s6 sll

9 11 87 rl rl

10 3 13 r3 13

11 s rh rh rh

Figure 4.37: Parsing table for expression grammar

On input id * id + id, the sequence of stack and input contents is shown
in Fig. 4.38. Also shown for clarity, are the sequences of grammar symbols
corresponding to the states held on the stack. For example, at line (1) the LR
parser is in state 0, the initial state with no grammar symbol, and with id the
first input symbol. The action in row 0 and column id of the action field of
Fig. 4.37 is 53, mcaning shift by pushing state 3. That is what has happened at
line {2): the state symbol 5 has been pushed onto the stack, and id has been
removed from the input.

Then, * becomes the current input symbol, and the action of state 5 on input
is to reduce by F' —+ id. One state symbal is popped off the stack. State 0
is then exposed. Since the goto of statc 0 on F is 3, state 3 is pushed onto the
stack. We now have the configuration in line {3). Each of the remaining moves
is determined similarly. O

4.6.4 Constructing SLR-Parsing Tables

The SLR. method for constructing parsing tables is a good starting point for
studying LR parsing. We shall refer to the parsing table constructed by this
method as an SLR table, and to an LR patser using an SLR-parsing table as an
SLR parser. The other two methods augment the SLR method with lookahead
information.

The SLR method begins with LR(0) items and LR(0) automata, introduced
in Section 4.5. That is, given a grammar, G, we augment G to produce o,
with a new start symbol S*. From G, we construct €, the canonical collection
of sets of items for ' together with the GOTO function.

4.6, INTRODUCTION TO LR PARSING: SIMPLE LR 253

STACK | SYMBOLS INPUT ACTION
o Vid«id+id$ | shift
(2105 id xid + id $ | reduce by I' —+ id
(33103 F #id +1d§ | reduce by T’ — F
(4) |02 T «id +1d$ | shift
(6 027 T« id +id$ | shift
(6) 10275 | Txid +id$ | reduce by F — id
Mmlo2710| TxF +id§ | reduce by T =+ T » F
8 102 T +id$ | reduce by E > T
9|01 E +id§ [shift
10) | 016 | E+ id$ | shift
(11| 0165 | E+id $ | reduce by F — id
(120163 | E+ F § | veduce by T — F
13| 0169 | E+T $ | reduceby E—+ E+T
(14y | 01 b $ | accept

Figure 4.38; Moves of an LR parser on id *id + id

The ACTION and GOTO entries in the parsing table are then constructed
using the following algorithm. It requires us to know FOLLOW(A)} for each
nonterminal A of a grammar (see Section 4.4).

Algorithm 4.46: Constructing an SLR-parsing table.

INPUT: An augmented gramumar 7.

OUTPUT: The SLR-parsing table functions ACTION and ¢o10 for GF.

METHOD:

1. Construct C' = {Ip,I1,... ,I»}, the collection of sets of LR(0} items for

G

2. State ¢ is constructed from J;. The parsing actions for state ¢ are deter-

mined as follows:

(a) If[A = a-af] is in I; and GOTO(Z;,) = I}, then set ACTION{i, q] to
“shift 7.” Here ¢ must be a terminal.

(b) If [A =] is in T;, then set ACTION[Z, a) to “reduce A — o” for all

a in FOLL.OW(A); here 4 may not be 5.

(¢) If [S" = §-]is in I, then set ACTION[, §] to “accept.”

If any conflicting actions result from the above rules, we say the grammar
is not SLR(1). The algorithm fails to produce a parser in this case.

254 CHAPTER 4. SYNTAX ANALYSIS

3. The goto transitions for state i are constructed for all nonterminals A
using the rule: If GOTO(J;, A) = I}, then GOTO[i, 4] = j.

4. All entries not defined by rules (2} and (3) are made “error.”

5. The initial state of the parser is the one constructed from the sct of items
containing [§' - -5].

a

The parsing table consisting of the ACTION and GOTO functions determined
by Algorithm 4.46 is called the SLR(1) table for G. An LR parser using the
SLR(1) table for & is called the SLR(1) parser for G, and a grammar having an
SLR(1) parsing table is said to be SLR(7). We usually omit the “(1)” after the
“SLR,” since we shall not deal here with parsers having more than one symbol
of lookahead.

Example 4.47: Let us construct the SLR. table for the augmented expression
grammar. The canonical collection of sets of LR(0) items for the gramrar was
shown in Fig. 4.31. First consider the set of items Iy:

E - .E
E— .E+T
E—.T
T—=.TxF
T -F
F = (E)
F 3 -id

The item F — () gives rise to the cntry ACTION[O, (] = shift 4, and the
item F — -id to the entry ACTION]0,id] = shift 5. Other items in Jy yicld no
actions. Now consider I7:

E' - E-
E—~E+T

The first item yields ACTION[1, §] = accept, and the second yields ACTION[1, +]
= shift 6. Next consider f3:

E-T.
T—T xF

Since FOLLOW(E) = {8§,+,)}, the first item makes
ACTION([2, §] = ACTION[2, +] = ACTION[2, }] = reduce & = T

The second item makes ACTION[2, ¥] = shift 7. Continuing in this fashion we
obtain the ACTION and GOTO tables that were shown in Fig. 4.31. In that
figure, the numbers of productions in reduce actions are the same as the order
in which they appear in the original grammar (4.1). Thatis, E - E+ T is
number 1, £ = T is 2, and so on. O

4.6, INTRODUCTION TO LR PARSING: SIMPLE LR 255

Example 4.48: Every SLR(1) grammar is unambiguous, but there are many
unambiguous grammars that are not SLR(1). Consider the grammar with pro-
ductions

S - L=R| R
L —= xR | id (4.49)
nl = L

Think of L and R as standing for fvalue and rvalue, respectively, and * as an
operator indicating “contents of.”® The canonical collection of sets of LR(0)
items for grammar {4.49) is shown in Fig. 4.39.

Iy: 8= -8 I;: L-=id-
§—+ L=R
S— R I §S—L=-R
L—+ xR R—.L
L—id L—- -«
R— L L—-id
L: =49 I: L —=x*R
Iy 8L =R Is: R—= L.
B—- L
Ig! S——>L=R'
I;; 85— R
Iyt Lo xR
R—-L
L—=-%xR
L id

Figure 4.39: Canonical LR(0) collection for grammar {4.49)

Consider the set of items I». The first item in this set makes ACTION([2, =]
be “shift 6.” Since FOLLOW(X) contains = (to see why, consider the derivation
S = L =R = »R = R), the second item sets ACTION|[2, =] to “reduce R — L.
Since there is both a shift and a reduce entry in ACTION{2, =], state 2 has a
shift/reduce conflict on input symbol =.

Grammar (4.49) is not ambiguous. This shift/reduce conflict arises from
the fact that the SLR parser construction method is not powerful enough to
remember enough left context to decide what action the parser should take on
input =, having seen a string reducible to L. The canonical and LALR methods,
to be discussed next, will succeed on a larger collection of grammars, including

5As in Section 2.8.3, an i-value desi gnates a location and an r-value is a value that can be
stored in a location,

256 CHAPTER 4. SYNTAX ANALYSIS

grammar (4.49). Note, however, that there are unambiguous grammars for
which every LR parser construction method will produce a parsing action table
with parsing action conflicts. Fortunately, such grammars can generally be
avoided in programming language applications. O

4.6.5 Viable Prefixes

Why can LR(D) automata be used to make shift-reduce decisions? The LR{0)
automaton for a grammar characterizes the strings of grammar symbols that
can appear on the stack of a shift-reduce parser for the grammar. The stack
contents must be a prefix of a right-sentential form. If the stack holds a and
the rest of the input is #, then a sequence of reductions will take az to 5. In
terms of derivations, § = az.

T it
Not all prefixes of right-sentential forms can appear on the stack, however,
gince the parser must not shift past the handle. For example, suppose

ES Fxid=s (BE)xid
TH rm

Then, at various times during the parse, the stack will hold (, (E, and (E), but
it must not hold (E)#, since (E) is a handle, which the parser must reduce to
F before shifting *.

The prefixes of right sentential forms that can appear on the stack of a shifi-
reduce parser are called wiable prefizes. They are defined as follows: a viable
prefix is a prefix of a right-sentential form that does not contirue past the right
end of the rightmost handle of that sentential form. By this definition, it is
always possible to add terminal symbeols to the end of a viable prefix to obrtain
a right-sentential form.

SLR parsing is based on the fact that LR(0) automata recognize viable
prefixes. We say item 4 — f1-3 is valid for a viable prefix af; if there is a
derivation &’ & adw = a fow. In general, an item will be valid for many
viable preﬁxesr.m o

The fact that 4 = 3,3z is valid for a3 tells us a lot about whether to
shift or reduce when we find @ on the parsing stack. In particular, if 82 # €,
then it suggests that we have not yct shifted the handle onto the stack, so shift
is our move. If 85 = e, then it looks as if A — 8; is the handle, and we should
reduce by this production. Of course, two valid items may tell us to do different
things for the same viable prefix. Some of these conflicts can be resolved by
looking at the nexi input symbol, and others can be resolved by the methods
of Section 4.8, but we should not suppose that all parsing action conflicts can
be resolved if the LR method is applied to an arbitrary grammar.

We can easily compute the set of valid items for each viable prefix that
can appear on the stack of an LR parser. In fact, it is a central theorem of
LR-parsing theory that the set of valid items for a viable prefix v is exactly
the set of items reached from the initial state along the path labeled in the
LR(0) automaton for the grammar. In essence, the set of valid items embodies

4.6. INTRODUCTION TO LR PARSING: SIMPLE LR 257

Ttems as States of an NFA

A nondeterministic finite automaton N for recognizing viable prefixes can
be constructed by treating the items themselves as states. There is a
transition from A —- X3 to A — aX-3 labeled X, and there is a
transition from A - a- B3 to B — v labeled e. Then CLOSURE(T) for
set of items {states of N} I is exactly the e-closure of a set of NFA states
defined in Section 3.7.1. Thus, GOTO(I,X) gives the transition from [
on symbol X in the DFA constructed from N by the subset construction.
Viewed in this way, the procedure items{G') in Fig. 4.33 is just the subset
construction itself applied to the NFA N with items as statces.

all the useful information that can be gleaned from the stack, While we shall
not prove this theorem here, we shall give an example.

Example 4.50: Let us consider the augmented expression grammar again,
whose sets of items and GOTO function are exhibited in Fig. 4.31. Clearly, the
string B 4+ T'x is a viable prefix of the prammmar. The automaton of Fig. 4.31
will be in state 7 after having read E + T+. State 7 containg the items

T —>Tx.F

F—(E)

H—id
which are precisely the items valid [or E+7'+. To see why, consider the following
three rightmost derivations

E = E E= E B = E
= E4+T ZEsT S E4T
S EtTwF Z E4TsF S E4TsF
" ::EE+T*(E) %E+T*id

The first derivation shows the validity of T — T = -F', the second the validity
of F' — «(E)}, and the third the validity of F/ - -id. It can be shown that there

are no other valid items for E + T'x, although we shall not prove that fact here.
a

4.6.6 Exercises for Section 4.6

Exercise 4.6.1: Describe all the viable prefixes for the following grammars:

a) The grammar 5 — 0.5 1|0 1 of Exercise 4.2.2(a).

!

-y

258 CHAPTER 4. SYNTAX ANALYSIS

!'b) The grammar § — §5 + | S S # | a of Exercise 4.2.1.
! c) The grammar S — S (5) | ¢ of Exetcise 4.2.2(c).

Exercise 4.6.2: Construct the SLR sets of items for the (augmented) grammar
of Exercise 4.2.1. Compute the GOTO function for these sets of items. Show
the parsing table for this grammar. Is the grammar SLR?

Exercise 4.6.3: Show the actions of your parsing table from Exercise 4.6.2 on
the input aa * a+.

Exercise 4.68.4: For each of the (augmented) grammars of Exercise 4.2.2(a)~

(g):
a) Construet the SLR sets of items and their ¢oTO function.
b) Indicate any action conflicts in your sets of items.
¢) Construct the SLR-parsing table, if one exists.

Exercise 4.6.5: Show that the following grammar:

S = AaAb|BbBa
A = e
B - ¢

is LL(1) but not SLR(1).
Exercise 4.6.6: Show that the following grammar:

§ 5 SA414
A4 = a

is SLR(1) but not LL(1).
Exercise 4.6.7: Consider the family of grammars G,, defined by:

5 - A b; for1<i<n
PR ajA¢-|aJ- forlﬁz,gﬁnandz#g

Show that:
a) Gp has 2n? — n productions.
b) Gy has 27 + n? + n sets of LR(0) items.
¢} Gn is SLR(1).

What does this analysis say about how large LR parsers can get?

4.7. MORE POWERFUL LR PARSERS 259

! Exercise 4.6.8: We suggested that individual items could be regarded as
states of a nondeterministic finite automaton, while sets of valid items are the
states of a deterministic finite automaton (see the box on “Items as States of
an NFA” in Section 4.6.5), For the grammar S — S5 + [88 % |aof
Exercise 4.2.1:

a) Draw the transition diagram (NFA) for the valid items of this grammar
according to the rule given in the box cited above.

b) Apply the subsct construction {Algorithm 3.20) to your NFA from part
{a). How does the resulting DFA compare to the set of LR(0) items for
the grammar?

1! ¢) Show that in all cases, the subset construction applicd to the NFA that
comes from the valid items [or a grammar produces the LR(0) scts of
items.

Exercise 4.6.9: The following is an ambiguous grammar:

S o AS{bh
A 5 SAla

Construct for this grammar its collection of sets of LR(0) items. If we try to
build an LR-parsing table for the grammar, there are certain conflicting actions.
What are they? Suppose we tried to use the parsing table by nondeterminis-
tically choosing a possible action whenever there is a conflict. Show ali the
possible sequences of actions on input abab.

4.7 More Powerful LR Parsers

In this section, we shall extend the previous LR parsing techniques to use one
symbol of lockahead on the input. There are two different methods:

1. The “canonical-LR” or just “LR” method, which makes full use of the
lookahead symbol(s). This method uses a large set of items, called the
LR(1} items.

2. The "lookahead-LR” or “LALR” method, which is based on the LR(0)
sets of iterns, and has many fewer states than typical parsers based on the
LR(1} items. By carefully introducing lookaheads into the LR(0) items,
we can handle many more grammars with the LALR method than with
the SLR method, and build parsing tables that are no bigger than the
SLR. tables. LALR is the method of choice in most sitnations.

After introducing both these methods, we conctude with a discussion of how to
compact LR parsing tables for environments with limited memory.

260 CHAPTER 4. SYNTAX ANALYSIS

4.7.1 Canonical LR(1) Items

We shall now present the most general technique for constructing an LR parsing
table from a grammar. Recall that in the SLR method, state i calls for reduction
by A — « if the set of items J; contains item [4 — o] and a is in FOLLOW(A).
In some situations, however, when state ¢ appears on top of the stack, the
viable prefix o on the stack is such that 34 cannot be followed by a in any
right-sentential form. Thus, the reduction by 4 = a should be invalid on input
a.

Example 4.51: Let us reconsider Example 4.48, where in state 2 we had item
R — L-, which could correspond to 4 — « above, and a could be the = sign,
which is in FOLLOW(R). Thus, the SLR parser calls for reduction by R = L
in state 2 with = as the next input (the shift action is also called for, because
of itere § — L-=R in state 2). However, there is no right-sentential form of the
grammar in Example 4.48 that begins R = -+. . Thus statc 2, which is the
state corresponding to viable prefix L only, should not really call for reduction
of that Lto BR. O

It is possible to carry more information in the state that will allow us to
rule out some of these invalid reductions by A - a. DBy splitting states when
necesgary, we can arrange to have each state of an LR parser indicate exactly
which input symbols can follow a handle « for which there is a possible reduction
to A.

The extra information is incorporated into the state by redefining items to
include a terminal symbol as a second component. The general form of an item
becomes [4 —~ a - 3,a], where A — a3 is a production and ¢ is a terminal or
the right endimarker 8. We call such an object an LE(1} item. The 1 refers
to the length of the second component, called the lookahead of the item.® The
lookahead has no effect in an item of the form [A — a-3, 6], where [is not e,
but an item of the form {4 — a-,a] calls for a reduction by A — a only if the
next input symbol is ¢. Thus, we arc compelled to reduce by 4 —+ « only on
those input symbols @ for which [A — -, a] is an LR(1) item in the state on
top of the stack. The sct of such a’s will always be a subset of FOLLOW(A),
but it could be a proper subset, as in Example 4.51.

Formally, we say LR(1) item [4 — «-3,qa] is valid for a viable prefix v i
there is a derivation § = §Aw => dafw, where

it Tm
1. ¥ = da, and
2. Either ¢ is the first symbol of w, or w is € and a is §.

Example 4,52 Let us consider the grammar

6Lookaheads that are strings of length greater than one are possible, of course, but we
shall not consider such lookaheads here,

4.7. MORE POWERFUL LR PARSERS 261

S—-BB
B—aB | b

There is a rightmost derivation S & aaBab = aaaBab. We see that item [B —
i I

a-DB,a] is valid for a viable prefix v = aaa by letting = aa, 4 = B, w = ab,

a = a, and 8 = B in the above definition. There is also a rightmost derivation

$ & BaB = BaeaB. From this derivation we see that item [B — o-B,$] is

i i
valid for viable prefix Daa. O

4.7.2 Constructing LR{1) Sets of Items

The method for building the collection of sets of valid LR(1) iterns is essentially
the same as the one for building the canonical collection of sets of LR(0) items.
We need only to maodify the two procedures CLOSURE and GOTO.

SetOfItems CLOSURE(]) {
repeat
for (each item [A - a-B3,a]in I')
for { each produetion B - v in G')
for (each terminal b in FIRST(3a))
add [B -~ -y, 8] to set I;

until no more items are added to I;
return [;

}

SetOfItems coTo{I, X} {
initialize J to be the empty set;
for { each item [A — a-X§,a) in I)
add item [4 = aX -3, a] to sct J;
return CLOSURE(J);

}

void items(G") {
initialize C' to CLOSURE({[S" — -S,8]});
repeat
for (each set of items [in C)
for (each grammar symbol X)
if { GoTO(J, X} is not empty and not in C)
add Go1o(i, X) ta C;
until no new sets of items are added to C;

Figure 4.40: Sets-of-LR(1)-items construction for grammar G

262 CHAPTER 4. SYNTAX ANALYSIS

To appreciate the new definition of the CLOSURE operation, in particular,
why & must be in FIRST{Sa), consider an item of the form [4 - a-Bf, 4] in the
get of items valid for some viable prefix v. Then there ig a rightmost derivation
g :> dAax => daBfaz, where v = do. Suppose Sax derives tertninal string

by "Then for each production of the form B -3 5 for some 17, we have derivation
N) ::- ~Bby = by, Thus, [B — #,b) is valid for v. Note that & can be the
first termlnal "derived from B8, or it is possible that. 8 derives € in the derivation
Baz => by, and b can therefore be a. To summarize both possibilities we say
that b can be any terminal in FIRST{Sax), where FIRST is the function from
Section 4.4. Note that & cannot contain the first terminal of by, so FIRST(Sax)
= FIRST{Ba). We now give the LR({1) sets of items construction.

Ia 5 I
5 .58 HErA
§--00.8
g_'};C‘1 C‘éd L C___ T
*'“/Cj §4C-C8 "l 5008
LS leses
C—d$: 7 c. A
L—C—hC—m-Cﬁ . C—eC- §
C—-eC,§
C—-d,$ D
Fd
| d Iz
C—d,$
I C Iz
\ c 3
C—oe-Ciefd c | C—eC-cfd
C—eC,cfd D
C—-d,cfd
y ¢
a4 Iy
C—sd,c/d

Figure 4.41: The GOT0 graph for grammar (4.55)

Algorithm 4.53: Construction of the sets of LR(1) items.

INPUT: An augmented grammar G'.

OUTPUT: The sets of LR(1) items that are the set of items valid for one or
more viable prefixes of G.

4.7. MORE POWERFUL LR PARSERS 263

METHOD: The procedures CLOSURE and GOTO and the main routine itewes
for constructing the sets of items wore shown in Fig. 4.40. O

Example 4.54: Consider Lhe following augmented grammar.

st 5 8
S = CC (4.55)
¢ —= cC | d

We begin by computing the closure of {[5' — -5, §]}. To close, we match
the item [’ — .5, 8] with the item [A = @-Bf, a] in the procedure CLOSURE.
Thatis, 4 =5, a=¢, B=5, 3=¢, and a = $. Function CLOSURE tells us
to add [B — -y,] for each production B — v and terminal b in FIRST(Ba). In
terms of the present grammar, B = ~ must be § — CC', and since 3 is € and
@ is $, b may only be §. Thus we add [S — -CC, §).

We contine to compute the closure by adding all items [— -y, 8] for b
in FIRST{C$). That is, matching [S — -CC, $] against [4 — « B8, a], we have
A=8So0=6B=0C,F=0C,and a = §. Since € does not derive the empty
string, FIRST{C$) = FIRST(C). Since FIRST({") contains terminals ¢ and d, we
add items (C — -¢C\ ¢, [C' - -¢C,d], [C - -d,c] and [C — +d,d]. None of the
new items has a nonterminal immediately to the right of the dot, so we have
completed our first set of LR(1) items. The initial scf of items is

fo : g ‘S,$
S .CC, 8§
C = -cC, efd
C =, efd

The brackets have been omitted for notational convenience, and we use the
notation [C' — -¢C, ¢/d] as a shorthand for the two items [C — -cC, ¢] and
[C = -eC, d].

Now we compute GOTO{Ip, X} for the various values of X. For X = § we
must close the item [= S-, $]. No additional closure is possible, since the
dot is at the right end. Thus we have the next set of itemns

Li: §'58. 8

For X = € we close [§ = C-C, $]. We add the C-productions with second
componetit § and then can add no more, yiclding

L: S5=CC §
C—-eC, §
C—d, $

Next, let X = ¢. We must close {[C — ¢-C, ¢/d]}. We add the C-productions
with second component ¢/d, yiclding

264 C’HAPTER 4. SYNTAX ANALYSIS

Iy: C—-el, cfd
C = cC, ¢/d
C—d, cfd

Finally, let X = d, and we wind up with the set of items
Ii: Cod, e/d

We have finished considering GOTO on Iy. We get no new sets from I, but I»
has goto’s en C, ¢, and d. For coTO(I:,) we get

I: §-0C,%

no closure being needed. To compute GOTO(Iy, ¢) we take the closure of
{[C = &C, §]}, to obtain

Iﬁ: C—}c‘C}$
C—=-cC,$
C—-d $

Note that Ig differs from I3 only in second components. We shall see that it
is common for several sets of LR(1) items for a grammar to have the same
first components and differ in their second components. When we construct
the collection of sets of LR(0) items for the same grammar, each set of LR{0)}
items will coincide with the sct of first components of one or more sets of LR(1)
items. We shall have more to say about this phenomenon when we discuss
LALR parsing, :
Continuing with the GOTO function for I, GOTO(Iz,d) is seent to be

IT: O‘-?d,$

Turning now to I3, the GOTC’s of I3 on ¢ and d are Is and Iy, respectively, and
GoTo(I3,C) is

Ly C—=cC efd

I, and Iy have no GOTO’s, since all items have their dots at the right end. The
GoTO’s of Iy on ¢ and o are I and Fy, respectively, and GOTO(Is, C) is

Iy C—>CC',]

The remaining sets of items yield no GOTO's, so we arc done. Figure 4.41
shows the ten sets of items with their goto’s. D

4.7. MORE POWERFUL LR PARSERS 265

47.3 Canonical LR(1) Parsing Tables

We now give the rules for constructing the LR(1} ACTION and GOTO functions
from the sets of LR(1) items. These functions are represented by a table, as
before. The only differcnce is in the values of the entries.

Algorithm 4.56: Construction of canonical-LR parsing tables.

INPUT: An augmented grammar G,

OUTPUT: The canonical-LR parsing table functions ACTION and GOTO for G,

METHOD:

| 1. Construct C' = {Iy, 51, , I}, the collection of sets of LR (1} items for
G

2. State i of the parser is constructed from I;. The parsing action for state
1 is determined as follows.

{(a) If [A = a-aB,b] is in I; and ¢OTO(L;, a) = I;, then set ACTION(:, a
to “shift 7.” Here ¢ must be a terminal.

(b) A = o, a} isin I;, A # 5, then set ACTION[, a] to “reduce
A—=ar

(c) If [8' — 5-,8] is in I, then set ACTION[Z, $] to “accept.”

If any conflicting actions result from the above rules, we say the grammar
is not LR(1). The algorithm fails to produce a parser in this case.’

3. The goto transitions for state i are constructed for all nonterminals A4
using the rule: If GOTO(7;, A) = I}, then GOTO[i, A] = J.

4. Al entries not defined by rules (2) and (3) are made “error.”

3. The initial state of the parser is the one constructed from the set of items
containing [S* — -5, §].

O

The table formed from the parsing action and goto functions produced by
Algorithmn 4.44 is called the canonical LR(1) parsing table. An LR parser using
this table is called a canonical-LR(1) parser. If the parsing action function
has no multiply defined entries, then the given grammar is called an LR(1)
grammar. As before, we omit the “(1)” if it is understood.

Example 4.57: The canonical parsing table for grammar (4.55) is shown in
Fig. 4.42. TProductions 1, 2, and 3 are § = CC, € = ¢C, and ¢ — d,
respectively, O

Every SLR(1) grammar is an LR{1) grammar, but for an SLR(1) grammar
the canonical LR parser may have more states than the SLR parser for the
same grammar. The grammar of the previous examples is SLR and has an SLR
parser with seven statcs, compared with the ten of Fig, 4.42.

266 CHAPTER 4. SYNTAX ANALYSIS

STATE ACTION GOTO
c d $ |S C
] s3 sd 112
1 acc
2 g6 57 3
3 83 s4 8
4 r3 13
5 rl
6 6 87 9
7 r3
8 2 r2
9 r2

Fignre 4.42: Canonical parsing table for grammar (4.55)

4.7.4 Constructing LALR Parsing Tables

We now introduce our last parser construction method, the LALR (lookahead-
LR) technique. This method is often used in practice, hecanse the tables ob-
tained by it are considerably smaller than the canonical LR tables, yet most
cominon syntactic constructs of programring languages can be expressed con-
veniently by an LALR grammar. The same is almost true for SLR. grammars,
but there are a few consructs that cannot be conveniently handled by SLRR
techniques (see Example 4.48, for example}.

For a comparison of parser size, the SLR and LALR tables for a grammar
always have the same number of states, and this number is typically several
hundred states for a language like C. The cancnical LR table would typically
have several thousand states for the same-size language. Thus, it is much casier
and more economical to construct SLR and LALR tables than the canonical
LR tables. _

By way of introduction, let us again consider grammar (4.55), whose sets of
LR(1) items were shown in Fig. 4.41. Take a pair of similar locking states, such
as I, and I7. Each of these states has only items with first component ' — d-.
In I, the lookaheads are ¢ or d; in I7, § is the only lookahead.

To see the difference between the roles of Iy and 7 in the parser, note that
the grammar generates the regular language c*de™d. When reading an input
ce---cdee - - ed, the parser shifts the first group of ¢'s and their following d
omto the stack, entering state 4 after reading the d. The paiser then calls for a
reduction by C' — d, provided the next input symbol is ¢ or d. The requirement
that ¢ or d follow makes sense, since these are the symbols that could begin
strings in ¢*d. I § follows the first d, we have an input like ced, which is not
in the language, and state 4 correctly declares an error if § is the next input.

The parser cnters state 7 after reading the second d. Then, the parser must

4.7. MORE POWERFUL LR PARSERS 267

see $ on the input, or it started with a string not of the form c*de*d. It thus
makes sense that state 7 should reduce by ¢ — d on input § and declare error
on inputs ¢ or d.

Let us now replace I, and Iy by Ii7, the union of Iy and 7, consisting of
the set of three items represented by [C' — d-, ¢/d/$]. The goto’s on d to Iy or
I; from Iy, Is, f3, and I now enter I;7. The action of state 47 is 1o reduce on
any input. The reviged parser behaves essentially like the original, although it
might reduce d to € in circumstances where the original would declare error,
for example, on input like ced or edede. The error will eventually be canght: in
fact, it will be caught before any more input symbols are shifted.

More generally, we can look for sets of LR(1) items having the same core,
that is, set of first components, and we may merge these sets with common
cores into one set of items. For example, in Fig. 4.41, I; and Ir form such a
pair, with core {C — d-}. Similarly, Iz and Is form another pair, with core
{C' = e-C, C — eC, C — -d}. There is onc more pair, fg and Iy, with common
core {C' — cC-}. Note that, in general, a core is a set of LR(0) items for the
grammar at hand, and that an LR(1) grammar may produce more than two
sets of items with the same core.

Since the core of GOTO(I, X) depends only on the core of I, the goto’s of
merged sets can themselves be merged. Thus, there is no probicem revising the
goto funciion as we merge sets of items. The action functions are modified to
reflect the non-error actions of all sets of items in the merger.

Suppose we have an LR(1} grammar, that is, one whose sets of LR(1) items
produce no parsing-action conflicts. I we replace all states having the same core
with their union, it is possible that the resulting union will have a conflict, but
it is unlikely for the following reason: Suppose in the union there is a conflict
on lookahead a because there s an item [4 — a-, a] calling for a reduction by
A — o, and there is another item [B — §-av, b] calling for a shift. Then some
set of items from which the union was formed has item [4 — a-,a], and since
the cores of all these states are the same, it must have an item [B — §-a, c]
for some ¢. But then this state has the same shift/reduce conflict on a, and
the grammar was not LR(1) as we assumed. Thus, the merging of states with
common cores can never produce a shift/reduce conflict that was not present
in one of the original states, because shift actions depend only on the core, not
the lookahead.

It is possible, however, that a merger will produce a reduce/reduce conflict,
as the following example shows.

Example 4.58: Cousider ihe grammar

st o 8
§ 3+ aAd | bBd | aBe| bde
A = ¢
B - ¢

which generates the four strings acd, ace, bed, and bee. The reader can check
that the grammar is LR(1) by constructing the sets of items. Upon doing so,

268 CHAPTER 4. SYNTAX ANALYSIS

we find the set of items {{A - ¢, d], [B - ¢, €]} valid for viable prefix ac and
{[A = c,e], [B -+ ¢, d]} valid for be. Neither of these sets has a conflict, and
their cores are the same. However, their union, which is

A= e, dfe
B = ¢, dfe

generates a reduce/reduce conflict, since reductions by both .4 = c and B — ¢
are called for on inputs d and e. D

We are now prepared to give the first of two LALR table-construction al-
gorithms. The general idea is to construct the sets of LR(1) items, and if no
conflicts arise, merge sets with common cores. We then construct the parsing
table from the collection of merged sets of items. The method we are about to
describe serves primarily as a definition of LALR(1} grammars. Constructing
the entire collection of LR(1) sets of items requires too much space and time to
be useful in practice.

Algorithm 4.59: An easy, but space-consuming LALR table construction.
INPUT: An angmented grammar G'.

oUTPUT: The LALR parsing-table functions ACTION and coTo for (.
METHOD:

1. Construct C = {Iy, f1,..., In}, the collection of sets of LR(1) items.

2. For each core present among the set of LR{1) items, find all sets having
that core, and replace these sets by their urion.

3. Let ¢" = {Jo,J1,...,Jdm} be the resulting sets of LR(1) items. The
parsing actions for state ¢ are constructed from J; in the same manner as
in Algorithm 4.56. If there is a parsing action conflict, the algorithm fails
to produce a parser, and the grammar is said not to be LALR(1).

4. The GOTO table is constructed as follows. If J is the union of one or
more sets of LR{1) items, that is, J = I, N L N .- N I}, then the
cores of GOTO(I}, X), GOTO([, X), ... ,GOTO(I}, X) arc the same, since
I, 5, ..., Iy all have the same core. Let K be the union of all scts of
iterns having the same core as GOTO{I;, X). Then GoTO(J, X) = K.

0

The table produced by Algorithm 4.59 is called the LALR parsing table for
G. H there are no parsing action conflicts, then the given grammar is said to
be an LALR(1) grammar. The collection of sets of items constructed in step
{3) is called the LALR(1) collection.

4.7. MORE POWERFUL LR PARSERS 269

Example 4.60: Again consider grammar (4.55) whose GOTO graph was shown
in Fig. 4.41. As we mentioned, there are threc pairs of sets of items that can
be merged. I3 and I are replaced by their union:

Igﬁl C - C'C, C/d/$
C — ¢C, c/df$
C—d, c/df$

I and [; are replaced by their union:

Iiz: C = d, ¢/d/f$
and Iy and Iy are replaced by their union:

Isg: C = cC- cfd/$

The LALR action and goto functions for the condensed sets of itemns are shown
in Fig. 4.43.

ACTION GOTO
STATE
¢ d $ |8 C
0 836 847 1 2
1 acc

2 836 847 3
36 536 847 89

47 3 3 3

5 rl

89 2 2 12

Figure 4.43: LALR parsing table for the grammar of Example 4.54

To see how the GOTO’s are computed, consider GOTO(f36, C'). In the original
set of LR{1) items, GOTO(l3, C} = Iy, and I is now part of Ise, s0 we make
GOTO(I36,C) be Izs. We could have arrived at the same conclusion if we
constdered Ig, the other part of I3s. That is, GOTO(fs,C} = Ip, and I is
now part of Izg. For another exanple, consider GOTO(l,,¢), an entry that is
exercised after the shift action of I on input ¢. In the original sets of LR{1)
items, GOTO(Js, ¢} = Ig. Since Iy is now part of Izs, GOTO([s, ¢) becomes Isg.
Thus, the entry in Fig. 4.43 for state 2 and input ¢ is made 536, meaning shift
and push state 36 onto the stack. O

When presented with a string from the language ¢*dc*d, both the LR parser
of Fig. 4.42 and the LALR parser of Fig. 4.43 make exactly the same sequence
of shifts and reductions, although the names of the states on the stack may
differ. For instance, if the LR parser puts I3 or g on the stack, the LALR

270 CHAPTER 4. SYNTAX ANALYSIS

parser will put fs¢ on the stack, This relationship hiolds in general for an LALR,
grammar. The LR and LALR parsers will mimic one another on correct inputs.
When presented with erroneous input, the LALR parser may proceed 10 do
some reductions after the LR parser has declared an error. However, the LALR
parser will never shift another symbol after the LR parser declares an crror.
For example, on input ced followed by §, the LR parser of Fig. 4.42 will put

0334

on the stack, and in state 4 will discover an error, because § is the next input
symbol and state 4 has action error on §. In contrast, the LALR parser of Fig,.
4.43 will make the corresponding moves, putting

0 36 36 47

on the stack. But state 47 on input $ has action reduce € — d. The LALR
parser will thus change its stack to

0 36 36 89
Now the action of state 89 on input § is reduce € — ¢C. The stack becomes
0 36 89
whereupon a similar reduction is called for, obtaining stack
02

Finally, state 2 has action crror on input $, so the error is now discovered.

4.7.5 Efficient Construction of LALR Parsing Tables

There are several modifications we can make to Algorithm 4.59 to avoid con-
structing the full collection of sets of LR(1) itcms in the process of creating an
LALR(1} parsing table.

e First, we can represent any set of LR{0) or LR(1) items I by its kernel,
that is, by those items that are either the initial item — [S’ — -S] or
[S' — -5, 8] — or that have the dot somewhere other than at the beginning
of the production body.

¢ We can construct the LALR(1)-item kernels from the LR{0)-item kernels
by a process of propagation and spontanecus generation of lookaheads,
that we shall describe shortly.

o If we have the LALR(1) kernels, we can generate the LALR(1) parsing
table by closing each kernel, using the function CLOSURE of Fig. 4.40, and
then computing table entries by Algorithm 4.56, as if the LALR(1) sets
of items were canonical LR(1) sets of items.

4.7. MORE POWERFUL LR PARSERS 271

Example 4.61: We shall use as an example of the efficient LALR(1) table-
construction methed the non-SLR grammar from Example 4.48, which we re-
produce below in its augmented form:

S = 8

§ - L=R| R
L — =R | id
R - L

The complete sets of LR{0) items for this grammar were shown in Fig. 4.39.
The kernels of these items are shown in Fig. 4.44. 1O

Ipp §'= .5 I L —id

I: 5 -5 I S=>L=R

L: S=L =R I L=«
R—- L

Is: S—= R Iyt R—= L

Iy Lo xR Iy S5 L=R

Figurc 4.44: Kernels of the sets of LR(0) items for grammar (4.49)

Now we must attach the proper lookaheads to the LR(0) items in the kernels,
to create the kernels of the sets of LALR(1) items. There are two ways a
lookahead b can get attached to an LR{0) item B —+ - in some set of LALR{1)
items J:

1. There is a set of items I, with a kernel item 4 — o-8,a, and J =
cOTO(I, X), and the construction of

GOTO{CLOSURE({[A — a-8,4]}), X)

as given in Fig. 4.40, contains [B — -8, b], regardless of a. Such a looka-
head b is said to be generated spontaneously for B — ~-4.

2. As a special case, lookahead $§ is generated spontaneously for the item
8" — .S in the initial set of items.

3. All'is as in (1), but & = b, and GOTO(CLOSURE({[A — o-3,8]}), X), as
given in Fig. 4.40, contains [B — ~-6,b] only because A = -3 has b as
one of its associated lookaheads. In such a case, we say that lookaheads
propagate from A — -8 in the kernel of T to B = +-§ in the kernel of
J. Note that propagation does not depend on the particular lookahead
symbol; either all lookaheads propagate from one item to another, or none
do.

272 CHAPTER 4. SYNTAX ANALYSIS

We need to determine the spontaneously generated lookaheads for each set
of LR{0) items, and also to determine which iterns propagate lookaheads from
which. The test is actually quite simple. Let # be a symbol not in the grammar
at hand. Let A = a-3 be a kernel LR(0} item in set . Compute, for each X,
J = GOTO(CLOSURE({[A — a-8,#]}),X). For each kernel item in J, we
examine its set of lookaheads. If # is a lookahead, then lookaheads propagate
to that ilem from A — a-3. Any other lookahead is spontaneously generated.
These ideas are made precise in the following algorithm, which also makes use
of the fact that the only kernel items in J must have X immediately to the left
of the dot; that is, they must be of the form B — ~X 4.

Algorithm 4.62: Determining lookaheads.
INPUT: The kernel K of a set of LR(0) items 7 and a grammar symbol X.

OUTPUT: The lookaheads spontaneously generated by items in I for kernel
iterns in GOTO(I, X) and the items in 7 from which lookaheads are propagated
to kernel items in GOTO(I, X).

METHOD: The algorithm is given in Fig. 4.45. O

for (each item 4 - a-81in K } {
J = CLOSURE({[4 = aB.#1});
if ([B— vXd,a)isin J, and a is not #)
conclude that lookahead a is generated spontaneously for item
B — ~4X-§ in goTo(l, X);
if ([BovyX4,#]isinJ)
conclude that lockaheads propagate from 4 — o8 in J to
B = ~X-§in goTO(I, X);

Figure 4.45: Discovering propagated and spontaneous lockaheads

We are now ready to attach lookaheads to the kernels of the scts of LR(0)
items to form the sets of LALR(L) items. First, we know that § is a looka-
kead for §' — -S in the initial set of LR(0) itcms. Algorithm 4.62 gives us all
the lookaheads generated sponianeously. Alter listing all those lockaheads, we
must allow them to propagate until no further propagation is possible. There
are many different approaches, all of which in some sense keep track of “ncw”
lookaheads that have propagated into an item but which have not yet propa-
gated out. The next algorithm describes one technique to propagate lookaheads
to all items.

Algorithm 4.63: Efficient computation of the kernels of the LALR(1) collec-
tion of sets of items.

INPUT: An augmented grammar G,

4.7. MORE POWERFUL LR PARSERS 273

oUTPUT: The kernels of the LALR(1) collection of sets of items for G'.
METHOD:

1. Construct the kernels of the sets of LR(0} items for G. If space is not at
a premium, the simplest way is to construct the LR(Q) sets of items, as in
Section 4.6.2, and then remove the nonkernel items. I space is severely
constrained, we may wish instead to store only the kernel items for each
set, and compute GO'TO for a set of items I by first computing the closure
of I.

2. Apply Algorithm 4.62 to the kernel of each set of LR(D) items and gram-
mar symbol X to determine which lockahcads are spontaneously gener-
ated for kernel items in GOTO(I, X'}, and from which items in I lockaheads
are propagated to kernel items in coTo(l, X).

3. Initialize a table that gives, for each kernel item in each set of items, the
associated lookaheads. Initially, each item has associated with it only
those lookaheads that we determined in step {2) were generated sponta-
neously.

4. Make repeated passes over the kernel items in all sets. When we visit an
item £, we lock up the kernel items to which ¢ propagates its lookaheads,
using information tabulated in step (2). The current set of lookaheads
for i is added to those already associated with each of the items to which
i propagates its lockaheads. We continue making passes over the kernel
items until no more new lookaheads are propagated.

O

Example 4.64: Let us construct the kernels of the LALR(1) items for the
grammar of Example 4.61. The kernels of the LR(0} items werc shown in
Fig. 4.44. When we apply Algorithm 4.62 to the kernel of set of items I, we
first compute CLOSURE({[S’ — -5, #]}), which is

SFA'S,# L-}*RJ#/::
S—-L=R, # L—.id, #/=
S— R # B—--L #

Among the items in the closure, we see two where the lookahead = has been
generated spontaneocusly. The first of these is L — - x £, This item, with * to
the right of the dot, gives rise te [L — % R,=]. That is, = is a spontaneously
generated lookahead for L — *-R, which is in set of items Fy. Similarly, [L —
-id, =] tells us that = is a spontaneously generated lockahead for L — id- in
Is.

As # is a lookahead for all six items in the closure, we determine that the
item S” = -8 in I, propagates lookahcads to the following six items:

274 CHAPTER 4. SYNTAX ANALYSIS

5 — 8 in L= +Rin Iy
S—aL=Rinl, L-idinl;
S—>R-in13 R— L in i
FrOM TO
Iy § -8 IL: 8458
Ig: S—»IL.=R
Ir: R L.
I: S5 R
I.;,: L %R
Iy L —id.

Iy S>L=R|I S—->L=-R
Iy: L —%=R Iy: L—a+R

Iy: L —=id
I+ L—= xR
Ig: R—- L

Iﬁ: S—-?LZR Iy LR
5 L —id
Ig: R— L
Iy: §2L=R

Figurc 4.46: Propagation of lockaheads

In Fig. 4.47, we show steps (3) and (4) of Algorithm 4.63. The column
labeled INIT shows the spontanecusly generated lookaheads for each kernel item.
These are only the two occurrences of = discussed earlier, and the spontaneous
lookahead $ for the initial item 8" — -5.

On the first pass, the lookahead $§ propagates from S° — S in Iy to the
six items listed in Fig. 4.46. The lookahead = propagates from I, = *-R in I
to items L = # R-in Iy and R — L- in I, It also propagates to itself and to
I —+1id - in I5, but these lookaheads are already present. In the second and third
passes, the only new lookahead propagated is §, discovered for the successors of
I> annd Iy on pass 2 and for the successor of I on pass 3. No new lookaheads are
propagated on pass 4, so the final set of lookaheads is shown in the rightmost

column of Fig. 4.47.

Note that the shift/reduce conflict found in Example 4.48 using the SLR
method has disappeared with the LALR technigue. The reason is that only
lookahead § is associated with R — L: in I3, so there is no conflict with the
parsing action of shift on = generated by item S — L-=Rin . o

4.7. MORE POWERFUL LR PARSERS 275

SET ITEM LOOKAHEADS
INiT | Pass 1| Pass 2| Pass 3
I 8>S $ g g §
I 8= 8 $ g g
L §S-L =R g g g
R—= L $ $ g
Iy 8= R $ $ g
I L xR _ —/$ =8 -/
Is: L —=id — =/$ ~/$ y
Iy; S—=L=-R $ §
I;; L — =R — =/$ =/
Isi R L. — — /5 /8
Iy, 5= L=E §

Figure 4.47: Computation of lookaheads

4.7.6 Compaction of LR Parsing Tables

A typical programming language grammar with 50 to 100 terminals and 100
productions may have an LALR parsing table with several hundred states. The
action function may easily have 20,000 cntries, each requiring at least & bits
to cncode. On small devices, a more efficient encoding than a two-dimensional
array may be important. We shall mention briefly a few techniques that have
been used to compress the ACTION and GOTO fields of an LR parsing table.

One useful technique for compacting the action field is to recognize that
usually many rows of the action table are identical. For example, in Fig. 4.42,
states) and 3 have identical action entries, and so do 2 and 6. We can therefore
save considerable space, at little cost in time, if we create a pointer for each
state into a one-dimensional array. Pointers for states with the same actions
point to the same location. To access information from this array, we assign
each terminal a number from zero Lo one less than the number of terminals,
and we use this intcger as an offset. from the pointer value for each state. In
a given state, the parsing action for the ith terminal will be found i locations
past the pointer value for that state.

Further space efficiency can be achieved at the expense of a somewhat slower
parser by creating a list for the actions of each state. The list consists of
(terminal-symbol, action) pairs. The most frequent action for a state can be

276 CHAPTER 4. SYNTAX ANALYSIS

placed at the end of the list, and in place of a terminal we may use the notation
“any,” meaning that if the current input symbol has not been found so far on
the list, we should do that action no matter what the input is. Moreover, error
entries can safely be replaced by reduce actions, for further uniformity along a
row. The errors will be detected later, before a shift move.

Example 4.65: Consider the parsing table of Fig. 4.37. First, note that the
actions for states 0, 4, 6, and 7 agree. We can represent them all by the list

SYMBOL ACTION

id sh
(sd
any eITor
State 1 has a similar list:
+ 56
3 acc
any error

In state 2, we can replace the error entries by r2, so reduction by production 2
will occur on any input but *. Thus the list for state 2 is

* 87
any r2

State 3 has only error and r4 entries. We can replace the former by the
latter, so the list for state 3 consists of only the pair (any, r4). States 3, 10,
and 11 can be treated similarly. The list for state 8 is

+ 86
} s11
any error
and for state 9
% a7
3 sl11
any rl

a

We can also encode the GOTO table by a list, but here it appears more
efficient, to make a list of pairs for each nonterminal A. Each pair on the list
for A is of the form (currentState, nextState), indicating

GOTO[currentState, A] = nextState

4.7. MORE POWERFUL LR PARSERS 277

This technique is useful because there tend to be rather few states in any one
column of the GOTO table. The reason is that the GOTO on nonterminal A
can only be a state derivable from a set of items in which some items have 4
immediately to the left of a dot. No set has items with X and Y immediately
to the left of a dot if X # Y. Thus, each state appears in at most one GOTQ
column,

For more spacc reduction, we note that the error entries in the goto table are
never consulted. We can therefore replace each error entry by the most common
non-error entry in its columnn. This entry becomes the defanlt; it is represented
in the list for cach column by one pair with any in place of currentState.

Example 4.66: Consider Fig. 4.37 again. The column for F has entry 10 for
state 7, and all other entries are either 3 or error. We may replace error by 3
and create for column F the list

CURRENTSTATE NEXTSTATE
7 10
any 3

Similarly, a suitable list for column T is

6 9
any 2

For columnn E we may choose either 1 or 8 to be the default; two entries are
necessary in either case. For example, we might create for column ¥ the list

4 8
any 1

(]

This space savings in these small examples may be misleading, because the
total number of entries in the lists created in this example and the previous one
together with the pointers from states to action lists and from nonterminals
to next-state lists, result in unimpressive space savings over the matrix imple-
mentation of Fig. 4.37. For practical grammars, the space needed for the list
representation is typically less than ten percent of that needed for the matrix
representation. The table-compression methods for finite automata that were
discussed in Section 3.9.8 can also be used to represent LR parsing tables.

4.7.7 Exercises for Section 4.7

Exercise 4.7.¥: Coustruct the

a) canonical LR, and

b) LALR

-

278 CHAPTER 4. SYNTAX ANALYSIS
sets of itetns for the grammar § — S$ + | § 8 * | a of Exercise 4.2.1.

Exercise 4.7.2: Repeat Exercise 4.7.1 for each of the (augmented} grammars
of Exercise 4.2.2(a)-(g).

Exercise 4.7.3: For the grammar of Exercise 4.7.1, use Algorithm 4.63 to
compute the collection of LALR sets of items from the kernels of the LR(0) sets
of items.

Exercise 4.7.4: Show that the following grammar

5 — AalbAc|de|bda
A = d
is LALR(1) but not SLR(1).

Exercise 4.7.5: Show that the following grammar

S Aa|bAc|Be|bBa
A d
B d

114

is LR(1) but not LALR(1).

4.8 Using Ambiguous Grammars

It is a fact that every ambiguous grammar fails to be LR and thus is not in
any of the classes of grammars discussed in the previous two sections. How-
ever, certain types of ambiguous grammars are quite useful in the specification
and implementation of languages. For language constructs like expressions, an
ambiguous grammar provides a shorter, more natural specification than any
equivalent unambiguous grainmar. Another use of ambiguous grammars is in
isolating commonly occurring syntactic constructs for special-case optimiza-
tion. With an ambiguous grammar, we can specify the special-case constructs
by carefully adding new productions to the grammnar.

Although the grammars we use are ambiguous, in all cases we specify dis-
ambiguating rles that allow only one parsc tree for each sentence. In this way,
the overall language specification becomes unambiguous, and semetimes it he-
comes possible to design an LR parser that follows the same ambiguity-resolving
choices. We stress that ambiguous constructs should be used sparingly and in
a strictly controlled fashion; otherwise, there can be no guarantee as to what
language is recognized by a parser.

4.8. USING AMBIGUOUS GRAMMARS 279

4.8.1 Precedence and Associativity to Resolve Conflicts

Consider the ambiguous grammar (4.3) for expressions with operators + and
x, repeated here for convenience:

Es E+E|E+E|(E)|id

This grammar is ambiguous because it does not specify the associativity or
precedence of the operators + and *. The unambiguous grammar (4.1), which
includes productions £ — E 4T and T — T % F, generates the same language,
but gives + lower precedence than , and makes both operators left agsociative.
There are two reasons why we might prefer to use the ambiguons grammar.
First, as we shall see, we can casily change the associativity and precedence
of the operators + and * without disturbing the productions of (4.3) or the
pumber of states in the resulting parscr. Second, the parser for the unam-
biguaus grammar will spend a substantial fraction of its time reducing by the
productions E — T and T' — F, whose sole function is to enforce assoclativity
and precedence. The parser for the ambiguous grammar (4.3) will not waste
time reducing by these single productions {(productions whose body consists of
a gingle nonterminal).

The sets of LR{0) items for the ambiguous expression gramimar {4.3) aug-
mented by E' — E are shown in Fig. 4.48. Since grammar {4.3) is ambiguous,
there will be parsing-action conflicts when we try to produce an LR parsing
table from the sets of items. The states corresponding to sets of items I; and
Iy generate these conflicts. Suppose we use the SLR. approach to constructing
the parsing action table. The conflict generated by Ir between reduction by
E —+ F + F and shift on + or = cannot be resolved, because 4+ and * are each
in FOLLOW(E). Thus both actions would be called for on inputs 4+ and . A
simmilar conflict is generated by I3, between reduction by E — E * FE and shift
on inputs + and #. In fact, each of our LR parsing table-construction methods
will generate these conflicts.

However, these problems can be resolved using the precedence and associa-
tivity information for + and %, Consider the input id + id * id, which causes a
parser based on Fig. 4.48 {0 enter state 7 after processing id + id; in particular
the parser reaches a configuration

PREFIX STACK INPUT
E+FE 0147 =id$

For convenience, the symbols corresponding to the states 1, 4, and 7 are also
shown under PREFIX.

If » takes precedence over +, we know the parser should shift % onto the
stack, preparing to reduce the % and its surrounding id symbols to an expression.
This choice was made by the SLR parser of Fig. 4.37, based on an unambiguous
grammar for the same langnage. On the other hand, if + takes precedence over
*, we know the parser should reduce E + E to E. Thus the relative precedence

280

CHAPTER 4. SYNTAX ANALYSIS

Iy: BE'—=.FE I FE—5 Ex.E
E— .E+E ES -E+E
E— ExE E— ExE
E—-(E) E = (E)
E—-id E—-id

Ii: B E Isi E—(E)
E—+F+FE E=sE4+FE
ESExE E->ExFE

Iy E-S(E) Ii;: E-SE+E
E— -ExE ESExE
E - (E)

E - id Is; E—- ExE-
E-s B4+ E

Isn E-=id EsExE

I,: E-E+-E Iy E—(E)
E—.E+E
E—= .-ExE
E - (B)

E—id

Figure 4.48: Sets of LR(0) items for an augmented expression grammar

of + followed by * uniquely determines how the parsing action conflict between
reducing £ — E + E and shifting on # in state 7 should be resolved.

If the input had been id + id + id instead, the parser would still reach a
configuration in which it had stack 0 1 4 T after processing input id +id. On
input + there is again a shift/reduce conflict in state 7. Now, however, the
associativity of the +- opcrator determines how this conflict should be resolved.
If + is left associative, the correct action is to reduce by £ — E + E. That is,
the id symbols stirrounding the first + must be grouped fArst. Again this choice
coincides with what the SLR parser for the unambiguous grammar would do.

In summary, assuming + is left associative, the action of state 7 on input
+ should be to reduce by E = E + E, and assuming that * takes precedence
over +, the action of state 7 on input # shonld be to shift. Similarly, assuming
that * is left associative and takes precedence over +, we can argue that state
8, which can appear on top of the stack only when E « E are the top three
grammar symbols, should have the action reduce E — E x E on both + and *
inputs. In the case of input +, the reason is that * takes precedence over +,
while in the case of input *, the rationale is that * is left associative.

4.8 USING AMBIGUOUS GRAMMARS 281

Proceeding in this way, we obtain the LR parsing table shown in Fig. 4.49.
Productions 1 through 4 are £ - E+ E, E -+ ExE, — (E), and E
id, respectively. It is interesting that a similar parsing action table would be
produced by eliminating the reductions by the single productions E = T and
T — F from the SLR table for the unambiguous expression grammar (4.1}
shown in Fig. 4.37. Ambiguous grammars like the one for expressions can be
handled in a similar way in the context of LALR and canonical LR, parsing.

ACTION GOTO
STATE

id + = () $ E
0 g3 52 1
1 g4 85 ace
2 83 52 6
3 r4d r4 rd 14
4 53 52 7
5 83 s2 8
6 st &b 89
7 rl sb r1 rl
8 r2 r2 r2 r2
9 r3 r3 I T

Figure 4.49: Parsing table for grammar (4.3)

4.8.2 The “Dangling-Else” Ambiguity
Consider again the following grammar for conditional statements:

stmt — if expr then simt else stmt
| if expr then stmi
| other

As we noted in Section 4.3.2, this grammar is ambigious because it does not
resolve the dangling-else ambiguity. To simplify the discussion, let us consider
an abstraction of this grammar, where i stands for if expr then, e stands for
else, and o stands for “all other productions.” We can then write the grammar,
with augmenting production 8’ — 8, as

S = 8
S o iSeS|iS|a (4.67)

The sets of LR(0) items for grammar {4.67) are shown in Fig. 4.50. The ambi-
guity in (4.67) gives rise to a shift/reduce conflict in I,. There, § = iS-eS calls
for a shift of e and, since POLLOW(S) = {e,$}, item § — i5- calls for reduction
by § — 45 on input e.

Translating back to the if-then-else terminology, given

282 CHAPTER 4. SYNTAX ANALYSIS

Ip: § =8 I: S—=a

S = iSef

545 i1 5 —=+1i5eS

S—=-a .

Ini §— i858

5 8§58 8§ — 128eS§
L: §-iSeS 578
91 —3 -9e .

§ -9 5=

5 — -iSeS§ Iy: S5 —=iSeS-

S5

S—

Figure 4.50: LR{D) states for angmented grammar (4.67)

il expr then simi

on the stack and else as the first input symbol, should we shift else onto the
stack (i.e., shift e) or reduce if ezpr then stmt (i.e, reduce by S — i5)7 The
answer is that we should shift else, because it is “associated” with the previous
then. In the terminology of grammar (4.67), the e on the input, standing for
else, can only form part of the body beginning with the ¢S now on the top of
the stack. If what follows e on the input cannot be parsed as an 5, completing
body iSeS, then it can be shown that there is no other parse possible.

We conclude that the shift/reduce conflict in I4 should be resolved in favor
of shift on input e. The SLR parsing table constructed from the sets of items
of Fig. 4.48, using this rcsolution of the parsing-action conflict in 74 on input
e, is shown in Fig. 4.51. Productions 1 through 3 are S — i5eS, 5 — 45, and
5 — a, respectively.

ACTION GOTO
STATHE
' i e o § S
0 52 53 1
1 ace
2 52 83 4
3 r3 r3
4 85 r2
5 52 s3 6
6 rl rl

Figure 4.51: LR parsing table for the “dangling-clse” grammar

4.8. USING AMBIGUOUS GRAMMARS 283

For ¢xample, on input #iaea, the parser makes the moves shown in Fig. 4.52,
corresponding to the corrcct resolution of the “dangling-else.” At line (5), state
4 selects the shift action on input e, whereas at line (9), state 4 calls for reduction
by § — i8 on input §.

STACK SyMBOLS | INPUT | ACTION

1 0 tiacal | shift

2y 02 i taeal | shift

(3) 022) aea’d | shift

(4) 0223 iia eal | shifi

(5) 0224 118 eal | reduce by § = a

(6 02245 iiSe a$ | shift

{7y 022453 |iiSeca $ | reduce by S = a

(8) 022456 |iiSeS $ | reduce by § = i8eS

9y 024 i 8 8 | reduce by S — 48
(10 01 3 § | accept

Figure 4.52: Parsing actions on input ficea

By way of comparison, if we are unable 10 use an ambigious grammar to
specify conditional statements, then we would have to use a bulkier grammar
along the lines of Example 4.16.

4.8.3 Error Recovery in LR Parsing

An LR parser will detect an error when it consults the parsing action table and
finds an error entry. Errors are never detected by consulting the goto table. An
LR parser will announce an error as soon as there is no valid continuation for
the portion of the input thus far scanned. A canonical LR parser will not make
even a single reduction before announcing an error. SLR and LALR parsers
may make several reductions before announcing au error, but they will never
shift an erroneous input symbol onto the stack.

In LR parsing, we can implement. panic-mode error recovery as follows. We
scan down the siack until a state s with a goto on a particular nonterminal
A is found. Zero or more input symbols are then discarded until a symbol
o is found that can legitimately follow A. The parser then stacks the state
GOTO(s, A) and resumes normal parsing. There might be more than one choice
for the nonterminal 4. Normally thesc would be nonterminals representing
major program pieces, such as an expression, statement, or block. For example,
if A is the nonterminal sémf, ¢ might be semicolon or }, which marks the cnd
of a statement sequence. '

This method of recovery attempts to eliminate the phrase containing the
syntactic error. The parser determines that a string derivable from 4 contains
an error. Pari of that string has already been processed, and the result of this

284 CHAPTER 4. SYNTAX ANALYSIS

processing is a sequence of states on top of the stack. The remainder of the
string is still in the input, and the parser attempts to skip over the remainder
of this string by looking for a symbol on the input that can logitimately follow
A. By removing states from the stack, skipping over the input, and pushing
GOTO(s, A) on the stack, the parser pretends that it has found an instance of
A and resumes normal parsing.

Phrase-level recovery is implemented by examining each error entry in the
LR parsing table and deciding on the basis of language usage the most likely
programmer error that would give rise to that error. An appropriate recavery
procedure can then be constructed; presumably the top of the stack and/or first
input symbols would be modified in a way deemed appropriate for each crror
antry.

In designing specific error-handling routines for an LR parser, we can fill in
cach blank entry in the action field with a pointer {0 an error routine that will
take the appropriate action selected by the compiler designer. The actions may
include insertion or deletion of symbols from the stack or the input or both,
or alieration and transposition of input symbols. We must make our choices
go that the LR parser will not get into an infinite loop. A safe strategy will
assure that at least one input symbol will be removed or shifted eventually, or
that the stack will eventually shrink if the end of the input has been reached.
Popping a stack state that covers a nonterminal should be avoided, because
this modificalion eliminates from the stack a construct that has already been
successfully parsed.

Example 4.88: Consider again the expression grammar
E-E+E|ExE|(E)|id

Figure 4.53 shows the LR, parsing table from Fig. 4.49 for this grammar,
modified for error detection and rccovery. We have changed each state that
calls for a particular reduction on some input symbols by replacing error entries
in that statc by the reduction. This change has the effect of postponing the
error detection nntil one or more reductions are made, but the error will still
be caught hefore any shift move takes place. The remaining blank entries from
Fig. 4.49 have been replaced by calls to error routines.

The error routines are as follows.

el: This routine is called from states 0, 2, 4 and 5, all of which expect the
beginning of an operand, either an id or a left parenthesis. Instead, +, *,
or the end of the input was found.

push state 3 (the goto of states 0, 2, 4 and 5 on id);
issue diagnoslic “missing operand.”

e2: Called from states 0, 1, 2, 4 and 5 on finding a right parenthesis.

remove the right parenthesis from the input;
issue diagnostic “unbalanced right parenthesis.”

4.8, USING AMBIGUOUS GRAMMARS 285
ACTION GOTO
STATE
id + « {) $ E
0 s3 el el s2 e2 el 1
1 el s4 85 cd e2 acc
2 83 el el 52 e2 el 6
3 4 4 4 r4 r4 r4
4 83 el el 52 e2 el 7
5 53 el el 52 e2 el 8
6 ed 54 33 e3 sB o4
7 i rl 8 r1 r1 rl
8 2 r2 r? 2 r2 r2
9 3 3 3 r3 r3 13

Figure 4.53: LR parsing table with error routines

€3: Called from states 1 or 6 when expecting an operator, and an id or right

parenthesis is found.

push state 4 (corresponding to symbol +) onto the stack;
issue diagnostic “missing operator.”

e4: Called from state 6 when the end of the input is found.

push state 9 (for a right parenthesis) onto the stack;

issue diagnostic “missing right parenthesis.”

On the erroneous input id +), the sequence of configurations entered by the

parser is shown in Fig. 4.54.

O

4.8.4 Exercises for Section 4.8

! Exercise 4.8.1: The following is an ambiguous grammar for expressions with
n binary, infix operators, at n different levels of precedence:

E—- EOE|EGE| - E6,E|(E)|id

a) As a function of n, what are the SLR sets of items?

b} How would you resolve the conflicts in the SLR items so that all oper-
ators are left associative, and #; takes precedence over 6, which takes
precedence over #5, and so on?

¢} Show the SLR parsing table that results from your decisions in part (b).

286 CHAPTER 4. SYNTAX ANALYSIS

STACK | SYMBOLS | INPUT | ACTION
0 id+)%
03 id +)8
01 E +1§
014 E+ 3% | “unbalanced right parenthesis”
e2 removes right parenthesis
014 E+ $ | “missing operand”
el pushes state 3 onto stack
0143 | E+4id $
0t47 | E4+ $
01 E+ $

Figure 4.54: Parsing and error recovery moves made by an LR, parser

d} Repeat parts {a) and {¢) for the unambiguous grammar, which defines
the same set of expressions, shown in Fig. 4.55.

¢) How do the counts of the number of sets of items and the sizes of the tables
for the two (ambiguous and unambiguous) grammars compare? What
does that comparison tell you about the use of ambiguous expression
gramnmars?

Ey 0B | By
E; 8 Es | Eg

Ey

__)
E, —

E, — En 8 Epp | Enpy
Eﬂ,_H_ —-¥ (El) | id

Figure 4.55: Unambiguous grammar for n operators

! Exercise 4.8.2: In Fig. 4.56 is a grammar for certain statements, similar to
that discussed in Exercise 4.4.12. Again, e and s are terminals standing for
conditional expressions and “other statements,” respectively.

a} Build an LR parsing table for this grammar, resolving conflicts in the
usual way for the dangling-clsc problem.

b) Implement error correction by filling in the blank entries in the parsing
tahle with extra reduce-actions or suitable error-recovery routines.

¢} Show the behavior of your parser on the following inputs:

(i) ife then s ;if ¢ then s end
(#1) while e do begin s ; if ¢ then s ; end

4.9. PARSER GENERATORS 287

— if ¢ then stmt

| if e then stint else stmt
| while e do stmi

| begin list end

| s

— list ; stint

| stnt

Figure 4.56: A grammar for certain kinds of statements

4.9 Parser GGenerators

This section shows how a parser generatar can be used to facilitate the construc-
tion of the front end of a compiler. We shall use the LALR parser generator
Yacc as the basis of cur discussion, since it implements many of the concepts
discussed in the previous two sections and it is widely available. Yacc stands for
“vet another compiler-compiler,” reflecting the popularity of parser generators
in the early 1970s when the first version of Yacc was created by 5. C. Johnson.
Yacc is available as a command on the UNIX system, and has been used to help
implement many production compilers.

4.9.1 The Parser Generator Yacc

A translator can be constructed using Yacc in the manner illustrated in Fig.
4.57. First, a file, say translate.y, containing a Yacc specification of the
translator is prepared. The UNIX systemn command

vacc translate.y

transforms the file translate.y into a C program called y.tab.c using the
LALR method outlined in Algorithm 4.63. The program y.tab.c is a repre-
sentation of an LALR parser written in C, along with other C routines that the
user may have prepared. The LALR parsing table is compacted as described
in: Section 4.7. By compiling y.tab.c along with the 1y library that contains
the LR parsing program using the command

cc y.tab.c -1y

we obtain the desired object program a. out that performs the translation spec-
ified by the original Yacc program.” If other procedures are needed, they can
be compiled or loaded with y.tab.c, just as with any C program.

A Yacc source program has three parts: '

"The name 1y is system dependent.

288 CHAPTER 4. SYNTAX ANALYSIS

Yace
specificationr——-
translate.y

O.
.tab.
y.tab.c A.-“compi_ler ——— a.out

input ——— a.out [——= gutput

Yacc

compiler y-tab.c

Figure 4.57: Creating an input/output translator with Yacc

declarations

A

translation rules

W

supporting C routines

Example 4.69: To illustrate how to prcpare a Yace source program, let us
construct a simple desk calculator that reads an artthmetic expression, evaluates
it, and then prints its numeric value. We shall build the desk calculator starting
with the with the following grammar for arithmetic expressions:

E - E+T|T
T - T«F | F
F = (E) | digit

The token digit is a single digit between 0 and 9. A Yacc desk calculator
program derived from this grammar is shown In Fig. 4.58. O

The Declarations Part

There are two sections in the declarations part of a Yacc program; both are
optional, In the first section, we put ordinary C declarations, delimited by %{
and %}. Here we place declarations of any femporaries used by the translation
rules or procedures of the secund and third sections. In Fig. 4.58, this section
contains only the include-statement

#incliude <ctype.h>

that causes the C preprocessor to include the standard header file <ctype.h>

that contains the predicate isdigit.
Also in the declarations part are declarations of grammar tokens. In Fig.

4.58, the statement

Ytoken DIGIT

4.9. PARSER GENERATORS 289

(3
#include <ctype.h>
(22

Ytoken DIGIT
h
line : expr °‘\n’ { printf ("%d\n", $1); }

expr : expr '+’ term {$¢6 =81+ 83; }

| term
term ! term ’*’ factor { $$ = $1 * $3; }

| factor
factor : (' expr ’)’ {8 =%2; }

| DIGIT
%h
yylex{) {

int ¢;
= getchar();

if (isdigit(e)}) {
yylval = ¢-707;
return DIGIT;

3

return c;

}

Figure 4.58: Yacc specification of a simple desk calenlator

declares DIGIT to be a token. Tokens declared in this section can then be
used in the second and third parts of the Yace specification. H Lex is used
to create the lexical analyzer that passes token to the Yacc parser, then these

token declarations are also made available to the analyzer generated by Lex, as
discussed in Section 3.5.2.

The Translation Rules Part

In the part of the Yacc specification after the first %% pair, we put the translation
rules. Each rule consists of a grammar production and the associated semdntlc
action. A set of productions that we have been writing:

{head) — (body); | (body)z | -] {body)y

would be written in Yacc as

290 CHAPTER 4. SYNTAX ANALYSIS

(head) : (body}s { {semantic action); }
i {body): { (semantic action)s }

| {body), { {semantic action}, }

In a Yace production, unquoted strings of letters and digits not declared to
be tokens are taken to be nontermirials. A quoted single character, e.g. '¢?,
is taken to be the terminal symbol c, as well as the integer code for the token
represented by that character {i.e., Lex would return the character code for ’c¢’
to the parser, as an integer}. Alternative bodies can be separated by a vertical
bar, and a semicolon follows each head with its alternatives and their semantic
actions. The first head is taken to be the start symbal.

A Yacc semantic action is a sequence of C statements. In a semantic action,
the symbol $8 refers to the attribute value associated with the nonterminal of
the head, while $¢ refers to the value associated with the ith grammar symbol
(terminal or nonterminal} of the body. The semantic action is performed when-
ever we reduce by the associated production, so normally the semantic action
comptites a value for $$ in terms of the $¢’s. In the Yacce specification, we have
written the two E-productions

ESE+T T
and their associated semantic actions as:

expr : expr ’+’ term { %% =31+ 83; }
{ term

Note that the nonterminal term in the first production is the third grammar
symbol of the body, while + is the second. The semantic action associated with
the first production adds the value of the expr and the term of the body and
assigns the result as the value for the nonterminal expr of the head. We have
omitted the semantic action for the second production altogether, since copying
the value is the default action for productions with a single grammar symbol
in the body. In general, { $$ = $1; J is the default semantic action.
Notice that we have added a new starting production

line : expr ’\n’ { printf ("%d\n", $1); }

to the Yacc specification. This production says that an input to the desk
calculator is to be an expression followed by a newline character. The serhantic
action associated with this production prints the decimal value of the expression
followed by a newline character.

4.9. PARSER GENERATORS 291

The Supporting C-Routines Part

The third part of a Yacc specification consists of supporting C-routines. A
lexical analyzer by the name yylex () must be provided. Using Lex to produce
yylex() is a common choice; see Section 4.9.3. Other procedures such as error
recovery routines may be added as necessary.

The lexical analyzer yylex() produces tokens consisting of a token name
and its associated attribute value. If a token name such as DIGIT is returned,
the token name must be declared in the first section of the Yace specification.
The attribute value associated with a token is communicated to the parser
throngh a Yacc-defined variable yylval.

The lexical analyzer in Fig. 4.58 is very crude. It rcads input characters
one at a time using the C-function getchar (). If the character is a digit, the
value of the digit is stored in the variable yylval, and the token name DIGIT
is returned. Otherwise, the character itself is returned as the token name.

4.9.2 Using Yacc with Ambiguous Grammars

Let us now modify the Yacc specification so that the resulting desk calculator
becomes more useful. First, we shall allow the desk caleulator to evaluate a
sequence of expressions, one to a line. We shall also allow blank lines between
expressions. We do so by changing the first rule to

lines : lines expr ’'\n’ { printf{"%g\n", $2); %
| lines ’\n’
| /% empty */

In Yacc, an coupty alternative, as the third line is, denotes e.

Second, we shall enlarge the class of expressions to include numbers instead
of single digits and o include the arithmetic operators +, —, {both binary and
unary), *, and /. The easiest way to specify this class of expressions is to use
the ambiguous grammar

E-E+E|{E-FE|ExE| E/E| - E | number

The resulting Yace specification is shown in Fig. 4.59.

Since the gramnmar in the Yacc specification in Fig. 4.59 is ambiguous, the
LALR algorithm will generate parsing-action conflicls. Yace reports the num-
ber of parsing-action conflicts that are generated. A description of the sets of
items and the parsing-action conflicts can be obtained by invoking Yace with a
-v option. This option generates an additional file y.output that contains the
kernels of the sets of items found for the grammar, a description of the parsing
action conflicts generated by the LALR algorithm, and a readable represen-
tation of the LR parsing 1able showing how the parsing action conflicts were
resolved. Whenever Yace reports that it has found parsing-action conflicts, it

202

i

CHAPTER 4. SYNTAX ANALYSIS

#include <ctype.h>
#include <stdie.h>
#define YYSTYPE double /* double type for Yacc stack */

%}

Y%token NUMBER

Yleft *+7 77
Yleft %2 7/?
Yright UMINUS

W

lines : lines expr ’\n’ { printf(“%g\n", $2); }
| 1lines *\n’
| /% empty */
exXpr : expr '+’ expr {38 =8$1+83; }
| expr *-' expr {$8 =861 -83;}
| expr ’#’ expr {$3=4%1x83; 1}
| expr ’/' expr {83 =%1/83;1
| ?(* expr ’)’ { 8% = §2; }
| -7 expr Yprec UMINUS { $$ = - $2; }
| NUMBER
W
yylex({
int ¢;
while { (¢ = getchar(})) == "');
if ((c == ".7) || (isdigit(c))) {

}

ungetc(c, stdin);
scanf {"41f", &yylval);
return NUMBER;

return C;

1

Figure 4.59: Yacc specification for a more advanced desk calculator.

:
4.9. PARSER GENERATOQRS 293
is wise to create and consult the file y.output 1o see why the parsing-action
conflicis were generated and to sec whether they were resolved correctly.

Unless otherwise instructed Yacc will resolve all parsing action conflicts
using the following two rules:

1. A reduce/reduce conflict is resolved by choosing the conflicting production
listed first in the Yacce specification.

2. A shift,/reduce conflict is resolved in favor of shift. This rule resolves the
shift /reduce conflict arising from the dangling-else ambiguity correctly.

Since these default rules may not always be what the compiler writer wants,
Yacc provides a general mechanism for resolving shift/rednce conflicts. In Lhe
declarations portion, we can asgign precedences and associativities to terminals.
The declaration

Yleft *+7 7=’

makes + and - be of the same precedence and be lell associative. We can declare
an operator to be right associative by writing

%right '

and we can force an operator to he a nonassociative binary operator (i.e., two
occurrences of the operator cannot be combined at all) by writing

%nonassoc <’

The tokens are given precedences in the order in which they appear in the
declarations part, lowest first. Tokens in the same declaration have the same
precedence. Thus, the declaration

%right UMINUS

in Fig. 4.59 gives the token UMINUS a precedence level higher than that of the
five preceding terminals.

Yacc resolves shift /reduce conflicts by attaching a precedence and associa-
tivity to each production invelved in a conflict, as well as to each terminal
involved in a conflict. If it must choose between shifting input symbol o and re-
ducing by production A — a, Yacc reduces if the precedence of the produnction
is greater than that of a, or if the precedences are the same and the associativity
of the production is left. Otherwise, shift is the chosen action.

Normally, the precedence of a production is taken to be the same as that of
its rightmost terminal. This is the scnsible decision in most cases. For example,
given productions

E = E+E | E+E

294 CHAPTER 4. SYNTAX ANALYSIS

we would prefer to reduce by £ — E+E with lockahead +, because the + in
the body has the same precedence as the lookahead, but is left associative.
With lookahead *, we would prefer to shift, because the lookahead has higher
precedence than the + in the production.

In those situations where the rightmost, terminal does not supply the proper
precedence to a production, we can force a precedence by appending to a pro-
duction the tag

¥prec {terminal)

The precedence and associativity of the production will then he the same as that
of the terminal, which presumably is defined in the declaration section. Yacc
does not report shift /reduce conflicts that are resolved using this precedence
and associativity mechanism.

This “terminal” can be a placeholder, like UMINUS in Fig. 4.59; this termi-
nal is not returned by the lexical analyzer, but is declared solely to define a
precedence for a production. In Fig. 4.59, the declaration

%right UMINUS

assigns 10 the token UMINUS a precedence that is higher than that of and /.
In the translation rules part, the tag:

Yprec UMINUS
at the end of the production
expr : -’ expr

makes the unary-minus operator in this production have a higher precedence
than any other operator.

4.9.3 Creating Yacc Lexical Analyzers with Lex

Lox was designed to produce lexical analyzers that could be used with Yace. The
Lex library 11 will provide a driver program named yylex (), the name required
by Yacc for its lexical analyzer. If Lex is used to produce the lexical analyzer,
we replace the routine yylex() in the third part of the Yacc specification by
the statement

#include "lex.yy.c"

and we have each Lex action return a terminal known to Yacc. By using
the #include “lex.yy.c" statement, the program yylex has access to Yace's
names for tokens, since the Lex output file is compiled as part of the Yacc
output file y.tab.c.

Under the UNIX system, if the Lex specification is in the file first.1 and
the Yacc specification in second.y, we can say

4.9. PARSER GENERATORS 295

lex first.l
yacc second.y
¢c y.tab.c -1y -11

to obtain the desired translator.

The Lex specification in Fig. 4.60 ¢an be used in place of the lexical analyzer
in Fig. 4.59. The last pattern, meaning “any character,” must be written \n| .
since the dot in Lex matches any character except newline.

number [0-9]+\e. 7! [0-9]*\e, [0-9]+

o

[1] { /% skip blanks */ }

{number} { sscanf (yytext, "%1f", &yylvall;
return NUMBER; }

\ni. { return yytext[0]; }

Figure 4.60: Lex specification [or yylex() in Fig. 4.59

4.9.4 Error Recovery in Yacc

In Yace, error recovery uses a form of error productions. First, the user de-
cides what “major” nonterminals will have error recovery associated with them.
Typical cheices are some subsct of the nonterminals generating expressions,
staternents, blocks, and funections. The user then adds to the grammar error
productions of the form 4 — error o, where 4 is a major nonterminal and
¢ i8 a string of grammar symbols, perhaps the empty string; error is a Yacc
reserved word. Yacc will generate a parser from such a specification, treating
the error productions as ordinary productions.

However, wher the parser generated by Yacc encounters an error, it treats
the states whose sets of items contain error productions in a special way. On
encountering an error, Yace pops symbols from its stack until it finds the top-
most state on its stack whose underlying set, of items includes an item of the
form A — -error a. The parser then “shifts” a fictitious token error onto the
stack, as though it saw the Loken error on its input.

When « is €, a reduction to A occurs immediately and the semantic action
associated with the production 4 — -error (which might be a user-specified
error-recovery routine) is invoked. The parser then discards input svmbols until
it finds an input symbol on which normal parsing can proceed.

If o is not empty, Yace skips ahead on the input looking for a substring
that can be reduced to «. If o consists entirely of terminals, ther it looks for
this string of terminals on the input, and “reduces” them by shifting them onto
the stack. At this point, the parser will have error « on top of its stack. The
parser will then reduce error a to A, and resume normal parsing.

For example, an error production of the form

206 CHAPTER 4. SYNTAX ANALYSIS

Al

#include <ctype.h>

#include <stdio.h>

#define YYSTYPE double /x double type for Yacc stack */
[As '

%token NUMBER

Yleft 47 -2
.f.left LI :/;
%right UMINUS
A

lines : lines expr *\n’ { printf(“¥%g\n", $2); }

| lines ’\n’

| /# empty #*/

| error *\n? { yyerror{"reenter previous line:");

yyerrok; } '

eXpr : expr '+’ expr { %% =3%1 + 83; }

| expr ’-' expr {$% = %1 - $3; }

| expr *' expr {$3 = %1 = $3; }

| expr */* expr {$% =91/ %3; 1}

| *(* expr ')’ { $% = $2; 3

| ?-? expr Yprec UMINUS { $% = - $2; }

| NUMBER '

ni
#include "lex.yy.c"

Figure 4.61: Desk calculator with error recovery

stmt — error ;

would specify to the parser that it should skip just beyond the next semicolon
on seeing an crror, and assume that a statement had been found. The semantic
routine for this error production would not need to manipulate the input, but
could generate a diagnostic message and set a flag to inhibit generation of object
code, for example.

Example 4.70: Figure 4.61 shows the Yacc desk calculator of Fig. 4.59 with
the error production

lines : error *\n’

This error production causes the desk calculator to suspend normal parsing
when a syntax error is found on an input line. On encountering the error,

-
P

4.10, SUMMARY OF CHAPTER 4 297

the parser in the desk calculator starts popping symbols from its stack until it
encounters a state that has a shift action on the token error. State 0 is such a
slate (in this cxample, it’s the only such state), since its items include

fines — -error ’'\n’

Also, state () is always on the bottom of the stack. The parser shifts the token
error onto the stack, and then proceeds to skip ahead in the input until it has
found a newline character. At this point the parser shifts the newline onto the
stack, reduces error *\n’ to lines, and emits the diagnostic message “reenter
previous line:”. The special Yace routine yyerrok resets the parser to its normal
mode of operation. 0O

4.9.5 Exercises for Section 4.9

Exercise 4.9.1: Write a Yacc program that takes boolean expressions as input
[as given by the grammar of Exercise 4.2.2(g)] and praduces the truth value of
the expressions,

Exercise 4.9.2: Write a Yacc program that takes lists (as defined by the
grammar of Exercise 4.2.2{e), but with any single character as an element, not
just @) and produces as oitput a linear representation of the same list; .e., a
single list of the elements, in the same order that they appear in the input.

Exercise 4.9.3: Write a Yacc program that tells whether its input is a palin-
drome (sequence of characters that read the same forward and backward).

Exercise 4.9.4: Write a Yacc program that takes regular expressions (as de-
fined by the grammar of Exercise 4.2.2{d}, but with any single character as an
argument, not just ¢) and produces as output a transition table for a nonde-
terministic finite automaton recognizing the same language.

4.10 Summary of Chapter 4

¢ Parsers. A parscr takes as input tokens from the lexical analyzer and
treats the token names as terminal symbols of a context-free grammar.
The parser then constructs a parse tree for its input sequence of tokens;
the parse trec may be constrocted figuratively (by going through the cor-
responding derivation steps} or literally.

4 Context-Free Grammars. A grammar specifies a set of terminal symbols
(inputs), another set, of nonterminals (symbols representing syntactic con-
structs), and a sct of productions, each of which gives a way in which
strings represented by one nonterminal can be constructed from terminal
symbols and strings represented by certain other nonterminals. A pro-
duction consists of a head (the nonterminal Lo be replaced) and a body
(the replacing string of grammar symbols).

298

CHAPTER 4. SYNTAX ANALYSIS

+ Derwations. The process of starting with the start-nonterminal of a gram-

mar and successively replacing it by the body of one of its productions is
called a derivation. If the leftmost (or rightmost) nonterminal is always
replaced, then the derivation is called leftmost {respectively, rightmost).

Parse Trees. A parse tree is a picture of a derivation, in which there is
a node for each nonterminal that appesrs in the derivation. The children
of a node are the symbols by which that nonterminal is replaced in the
derivation. There is a one-to-one correspondence between parse trees, left-
most derivations, and rightmost derivations of the same terminal string.

Ambiguity. A grammar for which some terminal string has two or more
differenit parse trees, or equivalently two or more leftmost derivations or
two or more rightmost derivations, is said to be ambiguous. In most cases
of practical interest, it i8 possible to redesign an ambiguous grammar so
it becomes an unambiguous grammar for the same language. However,
ambiguous grammars with certain tricks applied sometimes lead to more
efficient parsers.

Top-Doun and Bottom-Up Parsing. Parsers are generally distinguished
by whether they work top-down (start with the grammar’s start symbol
and construct the parse tree from the top) or bottom-up (start with the
terminal symbols that form the leaves of the parse tree and build the
tree from the hottom}. Top-down parsers include recursive-descent and
LL parsers, while the most common forms of bottom-up parsers are LR
parsers.

Design of Grammars. Grammars suitable for top-down parsing often arce
harder to design than those used by bottom-up parsers. It is necessary
to eliminate left-recursion, a situation where one nonterminal derives a
string that begins with the same nonterminal. We also must left-factor —
group productions for the same nonterminal that have a common prefix
in the body.

Recursive-Descent Parsers. These parsers use a procedure for each non-
terminal. The procedure looks at its input and decides which production
to apply for its nonterminal. Terminals in the body of the production are
matched to the input at the appropriate time, while nonterminals in the
body result in calls to their procedure. Backtracking, in the case when
the wrong production was chosen, is a possibility.

LL(1) Parsers. A grammar such that it is possible to choose the correct
production with which to expand a given nonterminal, looking only at
the mext input symbol, is called LL{1). Thesc grammars allow us to
construct a predictive parsing table that gives, for each nonterminal and
each lookahead svmbol, the correct choice of production. Error correction
can be facilitated by placing error routines in some or all of the table
entries that have no legitimate production.

4.10.

+

SUMMARY OF CHAPTER 4 } 299

Shifi-Reduce Parsing. Bottom-up parsers generally operate by choosing,
on the basis of the next input symbol {lookahcad symbol) and the contents
of the stack, whether to shift the next input onto the stack, or to reduce
some symbols at the top of the stack. A reduce step takes a production
body at the top of the stack and replaces it by the head of the production.

Viable Prefizes. In shift-reduce parsing, the stack contents are always a
viable prefix — that is, a profix of some right-sentential form that ends
no further right than the end of the handle of that right-sentential form.
The handle is the substring that was introduced in the last step of the
rightmost derivation of that sentential form.

Valid tems. An item is a production with a dot somewhere in the body.
An item is valid for a viable prefix il the production of that item is used
to generate the handle, and the viable prefix includes all those symbols
1o the left of the dot, but not those below.

LR Parsers. Each of the several kinds of LR parsers opcrate by first
constructing the sets of valid items (called LR states) for all possible
viable prefixes, and keeping track of the state for each prefix on the stack.
The set of valid items guide the shift-reduce parsing decision. We prefer
to reduce if there is a valid item with the dot at the right end of the body,
and we prefer to shift the lookahead symbol onto the stack if that symbol
appears immediately to the right of the dot in some valid item.

Simple LK. Porsers. In an SLR. parser, we perform a reduction implied by
a valid item with & dot at the right end, provided the lookahead symbol
can follow the head of that production in some sentential form. The
grammar i3 SLR, and this method can be applied, if there are no parsing-
action conflicts; that is, for no set of items, and for no lookahead symbol,
arc there two productions to reduce by, nor is there the option to reduce
or to shift.

Canonical-LR Parsers. This more complex form of LR parser uses iteins
that are augmented by the set of lookahead symbols that can follow the use
of the underlying production. Reductions are only chosen when there is a
valid item with the dot at the right end, and the currens lookahead symbol
is one of those allowed for this itern. A canonieal-TR parser can avoid some
of the parsing-action conflicts that are present in SLR parsers, but often
has many more states than the SLR parser for the same grammar.

Lookahead-LR Parsers. LALR parsers offer many of the advantages of
SLR and Canonical-LR parsers, by combining the states that have the
same kernels (sets of items, ignoring the associated lookahead sets). Thus,
the number of states is the same as that of the SLR parser, but some
parsing-action conflicts present in the SLR parser may be removed in
the LALR parser. LALR parsers have become the method of choice in
practice.

300 CHAPTER 4. SYNTAX ANALYSIS

4 Bottom-Up Parsing of Ambiguous Gremmars. In many important situa-
tions, such as parsing arithmetic expressions, we can use an ambiguous
grammar, and exploit side information suck as the precedence of operators
to resolve conflicts between shifting and reducing, or between reduction by
two different productions. Thus, LR parsing techniques extend to many
ambiguous grammars.

+ Yacc, The parser-generator Yacc takes a (possibly) ambiguous grammar
and conflict-resclution information and constructs the LALR states, It
then produces a function that uses these states to perform a bottom-up
parse and call an associated function each time a reduction is performed.

4.11 References for Chapter 4

The context-free grammar formalism originated with Chomsky [5], as part of
a study on natural language. The idea also was used in the syntax deseription
of two early languages: Fortran by Backus [2] and Algol 60 by Naur [26]. The
scholar Panini devised an equivalent syntactic notation to specify the rules of
Sanskrit grammar between 400 B.C. and 200 B.C. [19].

The phenomenon of ambiguity was observed first by Cantor [4] and Floyd
{13]. Ckomsky Normal Foritn (Exercise 4.4.8) is from [6]. The theory of context-
free grammars is summarized in [17].

Recursive-descent parsing was the method of choice for early compilers,
such as [16], and compiler-writing systems, such as META (28] and TMG [25].
LL grammars were introduced by Lewis and Stearns {24]. Exercise 4.4.5, the
linear-time simulation of recursive-descent, is from [3].

One of the earliest parsing technigues, due to Floyd [14], involved the prece-
dence of operators. The idea was generalized to parts of the language that do
not involve operators by Wirth and Weber [29]. These techniques are rarely
used today, but can be seen as leading in a chain of improvements to LR parsing,.

LR parsers were introduced by Knuth {22], and the canonical-LR parsing
tables originated there. This approach was not considered practical, because the
parsing tables were larger than the main memories of typical computers of the
day, until Korenjak [23] gave a method for producing reasonably sized parsing
tables for typical programiming languages. DeRcmer developed the LALR [8]
and SLR [9] methods that are in uge today. The construction of LR parsing
tables for ambignous grammars came from [1] and [12].

Johuson’s Yacc very quickly demonstrated the practicality of generating
parsers with an LALR parser generator for production compilers. The manual
for the Yacc parser generator is found in {20]. The open-source version, Bison,
is described in [10]. A similar LALR-based parser generator called CUP {18]
supports actions written in Java. Top-down parser generators incude Antlr
[27], & recursive-descent parser generator that accepts actions in C++-, Java, or
C#, and LLGen [15), which is an LL{1)-based generator.

Dain [7] gives a bibliography on syntax-error handling.

4.11.

REFERENCES FOR CHAPTER 4 301

The general-purpose dynamic-programming parsing algorithm described in
Exercise 4.4.9 was invented independently by J. Cocke (unpublished)} by Young-
er [30] and Kasami [21]; hence the “CYK algorithm.” There is a more complex,
general-purpose algorithm due to Earley [11] that tabulates LR-items for each
substring of the given input; this algorithm, while also O{n®) in general, is only
(O(n*) on unambiguous grammars.

1.

10.

11.

12.

13.

14,

Aho, A, V., S, C. Johnson, and J. D. Ullman, “Deterministic parsing of
ambiguous grammars,” Comm. ACM 18:8 (Aug., 1975), pp. 441-452.

. Backus, J.W, “The syntax and semantics of the proposed international

algebraic language of the Zurich-ACM-GAMM Conference,” Proc. Intl.
Conf. Information Processing, UNESCQ, Paris, (1959} pp. 125-132.

. Birman, A. and J. D. Ullman, “Parsing algorithms with backtrack,” In-

Sformation and Control 23:1 (1973}, pp. 1-34.

. Cantor, D. C., “On the ambiguity problem of Backus systems,” J. ACM

9:4 (1962), pp. 477-479.

. Chomsky, N., “Three models for the description of language,” IRE Trans.

on Information Theary IT-2:3 {1936}, pp. 113-124.

. Chomsky, N., “On certain formal properties of grammars,” Information

and Control 2:2 (1959}, pp. 137-167.

. Dain, J., “Bibliography on Syntax Error Handling in Language Transla-

tion Systems,” 1991. Available from the comp. compilers newsgroup; see
http://compilers.iecc.com/comparch/article/91-04-050 .

. DeRemer, F., “Practical Translators for LR(k) Languages,” Ph.D. thesis,

MIT, Cambridge, MA, 1969.

. DeRemer, F., “Simple LR(k) grammars,” Comm. ACM 14:7 (July, 1971),

pp- 453--460.

Donnelly, C. and R. Stallman, “Bison: The YACC-compatible Parser
Generator,” http: //www.gnu.org/software/bison/manual/ .

Earley, J., “An efficient context-free parsing algorithm,” Comm. ACM
13:2 (Feb., 1970), pp. 94-102.

Earley, J., “Ambiguity and precedence in syntax description,” Acta In-
Jormatica 4:2 (1975}, pp. 183-192.

Floyd, R. W., “On ambiguity in phrase-structure languages,” Comm.
ACM 5:10 (Oct., 1962), pp. 526-534.

Floyd, R. W., “Syntactic analysis and operator precedence,” J. ACM 10:3
(1963), pp. 316-333.

302

15

16.
17.
18.
19.

20.

2L

22.
23.
24.
25.
26.
27.
28.
29.

30.

CHAPTER 4. SYNTAX ANALYSIS

Grune, D and C. J. H. Jacobs, “A programmer-friendly LL{1) parscr
generator,” Software Practice and Ezperience 18:1 (Jan., 1988), pp. 20-
38. Sce also http://www.ce.vu.nl/ ceriel/Llgen.html .

Hoare, C. A. R., “Report on the Elliott Algol translator,” Computer J.
5:2 (1962), pp. 127-129,

Heperott, J. E., R. Motwani, and J. D. Ullman, Infroduction to Automata
Theory, Languages, and Computation, Addison-Wesley, Boston MA, 2001,

Hudson, S. E. et al.,, “CUP LALR Parser Generator in Java,” Available
at http://www2.cs.tum.edu/projects/cup/ .

Ingerman, P. Z., “Panini-Backus form suggested,” Comm. ACM 10:3
{March 1967), p. 137.

Johnson, 8. C., “Yacc — Yet Another Compiler Compiler,” Computing
Science Technical Report 32, Bell Laboratories, Murray Hill, NJ, 1975,
Available at http://dinosanr.compilertools.net/yacc/ .

Kasami, T., “An efficient recognition and syntax analysis algorithm for
context-free langnages,” AFCRL-65-758, Air Force Cambridge Research
Laboratory, Bedford, MA, 1965.

Knuth, D. E., “On the translation of langnages from left to right,” Infor-
mation and Control 8:6 (1965), pp. 607-639.

Korenjak, A. I., “A practical method for constructing LR{k) processors,”
Comm. ACM 12:11 (Nov., 1969), pp. 613-623.

Lewis, P. M. IT and R. E. Stearns, “syntax-directed transduction,” J.
ACM 15:3 (1968), pp. 465-488.

McClure, R. M., “TMG — a syntax-directed compiler,” proc. 20th ACM
Nail, Conf. (1965), pp. 262-274.

Naur, P. et al., “Report on the algorithmic language ALGOL 60,” Comm,
ACM 3:5 (May, 1960), pp. 299-314. See also Comm. ACM 6:1 (Jan.,
1963), pp- 1-17.

Parr, T., “ANTLR,” bttp://wew.antlr.org/ .

Schorre, D. V.. “Meta-Il: a syntax-oriented compiler writing language,”
Proc. 19th ACM Natl. Conf. (1964) pp. D1.3-1-D1.3-11.

Wirth, N. and H. Weber, “Euler: a gencralization of Algol and its formal
definition: Part L Comm. ACM 9:1 (Jan., 1966), pp. 13-23.

Younger, D.H., “Recognition and parsing of context-free languages in timne
n3,” Information and Control 10:2 (1967), pp. 189-208.

Chapter 5

Syntax-Directed
Translation

This chapter develops the theme of Section 2.3: the translation of languages
guided by context-free grammars. The translation techniques in this chapter
will be applied in Chapter 6 to type checking and intermediate-code generation.
The techniques are also useful for implementing little langnages for specialized
tasks; this chapter includes an example from typesetting.

We associate information with a language construct by attaching attributes
to the grammar symbol(s) representing the construct, as discussed in Sec-
tion 2.3.2, A syntax-directed definition specifies the values of attributes by
agsociating semantic rules with the grammar productions. For example, an
infix-to-postfix translator might have a production and rule

ProDUCTION SEMANTIC RULE

5.1
E—-E +T E.code = E;.code ” T code “ et ()

This production has two nonterminals, E and T'; the subscript in E; distin-
guishes the occurrence of £ in the production body from the occurrence of E
as the head. Both E and T have a string-valued attribute code. The scmantic
rule specifies that the string £. code s formed by concatenating Ey . code, T'.code,
and the character ‘+'. While the rule makes it explicit that the translation of
E is built up from the translations of E;, T, and '+, it may be inefficient to
implement the trazislation directly by manipulating strings.

From Section 2.3.5, a syntax-directed translation scheme embeds program
fragments called semantic actions within production bodies, as in

E—E +T {print'+} (5.2}

By convention, semantic actions are enclosed within curly braces. (If curly
braces occur as grammar symbols, we enclose them within single quotes, as in

303

304 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

'{' and "}.) The position of a semantic action in a production body determines
the order in which the action is exccuted. In production (3.2), the action
occurs al the end, after all the grammar symbols; in general, semantic actions
may occur at any position in a production body.

Between the two notations, syntax-directed definitions can be morc readable,
and hence more useful for specifications. However, translation schemes can be
more efficient., and hence more useful for implementations.

The most general approach to syntax-directed translation is to construct a
parse tree or a syntax tree, and then to compute the values of attributes at the
nodes of the tree by visiting the nodes of the tree. In many cases, translation
can be done during parsing, without building an explicit tree. We shall therefore
study a class of syntax-directed translations called “L-attributed translations”
(L for left-to-right), which encompass virtually all translations that can be
performed during parsing. We also study a smaller class, called “S-attributed
translations™ (8 for synthesized), which can be performed casily in connection
with a bottom-up parse. '

5.1 Syntax-Directed Definitions

A syntax-directed definition (SDD) is a context-free grammar together with
attributes and rules. Attributes are associated with grammar gymbols and mles
are associated with productions. If X is a symbol and ¢ is one of its attributes,
then we write X.a to denote the value of g at a particular parse-tree node
labeled X. If we implement the nodes of the parse tree by records or objects,
then the attribuies of X can be implemented by data fields in the records that
represent the nodes for X. Attributes may be of any kind: numbers, types, table
references, or strings, for instance. The strings may even be long sequences of
code, say code in the intermediate language used by a compiler.

5.1.1 Inherited and Synthesized Attributes

We shall deal with two kinds of attributcs for nonterminals:

1. A synthesized aftribute for a nonterminal A at a parse-tree node N is
defined by a semantic rule associated with the production at N. Note
that the production must have A as its head. A synthesized attribute at
node N is defined only in terms of attribute values at the children of N
and at N itself.

2. An inherited attribute for a nonterminal B at a parse-tree node N is
defined by a semantic rule associated with the production at the parent
of N. Note that the production must have B as a symbol in its body. An
inherited attribute at node N is defined only in terms of attribute values
at N's parent, N itself, and N’s siblings.

5.1. SYNTAX-DIRECTED DEFINITIONS 305

An Alférnative Definition of Inherited Attributes

No additional translations are enabled if we allow an inherited attribute
B.c at a node N to be defined in terms of attribute values at the children
of N, as well as at N itself, at ils parent, and at its siblings. Such rules can
be “simulated” by creating additional attributes of B, say B.c;, B.ca,
These are synthesized attributes that copy the needed attributes of the
children of the node labeled B. We then compute B.e as an inherited
attribute, using the attributes B.¢;, B.ep, ... in place of attributes at the
children. Such attribuies are rarely needed in practice.

While we do not allow an inherited attribute at node N to be defined in terms of
attribute values at the children of node N, we do allow a synthesized attribute
at node N to be defined in terms of inherited attribute values at node N itself.

Terminals can have synthesized attributes, but not inherited attributes. At-
tributes for terminals have lexical values that are supplied by the lexical ana-
lyzer; there are no semantic rules in the SDD itself for computlng the value of
an attribute for a terminal,

Example 5.1: The SDD in Fig. 5.1 is based on cur familiar grammar for
arithmetic expressions with operators + and *. It evaluates expressions termi-
nated by an endmarker n. In the SDD, each of the nonterminals has a single
synthesized attribute, called val. We also suppose that the terminal digit has
a synthesized attribute lezval, which is an integer value returned by the lexical
analyzer.

PRODUCTION SEMANTIC RULES

1) Lo En L.val = E.val

2 E—=E + T | Evael=FE .val+ T.val
3) E-T E.val = T.val

4) T=T, « F T.val = T .val x Foval
5 T F T.val = Fooal

6) F—-(E) F.val = E.val

7) F - digit F el = digit.lexval

Figure 5.1: Syntax-directed delinition of a simple desk calculator

The rule for production 1, I, — E n, sets L.val to E.val, which we shall see
i8 the numerical value of the entire expression.

Production 2, B — E; + 7', also has one rule, which camputes the val
attribute for the head £ as the sum of the values at E; and T. At any parse-

306 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

tree node N labeled E, the value of val for E is the sum of the values of vl at
the children of node N labeled E and 7'.

Production 3, B — T, has a single rule that defines the value of val for E
to be the same as the value of vel at the child for T'. Production 4 is similar to
the second production; its rule multiplies the values at the children instead of
adding them. The rules for productions 5 and 6 copy values at a child, like that
for the third production. Production 7 gives F.val the value of a digit, that is,
the numerical value of the token digit that the lexical analyzer returned. O

An SDD that involves only synthesized attributes is called S-atéributed; the
SDD in Fig. 5.1 has this property. In an S-attributed SDD, each rule computes
an attribute for the nonterminal at the head of a production from attributes
taken from the body of the production.

For simplicity, the examples in this section have semantic rules without
side effects. In practice, it is convenient to allow SDD’s to have limited side
effects, such as printing the result computed by a desk calculator or interacting
with a symbol table. Once the order of evaluation of attributes is discussed
in Section 5.2, we shall allow semantic rules to compute arbitrary functions,
possibly involving side effects.

An S-attributed SDD can be implemented naturally in conjunction with an
LR parser. In fact, the SDD in Fig. 5.1 mirrors the Yacc program of Fig. 4.58,
which illustrates translation during LR parsing. The difference is that, in the
rule for production 1, the Yacc program prints the value F.val as a side effect,
instead of defining the attribute L.val

An SDD without side effects is sometimes called an aféribute grammar. The
rules in an attribute grammar define the value of an attribute purely in terms
of the values of other attributes and constants.

5.1.2 Evaluating an SDD at the Nodes of a Parse Tree

To visualize the translation specified by an SDD, it helps to work with parse
trees, even though a translator need not actually build a parse tree. Imagine
therefore that the rules of an SDD are applied by first constricting a parse tree
and then using the rules to evaluate all of the attributes at each of the nodes
of the parse tree. A parse trec, showing the value(s) of its attribute(s) is called
an annotated parse tree,

How do we construct an annotated parse tree? In what order do we evaluate
attributes? Before we can evaluate an attribute at a node of a parse tree, we
must evaluate all the attributes upon which its value depends. For example,
if all attributes are synthesized, as in Example 5.1, then we must evaluate the
val attributes at all of the children of a node before we can evaluate the val
attribute at the node itself.

With synthesized attributes, we can cvaluate attributes in any bottom-up
order, such as that of a postorder traversal of the parse tree; the evaluation of
S-attributed definitions is discussed in Sectien 5.2.3.

-

5.1. SYNTAX-DIRECTED DEFINITIONS 307

For SDD’s with both inherited and synihesized attributes, there is no guar-
antee that there is even one order in which to evaluate attributes at nodes.
For instance, consider nonterminals 4 and B, with synthesized and inherited
attributes A.s and B.i, respectively, along with the production and rules

PRODUCTION SEMANTIC RULES
A= B A.s = B.;
Bi=A4s+1

These rules are circular; it is impossible to evaluate either 4.4 at anode & or B.i
at the child of N without first evalnating the other, The circular dependency
of A.s and B.i at some pair of nodes in a parse tree is suggested by Fig, 5.2.

T

r e

Figure 5.2: The circular dependency of A.s and B.{ on one another

It is computationally difficult to determine whether or not there cxist any
circularities in any of Lhe parse trees that a given SDD could have to translate.!
Fortunately, there are useful subclasses of SDD’s that are sufficient to guarantee
that an order of evaluation exists, as we shall see in Section 5.2.

Example 5.2: Figure 5.3 shows an annotated parse tree for the input string
3 %5 + 4 n, constructed using the grammar and rules of Fig. 5.1. The values
of lezval are presumed supplied by the lexical analyzer. Each of the nodes for
the nonterminals has attribute vel computed in a bottom-up order, and we see
the resulting values associated with each node. For instance, at the node with
a child labeled *, after computing T.val = 3 and F.val = 5 at its first and third
children, we apply the rule that says T.val is the product of these two values,
or15. 0O

Inherited attributes are useful when the structure of a parse tree does not
“match” the absiract syntax of the source code. The next example shows how
inherited attributes can be used to overcome such a mismatch due to a grammar
designed for parsing rather than translation.

'"Without going into details, while the problem is decidable, it cannot be solved by a
polynomial-time algorithm, even If P - AP, since il has exponential time complexity.

308 CHAPTER 5. SYNTAX DIRECTED TRANSLATION

L.val =19
E.vgl=19 n
NG
Eval=15 + Towal=4
|
T.val =15 F.vm}E =4
Twvel=3 * Fual=35 digit.lexval = 4
F. va! =3 digit.IeLval =5

digit.legval = 3

Figure 5.3: Annotated parse tree for 3% 5+4n

Example 5.3: The SDD in Fig. 5.4 computes terms like 3+ 5 and 3 x5 * 7.
The top-down parse of input 3# 5 begins with the production T — F'T'. Here,
F generates the digit 3, but the operator * is generated by T'. Thus, the left
operand 3 appears in a different subtree of the parse tree from *. An inherited
attribute will therefore be used to pass the operand to the operator.

The grammar in this example is an excerpt from a non-left-recursive version
of the familiar expression grammar; we used such a grammar as a running
example to illustrate top-down parsing in Section 4.4.

PRODUCTION SEMANTIC RULES
) T=FT T'.inh = F.val
T.val =T .syn

2) T'xFT Ti.inh = T'.inh x F.val
T syn =T].syn

3) T =e T .syn =T .inh
4) F — digit F.val = digit.lexval

Figure 5.4: An SDD based on a grammar suitable for top-down parsing

Each of the nonterminals T and F has a synthesized attribute wval; the
terminal digit has a synthesized attribute lezval. The nonterminal 7” has two
attributes: an inherited attribute ink and a synthesized attribute syn.

5.1. SYNTAX-DIRECTED DEFINITIONS 309

The semantic rules are based on the idea that the left operand of the operator
% is inherited. More precisely, the head T’ of the production T' — % F T]
inherits the left operand of # in the production body. Given a term z % y * 2,
the root of the subtree for # ¥ % z inherits 2. Then, the root of the subtree for
% z inherits the value of # % y, and so on, if there are more factors in the term.
Once all the factors have been accumulated, the result is passed back up the
tree using synthesized attributes.

To see how the semantic Tules are used, consider the annotated parse tree
for 3 5 in Fig. 5.5. The leftmost lcaf in the parse tree, labeled digit, has
attribute value lezval = 3, where the 3 is supplied by the lexical analyzer. Its
parent is for production 4, F' — digit. The only semantic rule associated with
this production defines F.val = digit.lezval, which cquals 3.

T.val= 15
T fmh=3
Fougl=13 T syn=15
o Lo & T .inh = 15
digit. lezval = 3 * Fual=35 T{.syn=15
digit.fexval =5 €

Figure 3.5: Annotated parse tree for 3 5

At the second child of the root, the inherited attribute T".inh is defined by
the semantic rule T'.inh = F.val associated with production 1. Thus, the left
operand, 3, for the » operator is passed from left to right across the children of
the root.

The production at the node for ' is 7' — * F'7]. (We retain the subscript
1 in the annotated parse tree to distinguish between the two nodes for 77.) The
inherited attribute T7.inh is defined by the semantic rule T}.inh = T".inh x F.val
assoctated with production 2.

With T'.inh = 3 and Flual = b, we get T|.ink = 15. At the lower node
for Ty, the production is T — ¢. The semantic rule T".syn = T".ink defines
Ti.syn = 15. The syn attributes at the nodes for 7' pass the value 15 up the
tree to the node for 7', where Towal =15. O

5.1.3 Exercises for Section 5.1

Exercise 5.1.1: For the SDD of Fig. 5.1, give annotated parse trees for the
foliowing expressions:

a) {3+4)+{(5+6)n.

310 CHAPYTER 5. SYNTAX-DIRECTED TRANSLATION

b) 1%2%3%(4+5)n.
c) (9+8%(7T+6)+5) +4n.

Exercise 5.1.2: Extend the SDD of Fig. 5.4 to handle expressions as in
Fig. 5.1.

Exercise 5.1.3: Repeat Exercise 5.1.1, using your SDD from Exercise 5.1.2.

5.2 Evaluation Orders for SDD’s

“Dependency graphs™ are a useful tool for determining an evaluation order for
the attribute instances in a given parse tree. While an annotated parse Lree
shows the values of attributes, a dependency graph helps us determine how
those values can he computed.

In this section, in addition to dependency graphs, we define two impor-
tant classes of SDD’: the “S-attributed” and the more general “L-attribuled”
SDD’s. The translations specified by these two classes fit well with the parsing
methods we have studied. and maost translations encountered in practice can be
written to conform to the requircments of at least onc of these classes,

5.2.1 Dependency Graphs

A dependency graph depicts the flow of information among the attribute in-
gtances in a particular parse irec; an edge from one attribute instance to an-
other means that the value of the first is needed to compute the second. Edges
express constraints implied by the semantic rules. In more detail:

¢ For each parse-tree node, say a node labeled by grammar symbol X, the
dependency graph has a node for each aitribute associated with X.

e Suppose that a semantic rule associated with a production p defines the
value of syuthesized attribute A.b in terms of the value of X.c (the rule
may define 4.0 in terms of other attributes in addition to X.c). Then,
the dependency graph has an edge from X.c to A.b. More precisely, at
every node N labeled 4 where production p is applied, create an edge to
attribute & at N, from the attribute ¢ at the child of N corresponding to
ihis instance of the symbol X in the body of the production.?

¢ Suppose that a semantic rule associated with a production p defines the
value of inherited attribute B.c in terms of the value of X.a. Then, the
dependency graph has an edge from X.a to B.c. For each node NV labeled
B that corresponds to an occurrence of this B in the body of production
p, create an edge to attribute ¢ at N from the attribute a at the node M

28ince a node N can have several! children labeled .Y, we again assume that subscripts
distinguish among uses of the same symbol at different places in the production.

5.2. EVALUATION ORDERS FOR SDD’S 311

that corresponds to this cccurrence of X. Note that M could be either
the parent or a sibling of .

Example 5.4: Consider the following production and rule:

PRODUCTION SEMANTIC RuLk
E—-E + T Evol = Ey.val + T.wal

At every node N labeled E, with children corresponding to the body of this
production, the synthesized attribute val at N is computed using the values of
val at the two children, labeled E and T. Thus, a portion of the dependency
graph for every parge tree in which this production is used looks like Fig. 5.6.
As a convention, we shall show the parse tree edges as dotted lines, while the
edges of the dependency graph are solid. 0O

Figure 5.6: E.wal 15 synthesized from E.val and Es.val

Example 5.5: An example of a complete dependency graph appears in Fig.
5.7. The nodes of the dependency graph, represented by the numbers 1 through
9, correspond to the attributes in the annotated parse tree in Fig. 5.5.

T _9 val

F 3 7l
digit 1 lezval *

digit 2 lezval €
Figure 5.7: Dependency graph for the annotated parse tree of Fig. 5.5
Nodes 1 and 2 represent the attribute lezval associated with the two leaves

labeled digit. Nodes 3 and 4 represent the attribute val associated with the
two nodes labeled . The edges to node 3 from 1 and to node 4 from 2 result

312 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

from the semantic rule that defines F.vel in terms of digit.lezval. In fact, F.val
equals digit.lezval, but the edge represents dependence, not equality.

Nodes 5 and 6 represent, the inherited attribute 7".inh associated with each
of the occurrences of nonterminal 77, The edge to § from 3 is due to the rule
T'.inh = F.val, which defincs T'.inh at the right child of the root from F.val
at the left child. We see edges to 6 from node 5 for T”.inh and from node 4
for F.val, because these values are multiplied to evaluate the attribute ink at
node 6.

Nodes 7 and 8 represent the synthesized attribute syn associated with the
occurrences of T, The edge to node 7 from 6 is due to the semantic rule
T’.syn = T".inh associated with production 3 in Fig. 5.4. The edge to node 8
from 7 is due to a semantic rule associated with production 2.

Finally, node 9 represents the attribute T.val. The edge to 9 from 8 is due
to the semantic rile, T sl = T'.syn, associated with production 1. O

5.2.2 Ordering the Evaluation of Attributes

The dependency graph characterizes the possible orders in which we can evali-
ate the attributes at the various nodes of a parse tree. If the dependency graph
has an edge from node M to node N, then the attribute corresponding to M
must be evaluated before the attribute of ¥. Thus, the only allowable orders
of evaluation are those sequences of nodes Ny, Ns, ... , N such that if there is
an edge of the dependency graph from N; to N;, then 7 < j. Such an ordering
embeds a directed graph into a linear order, and is called a fopolagical sort of
the graph.

If there is any cycle in the graph, then there are no topological sorts; that is,
there is no way to evalnate the SDD on this parse tree. If there are no eycles,
however, then there is alwavs at least one topological sort. To see why, since
there are no cycles, we can surely find a node with no edge entering. For if there
were no such node, we could proceed from predecessor to predecessor until we
came back to some node we had already seen, yielding a cycle. Make this node
the first in the topological order, remove it from the dependency graph, and
repeat the process on the remaining nodes.

Example 5.6: The dependency graph of Fig. 5.7 has no cycles. Onc topologi-
cal sort is the order in which the nodes have already been nurmbered: 1,2,...,9.
Notice that every edge of the graph goes from a node to a higher-numbered node,
go this order is surely a topological sort. There are other topological sorts as
well, such as 1,3,5,2,4,6,7,8.9. O

5.2.3 S-Attributed Definitions

As mentioned earlier, given an SDD, it is very hard to tell whether there exist
any parse trees whose dependency graphs have cycles. In practice, translations
can be implemented using classes of SDD’s that guarantee an evaluation order,

5.2. EVALUATION ORDERS FOR SDD’S 313

since they do not permit dependency graphs with cycles. Moreover, the two
classes introduced in this section can be implemented efficiently in connection
with top-down or bottom-up parsing,

The first class is defined as follows:

s An SDD is S-attributed if every attribute is synthesized.

Example 5.7: The SDD of Fig. 5.1 is an example of an S-attributed definition.
Each attribute, L.val, E.val, T.val, and F.vel is synthesized. O

When an SDD is S-attributed, we can evaluate its attributes in any bottom-
up order of the nodes of the parse tree. It is often especially simple to evaluate
the attributes by performing a postorder traversal of the parse tree and evala-
ating the attributes at a node N when the traversal leaves N for the last time.
That is, we apply the function postorder, defined below, to the root of the parse
tree (see also the box “Preorder and Postorder Traversals” in Section 2.3.4):

postorder(N) {
for { each child C of N, from Lhe left) postorder(C);
evaluate the attributes associated with node N;
}
S-attributed definitions can be implemented during bottom-up ba,rsing, since
a bottom-up parse corresponds to a postorder traversal. Specifically, postorder
corresponds exactly_ to the order in which an LR parser reduces a production
body to its head. This fact will be used in Section 5.4.2 to evaluate synthesized

attributes and store them on the stack during LR parsing, without creating the
tree nodes explicitly.

5.2.4 L-Attributed Definitions

The second class of SDD’s is called L-attrsbuted definitions. The idea behind
this class is that, between the attributes associated with a production body,
dependency-graph edges can go from left to right, but not from right to left
(hence “L-attribited”). More precisely, each attribute must be either

I. Synthesized, or

2. Inherited, but with the rules limited as follows. Suppose that there is
a production A =+ X, X5 --- X,,, and that there is an inherited attribute
X;-a computed by a rule associated with this production. Then the rule
may use only:

(a) Imherited attributes associated with the head A.

(b} Either inherited or synthesized attributes associated with the ocenr-
rences of symbols Xq, Xo,..., X;_, located to the left of X;.

314 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

{c) Inherited or synthesized attributes associated with this occurrence
of X itself, but only in such a way that there are no cycles in a
dependency graph formed by the attributes of this X;. '

Example 5.8: The SDD in Fig. 5.4 is L-attributed. To see why, consider the
semantic rules for inherited attributes, which are repeated here for convenience:

PRODUCTION SEMANTIC RULE
TFT T inh = Foval
R Ti.inh = T'.inh x F.val

The first of these rules defines the inherited attribute T.inh using only F.oal,
and F appears to the left of T in the production body, as required. The second
rule defines 77.inh using the inherited attribute T7.inh associated with the head,
and F.val, where F appears lo the left of 77 in the production body.

In each of these cases, the rules use information “from above or from the
left,” as required by the class. The remaining attributes are synthesized. Hence,
the SDD is L-attributed. O

Example 5.9: Any SDD containing the following production and rules cannot
be L-attributed:

PRODUCTION SEMANTIC RULES
A=+ BC A.s = B.b;
B.i=f{Ce, A.s8)

The first rule, A.s = B.b, is a legitimate rule in either an S-attributed or L-
attributed SDD. It defines a synthesized attribute 4.8 in terms of an attribute
at a child {that is, a symbol within the production body).

The second rule defines an inherited attribute B.4, so the entire SDD cannot
be S-attributed. Further, although the rule i8 legal, the SDD cannot be L-
attributed, because the attribute C'.c is used to help define B.4, and ' is ta
the right of B in the production body. While attributes at siblings in a parse
tree may be used in L-attributed SDD’s, they must be to the left of the symbol
whose attribute is being defined. O

5.2.5 Semantic Rules with Controlled Side Effects

In practice, translations involve side effects: a desk calculator might print a
result; a code generator might enter the type of an identifier into a symbol table.
With SDD's, we strike a balance between attribute grammars and translation
schemes. Attribute grammars have no side effects and allow any evaluation
order consistent with the dependency graph. Translation schemes impose left-
to-right evaluation and allow semantic actions to contain any program fragment;
trapslation schemes are discussed in Section 5.4. '
We shall contrel side effects in SDD's in one of the following ways:

5.2. EVALUATION ORDERS FOR SDD'S 315

¢ Permit incidental side cffects that do not consirain attribute evaluation.
In other words, permit side effects when attribute evalnation based on any
topological sort of the dependency graph produces a “correct” translation,
where “correct” depends on the application.

o Constrain the allowable evaluation orders, so that the same translation is
produced for any allowable order. The ronstraints can be thought of as
implicit edges added to the dependency graph.

As an example of an incidental side cffect, let us modify the desk calculator
of Example 5.1 to print a result. Instead of the rule L.vel = E.val, which saves
the result in the synthesized attribute I..vel, consider:

PRODUCTION SEMANTIC RULE
1) L—=En print(E.val)

Sermantic rules that are executed for their side effects, such as print(E.val), will
be treated as the definitions of dummy synthesized attributes associated with
the head of the production. The modiflied SDD produces the same translation
under any topological sort, since the priut statement is executed at the end,
after the result is computed into E_wal

Exaniple 5.10: The §DD in Fig. 5.8 takes a simple declaration I} consisting
of a basic type T followed by a list L of identifiers. T can be int or float. For
each identifier on the list, the type is entered into the symbol-table entry for the
identifier. We assume that entering the type for one identifier does not affect
the symbol-table entry for any other identifier. Thus. entries can be updated
in any order. This SDD does not check whether an identifier is declared more
than once; it can be modified to do so.

PRODUCTION SEMANTIC RULES
1) D->TL L.inh = T.type
2) T —int T .type = integer
3) T — float T .type = iloai

4y L— L,,id Li.inh = L.inh
add Type(id. entry, L.inh)
5 L—id add Type(id. entry, L.inh)

Figure 5.8: Syntax-directed definition for simple type declarations

Nonterminal D represents a declaration, which, from production 1, eonsists
of a type T followed by a list L of identifiers. T bas one attribute, T. type, which
is the type in the declaration D. Nonterminal L also has one atlribute, which
we call infi fo emphasize that it is an inherited attribute. The purpose of L.inh

316 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

is ta pass the declared type down the list of identifiers, so that it can be added
to the appropriate symbol-table entries.

Productions 2 and 3 each evaluate the synthesized attribute T.type, giving
it the appropriate value, integer or float. This type is passed to the attribute
L.ink in the rule for production 1. Production 4 passes L.inh down the parse
tree. That is, the value Ly.ink is computed at a parse-tree node by copying the
value of L.ink from the parent of that node; the parent corresponds to the head
of the production.

Productions 4 and 5 also have a rule in which a function addType is called
with two arguments:

1. id.entry, a lexical value that points to a symbol-table object, and

2. L.inh, the type being assigned to every identifier on the list.

We suppose that function addType properly installs the type L.inh as the type
of the represented identifier.

A dependency graph for the input string float id;, idy, ids appears in
Fig. 5.9. Numbers 1 through 10 represent the nodes of the dependency graph.
Nodes 1, 2, and 3 represent the attribute entry associated with each of the
leaves labeled id. Nodes 6, 8, and 10 are the dummy attributes that represent
the application of the function addType to a type and one of these enéry values.

.D.
T-'4 type inh b ‘_L_ 6 entry
real , ids 3 enmtry

inh 7 _L_' 8 _entry

.) ds 2 entry
inhk 9 L 10 entry

4

id; 1 entry

Figure 5.9: Dependency graph for a declaration float id, , ids, ids

Node 4 represents the attribute 7'.type, and is actually where attribute eval-
uation begins. This type is then passed to nodes 5, 7, and 9 representing L.inh
associated with each of the occurrences of the nonterminal L. O

.-

1

f

5.2. EVALUATION ORDERS FOR SDD'S 317

5.2.86 Exercises for Section 5.2

Exercise 5.2.1: What are all the topological sorts for the dependency graph
of Fig. 5.77

Exercise 5.2.2: For the SDD of Fig. 5.8, give annotated parse trees for the
following expressions:

a) int a, b, <
b} float w, x, ¥, Z.

Exercise 5.2.3: Suppose that we have a production 4 — BCD. Each of
the four nonterminals 4, B, £, and D have two attributes: s is a synthesized
attribute, and i is an inherited aitribute. For each of the sets of rules below,
tell whether () the rules are consistent with an S-attributed definition (if) the
rules are consistent with an L-attributed definition, and (744} whether the rules
are consistent with any evaluation order at all?

a) As=B.i+Cs
b) As=Bi+Csand Di= A4+ B.a.
¢} Ae=B.s+ D.s.
'd) As=Di, Bi=As+Cs, Ci=B.s,and Di=B.i+C.i.

Exercise 5.2.4: This grammar generates binary numbers with a “decimal”
point:

SoL.L|L
L+LB|B
D01

Design an L-attributed SDD to compute S.val, the decimal-number value of
an input string. For example, the translation of string 101.101 should be the
decimal number 5.625. Hint: use an inherited attribute L.side that tells which
side of the decimal point a bit is on.

Exercise 5.2.5: Design an S-attributed SDD for the grammar and translation
described in Exercise 5.2.4.

Exercise 5.2.6: Implement Algorithm 3.23, which converts a regular expres-
sion into a nondeterministic finite automaton, by an L-attributed SDD on a
top-down parsable grammar. Assume that there is a token char representing
any character, and that char.lexval is the character it represents. You may also
assume the existence of a function new() that returns a new state, that is, a
state never before returned by this function. Use any convenient notation to
specify the transitions of the NFA.

318 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

5.3 Applications of Syntax-Directed Translation

The syntax-directed translation techniques in this chapter will be applied in
Chapter 6 to type checking and intermediate-code generation. Here, we consider
gelected examples to illustrate some representative SDTYs.

The main application in this section is the construction of syntax trees. Since
some compilers use syntax trees as an intermediate representation, a common
form of SDD turns its input string info a tree. To complete the translation to
intermediate code, the compiler may then walk the syntax tree, using another
get of rules that arc in effect an SDD on the syntax tree rather than the parse
tree. (Chapter 6 also discusses approaches to intermediate-code generation that
apply an SDD without ever constructing a tree explicitly.)

We consider twa SDD’s for constrieting syntax trees for expressions, The
first, an S-attributed definition, is suitable for use during bottom-up parsing.
The second, L-attributed, is suitable for use during Lop-down parsing.

The final example of this section is an L-attributed definition that deals
with basic and array types.

5.3.1 Construction of Syntax Trees

Ag discussed in Section 2.8.2, cach node in a syntax tree represents a construct;
the children of the node represent the meaningful components of the construct.
A syntax-tree node representing an expression B, + Fp has label + and two
children representing the subexpressions Ey and Fs,

We shall implement. the nodes of a syntax tree by objects with a suitable
number of fields. Each object will have an op field that is the label of the node,
The objects will have additional fields as follows:

o If the node is a leaf, an additional field holds the lexical value for the leaf.
A constructor function Leaf(op, val) creates a leaf object. Alternatively, if
nodes are viewed as records, then Leaf returns a pointer to a new record
for a leaf.

¢ Il the node is an interior node, there are as many additional fields as the
node has children in the syntax tree. A constructor function Node takes
two or more arguments: Nede{ap,er, ey, .. ,cp) Creates an object with
first field op and k additional fields for the k children ey, ... , ¢

Example 5.11: The S-atiributed definition in Fig. 5.10 constructs syntax
trees for a simple expression grammar involving only the binary operators +
and —. As usual, these operators are at the same precedence level and are
juintly left associative. All nonterminals have one synthesized attribute node,
which represents a node of the syntax tree.

Every time the first production £ — Ey + 1 is used, its rule creates a node
with '+’ for op and two children, Ey.node and T.node, for the subexpressions.
The second production has a similar rule.

5.3. APPLICATIONS OF SYNTAX-DIRECTED TRANSLATION 319

PRODUCTION SEMANTIC RULES
) E-xFE+T E.node = new Node('+', By .node, T .node)
2y E—-E-T E.node = new Node('—', E .node, T.node)

3) E-=T E.node = T.node

4 T (F) T.nede = E.node

5 T-id T.node = new Leaf(id, id.entry)

6) T — num T.node = new Leaf{num, num.val)

Figure 5.10: Constructing syntax trees for simple expressions

For production 3, E = T, no node is created, since F.node is the same as
T.node. Similarly, no node is created for production 4, T — (E). The value
of T.node is the same as E.node, since parentheses are used only for grouping;
they influence the structure of the parse tree and the syutax tree, but once their
job is done, there is no further need to retain them in the syntax tree.

The last two T-productions have a single terminal on the right. We use the
constructor Leaf to create a suitable node, which becomes the value of T.node.

Figure 5.11 shows the construction of a syntax tree for the input a — 4 + ¢.
The nodes of the syntax tree are shown as records, with the op field first.
Syntax-tree edges are now shown as solid lines. The underlying parse tree,
which nced not actually be constructed, is shown with dotted edges. The third
type of line, shown dashed, represents the values of E.nede and T.node; each
line points to the appropriate syntax-tree node.

At the bottom we see leaves for @, 4 and ¢, constructed by Leaf. We suppose
that the lexical value id.enfry points into the symbol table, and the lexical
value num.val is the numerical value of a constant. These leaves, or pointers
to them, become the value of T.node at the three parse-tree nodes labeled T,
according to rules 5 and 6. Note that by rule 3, the pointer to the leaf for a is
also the value of E.node for the leftmost £ in the parse tree.

Rule 2 causes us to create a node with op equal to the minus sign and
pointers to the first two leaves, Then, rule 1 produces the root node of the
syntax tree by combining the node for — with the third leaf.

{f the rules are evaluated during a postorder traversal of the parse tree, or
with reductions during a bottom-up parse, then the sequence of steps shown in
Fig. 5.12 ends with ps pointing to the root of the constructed syntax tree. O

With a grammar designed for top-down parsing, the same syntax trees are
constructed, using the same sequence of steps, even though the structure of the
parse trees differs significantly from that of syntax (rees.

Example 5.12: The L-attributed definition in Fig. 5.13 performs the same
translation as the S-attributed definition in Fig. 5.10. The attributes for the
grammar symbols E, T, id, and num are as discussed in Example 5.11.

320 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

E.node

A
Ii

to entry for o

Figure 5.11: Syntax tree for a — 4 + ¢

1} p = new Leaf(id, entry-a);
2) py = new Leaf{num,4);

3) p3=new Node('~",p1,p2);
4} ps = new Leaf(id, entry-c};
5} ps = new Node('t', p3,pa);

Figure 5.12: Steps in the construction of the syntax tree for @ — d+c

The rules for building syntax trees in this example are similar to the rules
for the desk calculator in Example 5.3, In the desk-calculator example, a term
T % y was evaluated by passing x as an inherited attribute, since z and = y
appeared in different portions of the parse tree. Here, the idea is to build a
gyntax tree for £ + y by passing z as an inherited attribute, since x and + y
appear in different subtrees. Nonterminal £’ is the counterpart of nonterminal
T i Example 5.3. Compare the dependency graph for @ — 4 4- ¢ in Fig. 5.14
with that for 3 5 in Fig. 5.7. :

Nonterminal E' has an inherited attribute #h and a synthesized attribute
syn. Attribute F'.ink represents the partial syntax trec constructed so far.
Specifically, it represents the root of the tree for the prefix of the input string
that is to the left of the subtree for E'. At node 5 in the dependency graph in
Fig. 5.14, E'.inh denotes the toot of the partial syntax tree for the identifier a;
that is, the leaf for . At node 6, E'.inh denotes the root for the partial syntax

5.3. APPLICATIONS OF SYNTAX-DIRECTED TRANSLATION 321

PRODUCTION SEMANTIC RULES
1) E-STE E.node = E' syn
E'.inh = T.node
2y E' — +TE, | E.inh=new Node('+', E'.inh,T.node)
E'.syn = E].syn
3) E' - —-TE! | El.inh=new Node{'~', E".inh,T.node)
E'.syn = E{.syn

4) F —e E'.syn = E'.inh

3 I'=(E) T.nade = E.node

6) T —id T.node = new Leaf{(id, id.entry)

7) T — num T.node = new Leof{num, num.val)

Figure 5.13: Constructing syntax trces during top-down parsing

_EISUGdE\

T 2 Fode o5 E1250m
id 1 entry - .’1.""4 node mhﬁ E 11 syn

f

num 3 val + T'gﬁ?&? oA g s
T _x‘
id 7 entry €

Figure 5.14: Dependency graph for @ — 4 + ¢, with the SDD of Fig. 5.13

tree for the input ¢ — 4. At node 9, E'.inh denotes the syntax iree for e — 4+ ¢.

Since there is no more input, at node 9, F’.ink points to the root of the
entire syntax trec. The syn attributes pass this value back up the parse tree
until it becomes the value of F.node. Specifically, the attribute value at node 10
is defined by the rule E'.syn = E'.inh associated with the production B! — €.
The attribute value at node 11 is defined by the rule E'.syn = Ej.syn associated
with production 2 in Fig. 5.13. Similar rules define the attrxbute values at

nodes 12 and 13. O
5.3.2 The Structure of a Type

Inherited attributes are useful when the structure of the parse tree differs from
the abstract syntax of the input; attributes can then be used to carry informa-

322 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

tion from one part of the parse tree to another. The next example shows how
a mismatch in structure can be due to the design of the langunage, and not due
to cohstraints imposed by the parsing methaod.

Example 5.13: In C, the type int [2){3] can be read as, “array of 2 atrays
of 3 integers.” The corresponding type expression array(2, array(3, integer)) is
represented by the trec in ¥ig. 5.15. The operator array takes two parameters,
a number and a type. If types are represented by trees, then this operator
returns a tree node labeled array with two children for a number and a type.

2 /amkarm
AN
3 integer

Figure 5.15: Type expression for int[2]{3]

With the SDD in Fig. 5.16, nonterminal 7' generates eithier a basic type or
an array type. Nonterminal B generates one of the basic types int and foat.
T generates a basic tvpe when 7' derives B C and C derives e. Otherwise, C
generafes array components consisting of a sequence of integers, each integer
surrounded by brackets.

PRODUCTION SEMANTIC RULES

T =+ BC Tt=0Ct
Cb=Bi

B — int B.t = integer

B — float Bt = float

C = [num] ¢ | C# = erray{mum.val, C1.t}
Cb=0C%

g — ¢ Ct=0Cb

Figure 5.16: T generates either a basic type or an array type

The nonterminals B and T have a synthesized attribute ¢ representing a
type. The nonterminal C has two agtributes: an inherited attribute & and a
synthesized attribute . The inherited b atiributes pass a basic type down the
tree, aiid the synthesized t attributes accumulate the result.

An annotated parse trec for the input string int{2] 3] is shown in Fig. 5.17.
The corresponding type expression in Fig. 5.15 is constructed by passing the
type integer from B, down the chain of C’s through the inherited attributes 5.
The array type is synthesized up the chain of C’s through the attributes .

In more detail, at the root for T = B C, nonterminal C inherits the type
from B, using the inherited attribute C.h. At the rightmost node for C, the

5.3. APPLICATIONS OF SYNTAX-DIRECTED TRANSLATION 323

production is € — ¢, so C.t equals C.b. The scmantic rules for the production
C - [num] € form Ct by applying the operator array to the operands
num.val and G5, O

T.t = array(2, erray(3, integer))

_ Ch= integer
B.t = wnieger CLt = arroy(2, arroy(3, integer))
| /// .
. | - / C.b = integer
int [2]

Lt = array(3, inleger)

s
//]/ \C,b = integer

3 C.t = integer

Figure 5.17: Syntax-directed translation of array types

5.3.3 Exercises for Section 5.3

Exercise 5.3.1: Below is a grammar for expressions involving operator + and
integer or floating-point operands. Floating-point numbers are distinguished
by having a decimal point.

ESE+ 74T

T - num . num | num

a} Give an SDD to determine the type of each term T and expression E.

b} Extend your SDD of (a) to translate expressions into postfix notation.
Use the unary operator intToFloat to turn an integer into an equivalent
float.

! Exercise 5.3.2: Give an SDD o lranslate infix expressions with + and * into
cquivalent expressions without redundant, parentheses. For example, since both
operators associate from the left, and * takes precedence over +, ((a*(b4c))*(d))
translates into a * (b + ¢) % d.

! Exercise 5.3.3: Give an SDD to differentiate expressions such as z % (3 2 +
a %) invalving the operators + and #, the variable ., and constants, Assume
that no simplification oceurs, so that, for example, 3 * 2 will be translated into
3x1+0xm,

324 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

5.4 Syntax-Directed Translation Schemes

Syntax-directed translation schemes are a complementary notation to syntax-
directed definitions. All of the applications of syntax-directed definitions in
Section 5.3 can be implemented using syntax-directed translation schemes.

From Section 2.3.5, a syntaz-directed translation scheme (SDT) is a context-
free prammar with program fragments embedded within production bodies. The
program fragments are called semantic actions and can appear at any position
within a production body. By convention, we place curly braces around actions;
if braces are necded as grammar symbols, then we quote them.

Any SDT can be implemented by first building a patse tree and then per-
forming the actions in a left-to-right depth-first order; that is, during a preorder
traversal. An example appears in Section 5.4.3.

Typically, SDT’s are implemented during parsing, without building a parse
tree, In this section, we focus on the use of SDT’s to implement two important
classes of SDD’s:

1. The underlying grammar is LR-parsable, and the SDD is S-attributed.

2. The underlying grammar is LL-parsable, and the SDD is L-attributed.

We shall see how, in both these cases, the semantic rules in an SDD can be
converted inte an SDT with actions that are exeented at the right time. During
parsing, an action in a production body is executed as soon as all the grammar
symbols to the left of the action have been matched.

SD'T’s that can be implemented during parsing can be characterized by in-
troducing distinct marker nonterminals in place of each embedded action; each
marker M has only one production, M —+ €. If the grammar with marker non-
terminals can be parsed by a given method, then the SDT can be implemented
during parsing.

5.4.1 Postfix Translation Schemes

By far the simplest SDD implementation occurs when we can parse the grammar
bottom-up and the SDD is S-attributed. In that case, we can construct an SDT
in which each action is placed at the end of the production and is executed along
with the reduction of the body to the head of that production. SDT’s with all
actions at the right ends of the production bodies are called postfix SDT’s.

Example 5.14: The postfix SDT in Fig. 5.18 implements the desk calculator
SDD of Fig. 5.1, with one change: the action for the first production prints
a value. The remaining actions are exact counterparts of the semantic rules.
Since the underlying grammar is LR, and the SDD is S-attributed, these actions
can be correctly performed along with the reduction steps of the parser. U

5.4. SYNTAX-DIRECTED TRANSLATION SCHEMES 325

En { print{£.val); }
Ei+T { E.wel= E val+ T.val }

T { Eval=T.wval, }
TyxF {Twal=T.valx Fual; }
F { T.wal = F.val; }

{(E) { Fooal = E.val; }
digit { F.val = digit.lezval; }

R ol o
Ll 4i 1Ll

Figure 5.18: Postix SDT implementing the desk caleulator

5.4.2 Parser-Stack Implementation of Postfix SDT’s

Postfix SD'T’s can be implemented during LR parsing by executing the actions
when reductions occur. The atiribute(s) of each grammar symbol can be put
on the stack in a place where they can be found during the reduction. The
best plan is to place the attributes along with the grammar symbols (or the LR
states that represent these symbols) in records on the stack itself,

In Fig. 5.19, the parser stack contains records with & field for a grammar
symbol (or parser state) and, below it, a field for an attribute. The three
grammar symbols X Y Z are on top of the stack; perhaps they are about to be
reduced according to a production like 4 -+ XY Z. Here, we show X.x as the
onc attribute of X, and so on. In general, we can allow for more attributes,
either by making the records large enough or by putting pointers to records on
the stack. With small attributes, it may be simpler to make the records large
enough, even if some fields go unused some of the time. However, if one or more
attributes are of unhounded size — say, they are character strings — then it
would be better to put a pointer to the astribute’s value in the stack record
and store the actual value in some larger, shared storage area that is not part
of the stack,

—— T
| X, Y Zz State/grammar symbhol
X :.c'l Yy| Z.z2 Synthesized attribute(s)

top

Figure 5.19: Parser stack with a field for synthesized attiributes

If the attributes are all synthesized, and the actions occur at the ends of the
productions, then we can compute the attributes for the head when we reduce
the body to the head. If we reduce by a production such as 4 - XY Z, then
we have all the attributes of X, Y, and Z available, at known positions on the
stack, as in Fig. 5.19. After the action, A and its attributes are at the top of
the stack, in the position of the record for X.

Example 5,15: Let us rewritc the aclions of the desk-calcuator SDT of Ex-

326 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

ample 5.14 so that they manipulate the parser stack explicitly. Such stack
manipulation is usually done automatically by the parser.

PRODUCTION ACTIONS

L9 En { print(stack|top — 1].val);
top=top—1; }

ESE+T { stack[top — 2].val = stack[top — 2].val + stack [top].val;
top = top— 2; }

E->T

T+T*F { stack[tap — 2].val = stack[top — 2).val x stack[top).val;
top = top — 2; }

T+ F

Fo(E) 1 stack{top — 2).val = stack[top — 1].val;
top = tap— 2; }

F— digit
Figure 5.20: lmplementing the desk calculator on a hottom-up parsing stack

Suppose that the stack is kept in an array of records called stack, with top
a cursor to the top of the stack. Thus, stack[top] refers to the top record on the
stack, stack[top — 1] to the record below that, and so on. Also, we assume that
each record has a field called wal, which holds the attribute of whatever grammar
symbol is represented in that record. Thus, we may refer to the attribute £.val
that appears at the third position on the stack as stack{top — 2].val. The entire
SDT is shown in Fig. 5.20.

For instance, in the second production, £ — E; + T, we go two positions
helow the top to get the value of Fy, and we find the valuc of T at the top. The
resulting sum is placed where the head E will appear after the reduction, that
is, two positions below the current top. The reason is that after the reduction,
the three topmost stack symbols are replaced by one. After computing E.val,
we pop lwo symbols off the top of the stack, so the record where we placed
E.val will now be at the top of the siack.

In the third production, E — 7', no action is necessary, because the length
of the stack does not change, and the value of T.vel at the stack top will simply
become the value of F.vgl. The same observation applics to the productions
T = F and F — digit. Production F' — (E) is slightly different. Although
the value does not change, iwo positions are removed from the stack during the
reduction, so the value has to move to the position after the reduction.

Note that we have omitted the steps that manipulate the first field of the
stack records -— the field thal gives the LR state or otherwise represents the
grammar symbol. If we are performing an LR parse, the parsing table tells us
what the new state is every time we reduce; see Algorithm 4.44. Thus, we may

5.4. SYNTAX-DIRECTED TRANSLATION SCHEMES 327

gimply place that state in the record for the new top of stack. O

5.4.3 SDT’s With Actions Inside Productions

An action may be placed at any position within the body of a production.
Tt is performed immediately after all symbols to its left are processed. Thus,
if we have a production B — X {a} ¥, the action a is donc after we have
recognized X (if X is a terminal) or all the terminals derived from X (if X is
a nonterrninal). More preciscly,

o If the parse is bottom-up, then we perform action a as soon as this oc-
currence of X appears on the top of the parsing stack.

» If the parse is top-down, we perform e just before we attempt to expand
this occurrence of ¥ (if ¥ a nonterminal) or check for ¥ on the input (if
Y is a terminal).

SDT’s that can be impleniented during parsing include postfix SDT’s and
a class of SDT’s considered in Section 5.5 that implements L-attributed defini-
tions. Not all SDT’s can be implemented during parsing, as we shall see in the
next example,

Example 5.16: As an extreme example of a problematiec SDT, suppose that
we turn our desk-calculator running example into an SDT that prints the prefix
form of an expression, rather than evaluating the cxpression. The productions
and actions are shown in Fig. 5.21.

) L - En

2) E = A{print('+');} B+ T

) E = T

4 T — {print{’+);} Ty*xF

5 T — F

6) F — (&)

7) F - digit { print{digit.lezval); }

Figure 5.21: Problematic SDT for infix-to-prefix translation during parsing

Unfortunately, it is impossible to implement this SDT' during either top-
down or bottom-up parsing, because the parser would have to perform critical
actions, like printing instances of * or +, long before it knows whether these
symbols will appear in its input.

Using marker nonterminals M, and M, for the actions in productions 2
and 4, respectively, ou input 3, a shift-reduce parser (see Section 4.5.3) hag
conflicts between reducing by Ms — ¢, reducing by My — ¢, and shifiing the
digit. O

328 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

Any SDT can be implemented as follows:

1. Ignoring the actions, parse the input and produce a parse trec as a result.

2. Then, examine each interior node N, say one for production 4 — o. Add
additional children to N for the actions in ¢, so the children of N from
left to right have exactly the symbols and actions of a. '

3. Perform a preorder traversal (see Section 2.3.4) of the tree, and as soon
as a node labeled by an action is visited, perform that action.

For instance, Fig. 5.22 shows the parse tree for expression 3 x § + 4 with ac-
tions inserted. If we visit the nodes in preorder, we get the prefix form of the
expression: + *3 54.

L

AN
- E n
{ prmt(’+’)?’}"’f:? J‘ \ T
| |

T P
{ print(’ *’),J}’ ’ T/ J= \ F . dl'glt {‘prlnt(ﬁi }
1lr‘ digit %\I;fint(m; }

digit { print(3); }

Figure 5.22: Parse tree with actions embedded

5.4.4 Eliminating Left Recursion From SDT’s

Since no grammar with left recursion can be parsed deterministically top-down,
we examined left-recursion elimination in Section 4.3.3. When the grammar is
part of an SDT, we also necd to worry about how the actions are handled.

First, consider the simple case, in which the only thing we care about is
the order in which the actions in an SDT are performed. For example, if each
action simply prints a string, we care only about the order in which the strings
are printed. In this case, the following principle can guide us:

o When transforming the grammar, treat the actions as if they were termi-
nal symbols:

5.4. SYNTAX-DIRECTED TRANSLATION SCHEMES 329

This principle is based on the idea that the grammar transformation preserves

the order of the terminals in the generated string. The actions are therefore

execiled in the samce order in any left-to-right parse, top-down or bottom-up.
The “trick” for eliminating left recursion i3 to take two productions

A— A | 8

that generate strings consisting of a # and any number of a’s, and replace them
by productions that generate the same strings using a new nonterminal B (for
“remainder”) of the first production:

A= SR
R—aR|e

H 3 does not begin with A, then A no longer has a left-recursive preduction. In
regular-definition terms, with both sets of productions, A is defined by F(a)*.
See Section 4.3.3 for the handling of situations where A has more recursive or
nonrecursive productions.

Exarnple 5.17: Consider the following E-productions from an S8DT for trans-
lating infix expressions into postfix notation:

E = E+7T {primt('+');}
E - T

If we apply the standard transformation to E, the remainder of the left-recursive
production is

a = + T {print("+; }

and 3, the body of the other production is T'. 1 we introduce R for the remain-
der of E, we get the set of praductions:

E - TR
R = +T{primt('+);} B
R — ¢

O

When the actions of an SDD compute attributes rather than merely printing
output, we must be more careful about how we eliminate left recursion from a
grammar. However, if the SDD is S-attributed, then we can always construct
an SDT by placing attribute-computing actions at appropriate positions in the
new productions.

We shall give a gencral schema for the case of a single recursive production,
a single nonrecursive production, and a single attribute of the left-recursive
nonterminal; the generalization to many productions of cach type is not hard,
but is notationally cumbetrsome. Suppose that the two productions are

330 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

A = A Y {Adae=g(de, Yy}
A = X {Aa=f(Xz)

Here, A.a is the synthesized attribute of left-recursive nonterminal A, and X
and Y are single grammar symbols with synthesized attributes X.z and Y.y,
respectively. These could represent a string of several grammar symbals, each
with its own attribute(s), since the schema has an arbitrary function g comput-
ing 4. in the recursive production and an arbitrary function f computing 4.q
in the second production. In each case, f and g take as arguments whatever
attributes they are allowed to access if the SDD is S-attributed.
We want to turn the underlying grammar into

A - XR
R = YR|c¢

Figure 5.23 suggests what the SDT on the new grammar must do. In (a)
we see the effect of the postfix SDT on the original grammar. We apply f once,
corresponding to the use of production 4 — X, and then apply g as many times
as we use the production A —+ AY. Since R generates a “remainder” of ¥7s,
its translation depends on the string to its left, a string of the form XYY --- ¥,
Each use of the production B — ¥R results in an application of g. For R, we
use an inherited attribute R.é to accumulate the result of snccessively applying
g, starting with the value of A.a.

A =glg(f(X.x), Yiy), Youu)

/ e

g(f(X‘L):Yl:y) X R'&:f(X $)

N, N

= f{X.2) Ri=g(f(Xz),Y1,y)

‘»><—-——--..,

R.i=g(g(f(X.x},Y1.4), Ya.5)

(a) (b) ‘
Figure 5.23: Eliminating lefl recursion from a postfix SDT

In addition, B has a synthcsized attribute R.s, not shown in Fig. 5.23.
This attribute is first computed when R ends its generation of ¥ symbols, as
signaled by the use of production B = e. R.s is then copied up the tree, so
it can become the value of 4.a for the entire expression XYY --+Y. The case
where A generates XYY is shown in Fig. 5.23, and we see that the value of A.a
at the root of (a) has two uses of g. So does I.i at the bottom of tree (b}, and
it is this value of R.s that gets copled up that tree.

To accomplish this translation, we use the following SDT:

54. SYNTAX-DIRECTED TRANSLATION SCHEMES 331

A = X {Ri=f(Xz)} R {Aa=Rs}
R = Y {Rii=g(Ri Yy} R {Rs=R.s)
R - € {Rs=Ri}

Notice that the inherited attribute 3.4 is evaluated immediately before a use
of R in the body, while the synthesized attributes 4.a and R.s are evalnated
at the ends of the productions. Thus, whatever values are necded to compute
thesc attributes will be available from what has been computed Lo the left.

5.4.5 SDT’s for L-Attributed Definitions

In Section 5.4.1, we converted S-attributed SDD’s into postfix SDT’s, with
actions at the right ends of productions. As long as the underlying grammar is
LR, postfix SDT"s can be parsed and translated bottom-up.

Now, we consider the more general case of an L-attributed SDD. We shall
assume that the underlying grammar can be parsed top-down, for if not it is
frequently impossible to perform the translation in connection with either an
LL or an LR parser. With any grammar, the technique below can be imple-
mented by attaching actions to a parse tree and execnting them during preorder
traversal of the tree,

The rules for turning an L-attributed SDD into an SDT are as follows:

1. Embed the action that computes the inherited attributes for a nonterminal
A immediately before that occcurrence of A in the body of the production.
If several inherited attributes for A depend on one another in an acyclic
fashion, order the evaluation of atiributes so that those needed first are
computed first,

2. Place the actions that compute a synthesized attribute for the head of a
production at the end of the body of that production,

We shall Hlustrate these principles with two extended examples. The first
Involves typesetting. It illustrates how the techniques of compiling can he used
in language processing for applications other than what we normally think of
as programming langnages. The second example is about the generation of
intermediate code for a typical programming-language construct: a form of
while-statement.

Example 5.18: This cxample is motivated by languages for typesetting math-
ematical formulas. Eqo is an early example of such a language; ideas from Eqn
are still found in the TEX typesetting system, which was used to produce this
book.

We shall concentrate on only the capability to define subscripts, subscripts
of subscripts, and so on, ignoring superscripts, built-up fractions, and all other
mathematical features. In the Eqn language, one writes a sub i sub j to set
the expression a;;. A simple grammar for bozes (elements of text bounded by
a rectangle} is

332 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

B — By By | Bysub By | (By) | text
Corresponding to these four productions, a box can be either

1. Two hoxes, juxtaposed, with the first, By, to the left of the other, B;.

2. A box and a subscript box. The sccond box appears in a smaller size,
lower, and to the right of the first hox.

3. A parenthesized box, for grouping of boxes and subscripts. Eqn and TEX
both use curly braces for grouping, but we shall nse ordinary, round paren-
theses to avoid confusion with the braces that surround actions in SDT’s,

4. A text string, that is, any string of characters.

This grammar is ambiguous, but we can still use it to parse bottom-up il we
make subscripting and juxtaposition right associative, with sub taking prece-
dence over juxtaposition.

Expressions will be typeset by constructing larger boxes out of smaller ones.
In Fig. 5.24, the boxes for F; and .height are about to be juxtaposed to form
the box for Ey.height. The lefi box for £ is itself constructed from the box
for £ and the subscript 1. The subscript 1 is handled by shrinking its box by
about 30%, lowering it, and placing it after the box for E. Although we shall
freat .height as a text string, the rectangles within its box show how it can be
constructed from boxes for the individual letters.

Figure 5.24: Constructing larger boxes from smaller oncs

In this example, we concentrate on the vertical geometry of boxes only. The
horizontal geometry — the widths of boxes - - is also interesting, especially when
different characters have different widths. It may not be readily apparent, but
each of the distinct characters in Fig. 5.24 has a different width.

The values associated with the vertical geometry of boxes are as follows:

a) The peint size is used to set text within a box. We shall assume that
characters not it subscripts are set in 10 point type, the size of type in
this book. Further, we assume thal if a box has point size p, then its
subseript box has the smaller point size 0.7p. Inherited attribute B.ps
will represent the point size of block B. This attribute must be inherited,
because the context determines by how much a given box needs to be
ghrunk, due to the number of levels of subscripting,.

5.4. SYNTAX-DIRECTED TRANSLATION SCHEMES 333

) Each box has a baseline, which is a vertical position that correspouds to
the bottoms of lines of text, not counting any letters, like “g” that extend
below the normal baseline. In Fig, 5.24, the dotted line represents the
haseline for the boxes E, height, and the entire expression. The baseline
for the box containing the subscript 1 is adjusted to lower the subscript.

¢) A box has a height, which is the distance from the top of the box to the
baseline, Synthesized attribute 8.4¢ gives the height of box B.

d) A bhox has a depth, which is the distance from the baseline to the bottom
of the box. Synthesized atiribute B.dp gives the depth of box B.

The SDD in Fig. 5.25 gives rules for computing point sizes, heights, and
depths. Production 1 is used to assign B.ps the initial value 10.

PRODUCTION SEMANTIC RULES
1} §—=B Bps=10
2) B - B] Bg B ps = B})S
! By.ps= B.ps
B.ht = max (B, .kt, By ht)

B.dp = max({B.dp, Bs.dp)

3) B—Bysub B, | By.ps=B.ps
By.ps =0.7 x B.ps
\ B.ht = max(B,.ht, By.ht — 0.25 x B.ps)
\ B.dp = max{B,.dp, Ba.dp + 0.25 x B.ps)

4y B-{(B) ’ By .ps= B.ps
| B.At=B).ht
l B.dp = By.dp
3) B — text l D.ht = getHt (B ps, text. lexval)

| B.dp = getDp(B.ps, text.lezval)

Figure 5.25: SDD for typesctting boxes

Production 2 handles juxtaposition. Point sizes are copied down the parse
tree; that Is, two sub-boxes of a box inherit the same point size from the larger
hox. Heights and depths are computed up the tree by taking the maximum.
That is, the height of the larger box is the maximum of the heights of its two
components, and similarly for the depth.

Production 3 handles subscripting and is the most subtle. In this greatly
simplified example, we assume that the point size of a subscripted box is 70%
of the point size of its parent. Reality is much more complex, since subscripts
cannot shrink indefinitely; in practice, after a few levels, the sizes of subscripts

334 CHAPTER 5. SYNTAX-DIRECTED TRANSLATION

shrink hardly at all. Further, we assume that the baseline of a subscript box
drops by 25% of the parent’s point size; again, reality is more complex.

Production 1 copies attributes appropriately when parentheses are used. Fi-
nally, production 5 handles the leaves that represent text boxes. In this matter
too, the true sifuation is complicated, so we merely show two unspecified func-
tions getft and gefDp that examine tables created with each font to determine
the maximum height and maximum depth of any characters in the text string.
The string itself is presumed to he provided as the attribute lexval of terminal
text.

QOur last task is to turn this SDD into an SDT, following the rules for an L-
attributed SDD, which Fig. 5.25 is. The appropriate SDT is shown in Fig. 5.26.
For rcadability, since production bodies become long, we split them across lines
and line up the actions. Production bodies therefore consist ol the contents of
all lines up to the head of the next production. O

PRODUCTION ACTIONS

1y § - { Bps= 10; }
B
2) B - {Bi.ps = B.ps; }
By {By.ps = B.ps; }
By { B.hi = max(Bl.ht, tht)
B.dp = max(B.dp, Bz.dp); }
3) B = {Bi.ps= B.ps; }
By sub {Bs.ps= 0.7x B.ps; }
B { B.ht= max(Bi.ht, By.ht —0.25 x B.ps);
B.dp = max({Bi.dp, Ba.dp + 0.25 x B.ps}; }
44 B — ({By.ps = B.ps; }

Bl) { B.hi = B].ht;
B.dp= Bi.dp;}

5 B — text { B.ht = getHt(B.ps,text.lezval);
B.dp = geiDp(B.ps, text.lezval); }

Figure 3.26: SDT for typesetting boxes

Our next example concentrates on a simple while-statement and the gener-
ation of intermediate code for this type of statement. Intermediate code will
be treated as a string-valued attribute. Later, we shall explore techniques that
involve the writing of pieces of a string-valued attribute as we parse, thus avoid-
ing the copying of long strings to build even longer strings. The technique was
introduced in Example 3,17, where we generated the postfix form of an infix

54. SYNTAX-DIRECTED TRANSLATION SCHEMES 335

expression “on-the-fly,” rather than computing it as an attribute. However, in
our first formulation, we create a string-valued attribute hy concatenation.

Example 5.19: For this example, we only need one production:
S while (C') 5

Here, S is the nonterminal that generates all kinds of statements, presumably
including if-statements, assignment statements, and others. In this example, ¢
stands for a conditional expression -— a boolean expression that evaluates to
true or false.

In this flow-of-control example, the only things we ever generate are labels.
All the other intermediate-code instructions are assumed to be generated by
parts of the SDT that arc not shown. Specifically, we generate explicit insiruc-
tions of the form label L, where L is an identifier, to indicate that L is the
label of the instruction that follows. We assume that the intermediate code is
like that introduced in Section 2.8.4.

The meaning of our while-statement ig that the conditional C is evaluated.
If it. is true, control goes to the beginning of the code for 5. If false, then control
goes to the code that follows the while-statement’s code. The code for Sy must
be designed to jump to the beginning of the code for the while-statement when
finished; the jump to the begiuning of the code that evaluates C is not shown
in Fig. 5.27.

Woe usc the following attributes to gencrate the proper intermediate code:

1. The inherited attribute S.nest labels the beginning of the code that must
be executed after S is finished.

2. The synthesized attribute S.code is the sequence of intermediate-code
steps that implements a statement S and ends with a jump to S.next.

3. The inherited attribute C.érue labels the beginning of the code that must
be executed if €' is true.

4. The inherited attribute C.false labels the beginning of the code that must
be executed if ' is false.

5, The synthesized attribute (.code is the sequence of intermediate-code
steps that implements the condition € and jumps either to C.true or to
C.false, depending on whether € is true or false.

The SDD that computes these attributes for the while-statement is shown
in Fig. 5.27. A numbcr of points merit explanation:

e The funcilon new generates new lahels.

e The variables L1 and L2 hold labels that we need in the code. L1 is the
begi